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Abstract. Accurate specification of the error statistics required for data assimilation remains an ongoing chal-
lenge, partly because their estimation is an underdetermined problem that requires statistical assumptions. Even
with the common assumption that background and observation errors are uncorrelated, the problem remains
underdetermined. One natural question that could arise is as follows: can the increasing amount of overlapping
observations or other datasets help to reduce the total number of statistical assumptions, or do they introduce
more statistical unknowns? In order to answer this question, this paper provides a conceptual view on the sta-
tistical error estimation problem for multiple collocated datasets, including a generalized mathematical formu-
lation, an illustrative demonstration with synthetic data, and guidelines for setting up and solving the problem.
It is demonstrated that the required number of statistical assumptions increases linearly with the number of
datasets. However, the number of error statistics that can be estimated increases quadratically, allowing for an
estimation of an increasing number of error cross-statistics between datasets for more than three datasets. The
presented generalized estimation of full error covariance and cross-covariance matrices between datasets does
not necessarily accumulate the uncertainties of assumptions among error estimations of multiple datasets.

1 Introduction

Accurate specification of the error statistics used for data as-
similation has been an ongoing challenge. It is known that
the accuracy of both background and observation error co-
variances have a strong impact on the performance of atmo-
spheric data assimilation (e.g., Daley, 1992a, b; Mitchell and
Houtekamer, 2000; Desroziers et al., 2005; Li et al., 2009).
A number of approaches to estimate optimal error statistics
make use of residuals, i.e., the innovations between obser-
vation and background states in observation space (Tandeo
et al., 2020), but the error estimation problem remains un-
derdetermined. Different approaches exist that aim at clos-
ing the error estimation problem, all of which rely on vari-
ous assumptions. For example, error variances and correla-
tions were estimated a posteriori by Tangborn et al. (2002),
Ménard and Deshaies-Jacques (2018), and Voshtani et al.
(2022) based on cross-validation of the analysis with inde-
pendent observations withheld from the assimilation. How-

ever, these a posteriori methods require an iterative calcu-
lation of the analysis, and the global minimization criterion
provides only spatial-mean estimates of optimal error statis-
tics. In recent years, the number of available datasets has
increased rapidly, including overlapping or collocated ob-
servations from several measurements systems. This raises
the question of whether multiple overlapping datasets can be
used to estimate full spatial fields of optimal error statistics
a priori.

Outside of the field of data assimilation, two different
methods have been developed that allow for a statistically
optimal estimation of scalar error variances for fully col-
located datasets. Although similar, these two methods have
been developed independently of each other in different sci-
entific fields. One method, called the three-cornered hat (3-
CH) method, is based on Grubbs (1948) and Gray and Allan
(1974), who developed an estimation method for error vari-
ances of three datasets based on their residuals. This method
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has been widely used in physics for decades, but it has only
recently been exploited in meteorology (e.g., Anthes and
Rieckh, 2018; Rieckh et al., 2021; Kren and Anthes, 2021;
Xu and Zou, 2021). Nielsen et al. (2022) and Todling et al.
(2022) were the first to independently use the generalized
3CH (G3CH) method to estimate full error covariance matri-
ces. Todling et al. (2022) used a modification of the G3CH
method to estimate the observation error covariance matrix in
a data assimilation framework. They showed that, when the
G3CH method is applied to the observations, background,
and analysis of variational assimilation procedures, this par-
ticular error estimation problem can only be closed under the
assumption that the analysis is optimal.

Independent of these developments, Stoffelen (1998)
used three collocated datasets for multiplicative calibration
with respect to each other. Following this idea, the triple-
collocation (TC) method became a well-known tool to es-
timate scalar error variances from residual statistics in the
fields of hydrology and oceanography (e.g., Scipal et al.,
2008; McColl et al., 2014; Sjoberg et al., 2021). To date,
there have only been a few applications of scalar error vari-
ance estimation in data assimilation with the TC method
(e.g., Crow and van den Berg, 2010; Crow and Yilmaz,
2014). The 3CH and TC methods use different error models,
leading to slightly different assumptions and formulations of
error statistics. A detailed description, comparison, and eval-
uation of the two methods is given in Sjoberg et al. (2021).
Both methods have in common that they require fully spa-
tiotemporally collocated datasets with random errors. These
errors are assumed to be independent among the realizations
of each dataset, with common error statistics across all real-
izations (e.g., Zwieback et al., 2012; Su et al., 2014). In ad-
dition, error statistics of the three datasets are assumed to be
pairwise independent, which is the most critical assumption
of these methods (Pan et al., 2015; Sjoberg et al., 2021).

While the estimation of three error variances has been well
established for decades, recent developments propose differ-
ent approaches to extend the method to a larger number of
datasets. As observed by studies such as Su et al. (2014),
Pan et al. (2015), and Vogelzang and Stoffelen (2021), the
problem of error variance estimation from pairwise residu-
als becomes overdetermined for more than three datasets. Su
et al. (2014), Anthes and Rieckh (2018), and Rieckh et al.
(2021) averaged all possible solutions of each error vari-
ance, thereby reducing the sensitivity of the error estimates
to inaccurate assumptions. Pan et al. (2015) clustered their
datasets into structural groups and performed a two-step es-
timation of the in-group errors and the mean errors of each
group, which were assumed to be independent. Zwieback
et al. (2012) were the first to propose the additional esti-
mation of the scalar error cross-variances between two se-
lected datasets (which they denote as covariances) instead of
solving an overdetermined system. This extended collocation
(EC) method was applied to scalar soil moisture datasets by
Gruber et al. (2016), who estimated one cross-variance in ad-

dition to the error variances of four datasets. Furthermore, for
four datasets, Vogelzang and Stoffelen (2021) demonstrated
the ability to estimate two cross-variances in addition to the
error variances. They observed that the problem cannot be
solved for all possible combinations of cross-variances to be
estimated. However, their approach failed for five dataset due
to a missing generalized condition which is required to solve
the problem.

This demonstrates that the different approaches available
for more than three datasets provide only an incomplete pic-
ture of the problem, as each approach is tailored to the spe-
cific conditions of the respective application. Aiming for a
more general analysis, this paper approaches the problem
from a conceptual point of view. The main questions to be
answered are as follows:

– How many error statistics can be extracted from residual
statistics between multiple collocated datasets?

– How many statistics remain to be assumed?

– How do inaccuracies in assumed error statistics affect
different estimations of error statistics?

– What are the general conditions to set up and solve the
problem?

In order to answer these questions, the general framework
of the estimation problem that builds the basis for the re-
maining sections is introduced in Sect. 2. It provides a con-
ceptual analysis of the general problem with respect to the
number of knowns and unknowns and the minimum num-
ber of assumptions required. Based on this, the mathemat-
ical formulation for non-scalar error matrices is derived in
Sects. 3 and 4. The derivation is based on the formulation
of residual statistics as a function of error statistics which is
introduced in Sect. 3.2. While the exact formulation for esti-
mating error statistics in Sect. 3.3 remains underdetermined
in real applications, approximate formulations that provide
a closed system of equations are derived in Sect. 4. Some
relations presented in these two sections have already been
formulated for scalar problems dealing with error variances
only. However, we present formulations for full covariance
matrices including off-diagonal covariances between single
elements of the state vector of the respective dataset as well
as for cross-covariance matrices between different datasets.
Overlap with previous studies is mainly restricted to the for-
mulation for three datasets in Sect. 4.1 and is noted accord-
ingly. Based on this, Sect. 4.2 provides a new approach for
the estimation of the error statistics of all additional datasets
that uses a minimal number of assumptions. The theoretical
formulations are applied to four synthetic datasets in Sect. 5.
This demonstrates the general ability to estimate full error
covariances and cross-statistics as well as the effects of in-
accurate assumptions with respect to different setups. The
theoretical concept proposed in this study is summarized in
Sect. 6. This summary aims to provide the most important
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results in a general context, thereby answering the main re-
search questions of this study without requiring knowledge
of the full mathematical theory. It includes the formulation
and illustration of rules to solve the problem for an arbitrary
number of datasets and provides guidelines for the setup of
the datasets. Finally, Sect. 7 concludes the findings and dis-
cusses the consequences of using the proposed method in the
context of high-dimensional data assimilation.

2 General framework

Suppose a system of I spatiotemporally collocated datasets
that may include various model forecasts, observations, anal-
yses, and any other datasets available in the same state space.
The second-moment statistics of the random errors of this
system (with respect to the truth) can be described by I error
covariances with respect to each dataset and NI error cross-
covariances with respect to each pair of different datasets. In
a discrete state space, (cross-)covariances are matrices and
the cross-covariance of dataset A and B is the transpose of
the cross-covariance of B and A (see Sect. 3.1 for an explicit
definition). Considering this equivalence, the number NI of
error cross-covariances between all different pairs of datasets
is as follows:

NI =

I−1∑
i=1

i =
1
2
· I · (I − 1). (1)

Thus, the total number UI of error statistics (error covari-
ances and cross-covariances) is as follows:

UI =NI + I =
1
2
· I · (I + 1). (2)

While error statistics with respect to the truth are usu-
ally unknown in real applications, residual covariances can
be calculated from the residuals between each pair of dif-
ferent datasets. The main idea now is to express the known
residual statistics as functions of unknown error statistics
(Sect. 3.2) and combine these equations to eliminate single
error statistics (Sects. 3.3 and 4). Because j 6= i for residu-
als, each of the I datasets can be combined with each of the
other I −1 datasets. As residual statistics also do not change
with the order of datasets in the residual (see Sect. 3.1), the
number of known statistics of the system is also given byNI ,
as defined in Eq. (1). It will be shown (in Sect. 3.2.3) that
residual cross-covariances generally contain the same infor-
mation as residual covariances; thus, the NI residual statis-
tics can be given in the form of residual covariances or cross-
covariances.

Because NI residual statistics are known, NI of the UI er-
ror statistics can be estimated, but the remaining I statistics
have to be assumed in order to close the problem. The set of
error statistics to be estimated can generally be chosen ac-
cording to the specific application, but it will be shown that
there are some constraints. Based on the mathematical theory

Figure 1. Relation between different numbers of statistics (co-
variances and cross-covariances) as a function of the number of
datasets. Shown are I in solid gray (no. of datasets, no. of error
covariances, and no. of required assumptions), UI in dashed orange
(no. of error statistics), NI in dashed green (no. of residual covari-
ances, no. of error dependencies, and no. of estimated error statis-
tics), andAI in solid blue (no. of estimated error cross-covariances).

provided in the following sections, Sect. 6.1 provides guide-
lines that ensure the solvability of the problem for a minimal
number of assumptions.

In most applications of geophysical datasets, like in data
assimilation, the estimation of error covariances is highly
crucial, whereas their error cross-covariances are usually as-
sumed to be negligible. Given the greater need to estimate
the I error covariances, the remaining number of error cross-
covariances that can be additionally estimated (AI ) is as fol-
lows:

AI =NI − I =
1
2
· I · (I − 3). (3)

The relation between the number of datasets, residual co-
variances, and assumed and estimated error statistics is vi-
sualized in Fig. 1. The value for I = 0 represents the mathe-
matical extension of the problem, where no error nor residual
statistics are required when no dataset is considered. For less
than three datasets (0< I < 3),AI is negative, as the number
of (known) residual covariances is smaller than the number
of (unknown) error covariances (NI < I ); thus, the problem
is underdetermined, even when all datasets are assumed to
be independent (zero error cross-covariances). As in the case
of data assimilation of two datasets (I = 2), additional as-
sumptions regarding error statistics are required. The same
holds when only one dataset is available (I = 1): the error
covariance of this dataset remains unknown because no resid-
ual covariance can be formed. For three datasets (I = 3), AI
is zero, meaning that the problem is fully determined under
the assumption of independent errors (NI = I , formulated in
Sect. 4.1).
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For more than three datasets (I > 3), the number of
(known) residual covariances exceeds the number of error
covariances; this would lead to an overdetermined problem if
independence among all datasets is assumed. Instead of solv-
ing an overdetermined problem, additional information can
be used to calculate some error cross-covariances (formu-
lated in Sect. 4.2). In other words, for I > 3, not all datasets
need to be assumed to be independent, and AI gives the
number of error cross-covariances that can be estimated in
addition to the error covariances from all datasets. For ex-
ample, half of the error cross-covariances can be estimated
for I = 5 (A5

N5
=

5
10 ), while two-thirds of them can be esti-

mated for I = 7 (A7
N7
=

14
21 ). Although the relative number of

error cross-covariances that can be estimated increases with
the number of datasets, an increasing number ofUI−NI = I
assumptions – equal to the number of datasets – is required
in order to close the problem because UI >NI ,∀I > 0.

Note that almost all numbers presented above apply to the
general case, in which any combination of error covariances
and cross-covariances may be given or assumed. While the
interpretation of the numbers I ,NI , andUI remains the same
in all cases, the only difference is the interpretation of AI ,
which is less meaningful when error covariances are also as-
sumed.

3 Mathematical theory: exact formulation

This section gives the theoretical formulation for the ex-
act statistical formulations of complete error covariance and
cross-covariance matrices from fully spatiotemporally col-
located datasets. Similar to the 3CH method, the errors are
assumed to be random, independent among different real-
izations, but with common error statistics for each dataset.
The notation is introduced in Sect. 3.1. While the true state
and, thus, error statistics with respect to the truth are usually
unknown, residual statistics can be calculated from residu-
als between each pair of datasets. At the same time, resid-
ual statistics contain information about the error statistics of
the datasets involved. The expression of residual statistics
as a function of error covariances and cross-covariances in
Sect. 3.2 provides the basis for the subsequent mathematical
theory. Based on these forward relations, inverse relations
describe error statistics as a function of the residual statis-
tics. The general equations of inverse relations are given in
Sect. 3.3 and result in a highly underdetermined system of
equations. Closed formulations of error statistics for three or
more datasets under certain assumptions will be formulated
in the following (Sect. 4).

This first part of the mathematical theory includes the fol-
lowing new elements: (i) the separation of cross-statistics
into a symmetric error dependency and an error asymmetry
(Sect. 3.1), (ii) the general formulation of residual statistics
as a function of error statistics (Sect. 3.2.1 and 3.2.2), (iii) the
demonstration of equivalence between residual covariances

and cross-covariances (Sect. 3.2.3), and (iv) the general for-
mulation of exact relations between residual- and error statis-
tics (Sect. 3.3).

3.1 Notation

Suppose I datasets, each containing R realizations of spa-
tiotemporally collocated state vectors xi,∀i ∈ [1,I ]. Without
loss of generality, the following formulation uses unbiased
state vectors with a zero mean. In practice, each index i, j , k,
and l may represent any geophysical dataset, like model fore-
casts, climatologies, in situ or remote-sensing observations,
or other datasets.

Let 0i;j ;k;l be the residual cross-covariance matrix be-
tween dataset residuals i− j and k− l with j 6= i and l 6= k,
where each element (p,q) is given by the expectation over
all realizations,

0i;j ;k;l(p,q) :=
[
xi(p)− xj (p)

][
xk(q)− xl(q)

]
, (4)

and the error cross-covariance matrix X̃i;j̃ between the er-
rors of two datasets i and j with respect to the true state xT ,

X̃i;j̃ (p,q) :=
[
xi(p)− xT (p)

][
xj (q)− xT (q)

]
. (5)

Here, the tilde above a dataset index indicates its deviation
from the truth and the overbar denotes the expectation over
all R realizations. Note that xi(p) is a scalar element of the
dataset vector.

In the symmetric case, each element (p,q) of the residual
covariance matrix of i− j with j 6= i, is given by

0i;j (p,q) := 0i;j ;i;j (p,q)
(4)
=
[
xi(p)− xj (p)

][
xi(q)− xj (q)

]
(6)

and the error covariance matrix C̃i of a dataset i with respect
to the true state xT

C̃i(p,q) := X̃i ;̃i(p,q)

(5)
=
[
xi(p)− xT (p)

][
xi(q)− xT (q)

]
. (7)

Here, the numbers in parentheses above an equal sign indi-
cate other equations that were used to retrieve the right-hand
side.

Note that residual and error cross-covariance matrices
are generally asymmetric in the non-scalar formulation pre-
sented here, but the following relations hold for residual as
well as (similarly) for error cross-covariance matrices:
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0i;j ;k;l
(4)
= −0j ;i;k;l

(4)
=−0i;j ;l;k

(4)
= 0j ;i;l;k (8)

0i;j ;k;l
(4)
=

[
0k;l;i;j

]T
(9)

X̃i;j̃
(5)
=

[
Xj̃ ;̃i

]T
. (10)

The symmetric properties of residual and error covariances
follow directly from their definition:

0i;j
(6)
=0j ;i (11)[

0i;j

]T (6)
=0i;j . (12)

The sum of an (asymmetric) cross-covariance matrix and
its transpose is denoted as dependency. For example, the sum
of error cross-covariance matrices between i and j is denoted
as the error dependency matrix D̃i;j̃ :

D̃i;j̃ := X̃i;j̃ +Xj̃ ;̃i . (13)

Although error cross-covariances may be asymmetric, the
error dependency matrix is symmetric by definition:

D̃i;j̃
(13)
= X̃i;j̃ +Xj̃ ;̃i

(13)
= Dj̃ ;̃i, (14)

D̃i;j̃
(13)
= X̃i;j̃ +Xj̃ ;̃i

(10)
=

[
Xj̃ ;̃i

]T
+

[
X̃i;j̃

]T (13)
=

[
D̃i;j̃

]T
. (15)

Likewise, the sum of the residual cross-covariance matri-
ces between i− j and k− l with j 6= i and l 6= k is denoted
as the residual dependency matrix Di;j ;k;l :

Di;j ;k;l := 0i;j ;k;l +0k;l;i;j . (16)

The difference between a cross-covariance matrix and its
transpose is a measure of asymmetry in the cross-covariances
and is, therefore, denoted as asymmetry. For example, the dif-
ference between the error cross-covariance matrices between
i and j is denoted as the error asymmetry matrix Ỹi;j̃ :

Ỹi;j̃ := X̃i;j̃ −Xj̃ ;̃i . (17)

Likewise, the difference between the residual cross-
covariance matrices between i− j and k− l with j 6= i and
l 6= k is denoted as the residual asymmetry matrix Yi;j ;k;l :

Yi;j ;k;l := 0i;j ;k;l −0k;l;i;j . (18)

3.2 Residual statistics

For real geophysical problems, the available statistical infor-
mation comprises (i) the residual covariance matrices of each
pair of datasets and (ii) the residual cross-covariance matri-
ces between different residuals of datasets. The forward rela-
tions of residual covariances and residual cross-covariances
as functions of error statistics are formulated in the follow-
ing. For the estimation of error statistics, it is important to

quantify the number of independent input statistics that de-
termines the number of possible error estimations. Therefore,
this section also includes an evaluation of the relation be-
tween residual cross-covariances and residual covariances in
order to specify the additional information content of resid-
ual cross-covariances.

3.2.1 Residual covariances

Each element (p,q) of the residual covariance matrix be-
tween two input datasets i and j can be written as a function
of their error statistics as follows:

0i;j (p,q)
(6)
=

{[
xi(p)− xT (p)

]
−
[
xj (p)− xT (p)

]}
·

{[
xi(q)− xT (q)

]
−
[
xj (q)− xT (q)

]}
(5),(7)
= C̃i(p,q)− X̃i;j̃ (p,q)−Xj̃ ;̃i(p,q)

+Cj̃ (p,q). (19)

Thus, the complete residual covariance matrix of i− j is
expressed as follows:

0i;j
(19)
= C̃i +Cj̃︸ ︷︷ ︸

“independent residual”

−

[
X̃i;j̃ +Xj̃ ;̃i

]
︸ ︷︷ ︸

“error dependency”=:D̃i;j̃ .

(20)

Equation (20) is an exact formulation of the complete
residual covariance matrix of any pair of datasets i− j . It
holds for all combinations of datasets without any further
assumption like independent errors. Thus, the residual co-
variance of any dataset pair consists of (i) the independent
residual associated with sum of the error covariances of each
dataset minus (ii) the error dependency corresponding to the
sum of their error cross-covariances.

Note that, although the error dependency matrix is sym-
metric by definition, it is the sum of two error cross-
covariances that are generally asymmetric and, thus, differ
in the non-scalar formulation. In the scalar case, the two er-
ror cross-covariances reduce to their common error cross-
variance and the residual covariance reduces to the scalar for-
mulation of the variance, as shown in studies such as Anthes
and Rieckh (2018) and Sjoberg et al. (2021).

3.2.2 Residual cross-covariances

Each element (p,q) of the residual cross-covariance matrix
between two input datasets i− j and k− l can be written as
a function of their error cross-covariances,
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0i;j ;k;l(p,q)
(4)
=

{[
xi(p)− xT (p)

]
−
[
xj (p)− xT (p)

]}
·

{[
xk(q)− xT (q)

]
−
[
xl(q)− xT (q)

]}
(5)
= X̃i ;̃k(p,q)− X̃i ;̃l(p,q)−Xj̃ ;̃k(p,q)

+Xj̃ ;̃l(p,q), (21)

and, thus, the complete residual cross-covariance matrix be-
tween i− j and k− l,

0i;j ;k;l
(21)
= X̃i ;̃k − X̃i ;̃l −Xj̃ ;̃k +Xj̃ ;̃l . (22)

Equation (22) is a generalized form of Eq. (20) with resid-
uals between different datasets (i−j ; k−l). It consists of four
error cross-covariances of the datasets involved. This formu-
lation of residual statistics as a function of error statistics pro-
vides the basis for the complete theoretical derivation of error
estimates in this study. In contrast to the symmetric residual
covariance matrix, the residual cross-covariance matrix may
be asymmetric for asymmetric error cross-covariances.

3.2.3 Relation of residual statistics

In the following, it is demonstrated that combinations of
residual cross-covariances contain the same statistical infor-
mation as residual covariance matrices.

For k = i, the residual dependency between i−j and i− l
can be expressed as combination of three residual covari-
ances:

0i;l +0j ;i −0j ;l
(6)
=
[
xi(p)− xl(p)

][
xi(q)− xl(q)

]
+
[
xj (p)− xi(p)

][
xj (q)− xi(q)

]
−
[
xj (p)− xl(p)

][
xj (q)− xl(q)

]
=
[
xi(p)

][
xi(q)

]
−
[
xi(p)

][
xl(q)

]
−
[
xl(p)

][
xi(q)

]
�������
+
[
xl(p)

][
xl(q)

]
�������
+
[
xj (p)

][
xj (q)

]
−
[
xj (p)

][
xi(q)

]
−
[
xi(p)

][
xj (q)

]
+
[
xi(p)

][
xi(q)

]
�������
−
[
xj (p)

][
xj (q)

]
+
[
xj (p)

][
xl(q)

]
+
[
xl(p)

][
xj (q)

]
�������
−
[
xl(p)

][
xl(q)

]
=
[
xi(p)− xj (p)

][
xi(q)− xl(q)

]
+
[
xi(p)− xl(p)

][
xi(q)− xj (q)

]
(4)
= 0i;j ;i;l +0i;l;i;j . (23)

The relation between residual covariances and residual
cross-covariances in Eq. (23) is exact and holds for all
datasets without any further assumptions. In the case of

symmetric residual cross-covariances (0i;j ;i;l = 0i;l;i;j
(23)
=

1
2 [0i;l+0j ;i−0j ;l]), the residual cross-covariance matrices
are fully determined by the symmetric residual covariances.

In the general asymmetric case, Eq. (23) can be rewritten
as follows:

0i;l +0j ;i −0j ;l
(23)
= 0i;j ;i;l +0i;l;i;j

(18)
= 0i;j ;i;l +

[
0i;j ;i;l −Yi;j ;i;l

]
⇐⇒ 0i;j ;i;l =

1
2

[
0i;l +0j ;i −0j ;l

]
+

1
2

Yi;j ;i;l . (24)

Equation (24) shows that each individual residual cross-
covariance consists of a symmetric contribution including
residual covariances between the datasets and an asymmet-
ric contribution that is half of the related residual asymmetry
matrix. Thus, residual cross-covariances may only provide
additional information on asymmetries of error statistics, not
on symmetric statistics (like error covariances).

3.3 Exact error statistics

As an extension to previous work, this section pro-
vides generalized formulations of error covariances, cross-
covariances, and dependencies in matrix form. These formu-
lations are based on the relations between residual and error
statistics in Eqs. (20) and (22). Note that the general formula-
tions presented here do not provide a closed system of equa-
tions that can be solved in real applications. They serve as a
basis for the approximate solutions that are formulated in the
subsequent section.

3.3.1 Error statistics from residual covariances

Equation (20) shows that each residual covariance matrix can
be expressed by the error covariances of the two datasets in-
volved and their error dependency. The goal is to find an in-
verse formulation of an error covariance matrix as a function
of the residual covariances that does not include other (un-
known) error covariances matrices. By combining the for-
mulations of three residuals 0i;j , 0j ;k , and 0k;i between the
same three datasets i, j , and k and expressing each using
Eq. (20), a single error covariance can be eliminated:

C̃i
(20)ij
= 0i;j + D̃i;j̃ −Cj̃ (25)

(20)jk
= 0i;j + D̃i;j̃ −0j ;k −Dj̃ ;̃k +Ck̃

(20)ki
= 0i;j + D̃i;j̃ −0j ;k −Dj̃ ;̃k
+0k;i +Dk̃;̃i − C̃i (26)

⇐⇒ C̃i =
1
2

[
0i;j +0k;i −0j ;k︸ ︷︷ ︸

“independent contribution”

+ D̃i;j̃ +Dk̃;̃i −Dj̃ ;̃k︸ ︷︷ ︸
“dependent contribution”

]
, (27)

where the indication of the equations used, which is given
above the equal signs, is extended by indices that denote the
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datasets to which this equation has been applied. For exam-

ple, “
(20)ki
= ” indicates that the relation in Eq. (20) was applied

to datasets k and i to achieve the right-hand side.
Equation (27) provides a general formulation of error co-

variances as a function of residual covariances and error de-
pendencies. It holds for all combinations of datasets without
any further assumptions (e.g., independence). Thus, each er-
ror covariance can be formulated as a sum of an indepen-
dent contribution of three residual covariances with respect
to any pair of other datasets and a dependent contribution
of the three related error dependencies. While the indepen-
dent contribution can be calculated from residual statistics
between input datasets, the dependent contribution is gener-
ally unknown in real applications.

Given I datasets, the total number of different formula-
tions of each error covariance in Eq. (27) is determined by
the number of different pairs of the other datasets, which is∑I−2
i=1 i =

1
2 (I −1)(I −2) (see also Sjoberg et al., 2021). The

scalar equivalent of Eq. (27) where the dependency matrices
reduce to twice the error cross-variances has been previously
formulated in the 3CH method in studies such as Anthes
and Rieckh (2018) and Sjoberg et al. (2021). Very recently,
the full matrix form was used by Nielsen et al. (2022) and
Todling et al. (2022). Note that, in the literature, the depen-
dent contribution in Eq. (27) is denoted as cross-covariances
between the errors.

Equation (26) can be generalized by replacing the closed
series of the three dataset pairs (i;j ), (j ;k), and (k; i)
with a closed series of F dataset pairs, (i1; i2), (i2; i3), . . . ,
(iF−1; iF ), (iF ; i1), for any 3≤ F ≤ I (where I is the num-
ber of datasets):

Cĩ1
(20)
=

F−1∑
f=1

(−1)f−1
[
0if ;if+1 +Dĩf ;˜if+1

]
+ (−1)F−1

[
0iF ;i1 +DĩF ;ĩ1

]
+ (−1)FCĩ1 . (28)

Because of changing signs, Eq. (28) can only be solved for
the error covariance Cĩ1 if F is odd. If F is even, Cĩ1 cancels
out, cannot be eliminated, and Eq. (28) could be solved for
one error dependency instead. If F is odd, the generalized
formulation for Cĩ1 becomes the following:

Cĩ1
(28)
=

1
2

[(F−1∑
f=1

(−1)f−10if ;if+1

)
+0iF ;i1︸ ︷︷ ︸

“independent contribution”

+

(F−1∑
f=1

(−1)f−1Dĩf ;˜if+1

)
+DĩF ;ĩ1︸ ︷︷ ︸

“dependent contribution”

]
,

∀F odd ∧ 3≤ F ≤ I, (29)

where Eq. (27) results from setting F = 3 with indices i1 = i,
i2 = j , and i3 = k. Note that, in any case, the number of as-

sumed and estimated error statistics remains consistent with
the general framework in Sect. 2.

A formulation of each individual error dependency matrix
as a function of the error covariances of the two datasets and
their residual covariance results directly from Eq. (20):

D̃i;j̃
(20)
= C̃i +Cj̃ −0i;j . (30)

Being a symmetric matrix, residual covariances cannot
provide information on error asymmetries nor on the asym-
metric components of error cross-covariances. Only the sym-
metric component of error cross-covariances could be esti-
mated from half the error dependency, which is equivalent to
a zero error asymmetry matrix:

D̃i;j̃ + Ỹi;j̃
(13),(17)
=

[
X̃i;j̃���+Xj̃ ;̃i

]
+

[
X̃i;j̃���−Xj̃ ;̃i

]
⇐⇒ X̃i;j̃ =

1
2

[
D̃i;j̃ + Ỹi;j̃

]
. (31)

3.3.2 Error statistics from residual cross-covariances

The general forward formulation of residual cross-
covariances in Eq. (22) consists of error cross-covariances
of the four datasets involved. Setting, for example, k = i
provides an inverse formulation of error covariances of i:

0i;j ;i;l
(22)
= C̃i − X̃i ;̃l −Xj̃ ;̃i +Xj̃ ;̃l

⇐⇒ C̃i = 0i;j ;i;l + X̃i ;̃l +Xj̃ ;̃i −Xj̃ ;̃l . (32)

The scalar formulation of Eq. (32) was previously given in
Zwieback et al. (2012).

Similarly to Eq. (27) from residual covariances, the num-
ber of formulations of each error covariance from different
pairs of other datasets in Eq. (32) is

∑I−2
i=1 i =

1
2 (I−1)(I−2).

In addition, there are four possibilities to write each error co-
variance from the same pairs of other datasets using the re-
lations of residual cross-covariances in Eq. (8). Each of the
four possibilities results from setting both indices of one pair
of datasets in the definition of the residual cross-covariances
in Eq. (22) to the same value.

Two of the error cross-covariances in Eq. (32) can be
rewritten by applying Eq. (32) to the error covariance of
dataset j :

Cj̃
(32)j
= 0j ;i;j ;l +Xj̃ ;̃l + X̃i;j̃ − X̃i ;̃l

⇐⇒ X̃i ;̃l −Xj̃ ;̃l = 0j ;i;j ;l + X̃i;j̃ −Cj̃ . (33)

With this, Eq. (32) becomes the following:

C̃i
(33)
= 0i;j ;i;l +0j ;i;j ;l −Cj̃ + X̃i;j̃ +Xj̃ ;̃i

(13)
= 0i;j ;i;l +0j ;i;j ;l −Cj̃ + D̃i;j̃ . (34)
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Because the residual cross-covariances can be rewritten as

0i;j ;i;l +0j ;i;j ;l
(32),(33)
= C̃i���−X̃i ;̃l −Xj̃ ;̃i���+Xj̃ ;̃l
+Cj̃���−Xj̃ ;̃l − X̃i;j̃���+X̃i ;̃l

(13)
= C̃i +Cj̃ − D̃i;j̃

(20)
= 0i;j , (35)

the formulation of error covariances based on residual cross-
covariances in Eq. (34) is, as it must be, symmetric and
equivalent to the formulation based on residual covariances
from Eq. (25).

The forward formulation of residual cross-covariances
does not allow for an elimination of one single error cross-
covariance, even when multiple equations are combined. One
formulation of an error cross-covariance matrix as a func-
tion of residual cross-covariances results directly from the
forward relation:

Xj̃ ;̃l
(32)
= 0i;j ;i;l − C̃i + X̃i ;̃l +Xj̃ ;̃i . (36)

Note that the third dataset i on the right-hand side of
Eq. (36) can be any other dataset (i 6= j , i 6= l). Thus, there
are I−2 formulations of each error cross-covariance Xj̃ ;̃l for
any I > 2, and they are all equivalent in the exact formula-
tion.

Any of the formulations of error cross-covariances can
also be used for a formulation of the error dependency ma-
trix Dj̃ ;̃l

∣∣∣
cross

, which is equivalent to the formulation based

on residual covariances Dj̃ ;̃l
∣∣∣
covar

:

Dj̃ ;̃l
∣∣∣
cross

(13)
= Xj̃ ;̃l +Xl̃;j̃

(36)
= 0j ;i;l;i − C̃i

+Xj̃ ;̃i + X̃i ;̃l +0l;i;j ;i − C̃i + X̃i;j̃ +Xl̃;̃i
(13)
= 0j ;i;l;i +0l;i;j ;i − 2C̃i + D̃i;j̃ + D̃i ;̃l

(23)
= 0i;j + D̃i;j̃ +0i;l + D̃i ;̃l −0j ;l − 2C̃i

(20)
= ��C̃i +Cj̃��+C̃i +Cl̃ −0j ;l���−2 C̃i

= Cj̃ +Cl̃ −0j ;l
(30)
= Dj̃ ;̃l

∣∣∣
covar

. (37)

The equivalence demonstrates that, as they must be, the ex-
act formulations of error statistics from residual covariances
and cross-covariances are consistent with each other. This
consistency applies to the exact formulations of all symmet-
ric error statistics (error covariances and dependencies) and
results from the consistent definitions of residual covariances
and cross-covariances in Eqs. (4) and (6).

4 Mathematical theory: approximate formulation

Based on the exact formulations in Sect. 3, which remain un-
derdetermined in real applications, this section provides ap-
proximate formulations for three or more datasets that pro-
vide a closed system of equations. Section 4.1 describes

the long-known closure of the system for three datasets, al-
though generalized to full covariance matrices. An extension
for more than three datasets based on a minimal number of
assumptions is introduced in Sect. 4.2. It includes the esti-
mation, either direct or sequential, of additional error covari-
ances as well as of some error cross-statistics.

In addition to the optimal extension to more than three
datasets, this second part of the mathematical theory in-
cludes the following new elements: (i) the analysis of differ-
ences between error estimates from residual covariances and
cross-covariances (Sect. 4.1.2), (ii) the determination of un-
certainties resulting from possible errors in the assumed er-
ror statistics (Sect. 4.1.3 and 4.2.4), and (iii) the comparison
of the approximations from direct and sequential estimates
(Sect. 4.2.5).

4.1 Approximation for three datasets

As demonstrated in Sect. 2, at least three collocated datasets
are required to estimate all error covariances (AI ≥ 0). For
three datasets (I = 3), three residual covariances (N3 = 3)
can be calculated between each pair of datasets. At the
same time, there are six unknown error statistics (U3 = 6):
three error covariances and three error cross-statistics (cross-
covariances or dependencies). Thus, the problem is under-
determined, and three error statistics (U3−N3 = 3) have to
be assumed in order to close the system. The most common
approach, which is also used in the 3CH and TC methods,
is to assume zero error cross-statistics between all pairs of
datasets: X̃i;j̃ = 0⇒ D̃i;j̃ = 0, ∀i,j ∈ [1,3], j 6= i. The ap-
proximation of the three error covariances can also be for-
mulated in a Hilbert space, which allows for an illustrative
geometric interpretation as in Pan et al. (2015) (their Fig. 1).
Because the assumption of zero error cross-covariance im-
plies zero error correlation, which is often used as proxy for
independence, it is denoted as the “assumption of indepen-
dence” or “independence assumption” hereafter.

The independence assumption resembles the innovation
covariance consistency of data assimilation, where the
residual covariance between background and observation
datasets – denoted as innovation covariance – is assumed to
be equal to the sum of their error covariances in the formula-
tion of the analysis (e.g., Daley, 1992b; Ménard, 2016):

0i;j
(20)
≈
{in}

C̃i +Cj̃ , (38)

where “≈
{in}

” indicates the assumption of independence be-

tween the two datasets, i.e., X̃i;j̃ = 0.
Because all error cross-statistics need to be assumed in this

setup, approximations of these cross-covariances and depen-
dencies only reproduce the initially assumed statistics and do
not provide any new information.
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4.1.1 Error covariance estimates

Assuming independent error statistics among all three
datasets or, similarly, that error dependencies are negligible
compared to residual covariances D̃i;j̃ � 0i;j , ∀j 6= i gives
an estimate of each error covariance matrix as a function of
three residual covariances:

C̃i
(27)
≈
{in3}

1
2

[
0i;j +0k;i −0j ;k

]
, (39)

where “ ≈
{in3}

” indicates the assumption of independence

among all three datasets involved.
In the scalar case, Eq. (39) reduces to the equivalent for-

mulation for error variances known from the TC and 3CH
methods (e.g., Pan et al., 2015; Sjoberg et al., 2021). Thus,
the long-known 3CH estimation of error variances from
residual variances among three datasets holds similarly for
complete error covariance matrices from residual covari-
ances under the independence assumption. In fact, the ap-
proximation in Eq. (39) requires only the assumption that the
dependent contribution of Eq. (27) vanishes. However, com-
bining this condition for the error covariance estimates of all
three datasets results in the need for each error dependency
to be zero.

Under the assumption of independence among all three
datasets X̃i;j̃ = 0, ∀i,j , their error covariance matrices can
also be directly estimated from residual cross-covariances:

C̃i
(32)
≈
{in3}

0i;j ;i;l (40)

and, likewise,

C̃i
(32)
≈
{in3}

0i;l;i;j . (41)

As described in Sect. 3.3.2 on exact cross-covariance
statistics, every error covariance from residual cross-
covariances has four equivalent formulations that provide the
same result in the exact case, but they might differ in the
approximate formulation. Equations (40) and (41) provide
two different approximations of each error covariance ma-
trix from residual cross-covariances based on each pair of
other datasets. In the simplified case of scalar statistics, the
two different formulations in Eqs. (40) and (41) reduce to the
same residual cross-variance that was previously formulated
by studies such as Crow and van den Berg (2010), Zwieback
et al. (2012), and Pan et al. (2015).

4.1.2 Differences

Equations (39) to (41) provide three different estimates of an
error covariance matrix. Using the relation between residual
covariances and cross-covariances from Sect. 3.2.3 and the
symmetric properties of residual statistics allows for a com-

parison of the three estimates:

C̃i
∣∣∣
(40)

(40)
≈
{in3}

0i;j ;i;l
(24),(39)
= C̃i

∣∣∣
(39)
+

1
2

Yi;j ;i;l, (42)

C̃i
∣∣∣
(41)

(41)
≈
{in3}

0i;l;i;j
(24),(39)
= C̃i

∣∣∣
(39)
−

1
2

Yi;j ;i;l. (43)

The three independent estimates of an error covariance
matrix from the same pair of other datasets differ only with
respect to their residual asymmetry. Thus, differences be-
tween the estimates from Eqs. (39) to (41) provide no ad-
ditional information about symmetric error statistics.

While the estimation from residual covariances remains
symmetric by definition, the estimates of error covari-
ances from residual cross-covariances may become asym-
metric. This asymmetry can be eliminated using the resid-
ual asymmetry matrix, which is also equivalent to averaging
both formulations of error covariances from residual cross-
covariances:

C̃i
(39)
≈
{in3}

1
2

[
0i;j +0l;i −0j ;l

]
(42)
= 0i;j ;i;l −

1
2

Yi;j ;i;l

(43)
= 0i;l;i;j +

1
2

Yi;j ;i;l . (44)

All three estimates become equivalent if the residual cross-
covariances and, thus, error cross-covariances are symmet-
ric (→ X̃i;j̃ =

1
2 D̃i;j̃ = Xj̃ ;̃i , ∀i,j ). This is also the case for

scalar statistics, where the equivalence between scalar er-
ror variance estimates from residual variances and cross-
variances was previously shown by Pan et al. (2015). How-
ever, none of the estimates ensure positive definiteness of the
estimated error covariances.

4.1.3 Uncertainties in approximation

The independence assumption introduces the following ab-
solute uncertainties 1C̃i of the three different estimates for
each dataset i:

1C̃i
∣∣∣
(39)
:= C̃i

∣∣∣
true
− C̃i

∣∣∣
(39)

(27),(39)
=

1
2

[
1D̃i;j̃ +1D̃i ;̃k −1Dj̃ ;̃k

]
, (45)

1C̃i
∣∣∣
(40)
:= C̃i

∣∣∣
true
− C̃i

∣∣∣
(40)

(32),(40)
= 1Xj̃ ;̃i +1X̃i ;̃k −1Xj̃ ;̃k, (46)

1C̃i
∣∣∣
(41)
:= C̃i

∣∣∣
true
− C̃i

∣∣∣
(41)

(32),(41)
= 1X̃i;j̃ +1Xk̃;̃i −1Xk̃;j̃ . (47)

Here,1D̃i;j̃ and1X̃i;j̃ are the uncertainties in the estimated
error dependencies and cross-covariances, respectively.

The absolute uncertainty in the estimates similarly de-
pends on the (neglected) error cross-covariances or depen-
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dencies among the three datasets. While the error dependen-
cies to the two other datasets contribute positively, the depen-
dency between the two others is subtracted. If these depen-
dencies cancel out (1D̃i;j̃+1D̃i ;̃k =1Dj̃ ;̃k), the estimate of
one dataset might be exact, even if all three dependencies are
nonzero. However, two exact estimates can only be achieved
if one (e.g.,1D̃i;j̃ = 0∧1D̃i ;̃k =1Dj̃ ;̃k) or all three depen-
dencies are zero. A special case was observed by Todling
et al. (2022), who showed that the estimations of background,
observation, and analysis errors in a variational data assimi-
lation system become exact if the analysis is optimal. In this
particular case, no assumptions regarding dependencies are
required because the optimality of the analysis induces van-
ishing dependencies.

Estimated error covariances might even contain negative
values if error dependencies are large compared with the
true error covariance of a dataset. If the true error covari-
ances differ significantly among highly correlated datasets,
the neglected error dependency between two datasets might
become much larger than the smaller error covariance,
e.g., 1Dk̃;̃i−1Dj̃ ;̃k ≈ 0, 1

21D̃i;j̃ > C̃i
∣∣∣
true

. This phenomena
was also described and demonstrated by Sjoberg et al. (2021)
for scalar problems, but the generalization to covariances
matrices is expected to increase the occurrence of negative
values in off-diagonal elements. Because spatial correlations
and, thus, true covariances may become small compared with
uncertainties in the assumptions or sampling noise, estimated
error covariances at these locations might become negative.
However, the occurrence of negative elements does not af-
fect the positive definiteness of a covariance matrix, which is
determined by the sign of its eigenvalues.

4.2 Approximation for more than three datasets

While independence among all datasets is required to esti-
mate the error covariances of three datasets (I = 3), the use
of more than three datasets (I > 3) enables the additional
estimation of some error dependencies or cross-covariances
(see Sect. 2). Although this potential of cross-statistic esti-
mation was previously indicated by Gruber et al. (2016) and
Vogelzang and Stoffelen (2021) for scalar problems, a gener-
alized formulation exploiting its full potential by minimizing
the number of assumptions is still missing.

As described in Sect. 2 for I > 3 datasets, AI > 0 gives
the number of error cross-statistics that can potentially be es-
timated in addition to all error covariances. Consequentially,
the independence assumption between all pairs of datasets
can be relaxed to a “partial-independence assumption” where
one independent dataset pair is required for each dataset I .
The estimation of error covariances can be generalized in
two ways. Firstly, the direct formulation for three datasets
in Sect. 4.1.1 is generalized to a direct estimation of more
than three datasets in Sect. 4.2.1. Secondly, Sect. 4.2.2 intro-
duces the sequential estimation of error covariances of any

additional dataset. This estimation procedure of additional
error covariances is denoted as “sequential estimation”, as
it requires the error covariance estimate of a prior dataset, in
contrast to the “direct estimation” from an independent triplet
of datasets (“triangular estimation” in Sect. 4.1) or gener-
ally from a closed series of pairwise independent datasets
(“polygonal estimation” in Sect. 4.2.1).

4.2.1 Direct error covariance estimates

For more than three datasets (I > 3), the estimation from
three residual covariances in Eq. (39) can be generalized to
estimations of error covariances from a closed series of F
residual covariances (see Sect. 3.3.1). For any odd F with
3≤ F ≤ I , each error covariance can be estimated under the
assumption of vanishing error dependencies along the closed
series of datasets Dĩf ;˜if+1

∀f ∈ [1,F − 1] and DĩF ;̃1:

Cĩ1
(29)
≈
{inF }

1
2

[(F−1∑
f=1

(−1)f−10if ;if+1

)
+0iF ;i1

]
,

∀F odd ∧ 3≤ F ≤ I. (48)

Here, “ ≈
{inF }

” indicates the assumption of neglectable er-

ror dependencies along the series of datasets. As shown
in Sect. 2, the problem cannot be closed for less than
three datasets, even under the independence assumption. For
F = 3 datasets, Eq. (39) is a special case of Eq. (48) with
indices i1 = i, i2 = j , and i3 = k.

4.2.2 Sequential error covariance estimates

Similar to the estimation for three datasets (I = 3) in
Sect. 4.1.1, the error covariances of the first three datasets
can be directly estimated from residual covariances or cross-
covariances using Eqs. (39), (40), or (41). This triplet of the
first three datasets that are assumed to be pairwise indepen-
dent is denoted as a “basic triangle”. Similarly, a “basic poly-
gon” can be defined from a closed series of F pairwise inde-
pendent datasets, where each two successive datasets in the
series as well as the last and first element are independent
of each other (see Sect. 4.2.1). Then, the error covariance
of each dataset in the series can be directly estimated from
Eq. (48).

Based on this, the remaining error covariances can be
calculated sequentially. For each additional dataset i with
F < i ≤ I , its cross-statistics to one prior dataset ref(i)< i
need to be assumed in order to close the problem. This prior
dataset ref(i) is denoted as the “reference dataset” of dataset
i. With this, the remaining error covariances can be estimated
from residual covariances under the partial-independence as-
sumption X̃

i;r̃ef(i) = 0:

C̃i
(25)
≈
{inI }

0i;ref(i)−Cr̃ef(i), (49)
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where “ ≈
{inI }

” indicates the assumption of independence to the

reference dataset, i.e., X̃
i;r̃ef(i) = 0.

Similarly, each additional error covariance can be esti-
mated from two residual cross-covariances with respect to
its reference dataset ref(i) and any other dataset j :

C̃i
(34)
≈
{inI }

0i;ref(i);i;j +0ref(i);i;ref(i);j −Cr̃ef(i). (50)

From the equivalence of residual statistics in Eq. (35),
it follows that the two formulations of error covariances in
Eqs. (49) and (50), respectively, are equivalent and produce
exactly the same estimates, even if the underlying assump-
tions are not perfectly fulfilled.

4.2.3 Error cross-covariance and dependency estimates

Once the error covariances are estimated, the remaining
residual covariances can be used to calculate the error de-
pendencies to all other prior datasets j 6= ref(i),j < i:

D̃i;j̃
(30)
= C̃i +Cj̃ −0i;j . (51)

In contrast to residual covariances, the asymmetric formu-
lation of residual cross-covariances allows for an estimation
of remaining error cross-covariances, including their asym-
metric components. The error cross-covariance to each other
prior dataset j 6= ref(i),j < i can be estimated sequentially,
again using the reference dataset ref(i):

X̃i;j̃
(36)
≈
{inI }

0ref(i);i;ref(i);j −Cr̃ef(i)+Xr̃ef(i);j̃ . (52)

Based on this, the symmetric error dependencies can be
estimated from their definition in Eq. (13). The equivalence
between the formulations of error dependencies from resid-
ual covariances and cross-covariances is shown in Eq. (37).

Note that the error cross-covariances Xj̃ ;̃i and dependen-
cies Dj̃ ;̃i of each subsequent dataset j > i to dataset j re-
sult directly from their symmetric properties in Eqs. (10)
and (14), respectively.

4.2.4 Uncertainties in approximation

As a generalization of Eq. (45), the absolute uncertainty
1Cĩ1 of a polygonal error covariance estimate introduced by
the assumption of pairwise independence along the closed
series of F datasets, with F odd and 3≤ F ≤ I , is given by
the following:

1Cĩ1
∣∣∣
(48)
:= Cĩ1

∣∣∣
true
−Cĩ1

∣∣∣
(48)

(29),(48)
=

1
2

[(F−1∑
f=1

(−1)f−11Dĩf ;˜if+1

)
+1DĩF ;ĩ1

]
,

∀F odd ∧ 3≤ F ≤ I. (53)

Due to the changing sign of error dependencies along the
series of datasets, the absolute uncertainty in the error co-
variance estimates does not necessary increase with the size
of the polygon F .

The absolute uncertainty1C̃i of a sequential error covari-
ance estimate of any additional dataset i with F < i ≤ I is
formulated recursively with respect to its reference dataset
ref(i):

1C̃i
∣∣∣
(49)
:= C̃i

∣∣∣
true
− C̃i

∣∣∣
(49)

(25),(49)
= 1D̃

i;r̃ef(i)−1Cr̃ef(i), (54)

1C̃i
∣∣∣
(50)
:= C̃i

∣∣∣
true
− C̃i

∣∣∣
(50)

(34),(50)
= 1D̃

i;r̃ef(i)−1Cr̃ef(i). (55)

The two sequential estimates of error covariances from
residual covariances in Eq. (54) and from cross-covariances
in Eq. (55) are equivalent, and the uncertainty in the latter
is independent of the selection of the third dataset j in the
residual cross-covariances (see Eq. 50). Thus, the absolute
uncertainties in the error estimations from residual covari-
ances and cross-covariances differ only in the uncertainties
with respect to the basic polygon given in Eqs. (45) to (48).

With this, a series of reference datasets {mg} =
m1, . . .,mG (where mG is the reference of i, mG−1 is the
reference of mG, and so on), with mg−1 <mg < i, ∀g and
m1 = j ≤ 3, is defined from the target dataset to the basic
triangle as an example of a basic polygon. Then, the abso-
lute uncertainty 1C̃i of each error covariance estimate is as
follows:

1C̃i
(54)
= 1D̃i;m̃G −1Cm̃G
= 1D̃i;m̃G −1Dm̃G;m̃G−1

+1Cm̃G−1
= . . .

(45)
= 1D̃i;m̃G +

1∑
g=G−1

[
(−1)G−g ·1Dm̃g+1;m̃g

]
+ (−1)G ·

1
2

[
1Dj̃ ;̃k +1Dj̃ ;̃l −1Dk̃;̃l

]
, (56)

where k ≤ 3 and l ≤ 3 are the other two datasets in the basic
triangle.

According to Eq. (56), uncertainties in the sequential es-
timations of additional error covariances result from the
partial-independence assumption of the additional datasets
in the series of reference datasets and the independence as-
sumption in the basic triangle. Due to the changing sign be-
tween the intermediate dependencies as well as within the
basic triangle (or basic polygon), the individual uncertainties
may cancel out. Thus, absolute uncertainties do not necessar-
ily increase with more intermediate reference datasets.

Although Eq. (51) is exact, the error dependency estimate
of each additional pair of datasets (i; j ) is influenced by un-
certainties in the estimations of the related error covariances:

1D̃i;j̃ := D̃i;j̃
∣∣∣
true
− D̃i;j̃

∣∣∣
(51)

(30),(51)
= 1C̃i +1Cj̃ , (57)

where the uncertainties in the two error covariances are given
in Eqs. (53) to (56).
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The absolute uncertainties in the estimates of additional
error cross-covariances based on residual cross-covariances
can be determined recursively using Eq. (56):

1X̃i;j̃ := X̃i;j̃
∣∣∣
true
− X̃i;j̃

∣∣∣
(52)

(36),(52)
= 1Xr̃ef(i);j̃ +1X̃

i;r̃ef(i)−1Cr̃ef(i). (58)

In contrast to error covariances, the uncertainties in the
error cross-covariances sum up in the two series of reference
datasets. However, this sum is subtracted by the two sums
of uncertainties in error covariances of these datasets, whose
elements may cancel partially (not shown).

4.2.5 Comparison to approximation from three datasets

It can be shown that the sequential formulation of an error
covariance from its reference dataset is consistent with the
triangular formulation from three independent datasets (in
Sect. 4.1) in the basic triangle. Given the triangular estimate

of one error covariance from Eq. (39), the error covari-

ances of the other two datasets in the basic triangle are
equal to their sequential formulation Cj̃

∣∣` from Eq. (49) with

reference dataset ref(j )= i:

Cj̃
∣∣` (49)
≈
{inI }

0i;j −

(39)i
≈
{in3}

0j ;i −
1
2

[
0i;j +0k;i −0j ;k

]
=

1
2

[
0i;j +0j ;k −0i;k

] (39)j
≈
{in3}

. (59)

This can also be generalized for the estimation of any er-

ror covariance Cĩ2
∣∣` given its reference estimated with

the polygonal formulation for a closed series of F pairwise
independent datasets for any odd F with 3≤ F ≤ I :

Cĩ2
∣∣` (49)
≈
{inI }

0i1;i2 −

(48)i1
≈
{inF }

0i1;i2 −
1
2

[(F−1∑
f=1

(−1)f−10if ;if+1

)
+0iF ;i1

]

=
1
2

[(F−1∑
f=2

(−1)f−20if ;if+1

)
−0iF ;i1 +0i1;i2

]
(48)i2
≈
{inF }

,∀F odd ∧ 3≤ F ≤ I. (60)

The consistency between direct and sequential error co-
variance estimates results directly from their common under-
lying definition of residual covariances in Eq. (20) and holds

not only for the approximate formulations but also for the full
expressions including error dependencies (see Sect. 3.3.1).
Thus, only one error covariance needs to be calculated with
Eq. (39), or, more generally, with Eq. (48), whereas all others
can be estimated from Eq. (49). Note that, even if only C̃i is
calculated from the fully independent formulation in the ba-
sic polygon, the independence assumption among all pairs of
datasets in the basic polygon remains.

Instead of using the sequential estimation for additional
datasets i with F < i ≤ I , the error covariances could also
be estimated by defining another pairwise independent poly-
gon, e.g., independent triangle (i;j ;k), with k = ref(j ), and
j = ref(i). Because the definition of another independent tri-
angle requires an additional independence assumption be-
tween i and k (i.e., X̃i ;̃k = 0⇒ D̃i ;̃k = 0), this triangular es-

timate from Eq. (39) differs from the sequential estimate
C̃i
∣∣` from Eq. (49) using its reference dataset (Cj̃ → C̃i),

where their absolute errors compare as follows:

∣∣∣1C̃i
∣∣`∣∣∣− ∣∣∣1 ∣∣∣ (45),(54)

=

∣∣∣1D̃i;j̃ −1Cj̃
∣∣∣

−
1
2

∣∣∣1D̃i;j̃ +1D̃i ;̃k −1Dj̃ ;̃k
∣∣∣. (61)

The sequential estimation of an error covariance becomes
favorable if the error covariance estimate of its reference
dataset is as least as accurate as the assumed dependency be-
tween these two datasets (1Cj̃ →1D̃i;j̃ ). In contrast, the
triangular estimation becomes favorable if the accuracy of
the additional independence assumption is of the order of the
difference between the uncertainties in the other two error
dependencies (1D̃i ;̃k→1D̃i;j̃ −1Dj̃ ;̃k), i.e., if the accu-
racy of the additional independence assumption is similar to
that of the other two assumptions. This holds similarly for
any polygonal estimation, in which the additional indepen-
dence assumption that closes the series of pairwise indepen-
dent datasets has to be of similar accuracy to the other inde-
pendence assumptions.

Note that the absolute uncertainties presented here only
account for uncertainties due to the underlying assumptions
regarding error cross-statistics and not due to imperfect resid-
ual statistics occurring, e.g., from finite sampling. A discus-
sion of those effects for scalar problems can be found in
Sjoberg et al. (2021).

5 Experiments

This section illustrates the capability to estimate full error
covariance matrices for all datasets and some error depen-
dencies. Three different experiments are presented with four
collocated datasets (I = 4) on a 1D domain with 25 grid
points. For each experiment, the datasets are generated syn-
thetically from 20 000 random realizations around the true
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value of 5.0 with predefined error statistics. The experi-
ments use predefined error statistics that are artificially gen-
erated to fulfill certain properties concerning error covari-
ances and dependencies. Although also being generated by
a finite sample of 20 000 realizations, these predefined error
statistics are used to calculate residual statistics and, thus,
represent the true error statistics that would be unknown in
real applications. Here, the artificial generation of sampled
true error statistics – denoted as “true error statistics” here-
after – allows for an evaluation of uncertainties in the “esti-
mated error statistics” that are estimated with the proposed
method. The experiments presented in this section are based
on the symmetric estimations from residual covariances de-
rived in Sect. 4, which are summarized in Algorithm A1.
Similar results would be obtained using estimations from
cross-covariances given in Algorithm A2, but this short il-
lustration is restricted to a general demonstration using sym-
metric statistics only.

The error statistics of the four datasets consist of 10 ma-
trices (U4 = 10; see Sect. 2): 4 error covariances (for each
dataset, I = 4) and 6 error dependencies (between each pair
of datasets, N4 = 6).

The three experiments differ with respect to the true error
dependency between datasets (2;3), which increases from
experiment one to three. The general structures of the other
true error statistics are the same among all experiments; how-
ever, some local differences occur between the experiments
due to the different dependencies and random sampling.
The six residual covariances (N4 = 6) between each pair of
datasets are calculated from the true error statistics. Because
these residual covariances are the statistical information that
would be available for real applications, for which the truth
remains unknown, they provide the input for the calculation
of estimated error statistics.

From the six residual covariances given, all four error
covariances and two error dependencies can be estimated
(A4 = 2; see Sect. 2). The remaining error dependencies that
need to be assumed are set to zero for all experiments (in-
dependence assumption), which is consistent with the math-
ematical formulation in Sect. 4.1 and 4.2. For each experi-
ment, the error statistics were estimated with two different
setups (subplot a and b of Figs. 2–4, respectively). Both se-
tups use a basic triangle between datasets (1;2;3) to esti-
mate their error covariances from Eq. (39). This triangular
estimate assumes independence among these three datasets;
this assumption is fulfilled in the first experiment but not in
experiments two and three.

Based on this, the first setup uses a sequential estimation
of the error covariance of the additional dataset 4 with re-
spect to its reference dataset 1 from Eq. (49) (ref(4)= 1);
the independence assumption between these datasets is ful-
filled in all experiments. In contrast, the second setup uses
another independent triangle between datasets (1;2;4) to es-
timate the error covariance of dataset 4 from Eq. (39). In
comparison to the sequential estimation, this additional tri-

angular estimation requires an additional independence as-
sumption between datasets (2;4) that is not fulfilled in any
of the three experiments. Finally, both setups use the same
formulation in Eq. (51) to estimate two error dependencies,
(2;4) and (3;4), based on the estimated error covariances of
the two datasets involved, (2;4) and (3;4), respectively. Note
that the second setup is inconsistent because it assumes inde-
pendence between (2;4) in the error covariance estimation
of dataset 4, but it uses this estimate to estimate the error
dependency (2;4) that was previously assumed to be zero.
The comparison between the two setups of each experiment
shows the different effects of uncertainties in the underlying
assumptions for sequential and direct error estimates.

In the following, the accuracy of the estimated error statis-
tics from the two setups is evaluated for each experiment.
In the first experiment in Sect. 5.1, the true error dependen-
cies are constructed to fulfill the independence assumption
in the basic triangle (1;2;3). In experiments two and three in
Sect. 5.2 and 5.3, a true error dependency between datasets
(2;3) is introduced that is not in accordance with the inde-
pendence assumption. The data from the three synthetic ex-
periments are available in Vogel and Ménard (2023).

The plots in Figs. 2–4 are structured as follows: each sub-
plot combines two covariance matrices – one shown in the
upper-left part and the other in the lower-right part. Because
all matrices involved are symmetric, it is sufficient to show
only one-half of each matrix. The two matrices are sepa-
rated by a thick diagonal gray bar and shifted off-diagonal
so that diagonal variances are right above or below the gray
bar, respectively. Statistics that might become negative are
shown as absolute quantities in order to show them using the
same color code. In each row, the upper-left parts are ma-
trices that are usually unknown in real applications (as they
require knowledge of the truth) and the lower-right parts are
known/estimated matrices. The first row contains the error
dependencies and residual covariances of each dataset pair.
Here, gray asterisks in the upper-left subplot indicate that
these error dependency matrices are assumed to be zero in the
estimation. The second row contains the true and estimated
error covariances and dependencies. The third row gives the
absolute difference between the true and estimated matrices.
Note that the lower-right part of each subplot in the third row
does not contain any data.

5.1 Uncertainties in additional dependencies

Figure 2 shows the error statistics of the first experiment in
which only true error dependencies are generated between
datasets (2;4) and (3;4) (upper-left part of the first row in
Fig. 2a and b). This is in accordance with the estimation from
the first setup shown in Fig. 2a that assumes independence in
the basic triangle (1;2;3) and between datasets (1;4) (inde-
pendence assumptions indicated by gray asterisks). In con-
trast, the second setup shown in Fig. 2b requires an indepen-
dence assumption between datasets (2;4) which is violated
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Figure 2. Experiment 1: covariance matrices for four datasets (I = 4) with true dependencies of datasets (2; 4) and (3; 4). Datasets (1; 2; 3)
build the basic triangle. Dataset 4 is estimated (a) from its reference dataset 1 (sequential estimation) and (b) from an additional independent
triangle (1; 2; 4) (triangular estimation). For each subplot, gray asterisks in the upper-left part of the first row indicate that these error
dependencies are assumed to be zero in the estimation. Note that the lower-right part of each subplot in the third row does not contain any
data.

in this experiment. Thus, this experiment demonstrates the
effects of uncertainties in this additional assumption.

By construction, the true error dependency matrices within
the basic triangle – i.e., between (1;2), (1;3), and (2;3) – and
along the sequential estimation between (1;4) are zero in this
experiment (upper-left part of the first row, columns 1–4 in

Fig. 2a and b). Because the first setup only assumes indepen-
dence of these dataset pairs, it is able to estimate all four error
covariance matrices and the two error dependency matrices
between (2;4) and (3;4) accurately. Thus, the estimated error
statistics exactly match the true ones (second row in Fig. 2a)
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and their absolute difference is zero (upper-left part of the
third row in Fig. 2a).

In contrast, the additional triangular estimate in the second
setup assumes an additional independence between datasets
(2;4) which is not fulfilled. This neglected error dependency
affects the triangular estimation of the error covariances of
dataset 4, which is underestimated by half the neglected de-
pendency as given in Eq. (45). This agrees with the experi-
mental results shown in Fig. 2b: the neglected error depen-
dency (2;4) with diagonal values around 1.2 (orange colors
in upper-left part of the first row, column 5) induces an ab-
solute uncertainty in the estimated error covariance 4 with
diagonal values of around 0.6 (purple colors in the third row,
column 4). The sign of the uncertainty that corresponds to the
underestimation can be seen by comparing the true and esti-
mated error covariances matrices of dataset 4 (second row,
column 4). This uncertainty in the error covariance estimate
of dataset 4 also affects the subsequent estimates of the error
dependencies (2;4) and (3;4) which are expected to trans-
fer the uncertainty in the error covariances with the same
amplitude as given in Eq. (57). This can be confirmed by
Fig. 2b: the uncertainties in the two estimated error depen-
dencies equal the uncertainty in error covariance 4 (third row,
columns 4–6) and, thus, the dependency estimates are under-
estimated by half the neglected dependency (2;4) (sign of
uncertainty visible in the second row, columns 5 and 6).

This experiment demonstrates the potential to accurately
estimate complete error covariances and some dependencies
for more than three datasets if the underlying assumptions
are sufficiently fulfilled. Note that this accurate estimation
is independent of the complexity of the statistics like spa-
tial variations or correlations. It also shows that an inaccu-
rate independence assumption in an error covariance – here
in the additional triangular estimation – may introduce un-
certainties in all subsequent estimates of error covariances
and dependencies, which is in accordance with the theoret-
ical formulations above. The comparison of the two setups
demonstrates the advantage of the sequential estimation for
more than three datasets compared with only using triangular
estimations.

5.2 Small uncertainties in the basic triangle

Figures 3 and 4 show the error statistics of the second and
third experiments, respectively, where the independence as-
sumption in the basic triangle is violated by introducing a
nonzero dependency between datasets (2;3). The remaining
true error statistics are the same as in the first experiment.
Thus, in total, both experiments have three nonzero error de-
pendencies between datasets (2;3), (2;4), and (3;4), and the
neglected dependency (2;3) is increased from experiment
two to experiment three (upper-left part of the first row in
Figs. 3 and 4). These experiments demonstrate the effects of
uncertainties in the basic triangle on the error estimates with
the two setups.

Because both setups use the independent triangle (1;2;3),
the nonzero error dependency (2;3) violates this indepen-
dence assumption and induces the same uncertainties in the
error covariance estimates for both setups (see Eq. 45). Com-
paring the estimated error covariance matrices of datasets 1,
2, and 3 with the true matrices in Fig. 3a and b shows that
all three matrices are similarly affected. While the magni-
tude of uncertainties is the same (third row, columns 1–3),
their sign differs between the datasets, which is in accor-
dance with Eq. (45). For the two datasets involved (2 and 3),
the neglected positive dependency (2;3) is transferred with
the same sign, leading to an underestimation of their error
covariances (second row, columns 2 and 3). In contrast, the
impact on the error covariance of the remaining dataset in
the triangle (dataset 1) is reversed, leading to an overesti-
mation of the true error covariance (second row, column 1).
As expected from Eq. (45), the magnitude of uncertainty in
the three estimated error covariances with diagonal elements
around 0.4 (light-purple colors in the third row, columns 1–
3) is half the neglected error dependency with diagonal ele-
ments around 0.2 (dark-purple colors in upper-left part of the
first row, column 3).

The two setups differ with respect to the estimation of the
error covariance of dataset 4, which affects the estimated de-
pendencies (2;4) and (3;4), as described in the first experi-
ment. For the sequential estimation of error covariance 4 in
Fig. 3a (the first setup), the uncertainty in its reference error
covariance 1 is transferred with same amplitude but the op-
posite sign (see Eq. 54), resulting in an underestimation of
the error covariance matrix 4 (second and third rows, column
4). For the additional triangular estimation from (1;2;4) in
Fig. 3b (the second setup), the uncertainty in error covari-
ance 4 remains the same as the first experiment, in which the
independent triangle was accurate (second and third rows,
column 4 of Fig. 3b vs. Fig. 2b). This is because the accu-
racy of a triangular estimation of an error covariance is only
dependent on the assumed error dependencies between the
dataset pairs – which are accurate in this experiment – but
not on the other error covariance estimates (see Eq. 45).

For both setups, the uncertainties in the two estimated er-
ror dependencies (2;4) and (3;4) are the sum of the uncer-
tainties in the error covariance estimates of the two datasets
involved, i.e., (2;4) and (3;4), respectively. For the first setup
in Fig. 3a, the two error dependencies are underestimated by
the same amplitude as the neglected error dependency (2;3)
(upper-left part of the first row, column 3 vs. the second and
third rows, columns 5 and 6) because of its impact on both er-
ror covariance estimates, with a half amplitude each (second
and third rows, columns 2–4). For the second setup in Fig. 3b,
the two estimated error dependencies (2;4) and (3;4) are af-
fected by both neglected error dependencies (2;3) and (2;4)
due to their impact on the two error covariance estimates in-
volved (2;4) and (3;4), respectively. Because the two uncer-
tainties in the error covariances sum up, the estimated error
dependencies are underestimated by half the sum of the two
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Figure 3. Experiment 2: covariance matrices for four datasets (I = 4) with true dependencies of datasets (2; 3), (2; 4), and (3; 4). This figure
is the same as Fig. 2 but with a neglected dependency in the basic triangle between datasets (2; 3).

neglected error dependencies (upper-left part of the first row,
columns 3 and 5 vs. the second and third rows, columns 5
and 6).

Consequently, the sequential estimation of the additional
dataset 4 is more accurate in this experiment because the un-
certainties in the basic triangle (1;2;3) are smaller than the
uncertainty in the assumed dependency (2;4) required for the
additional triangular estimation, which can also be seen from
Eq. (61).

5.3 Large uncertainties in the basic triangle

This changes in the third experiment in Fig. 4, where the
neglected dependency (2;3) in the basic triangle is larger
than the neglected dependency (2;4) (upper-left parts of the
first row, columns 3 and 5). Note that the increased error de-
pendency (2;3) is even larger than the true error covariance 2
in some locations (upper-left parts of the first row, column 5,
and second row, column 2). For the first setup in Fig. 4a, it
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Figure 4. Experiment 3: covariance matrices for four datasets (I = 4) with true dependencies of datasets (2; 3), (2; 4), and (3; 4). This figure
is the same as Fig. 2 but with an increased dependency in the basic triangle between datasets (2; 3).

can be seen that the increased uncertainty in the error covari-
ance estimates in the basic triangle affects the estimates of all
error statistics; the uncertainty in all estimated error statistics
is increased proportionally to the increase in the neglected er-
ror dependency (2;3). As in the second experiment, the un-
certainty amplitude is half the neglected error dependency
for all error covariance estimates and equals the neglected
error dependency for the estimated error dependencies (2;4)

and (3;4) (upper-left part of the first row, column 3, and the
third row of Fig. 4a vs. Fig. 3a).

The same holds for the error covariance estimates in the
basic triangle (1;2;3) in the second setup in Fig. 4b. In con-
trast, the additional triangular estimation of the error covari-
ances of dataset 4 again remains the same as in the other
two experiments. Because the independence assumption in
the additional triangle (1;2;4) is more accurate than the ba-
sic triangle (1;2;3) in this experiment, the additional trian-
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gular estimation of error covariance 4 is more accurate than
the sequential estimation (second and third rows, column 4
of Fig. 4a and b). If the other two error covariances 1 and 2
had also been estimated from the additional triangle (1;2;4)
instead of the basic triangle (1;2;3), their estimation would
also be more accurate (not shown).

The more accurate error covariance estimate of dataset 4
with the second setup also leads to more accurate estimates
of the two error dependencies (2;3) and (3;4) due to the sum-
mation of the two error covariance estimates involved (sec-
ond and third rows, columns 5 and 6 of Fig. 4a and b). In this
particular example, the uncertainty in the error dependency
(2;4) is even larger than the true dependency (upper-left parts
of the first and third rows, column 5 of Fig. 4a and b), leading
to negative dependencies for both estimates (lower-right part
of the second row, column 5 of Fig. 4a and b). Similarly, the
estimated error dependence matrix (3;4) loses its diagonal
dominance: the diagonal elements are almost zero, but the
more distant dependencies remain positive and similar to the
true values (lower-right part of the second row, column 6 of
Fig. 4a and b). This behavior is caused by the different spatial
correlation scales of the two datasets 3 and 4 and might give
an indication of inaccurate assumptions in real applications.
Note that the error dependency (2;4) estimated with the sec-
ond setup is more accurate in this experiment, despite its in-
consistency concerning the assumption of zero error depen-
dency (2;4) in the estimation of error covariance 4. However,
due to their negative dependency estimates, the independence
assumption would be more accurate than the actual estimates
from both setups in this case.

The large variation in the uncertainties in the error es-
timates from the two setups among the different experi-
ments demonstrates the importance of selecting an appro-
priate setup for the error estimation problem, which will be
discussed in Sect. 6.2.

6 Conceptual summary and guidelines

This section provides a summary of the statistical error es-
timation method proposed in this study, with focus on its
technical application. Section 6.1 summarizes the general
assumptions and provides rules for the minimal conditions
to solve the problem, including an illustrative visualization.
Section 6.2 formulates guidelines for the selection of an
appropriate setup of datasets under imperfect assumptions.
Algorithmic summaries of the calculation of error statis-
tics from residual covariances and cross-covariances, respec-
tively, are given in Appendix A.

6.1 Minimal conditions

This section provides a conceptual discussion of different
conditions that need to be fulfilled in order to be able to solve
the error estimation problem. The discussion is based on the

previous sections, but it is formulated in a qualitative way
without providing mathematical details.

For error statistics that need to be assumed, their specific
formulation may have different forms. The easiest and most
common assumption is to set their error correlations and,
thus, the error cross-covariances and dependencies to zero.
This assumption (used in Sect. 4.1 and 4.2) is equivalent to
the 3CH and TC methods. However, any nonzero error statis-
tics can be defined and used in the general form, which is
summarized in Appendix A. This also includes assuming er-
ror statistics as a function of other error statistics, including
the ones estimated during the calculation. The only restric-
tion is that all assumed error statistics must be fully deter-
mined by other error statistics or predefined values.

The number of error statistics that can be estimated for a
given number of datasets (NI ) has been introduced in Sect. 2.
However, not every possible choice of error statistics to be
estimated provides a solution, which was also observed by
Vogelzang and Stoffelen (2021) in the scalar case. The fol-
lowing discussion only considers setups in which all error
covariances and as many error cross-statistics as possible are
estimated.

In the first step, some error covariances need to be esti-
mated directly “from scratch”, i.e., with no other error co-
variances available. Given the basic formulation of residual
covariances in Eq. (20), a single error covariance (Ci) can
only be eliminated when the other one (Cj ) is replaced. Be-
cause every replacement of an error covariance of the same
form introduces another error covariance, all other error co-
variances can only be removed if the final replacement again
introduces the initial error covariance (Ci).

However, the resulting equation that involves a closed se-
ries of residuals cannot always be solved for the initial error
covariance. For less than three residuals involved (F < 3),
the estimation of error covariances requires additional as-
sumptions (see Sect. 2). Because of the changing sign of error
covariances in the equation, the initial error covariance (C̃i)
cancels out and cannot be eliminated if the number of in-
volved residuals is even (see Sect. 3.3.1). Note that the equa-
tion could then be used to estimate one error dependency;
thus, the number of estimated error statistics remains consis-
tent with Sect. 2.

In addition, the error cross-covariances or dependencies
between each involved dataset pair have to be assumed in
order to close the estimation problem. Thus, the initial er-
ror covariance can only be estimated from a closed series of
F datasets, along which each pair of error cross-covariances
or dependencies (Dĩf ;˜if+1

, DĩF ;̃1) has to be assumed and the
number of involved datasets (F ) is odd and larger than or
equal to three (see Sect. 4.2.1).

In the second step, all remaining error covariances can be
estimated sequentially from their residual to a prior dataset –
denoted as the reference dataset – with previously estimated
error covariance (see Sect. 4.2.2). This estimation also re-
quires the assumption of the error cross-covariances or de-
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Figure 5. Independence tree: illustrative example of assumed error
dependencies (gray lines) between 10 datasets (colored dots). The
assumed dependencies in the basic triangle (1; 2; 3) are indicated by
thicker lines. An alternative setup with a basic pentagon is indicated
using the dotted line (3; 6) instead of the lighter gray line (1; 3).

pendencies related to the residuals involved. Finally, the er-
ror cross-statistics, which are not required in the estimation
of error covariances (AI > 0), can be estimated from their
respective residual covariances (see Sect. 4.2.3).

Based on this, two general rules for the setup of datasets
can be formulated that ensure the solvability of the problem
in the case that all error covariances and as many error cross-
statistics as possible (cross-covariances or dependencies) are
estimated:

(i) all error cross-statistics along a closed series of dataset
pairs, for which the number of involved datasets is odd
and larger than or equal to three, are needed (this closed
series of datasets is called the “basic polygon” or “basic
triangle” in the case of three datasets) and

(ii) at least one error cross-statistic of each additional
dataset to any prior datasets is needed (this prior
dataset is called the “reference dataset” of the additional
dataset).

Previously, Vogelzang and Stoffelen (2021) observed that
some setups for four or five datasets do not produce a so-
lution for the problem, but they did not discuss the general
requirements. Limited solvability was also found by Gruber
et al. (2016) for four datasets, but they developed an unnec-
essarily strong requirement that each dataset has to be part of
an independent triangle.

An illustrative example of assumed dependencies for I =
10 datasets is visualized in Fig. 5. Note that this is one of
many possible setups that are determined by the two rules
above. First, the error dependencies among three datasets (1;
2; 3) need to be assumed (basic triangle). Then, one error de-
pendency of each additional dataset i > 3 to any prior dataset
j (with j < i) is assumed (sequential estimation). Alterna-
tively, the basic triangle could be replaced, for example, by a
basic polygon of five datasets (basic pentagon: 1; 2; 3; 5; 4) if
the dependency (3; 5) is assumed instead of the dependency
(3; 1).

Figure 6. Improved independence tree: the same as Fig. 5 but with
a modified setup for more accurate error estimates. Distances be-
tween datasets represent the accuracy of assumed dependencies be-
tween the error statistics. While locations are the same, the numbers
and colors of the datasets have been changed according to the mod-
ified setup. An alternative setup with an additional independent tri-
angle is indicated using the dotted line (7; 10) instead of the lighter
gray line (3; 7).

6.2 Selection of the setup

The general rules given in Sect. 6.1 allow for multiple dif-
ferent setups of datasets that all solve the error estimation
problem. However, in real applications, there might be sig-
nificant differences in estimated error statistics from different
setups as observed by studies such as Vogelzang and Stoffe-
len (2021) in the scalar case. The optimal selection is specific
for each application and may depend on several requirements
related to the actual purpose or use (e.g., available knowledge
or accuracy of each estimate). This section provides some
general guidelines on the selection of an appropriate setup
among the various possible solutions with respect to the un-
certainties introduced by statistical assumptions.

The relative accuracy of an error covariance estimate is
proportional to the ratio between the residual covariance 0i;j
and the absolute uncertainty 1D̃i;j̃ of the assumed error de-
pendency, which can be interpreted as being similar to a
signal-to-noise ratio. In other words, the larger the residual
covariance and the better the absolute estimate of the error
dependency to the reference dataset, the more accurate the
estimated error covariance. Because uncertainties in the error
estimate do not necessarily sum up for a large basic polygon
or along a branch of the independence tree (see Sect. 4.2.4),
a large residual-to-dependency ratio with respect to the as-
sumed cross-statistics is more important than a low number
of intermediate datasets. In order to achieve sufficiently ac-
curate estimates, the setup of datasets should be selected ac-
cording to the expected accuracy of the estimated dependen-
cies that minimize the residual-to-dependency ratio for each
dataset:

maxj

(
0i;j

1D̃i;j̃

)
: j → ref(i)

⇐⇒minj
(
1ρ̃i;j̃

)
: j → ref(i),∀i. (62)
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The maximal residual-to-dependency ratio is equivalent
to the minimal uncertainty in the normalized error correla-

tions 1ρ̃i;j̃ :=
1D̃i;j̃√

C̃iCj̃
. For example, if the error correlation

of one dataset to another is known to some degree of accu-
racy, this dataset is well suited for use as a reference dataset.
If assumed error dependencies are set to zero, the dataset to
which the independence assumption is most certain should
be selected as the reference dataset. Supposing that distances
between datasets indicate their expected degree of indepen-
dence in the independence tree, the setup visualized in Fig. 5
is not an appropriate selection. An example of an alternative
setup that is expected to provide more accurate error esti-
mates is shown in Fig. 6.

While uncertainties in the basic polygon only con-
tribute half to the subsequent uncertainties, they affect the
estimations of error statistics of all subsequent datasets
(see Sect. 4.1.3 and 4.2.4 and Sect. 5.2 and 5.3). This has two
implications. Firstly, the basic polygon, which is defined as
the closed series of datasets that have the smallest error cor-
relations, produces the smallest overall uncertainty with re-
spect to all error estimates. Ideally, the basic polygon should
be set as a closed series of datasets that have high pairwise in-
dependence or at least reasonably small dependencies among
each pair. Secondly, if another pairwise independent poly-
gon can be assumed for an additional dataset with similar
accuracy to the dependency to its reference dataset, the addi-
tional error estimate may be more accurate using the direct
estimation from this additional pairwise independent poly-
gon rather than the sequential estimation (see Sects. 4.2.5 and
5.3). The additional pairwise independent polygon does not
need to be connected to the basic polygon and may also have
multiple independent branches, thus acting as an additional
basic polygon. For example, in the setup shown in Fig. 6, the
estimation of dataset 7 is sensitive to the dependency (3; 7)
to its reference dataset and to dependencies in the basic tri-
angle (1; 2; 3). If the dependency (7; 10) could be assumed
with higher accuracy than these dependencies, the error co-
variances of dataset 7 can alternatively be calculated from
the independent triangle (7; 8; 10) and the independence as-
sumption between (3; 7) can be dropped. Thus, multiple in-
dependence trees can be defined around multiple separated
basic triangles or basic polygons.

Furthermore, it is also possible to average the estimated
error statistics of a dataset from multiple pairwise indepen-
dent polygons, similar to an application of the N-cornered
hat method (N-CH, e.g., Sjoberg et al., 2021) for an arbi-
trary subset of datasets. This setup builds an overestimated
problem that requires the assumption of more error depen-
dencies than the minimal requirements (see Sects. 2 and 6.1).
However, it might be beneficial if multiple pairwise indepen-
dent polygons containing the same dataset could be estimated
with similar accuracy. In this case, potential uncertainties in
the assumptions are expected to be reduced by the average
over similar accurate estimates. Moreover, an extension to

weighted averages of different estimations is possible, where
the weights reflect the expected accuracy of each estimation
formulation with respect to the others.

7 Conclusions

Despite the generalized matrix formulation, the main fea-
tures of the presented approach are (i) its generality defining
a flexible setup for any number of datasets according to the
specific application, (ii) its optimality with respect to a min-
imal number of assumptions required, and (iii) its suitability
to include expected nonzero dependencies between any pair
of datasets. In contrast, the scalar N-CH method (N-cornered
hat method) averages all estimates of each dataset, which
is equivalent to assuming that the independence assumption
among each dataset triplet is fulfilled with the same accuracy.
However, this is not the case for most applications to geo-
physical datasets. For example, Rieckh et al. (2021) applied
the N-CH method to multiple atmospheric model and obser-
vational datasets and discussed neglected levels of indepen-
dence between different datasets, which are expected to vary
significantly. Pan et al. (2015) tried to account for such vari-
ations by clustering the datasets into structural groups; how-
ever, this approach requires more assumptions than necessary
and makes the result highly sensitive to the selected group-
ing. In contrast, the method presented here provides an op-
timal and flexible approach to handle multiple datasets with
different levels of expected independence. Depending on the
specific application, the estimation may be based on the min-
imal number of assumptions required or a (weighted) average
over any number of estimations with similar expected accu-
racies.

An important application of the presented method is ex-
pected to be numerical weather prediction (NWP), where
short-term forecasts from multiple national centers can be
used to estimate the error statistics required for data assimi-
lation. In contrast to previous statistical methods, potential
dependencies among the forecasts, i.e., due to the assimi-
lation of similar observations, can be considered in the er-
ror estimation and even explicitly quantified. Future work
will show how this statistical approach compares to state-
of-the-art background error estimates based on computation-
ally expensive Monte Carlo-based or ensemble-based meth-
ods. While the presented method can be formulated to pro-
vide symmetric error covariances, a risk remains that nega-
tive values might occur for real applications due to inaccurate
assumptions or sampling uncertainties.

In comparison to a posteriori methods that statistically es-
timate optimal error covariances for data assimilation, an
a priori error estimation of collocated datasets has three main
advantages: (i) optimal error statistics are calculated analyt-
ically without requiring an iterative minimization including
multiple executions of the assimilation, (ii) complete covari-
ance matrices provide spatially resolved fields of error statis-
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tics at each collocated location including spatial- and cross-
species correlations, and (iii) error statistics of all datasets are
estimated without selecting one dataset as a reference. This
enables the consideration of more than two datasets in the
assimilation. Given sufficiently estimated error statistics, the
final analysis with respect to all datasets will be closer to the
truth than any analysis between two datasets only. Thus, the
rapidly increasing number of geophysical observations and
model forecasts enable improved analyses due to increas-
ingly overlapping datasets, and the optimal error statistics
can be calculated, for example, with the method presented
here. Specifically, the possibility to estimate optimal error
cross-covariances between datasets provides important infor-
mation for data assimilation, in which the violation of the in-
dependence assumption remains a major challenge (Tandeo
et al., 2020).

However, current data assimilation schemes are not suited
for multiple overlapping datasets, and cross-errors between
datasets are assumed to be negligible. In contrast, the statisti-
cal error estimation method presented in this study is explic-
itly tailored to multiple datasets that cannot be assumed to
be independent. Thus, the estimated error covariances are not
consistent with assimilation algorithms assuming (two) inde-
pendent datasets. If the estimated error dependencies among
all assimilated datasets are small, the independence assump-
tion may be regarded as sufficiently fulfilled. The error esti-
mation method then provides error covariances for assimila-
tion and information on the accuracy of the independence as-
sumption. Otherwise, generalized assimilation schemes need
to be developed for a proper use of this additional statisti-
cal information in data assimilation. Although this increases
complexity, such generalized assimilation schemes enable
fundamental improvements in terms of an optimal analysis
from multiple datasets with respect to their error covariances
and cross-statistics.

Appendix A: Algorithms

The general estimation procedure of error statistics for I ≥ 3
datasets is summarized in Algorithms A1 and A2. The al-
gorithms require residual covariances or cross-covariances
among all I datasets (calculated from residual statistics) and
I assumed error dependencies or cross-covariances, respec-
tively. Based on this, the first error covariance matrix is cal-
culated with a polygonal estimation. Then, error statistics of
the remaining datasets are calculated sequentially in an itera-
tive procedure: introducing a new dataset i with given resid-
ual statistics (covariances or cross-covariances) to dataset
ref(i) for each i ∈ [2,I ] with ref(i)< i. Note that this is
equivalent to a direct estimation of all error covariances in
the basic polygon and a sequential estimation of the addi-
tional error covariances of datasets i > F (see Sect. 4.2.5).

Algorithm A1 is formulated for symmetric statistic ma-
trices, where the error covariances errcov(i; :, :) of each

dataset i and the error dependency matrices errdep(i;j ; :
; :) between each pair (i;j ) are estimated from symmetric
residual covariances rescov(i;j :; :; ). In this algorithm,
the generalized formulation of a basic polygon of F ≤ I
residuals, for any odd F ≥ 3, is used for the estimation of the
first error covariance. In Algorithm A2, the error covariance-
and cross-covariance matrices errcross(i;j ; :; :) of each
pair (i;j ) are estimated from the residual cross-covariances
rescross(i;j ; i;k; :; :) between (i− j ; i− k). Here, the
third dataset k in the residual cross-covariances can be freely
selected and does not affect the accuracy of the estimates
(see Sect. 4.2.4). This algorithm uses a basic triangle as an
example for a basic polygon for the estimation of the first
error covariance. Each operation is applied element-wise to
each matrix-element indicated by the last two indices (:; :),
and matrices may contain different locations of the same
quantity as well as different fields for multiple quantities of
any dimension (multivariate covariances). Transposed matri-
ces with respect to the two location indices are indicated by
[ ]

T.
The equations relate to the general exact formulations,

which require some error dependencies or cross-covariances
to be given (see Sect. 3). The explicit calculation of the
error cross-statistics (dependencies or cross-covariances) is
not needed if only error covariances are of interest. In the-
ory, both algorithms provide the same error estimations
(see Sect. 3.2.3). The decision to estimate error statis-
tics from residual covariances (Algorithm A1) or cross-
covariances (Algorithm A2) depends on the availability of
residual statistics; the need for symmetric estimations of er-
ror covariances, which is only intrinsically guaranteed in Al-
gorithm A1; and the need to estimate asymmetric compo-
nents of error cross-covariances, which can only be estimated
with Algorithm A2 (see Sect. 3.3.1). Note that the general-
ized basic polygon can also be used for the estimation of the
first error covariance in Algorithm A2.
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Algorithm A1 Iterative calculation of error covariances and dependencies for I datasets from residual covariances with a
general basic polygon of F ≤ I datasets.

Require: rescov(i; ref(i); :; :) ∀ i ∈ [2,I ], rescov(F;1; :; :)
Require: errdep(i; ref(i); :; :) ∀ i ∈ [2,I ], errdep(F;1; :; :)

– first dataset –
errcov(1; :; :)← 0.5·

[(∑F−1
f=1 (−1)f−1

·rescov(f+1; f; :; :)
)
+rescov(F;1; :; :)

+

(∑F−1
f=1 (−1)f−1

·errdep(f+1; f; :; :)
)
+errdep(F;1; :; :)

]
{∼ Eq. (29)}

– loop over datasets –
for i = 2,I do
errcov(i; :; :)← rescov(i; ref(i); :; :)+errdep(i; ref(i); :; :)−errcov(ref(i); :; :) { ∼ Eq. (25)}
– remaining cross-statistics –
for j = 1, i− 1 do

if j 6= ref(i) then
errdep(i;j ; :; :)← errcov(i; :; :)+errcov(j ; :; :)−rescov(i;j ; :; :) { ∼ Eq. (30)}

end if
errdep(j ; i; :; :)← errdep(i;j ; :; :) {∼ Eq. (14)}

end for
end for

Algorithm A2 Iterative calculation of error covariances and cross-covariances for I datasets from residual cross-covariances
with a basic triangle of three datasets.

Require: rescross(i; ref(i); i;j ; :; :), rescross(ref(i); i; ref(i);j ; :; :) ∀ i ∈ [2,I ],j 6= ref(i),j 6= i, rescross(1;2;1;3; :; :)
Require: errcross(i; ref(i); :; :) ∀ i ∈ [2,I ], errcross(1;3; :; :)

for i = 2,I do
errcross(ref(i); i; :; :)← errcross(i; ref(i); :; : )T {∼ Eq. (10)}

end for
– first dataset –
errcov(1; :; :)← rescross(1;2;1;3; :; :)+errcross(1;3; :; :)+errcross(2;1; :; :)−errcross(2;3; :; :) {∼ Eq. (32)}
– loop over datasets –
for i = 2,I do
errcov(i; :; :)← rescross(i; ref(i); i;j ; :; :)+rescross(ref(i); i; ref(i);j ; :; :)

−errcov(ref(i); :; :)+errcross(i; ref(i); :; :)+errcross(ref(i); i; :; :) { ∼ Eq. (34)}
– remaining cross-statistics –
for j = 1, i− 1 do

if j 6= ref(i) then
errcross(i;j ; :; :)← rescross(ref(i); i; ref(i);j ; :; :)−errcov(ref(i); :; :)

+errcross(ref(i);j ; :; :)+errcross(i; ref(i); :; :) { ∼ Eq. (36)}
errcross(j ; i; :; :)← errcross(i;j ; :; : )T {∼ Eq. (10)}

end if
end for

end for
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