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Abstract. In this paper, we propose a sampling algorithm based on state-of-the-art statistical machine learning
techniques to obtain conditional nonlinear optimal perturbations (CNOPs), which is different from traditional
(deterministic) optimization methods.1 Specifically, the traditional approach is unavailable in practice, which re-
quires numerically computing the gradient (first-order information) such that the computation cost is expensive,
since it needs a large number of times to run numerical models. However, the sampling approach directly reduces
the gradient to the objective function value (zeroth-order information), which also avoids using the adjoint tech-
nique that is unusable for many atmosphere and ocean models and requires large amounts of storage. We show
an intuitive analysis for the sampling algorithm from the law of large numbers and further present a Chernoff-
type concentration inequality to rigorously characterize the degree to which the sample average probabilistically
approximates the exact gradient. The experiments are implemented to obtain the CNOPs for two numerical mod-
els, the Burgers equation with small viscosity and the Lorenz-96 model. We demonstrate the CNOPs obtained
with their spatial patterns, objective values, computation times, and nonlinear error growth. Compared with the
performance of the three approaches, all the characters for quantifying the CNOPs are nearly consistent, while
the computation time using the sampling approach with fewer samples is much shorter. In other words, the new
sampling algorithm shortens the computation time to the utmost at the cost of losing little accuracy.

1 Introduction

One of the critical issues for weather and climate predictabil-
ity is the short-term behavior of a predictive model with im-
perfect initial data. For assessing subsequent errors in fore-

1Generally, the statistical machine learning techniques refer to
the marriage of traditional optimization methods and statistical
methods, or, say, stochastic optimization methods, where the itera-
tive behavior is governed by the distribution instead of the point due
to the attention of noise. Here, the sampling algorithm used in this
paper is to numerically implement the stochastic gradient descent
method, which takes the sample average to obtain the inaccurate
gradient.

casts, it is of vital importance to understand the model’s sen-
sitivity to errors in the initial data. Perhaps the simplest and
most practical way is to estimate the likely uncertainty in the
forecast by considering running it with initial data polluted
by the most dangerous errors. The traditional approach is
the normal mode method (Rayleigh, 1879; Lin, 1955), which
is based on the linear stability analysis and has been used
to understand and analyze the observed cyclonic waves and
long waves of middle and high latitudes (Eady, 1949). How-
ever, atmospheric and oceanic models are often linearly un-
stable. Specifically, the transient growth of perturbations can
still occur in the absence of growing normal modes (Farrell
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and Ioannou, 1996a, b). Therefore, the normal mode theory
is generally unavailable for the prediction generated by at-
mospheric and oceanic flows. To achieve the goal of pre-
diction on a low-order two-layer quasi-geostrophic model
in a periodic channel, Lorenz (1965) first proposed a non-
normal mode approach and simultaneously introduced some
new concepts, i.e., the tangent linear model, adjoint model,
singular values, and singular vectors. Then, Farrell (1982)
used this linear approach to investigate the linear instability
within finite time. During the last decade of the past cen-
tury, such a linear approach had been widely used to iden-
tify the most dangerous perturbations of atmospheric and
oceanic flows and also extended to explore error growth
and predictability, such as patterns of the general atmo-
spheric circulations (Buizza and Palmer, 1995) and the cou-
pled ocean–atmosphere model of the El Niño–Southern Os-
cillation (ENSO) (Xue et al., 1997a, b; Thompson, 1998;
Samelson and Tziperman, 2001). Recently, the non-normal
approach had been extended further to an oceanic study for
investigating the predictability of the Atlantic meridional
overturning circulation (Zanna et al., 2011) and the Kuroshio
path variations (Fujii et al., 2008).

Both the approaches of normal and non-normal modes are
based on the assumption of linearization, which means that
the initial error must be so small that a tangent linear model
can approximately quantify the error’s growth. Besides, the
complex nonlinear atmospheric and oceanic processes have
not yet been well considered in the literature. To overcome
this limitation, Mu (2000) proposed a nonlinear non-normal
mode approach with the introduction of two new concepts,
nonlinear singular values and nonlinear singular vectors. Mu
and Wang (2001) then used it to successfully capture the lo-
cal fastest-growing perturbations for a 2D quasi-geostrophic
model. However, several disadvantages still exist, such as
unavailability in practice and unreasonable physics of the
large norm for local fastest-growing perturbations. Starting
from the perspective of nonlinear programming, Mu et al.
(2003) proposed an innovative approach, named conditional
nonlinear optimal perturbation (CNOP), to explore the opti-
mal perturbation that can fully consider the nonlinear effect
without any assumption of linear approximation. Generally,
the CNOP approach captures initial perturbations with max-
imal nonlinear evolution given by a reasonable constraint in
physics. Currently, the CNOP approach as a powerful tool
has been widely used to investigate the fastest-growing initial
error in the prediction of an atmospheric and oceanic event
and to reveal some related mechanisms, such as the stability
of the thermohaline circulation (Mu et al., 2004; Zu et al.,
2016), the predictability of ENSO (Duan et al., 2009; Duan
and Hu, 2016) and the Kuroshio path variations (Wang and
Mu, 2015), the parameter sensitivity of the land surface pro-
cesses (Sun and Mu, 2017), and typhoon-targeted observa-
tions (Mu et al., 2009; Qin and Mu, 2012). Some more de-
tails are shown in Wang et al. (2020) and more perspectives
on general fluid dynamics in Kerswell (2018).

The primary goal of obtaining the CNOPs is to efficiently
and effectively implement nonlinear programming, mainly
including the spectral projected gradient (SPG) method (Bir-
gin et al., 2000), sequential quadratic programming (SQP)
(Barclay et al., 1998), and the limited memory Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm (Liu and No-
cedal, 1989) in practice. The gradient-based optimization al-
gorithms are also adopted in the field of fluid dynamics to
capture the minimal finite amplitude disturbance that trig-
gers the transition to turbulence in shear flows (Pringle and
Kerswell, 2010) and the maximal perturbations of the dis-
turbance energy gain in a 2D isolated counter-rotating vor-
tex pair (Navrose et al., 2018). For the CNOP, the objective
function of the initial perturbations in a black-box model is
obtained by the error growth of a nonlinear differential equa-
tion. Therefore, the essential difficulty here is how to effi-
ciently compute the gradient (first-order information). Gen-
erally for an earth system model or an atmosphere–ocean
general circulation model, computing the gradient directly
from the definition of numerical methods is unavailable,
since it requires plenty of runs of the nonlinear model. Per-
haps the most popular and practical way to numerically ap-
proximate the gradient is the adjoint technique, which is
based on deriving the tangent linear model and the adjoint
model (Kalnay, 2003). Once we can distill out the adjoint
model, computing the gradient at the cost of massive stor-
age space to save the basic state becomes available. In other
words, the adjoint-based method takes a large amount of stor-
age space to reduce computation time significantly. How-
ever, the adjoint model is unusable for many atmospheric and
oceanic models, since it is hard to develop, especially for the
coupled ocean–atmosphere models. Still, the adjoint-based
method can only deal with a smooth case. Wang and Tan
(2010) proposed the ensemble-based methods, which intro-
duces the classical techniques of empirical orthogonal func-
tion (EOF) decomposition widely used in atmospheric sci-
ence and oceanography. Specifically, it takes some principal
modes of the EOF decomposition to approximate the tangent
linear matrix. However, the colossal memory and repeated
calculations occurring in the adjoint-based method still ex-
ist (Wang and Tan, 2010; Chen et al., 2015). In addition, the
intelligent optimization methods (Zheng et al., 2017; Yuan
et al., 2015) are unavailable on the high-dimension problem
(Wang et al., 2020). All of the traditional (deterministic) opti-
mization methods above cannot guarantee finding an optimal
solution.

To overcome the limitations of the adjoint-based method
described above, we start to take consideration from the
perspective of stochastic optimization methods, which as
the workhorse have powered recent developments in sta-
tistical machine learning (Bottou et al., 2018). In this pa-
per, we use the stochastic derivative-free method proposed
by Nemirovski and Yudin (1983, Sect. 9.3.2) that takes a
basis on the simple high-dimensional divergence theorem
(i.e., Stokes’ theorem). With this stochastic derivative-free
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method, the gradient can be reduced to the objective function
value in terms of expectation. For the numerical implementa-
tion as an algorithm, we take the sample average to approx-
imate the expectation. Based on the law of large numbers,
we provide a concentration estimate for the gradient by the
general Chernoff-type inequality. This paper is organized as
follows. The basic description of the CNOP settings and the
proposed sampling algorithm are given in Sects. 2 and 3, re-
spectively. We then perform the preliminary numerical test
for two numerical models, the simple Burgers equation with
small viscosity and the Lorenz-96 model in Sect. 4. A sum-
mary and discussion are included in Sect. 5.

2 The Basic CNOP settings

In this section, we provide a brief description of the CNOP
approach. It should be noted that the CNOP approach has
been extended to investigate the influences of other errors,
i.e., parameter errors and boundary condition errors, on at-
mospheric and oceanic models (Mu and Wang, 2017) beyond
the original intention of CNOPs exploring the impact of ini-
tial errors. We only focus on the initial perturbations in this
study.

Let � be a region in Rd with ∂� as its boundary. An at-
mospheric or oceanic model is governed by the following
differential equation as
∂U
∂t
= F (U ,P )

U |t=0 = U0

U |∂� =G,

(1)

where U is the reference state in the configuration space;
P is the set of model parameters; F is a nonlinear oper-
ator; and U0 and G are the initial reference state and the
boundary condition, respectively. Without loss of general-
ity, we note gt (·) to be the reference state evolving with
time U (t; ·) in the configuration space. Thus, given any initial
state U0, we can obtain that the reference state at time T is
gT (U0)= U (T ;U0). If we consider the initial state U0+u0
as the perturbation of U0, then the reference state at time T
is given by gT (U0+u0)= U (T ;U0+u0) .

With both the reference states at time T , gT (U0) and
gT (U0+u0), the objective function of the initial perturba-
tion u0 based on the initial condition U0 is

J (u0;U0)=
∥∥∥gT (U0+u0)− gT (U0)

∥∥∥2
, 2 (2)

and then the CNOP formulated as the constrained optimiza-
tion problem is

max
‖u0‖≤δ

J (u0;U0). (3)

2Throughout the paper, the norm ‖ · ‖ is specific for the en-
ergy norm. When we implement the numerical computation, or,
say in the discrete case, it reduces to the Euclidean norm as ‖v‖ =√∑d

i=1v
2
i

.

Both the objective function (Eq. 2) and the optimization
problem (Eq. 3) come directly from the theoretical model
(Eq. 1). When we take the numerical computation, the prop-
erties of the two objects above, Eqs. (2) and (3), probably be-
come different. Here, it is necessary to mention some similar-
ities and dissimilarities between the theoretical model (Eq. 1)
and its numerical implementation. If the model (Eq. 1) is a
system of ordinary differential equations, then it is finite di-
mensional, and so there are no other differences between the
theoretical model (Eq. 1) and its numerical implementation
except some numerical errors. However, if the model (Eq. 1)
is a partial differential equation, then it is infinite dimen-
sional. When we implement it numerically, the dimension is
reduced to be finite for both the objective function (Eq. 2)
and the optimization problem (Eq. 3). At last, we conclude
this section with the notation J (u0) shortened J (u0;U0) af-
terward for convenience.

3 Sample-based algorithm

In this section, we first describe the basic idea of the sampling
algorithm. Then, it is shown for comparison with the baseline
algorithms in numerical implementation. Finally, we con-
clude this section with a rigorous Chernoff-type concentra-
tion inequality to characterize the degree to which the sam-
ple average probabilistically approximates the exact gradient.
The detailed proof is postponed to Appendix A.

The key idea for us to consider the sampling algorithm is
based on the high-dimensional Stokes’ theorem, which re-
duces the gradient in the unit ball to the objective value on
the unit sphere in terms of the expectation. Let Bd be the
unit ball in Rd and v0 ∼ Unif(Bd ) a random variable v0 fol-
lowing the uniform distribution in the unit ball Bd . Given a
small real ε > 0, we can define the expectation of the objec-
tive function J in the ball with the center u0 and the radius ε
as

Ĵ (u0)= Ev0∈Bd [J (u0+ εv0)]. (4)

In other words, the objective function J is required to de-
fine in the ball B(0;δ+ ε)= {u0 ∈ Rd : ‖u0‖ ≤ ε+ δ}. Also,
we find that Ĵ (u0) is approximate to J (u0); that is, Ĵ (u0)≈
J (u0). If the gradient ∇J exists in the ball B(0;δ+ ε), the
fact that the expectation of v0 is zero tells us that the error of
the objective value is estimated as

‖J (u0)− Ĵ (u0)‖ =O(ε2).

Before proceeding to the next, we note the unit sphere as
Sd−1

= ∂Bd . With the representation of Ĵ (u0) in Eq. (4), we
can obtain the gradient ∇Ĵ (u0) directly from the function
value J by the high-dimensional Stokes’ theorem as

∇Ĵ (u0)= Ev0∈Bd [∇J (u0+ εv0)]

=
d

ε
·Ev0∈Sd−1 [J (u0+ εv0)v0, (5)
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where v0 ∼ Unif(Sd−1) in the last equality. Similarly,
∇Ĵ (u0) is approximate to ∇J (u0); that is, ∇Ĵ (u0)≈
∇J (u0). If the gradient ∇J exists in the ball B(0;δ+ ε), we
can show that the error of the gradient is estimated as

‖∇Ĵ (u0)−∇J (u0)‖ =O(dε). (6)

The rigorous description and proof are shown in Ap-
pendix A (Lemma A1 with its proof).

In the numerical computation, we obtain the approximate
gradient, ∇Ĵ (u0), via the sampling as

d

ε
·Ev0∈Sd−1 [J (u0+εv0)v0] ≈

d

nε

n∑
i=1

J (u0+εv0,i)v0,i, (7)

where v0,i ∼ Unif(Sd−1) and (i = 1, . . .,n) are the indepen-
dent random variables following the identical uniform dis-
tribution on Sd−1. Since the expectation of the random vari-
able v0 on the unit sphere Sd−1, we generally take the fol-
lowing way with better performance in practice as

d

ε
·Ev0∈Sd−1 [J (u0+ εv0)v0]

=
d

ε
·Ev0∈Sd−1 [(J (u0+ εv0)− J (u0))v0]

≈
d

nε

n∑
i=1

(J (u0+ εv0,i)− J (u0))v0,i, (8)

where v0,i ∼ Unif(Sd−1) and (i = 1, . . .,n) are independent.
From Eq. (8), n is the number of samples and d is the dimen-
sion. Generally in practice, the number of samples is far less
than the dimension, n� d . Hence, the times to run the nu-
merical model is n+1� d+1, which is the times to run the
numerical model via the definition of the numerical method
as
∂J (u0)
∂u0,i

≈
J (u0+ εei)− J (u0)

ε
,

where i = 1, . . .,d . For the adjoint method, the gradient is
numerically computed as

∇J (u0)≈M>Mu0 ≈M>gT (U0+u0),

where M is a product of some tangent linear models. Practi-
cally, the adjoint model, MT , is hard to develop. In addition.
we cannot obtain the tangent linear model for the coupled
ocean–atmosphere models.

Next, we provide a simple but intuitive analysis of the con-
vergence in probability for the samples in practice. With the
representation of ∇Ĵ (u0) in Eq. (5), the weak law of large
numbers states that the sample average (Eq. 7) converges in
probability toward the expected value; that is, for any t > 0,
we have

Pr

(∥∥∥∥ dnε
n∑
i=1

J (u0+ εv0,i)v0,i −∇Ĵ (u0)
∥∥∥∥≥ t

)
→ 0,

with n→∞.

Combined with the error estimate of gradient (Eq. 6), if t is
assumed to be larger than �(dε) (i.e., there exists a constant
τ > 0 such that t > τdε), then the probability that the sample
average approximates to ∇J (u0) satisfies

Pr

(∥∥∥∥ dnε
n∑
i=1

J (u0+ εv0,i)v0,i −∇J (u0)
∥∥∥∥≥ t −�(dε)

)
→ 0,

with n→∞.

Finally, we conclude the section with the rigorous
Chernoff-type bound in probability for the simple but in-
tuitive analysis above with the following theorem. The rig-
orous proof is shown in Appendix A with Lemma A2 and
Lemma A3 proposed.

Theorem 1. If J is continuously differentiable and satis-
fies the gradient Lipschitz condition, i.e., for any u0,1,u0,2 ∈

B(0,δ), there exists a constant L > 0 such that the following
inequality holds as

‖∇J (u0,1)−∇J (u0,2)‖ ≤ L‖u0,1−u0,2‖.

For any t > Ldε/2, there exists a constantC > 0 such that
the samples satisfy the concentration inequality as

Pr
(∥∥∥∥ dnε

n∑
i=1

J (u0+ εv0,i)v0,i −∇J (u0)
∥∥∥∥

≥ t −
Ldε

2

)
≤ 2exp(−Cnt2).

4 Numerical model and experiments

In this section, we perform several experiments to compare
the proposed sampling algorithm with the baseline algo-
rithms for two numerical models, the Burgers equation with
small viscosity and the Lorenz-96 model. After the CNOP
was first proposed in Mu et al. (2003), plenty of methods, ad-
joint based or adjoint free, have been introduced to compute
the CNOPs (Wang and Tan, 2010; Chen et al., 2015; Zheng
et al., 2017; Yuan et al., 2015). However, some essential dif-
ficulties have still not been overcome. Taking the classical
adjoint technique for example, the massive storage space and
unusability in many atmospheric and oceanic modes are the
two insurmountable points. In this study, different from tra-
ditional (deterministic) optimization methods above, we ob-
tain the approximate gradient by sampling the objective val-
ues introduced in Sect. 3. Then, we use the second spectral
projected gradient method (SPG2) proposed in Birgin et al.
(2000) to compute the CNOPs.

4.1 The Burgers equation with small viscosity

We first consider a simple theoretical model, the Burgers
equation with small viscosity under the Dirichlet condition.
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Table 1. The objective values of CNOPs and the percentage over that computed by the definition method. Bold emphasizes the high efficiency
of the sampling method.

Case Method

Definition Adjoint Sampling (n= 5) Sampling (n= 15)

T = 30 s 1.2351× 10−5 1.2351× 10−5 1.1727× 10−5 1.1950× 10−5

100 % 100 % 94.95 % 96.75 %

T = 60 s 2.5035 2.5035 2.3899 2.4426
100 % 100 % 95.46 % 97.57 %

Figure 1. Spatial distributions of CNOPs (unit: ms−1). Prediction time: on the top is T = 30 s, and on the bottom is T = 60 s.

It should be noted here that we adopt the internal units me-
ters and seconds. The reference state U evolves nonlinearly
with time as
∂U
∂t
+U ∂U

∂x
= γ ∂

2U
∂x2 , (x, t) ∈ [0,L]× [0,T ]

U (0, t)= U (L,t)= 0, t ∈ [0,T ]

U (x,0)= sin
(

2πx
L

)
, x ∈ [0,T ]

, (9)

where γ = 0.005 m2 s−1 and L= 100 m. We use the DuFort–
Frankel scheme or the leapfrog scheme (i.e., the central fi-
nite difference scheme in both the temporal and spatial di-
rections) to numerically solve the viscous Burgers equa-
tion above (Eq. 9), with 1x= 1 m as the spatial grid size
(d = 101) and 1t = 1 s as the time step. The objective func-
tion J (u0) used for optimization (Eq. 2) can be rewritten in
the form of the perturbation’s norm square as

J (u0)= ‖u(T )‖2 =
d∑
i=1

ui(T )2.

The constraint parameter is set to be δ= 8× 10−4 ms−1

such that the initial perturbation satisfies ‖u0‖ ≤

δ= 8× 10−4 ms−1. We note the numerical gradient
computed directly as the definition method, where the step
size for the difference is set to be h= 10−8. Together with
the adjoint methods, we set them as the baseline algorithms.
For the sampling algorithm, we set the parameter ε= 10−8 in
Eq. (4), the expectation of the objective function. The time T
in the objective function (Eq. 2) is named as the prediction
time. We take the two groups of numerical experiments
according to the prediction time, T = 30 s and T = 60 s, to
calculate the CNOPs by the baseline algorithms and the
sampling method. And then, we compare their performances
to show the superiority of the sampling method.

The spatial distributions of the CNOPs computed by the
baseline algorithms and the sampling method are shown in
Fig. 1, where we can find the change of the CNOPs’ spa-
tial pattern for the Burgers equation with small viscosity as
follows:

1. The spatial pattern of the CNOPs computed by two
baseline algorithms, the definition method and the ad-
joint method, are nearly identical.
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2. Based on the spatial pattern of the CNOPs computed
by two baseline algorithms, there are some fluctuating
errors for the sampling method.

3. When the number of samples increase from n= 5 to
n= 15, the fluctuating errors in the spatial patter are re-
duced.

We have figured out the spatial distributions of the CNOPs
in Fig. 1. In other words, we have qualitatively character-
ized the CNOPs. However, we still need some quantities to
measure the CNOPs’ performance. Here, we use the objec-
tive value of the CNOP as the quantity. The objective val-
ues corresponding to the spatial patterns in Fig. 1 are shown
in Table 1. To show them clearly, we make them over that
computed by the definition method with the percentage rep-
resentation, which is also shown in Table 1. For the Burgers
equation with small viscosity, we can also find that the ob-
jective values by the adjoint method over that by the def-
inition method is 100 % for both the cases, T = 30 s and
T = 60 s, respectively; the objective values by the sampling
method are all more than 90 %; and when we increase the
number of samples from n= 5 to n= 15, the percentage in-
creases from 94.95 % to 96.75 % for the case T = 30 s and
from 95.46 % to 97.57 % for the case T = 60 s. The objec-
tive values of the CNOPs in Table 1 quantitatively echo the
performances of spatial patterns in Fig. 1.

Next, we show the computation times to obtain the CNOPs
by the baseline algorithms and the sampling method in Ta-
ble 2. For the Burgers equation with small viscosity, the com-
putation time taken by the adjoint method is far less than that
directly by the definition method for the two cases, T = 30 s
and T = 60 s. When we implement the sampling method, the
computation time using n= 15 samples is almost the same as
that taken directly by the definition method. If we reduce the
number of samples from n= 15 to n= 5, the computation
time is shortened by more than half.

Finally, we describe the nonlinear evolution behavior of
the CNOPs in terms of norm squares ‖u(t)‖2 computed by
the baseline algorithms and the sampling method in Fig. 2.
We can find that there exists a fixed turning-time point, ap-
proximately t = 20 s for the prediction time T = 30 s and ap-
proximately t = 50 s for T = 60 s. In the beginning, the non-
linear growth of the CNOPs is very slow. When the evolv-
ing time comes across the fixed turning-time point, the per-
turbations start to proliferate. Figure 2 shows the nonlinear
evolution behaviors of the CNOPs computed by all the al-
gorithms above are almost consistent but do not provide any
tiny difference between the baseline algorithms and the sam-
pling method. So we further show the nonlinear evolution
behavior of the CNOPs in terms of the difference 1‖u(t)‖2

and relative difference 1‖u(t)‖2/‖u(t)‖2 based on the defi-
nition method in Fig. 3. There is no difference or relative dif-
ference in the nonlinear error growth between the two base-
line algorithms. The top two graphs in Fig. 3 show that the
differences do not grow fast until the time comes across the

turning-time point. When we reduce the number of samples,
the difference enlarges gradually, with the maximum around
6× 10−7 m2 s−2 for T = 30 s and 0.12 m2 s−2 for T = 60 s.
However, the differences are very small compared with the
nonlinear growth of the CNOPs themselves, which is shown
by the relative difference in the bottom two graphs of Fig. 3.
In addition, some numerical errors exist around t = 11 s for
the relative difference and decrease with increasing the num-
ber of samples.

The Burgers equation with small viscosity is a partial dif-
ferential equation, which is an infinite-dimensional dynami-
cal system. In the numerical implementation, it corresponds
to the high-dimensional case. Taking all the performances
with different test quantities into account, i.e., spatial struc-
tures, objective values, computation times, and nonlinear er-
ror growth, we conclude that the adjoint method obtains al-
most the total information and saves much computation time
simultaneously; the sampling method with n= 15 samples
drops a few accuracies and loses little information but shares
nearly the same computation time; and when we reduce the
number of samples from n= 15 to n= 5, we can obtain
about 95 % of information as the baseline algorithms, but the
computation time is reduced by more than half. The cause
for the phenomenon described above is perhaps due to the
high-dimensional property.

4.2 The Lorenz-96 model

Next, we consider the Lorenz-96 model, one of the most clas-
sical and idealized models, which is designed to study funda-
mental issues regarding the predictability of the atmosphere
and weather forecasting (Lorenz, 2006; Lorenz and Emanuel,
1998). In recent 2 decades, the Lorenz-96 model has been
widely applied in data assimilation and predictability (Ott
et al., 2004; Trevisan and Palatella, 2011; De Leeuw et al.,
2018) to studies in spatiotemporal chaos (Pazó et al., 2008).
The Lorenz-96 model is also used to investigate the pre-
dictability of extreme amplitudes of traveling waves (Sterk
and van Kekem, 2017), which points out that it depends on
the dynamical regime of the model.

With a cyclic permutation of the variables as {xi}Ni=1 sat-
isfying x−1 = xN−1, and x0 = xN , x1 = xN+1, the governing
system of equations for the Lorenz-96 model is described as

dxi
dt
= (xi+1− xi−2)xi−1︸ ︷︷ ︸

advection

− xi︸ ︷︷ ︸
damping

+ F︸ ︷︷ ︸
external forcing

, (10)

where the system is nondimensional. The physical mecha-
nism considers that the total energy is conserved by the ad-
vection, decreased by the damping and kept away from zero
by the external forcing. The variables xi (i = 1, . . .,N ) can
be interpreted as values of some atmospheric quantity (e.g.,
temperature, pressure, or vorticity) measured along a circle
of constant latitude of the earth (Lorenz, 2006). The Lorenz-
96 model (Eq. 10) can also describe waves in the atmosphere.

Nonlin. Processes Geophys., 30, 263–276, 2023 https://doi.org/10.5194/npg-30-263-2023



B. Shi and G. Sun: An adjoint-free algorithm for CNOPs via sampling 269

Table 2. Comparison of computation times (unit: s). Run on Matlab2022a with Intel® Core™ i9-10900 CPU of 2.80 GHz. Bold emphasizes
the high efficiency of the sampling method.

Case Method

Definition Adjoint Sampling (n= 5) Sampling (n= 15)

T = 30 s 3.2788 s 1.0066 s 0.3836 s 0.8889 s
T = 60 s 6.3106 s 1.4932 s 0.6464 s 1.4845 s

Figure 2. Nonlinear evolution behavior of the CNOPs in terms of the norm square.

Specifically, Lorenz (2006) observed that the waves slowly
propagate westward toward decreasing i for F > 0 that are
sufficiently large.

In this study, we use the classical fourth-order Runge–
Kutta method to numerically solve the Lorenz-96 model
(Eq. 10). The two parameters are set as N = 40 and F = 8,
respectively. The spatial distributions of the CNOPs com-
puted by the baseline algorithms and the sampling method
are shown in Fig. 4. Unlike the three dominant characters
described above for the Burgers equation with small viscos-
ity, the spatial distributions of the CNOPs computed by all
four algorithms are almost consistent except for some little
fluctuations for the Lorenz-96 model. Similarly, we provide
a display for the objective values of the CNOPs computed
by the baseline algorithms and the sampling method and the
percentage over that computed by the definition method in
Table 3. We find that the percentage of the objective value
computed by the adjoint method is only 92.35 %, less than
that by the sampling method for the Lorenz-96 model. In ad-
dition, the difference between the number of samples n= 5
and n= 15 is only 0.57 % in the percentage of the objective
value. In other words, we can obtain about 95 % of the to-
tal information by taking the sampling algorithm only using
n= 5 samples.

Similarly, we show the computation times to obtain the
CNOPs by the baseline algorithms and the sampling method

Table 3. The objective values of CNOPs and the percentage over
that computed by the definition method. Bold emphasizes the high
efficiency of the sampling method.

Definition Adjoint Sampling (n= 5) Sampling (n= 15)

50.9099 47.0154 48.0157 48.3093
100 % 92.35 % 94.32 % 94.89 %

in Table 4. For the adjoint method, different from the Burgers
equation with small viscosity, the time to compute the CNOP
by the adjoint method is almost twice that used by the defi-
nition method for the Lorenz-96 model. However, the com-
putation time that the sampling method uses is less than one-
third of what the definition method uses. When we reduce the
number of samples from n= 15 to n= 5, the computation
time decreases by more than 0.1 s. As a result, the sampling
method only using n= 5 samples saves much computation
time to obtain the CNOP for the Lorenz-96 model.

Finally, we demonstrate the nonlinear evolution behavior
of the CNOPs in terms of norm squares ‖x(t)‖2 computed by
the baseline algorithms and the sampling method in Fig. 5.
Recall Fig. 2 for the Burgers equation with small viscosity;
the norm squares of the CNOPs have almost no growth un-
til the turning-time point and then proliferate. Unlikely, the
norm squares of the CNOPs almost grow linearly for the
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Figure 3. Nonlinear evolution behavior of the CNOPs in terms of the difference and relative difference of the norm square.

Figure 4. Spatial distributions of CNOPs.

Lorenz-96 model without any turning-time point. Similarly,
since the four nonlinear evolution curves of norm squares al-
most coincide in Fig. 5, we cannot find any tiny difference
in the nonlinear growth of the CNOPs between the base-
line algorithms and the sampling method. So we still need
to observe the nonlinear evolution behavior of the CNOPs

Table 4. Comparison of computation times. Run on Matlab2022a
with Intel® Core™ i9-10900 CPU of 2.80 GHz. Bold emphasizes
the high efficiency of the sampling method.

Definition Adjoint Sampling (n= 5) Sampling (n= 15)

3.5576 s 6.6346 s 0.9672 s 1.0829 s

in terms of the difference 1‖x(t)‖2, which is shown in the
left panel of Fig. 6. In the initial stage, the three nonlin-
ear evolution curves share the same growth behavior, with
the maximum amplitude being the one by implementing the
sampling method with n= 5 samples. Afterward, the error’s
amplitude decreases for the sampling method with n= 5
samples, and the two curves by the adjoint method and the
sampling method with n= 5 samples are similar, with the
larger amplitude being the one by the adjoint method, which
achieves the maximum around 0.3. Indeed, the differences
are very small compared with the nonlinear growth of the
CNOPs themselves, which is shown by the relative difference
1‖x(t)‖2/‖x(t)‖2 in the right panel of Fig. 6. We can find
that the three curves of the relative difference share the same
nonlinear evolution behavior, with the sampling method of
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Figure 5. Nonlinear evolution behavior of the CNOPs in terms of
the norm square.

different numbers of samples on both sides and the adjoint
method in between. When the number of samples is reduced,
the amplitude of the relative difference decreases. In addi-
tion, the order of the relative difference’s magnitude is 10−3,
which is so tiny that there are no essential differences.

Although the dimension of the Lorenz-96 model is not
very large due to being composed of a finite number of or-
dinary differential equations, it possesses strongly nonlinear
characters. Unlike the Burgers equation with small viscos-
ity, the adjoint method does not work well for the Lorenz-
96 model, which spends more computation time and ob-
tains less percentage of the total information. The sampling
method performs more advantages in the computation, sav-
ing far more computation time and obtaining more informa-
tion. However, the performance in reducing the number of
samples from n= 15 to n= 5 is not obvious. Perhaps this is
due to the characters of the Lorenz-96 model of strong non-
linearity and low dimension.

5 Summary and discussion

In this paper, we introduce a sampling algorithm to compute
the CNOPs based on the state-of-the-art statistical machine
learning techniques. The theoretical guidance comes from
the high-dimensional Stokes’ theorem and the law of large
numbers. We derive a Chernoff-type concentration inequality
to rigorously characterize the degree to which the sample av-
erage probabilistically approximates the exact gradient. We
show the advantages of the sampling method by compari-
son with the performance of the baseline algorithms, e.g.,
the definition method and the adjoint method. If there exists
the adjoint model, the computation time is reduced signifi-
cantly with the exchange of much storage space. However,
the adjoint model is unusable for the complex atmospheric
and oceanic model in practice.

For the numerical tests, we choose two simple but repre-
sentative models, the Burgers equation with small viscosity
and the Lorenz-96 model. The Burgers equation with small
viscosity is one of the simplest nonlinear partial differential
equations simplified from the Navier–Stokes equation, which
holds a high-dimensional property. The Lorenz-96 model is
a low-dimensional dynamical system with strong nonlinear-
ity. For the numerical performance of a partial differential
equation, the Burgers equation with small viscosity, we find
that the adjoint method performs very well and saves much
computation time; the sampling method can share nearly the
same computation time with the adjoint method with drop-
ping a few accuracies by adjusting the number of samples;
and the computation time can be shortened more by re-
ducing the number of samples further with the nearly con-
sistent performance. For the numerical performance of a
low-dimensional and strong nonlinear dynamical system, the
Lorenz-96 model, we find that the adjoint method takes un-
derperformance, but the sampling method fully occupies the
dominant position, regardless of saving the computation time
and performing the CNOPs in terms of the spatial pattern,
the objective value, and the nonlinear growth. Still, unlike the
Burgers equation with small viscosity, the performance is not
obvious for reducing the number of samples for the Lorenz-
96 model. Based on the comparison above, we propose a pos-
sible conclusion that the sampling method probably works
very well for an atmospheric or oceanic model in practice,
which is a partial differential equation with strong nonlinear-
ity. Perhaps the high efficiency of the sampling method per-
forms more dominantly, and the computation time is short-
ened obviously by reducing the number of samples.

Currently, the CNOP method has been widely applied
to predictability in meteorology and oceanography. For the
nonlinear multiscale interaction (NMI) model (Luo et al.,
2014, 2019), an atmospheric blocking model which success-
fully characterizes the life cycle of the dynamic blocking
from onset to decay, the CNOP method has been used to in-
vestigate the sensitivity on initial perturbations and the im-
pact of the westerly background wind (Shi et al., 2022).
However, it is still very challenging to compute the CNOP
for a realistic earth system model, such as the Community
Earth System Model (CESM) (Wang et al., 2020). Many dif-
ficulties still exist, even for a high-regional resolution model,
such as the Weather Research and Forecasting (WRF) model,
which is used widely in operational forecasting (Yu et al.,
2017). Based on increasingly reliable models, we now com-
ment on some extensions for further research to compute
and investigate the CNOPs on the more complex models by
the sampling method, regardless of theoretical or practical.
An idealized ocean–atmosphere coupling model, the Zebiak–
Cane (ZC) model (Zebiak and Cane, 1987), might character-
ize the oscillatory behavior of ENSO in amplitude and period
based on oceanic wave dynamics. Mu et al. (2007) computed
the CNOP of the ZC model by use of its adjoint model to
study the spring predictability barrier for El Niño events. In
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Figure 6. Nonlinear evolution behavior of the CNOPs in terms of the difference and relative difference of the norm square.

addition, Mu et al. (2009) also computed the CNOP of the
PSU/NCAR (Pennsylvania State University/National Center
for Atmospheric Research) mesoscale model (i.e., the MM5
model) using its adjoint model to explore the predictability
of tropical cyclones. It looks very interesting and practical
to test the validity of the sampling algorithm to calculate the
CNOPs on the two more realistic numerical models, the ZC
model and the MM5 model, as well as the idealized NMI
model. For an earth system model or atmosphere–ocean gen-
eral circulation models (AOGCMs), it is often impractical to
obtain the adjoint model, so the sampling method provides
a probable way of computing the CNOPs to investigate its
predictability. In addition, it becomes possible for us to use
4D-Var data assimilation on a coupled climate system model
when the sampling method is introduced. Also, it is thrilling
to implement the sampling method in the Flexible Global
Ocean-Atmosphere-Land System (FGOALS)-s2 (Wu et al.,
2018) for decadal climate prediction.

Appendix A: Proof of Theorem 1

Lemma A1. If the expectation Ĵ (u0) is given by Eq. (4),
then the expression (Eq. 5) is satisfied. Also, under the same
assumption of Theorem 1, the difference between the expec-
tation of objective value and itself can be estimated as

‖Ĵ (u0)− J (u0)‖ ≤
Lε2

2
, (A1)

and the difference between the expectation of gradient and
itself can be estimated as

‖∇Ĵ (u0)−∇J (u0)‖ ≤
Ldε

2
. (A2)

Proof of Lemma A1. First, with the definition of Ĵ (u0), we
show the proof of Eq. (5), the equivalent representation of
the gradient ∇Ĵ (u0).

– For d = 1, the gradient of the expectation Ĵ about u0
can be computed as

dĴ (u0)
du0

=
d

du0

1
2

1∫
−1

J (u0+ εv0)dv0


=

1
2

1∫
−1

dJ (u0+ εv0)
εdv0

dv0 =
J (u0+ ε)− J (u0− ε)

2ε
.

– For the case of d ≥ 2, we assume that a ∈ Rd is an ar-
bitrary vector. Then, the gradient ∇Ĵ (u0) satisfies the
following equality as

a · ∇Ĵ (u0)=
∫

v0∈Bd

a · ∇u0J (u0+ εv0)dV

=
1
ε

∫
v0∈Bd

∇v0 · (J (u0+ εv0)a)dV

=
1
ε

∫
v0∈Sd−1

J (u0,k + εv0)a · v0dS

= a ·
1
ε

∫
v0∈Sd−1

J (u0+ εv0)v0dS.

Because the vector a is arbitrary, we can obtain the fol-
lowing equality:

∇

∫
v0∈Bd

J (u0+ εv0)dV =
1
ε

∫
v0∈Sd−1

J (u0+ εv0)v0dS.

Since the ratio of the surface area and the volume of the
unit ball Bd is d, the equivalent representation of the
gradient (Eq. 5) is satisfied.
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If the objective function J is continuously differentiable
and satisfies the gradient Lipschitz condition, we can obtain
the following inequality as

∣∣J (u0+ εv0)− J (u0)− ε 〈∇J (u0),v0〉
∣∣≤ Lε2

2
‖v0‖

2.

Because
∫
v0∈Bd 〈∇J (u0),v0〉dV = 0, the estimate

(Eq. A1) is obtained directly.

– For any i 6= j ∈ {1, . . .,d}, since v0,i and v0,j are uncor-
related, we have∫
v0∈Sd−1

v0,iv0,jdS = 0.

– For any i = j ∈ {1, . . .,d}, we have∫
v0∈Sd−1

v2
0,idS =

1
d

∫
v0∈Sd−1

(
d∑
i=1

v2
0,i

)
dS =

1
d

∫
v0∈Sd−1

dS.

Since v0 is a row vector, we derive the following equality
as

Ev0∈Sd−1 [vT0 v0] =
1
d
· I.

Hence, we obtain the equivalent representation of the gra-
dient ∇J (u0) as

∇J (u0)=
d

ε
·Ev0∈Sd−1 [ε〈∇J (u0),v0〉v0] .

Finally, since v0 ∼ Unif(Sd−1), then Ev0∈Sd−1 [v0] = 0.
Hence, we estimate the difference between the expectation
of gradient and itself as

‖∇Ĵ (u0)−∇J (u0)‖

≤

∥∥∥∥dε ·Ev0∈Sd−1 [(J (u0+ εv0)− J (u0))v0]

−
d

ε
·Ev0∈Sd−1 [ε〈∇J (u0),v0〉v0]

∥∥∥∥
≤
d

ε
·Ev0∈Sd−1

[∥∥J (u0+ εv0)− J (u0)

− ε〈∇J (u0),v0〉
∥∥ · ∥∥v0

∥∥]
≤
Ldε

2
,

where the last inequality follows the gradient Lipschitz con-
dition.

�
Considering any ε > 0, to proceed with the concentration

inequality, we still need to know that the random variable
J (u0+ εv0) for v0 ∼ Unif(Sd−1) is sub-Gaussian. Thus, we
first introduce the following lemma.

Lemma A2 (Proposition 2.5.2 in Vershynin, 2018). LetX be
a random variable. If there exist two constants K1,K2 > 0
such that the moment generating function of X2 is bounded:

E

[
exp

(
X2

K2
1

)]
≤K2,

then the random variable X is sub-Gaussian.
Because J (u0+ εv0) is bounded on Sd−1, exp(J (u0+

εv0)2/K2
1 ) is integrable on Sd−1 for any K1 > 0; i.e., there

exists a constant K2 > 0 such that

Ev0∈Sd−1

[
exp

(
J (u0+ εv0)2

K2
1

)]
≤K2.

With Lemma A2, the random variable J (u0+ εv0) is
sub-Gaussian. Therefore, for any fixed vector v′0 ∈ S

d−1,
we know the random variable J (u0+ εv0)〈v0,v

′

0〉 is sub-
Gaussian. We now introduce the following lemma to proceed
with the concentration inequality.

Lemma A3 (Theorem 2.6.3 in Vershynin, 2018). Let
X1, . . .,Xn be independent, mean zero, sub-Gaussian ran-
dom variables and a = (a1, . . .,an) ∈ Rn. Then, for every
t ≥ 0, we have

Pr

(∣∣∣∣∣ n∑
i=1

aiXi

∣∣∣∣∣≥ t
)
≤ 2exp

(
−

ct2

K2‖a‖2

)
,

where K =max1≤i≤n‖Xi‖ψ2 .1

Combined with Lemma A1 and Lemma A3, we can obtain
the concentration inequality for the samples as

Pr

(∣∣∣∣ dnε
n∑
i=1

〈
J (u0+ εv0,i)v0,iv

′

0
〉
−
〈
∇Ĵ (u0),v′0

〉∣∣∣∣≥ t
)

≤ 2exp
(
−
cnt2

K2

)
,

where v′0 is any unit vector on Sd−1. Thus we can proceed
with the concentration estimate by the Cauchy–Schwarz in-
equality as

Pr

(∥∥∥∥ dnε
n∑
i=1

J (u0+ εv0,i)v0,i −∇Ĵ (u0)
∥∥∥∥≥ t

)

≤ 2exp
(
−
cnt2

K2

)
.

Based on the triangle inequality, we can proceed with the
concentration inequality with the estimate of the difference

1The sub-Gaussian norm of a random variable X is defined as

‖X‖ψ2 = inf

{
t > 0 : Eexp

(
X2

t2

)
≤ 2

}
.
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between the expectation of objective value and itself (Eq. A2)
as

Pr

(∥∥∥∥ dnε
n∑
i=1

J (u0+ εv0,i)v0,i −∇J (u0)
∥∥∥∥≥ t − Ldε2

)

≤ 2exp
(
−
cnt2

K2

)
,

for any t > Ldε/2. TakingC = c/K2, we complete the proof
of Theorem 1.
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