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Abstract. We assessed different coupled data assimilation strategies with a hierarchy of coupled models, rang-
ing from a simple coupled Lorenz model to the state-of-the-art coupled general circulation model CFSv2 (Cli-
mate Forecast System version 2). With the coupled Lorenz model, we assessed the analysis accuracy by strongly
coupled ensemble Kalman filter (EnKF) and 4D-Variational (4D-Var) methods with varying assimilation window
lengths. The analysis accuracy of the strongly coupled EnKF with a short assimilation window is comparable
to that of 4D-Var with a long assimilation window. For 4D-Var, the strongly coupled approach with the cou-
pled model produces more accurate ocean analysis than the Estimating the Circulation and Climate of the Ocean
(ECCO)-like approach using the uncoupled ocean model. Experiments with the coupled quasi-geostrophic model
conclude that the strongly coupled approach outperforms the weakly coupled and uncoupled approaches for both
the full-rank EnKF and 4D-Var, with the strongly coupled EnKF and 4D-Var showing a similar level of accu-
racy higher than other coupled data assimilation approaches such as outer-loop coupling. A strongly coupled
EnKF software framework is developed and applied to the intermediate-complexity coupled model SPEEDY-
NEMO and the state-of-the-art operational coupled model CFSv2. Experiments assimilating synthetic or real
atmospheric observations into the ocean through strongly coupled EnKF show that the strongly coupled ap-
proach improves the analysis of the atmosphere and upper ocean but degrades observation fits in the deep ocean,
probably due to the unreliable error correlation estimated by a small ensemble. The correlation-cutoff method
is developed to reduce the unreliable error correlations between physically irrelevant model states and obser-
vations. Experiments with the coupled Lorenz model demonstrate that strongly coupled EnKF informed by the
correlation-cutoff method produces more accurate coupled analyses than the weakly coupled and plain strongly
coupled EnKF regardless of the ensemble size. To extend the correlation-cutoff method to operational coupled
models, a neural network approach is proposed to systematically acquire the observation localization functions
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218 E. Kalnay et al.: Towards strongly coupled ensemble data assimilation

for all pairs between the model state and observation types. The following strongly coupled EnKF experiments
with an intermediate-complexity coupled model show promising results with this method.

1 Introduction

Coupled data assimilation (CDA) has drawn tremendous at-
tention recently among the weather and climate modeling
community (Penny et al., 2017). It has been recognized as
one of the most active research areas for data assimilation
from now to the future (Carrassi et al., 2018). Among the
many benefits of exploring CDA (Penny et al., 2017; Penny
and Hamill, 2017; Zhang et al., 2020), one primary motiva-
tion is the need to initialize the coupled models with the cou-
pled analyses. Many operational centers have plans to make
seamless weather–climate prediction using coupled general
circulation models (CGCMs; Palmer et al., 2008; Hoskins,
2013), of which initialization requires analyses of different
Earth components (e.g., atmosphere, ocean, land, and ice).
Different CDA strategies have been developed and summa-
rized in Penny et al. (2017). Past studies (Mulholland et al.,
2015) show that the uncoupled data assimilation (UCDA)
approach, which obtains independent analyses of different
Earth system components based on the forecasts from uncou-
pled models, fails to produce balanced and physically con-
sistent coupled analyses. The forecasts initialized from these
uncoupled analyses suffer from severe initialization shocks.
Zhang et al. (2007) adopted the weakly coupled data assim-
ilation (WCDA) approach by creating separate analyses of
the atmosphere and oceans, assimilating their domain ob-
servations based on the forecasts initialized from a coupled
model. They found that the WCDA approach could produce
balanced coupled analyses that correctly reconstruct the vari-
ability and trends of the ocean in the 20th century. Through
experiments with an intermediate-complexity atmosphere–
ocean coupled model and a state-of-the-art coupled model,
Sluka et al. (2016) and Sluka (2018) found that the strongly
coupled data assimilation (SCDA) approach, which creates
coupled analyses by assimilating the same set of the all-
domain observations into different Earth system components,
outperforms the WCDA approach in terms of the analysis ac-
curacy and observation departures.

Given the benefits of CDA, most operational centers are
transitioning from UCDA to CDA (Penny and Hamill, 2017).
The National Center for Environmental Prediction (NCEP)
pioneered producing the coupled analyses using a WCDA
system that integrates the CGCM Climate Forecast System
(CFS; Saha et al., 2006, 2010) and generates separate 3D-Var
analyses for the atmosphere and oceans. Sugiura et al. (2008)
implemented the full adjoint of a coupled general circula-
tion model and used it to develop a 4D-Var SCDA sys-
tem, with the initial ocean states and the bulk adjustment
factors of surface fluxes as its analyzed variables. This ap-

proach is superior to the WCDA approach since it can di-
rectly update the coupled states with cross-domain observa-
tions through the backward integration of the adjoint for the
fully coupled model. However, this approach has not been
widely adopted due to the technical challenge of develop-
ing and maintaining the adjoint of a CGCM. Instead, most
operational centers producing variational analyses adopted
the WCDA approach, allowing them to reuse their exist-
ing separate atmosphere and ocean analysis systems (Lea
et al., 2015; Browne et al., 2019). The European Centre for
Medium-Range Weather Forecasts (ECMWF) implemented
“outer-loop coupling”, where the incremental 4D-Var atmo-
spheric and 3D-Var with the First Guess at the Appropriate
Time (3D-FGAT; Lee et al., 2004; Lawless, 2010) oceanic
analyses share the same outer loops so that their updated
analyses are used together to acquire the new model tra-
jectory for the next round (Laloyaux et al., 2016, 2018).
Though cross-domain observations are not directly assimi-
lated into separate Earth components, separate Earth com-
ponent analysis benefits from a more coherent coupled-state
through the dynamical coupling at the data assimilation step.
Based on Penny et al. (2017), outer-loop coupling belongs
to “quasi-SCDA” methods. Fujii et al. (2021) recently devel-
oped a quasi-SCDA system MRI-CDA1 which applied dif-
ferent assimilation window lengths to produce atmospheric
and oceanic analyses. In addition, model development activi-
ties of variational CDA systems at operational centers, Smith
et al. (2015, 2017, 2018, 2020) comprehensively examined
the advantages of SC 4D-Var over other variational CDA ap-
proaches by using a single-column coupled model.

For the EnKF-based CDA systems for complex coupled
models, Zhang et al. (2005, 2007) pioneered the develop-
ment of an online EnKF-based CDA system for the Geophys-
ical Fluid Dynamics Laboratory (GFDL) second-generation
Coupled Model (CM2) and demonstrated that this WC EnKF
could reconstruct the variability and trends of the ocean cor-
rectly in the 20th century. Lu et al. (2015a, b) proposed to
assimilate the lagged averaged high-frequency atmospheric
observations into the ocean to increase the signal-to-noise
ratio for the coupled analyses. They proved the effective-
ness of this method for improved coupled analyses with
an intermediate-complexity CGCM. Sluka et al. (2016) im-
plemented offline WC and SC local ensemble transform
Kalman filters (LETKFs) for an intermediate-complexity
atmosphere–ocean coupled model and conducted identical
twin experiments by assimilating synthetic atmospheric ob-
servations into the ocean through SC LETKF. Their results
show that SCDA with the LETKF produces more accurate
ocean and atmosphere analyses than WCDA. Sluka (2018)
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developed a prototype offline CDA system CFSv2-LETKF
for the state-of-the-art coupled model CFSv2 that can be
configured in either the WCDA or SCDA mode. The actual
observation experiments with 50-member CFSv2-LETKF
showed that SCDA improves the observation fits for the
lower atmosphere and upper ocean but degrades the fits in the
deep ocean. Karspeck et al. (2018) implemented an offline
WC ensemble adjustment Kalman filter (EAKF) system for
the Community Earth System Model (CESM) and used this
system to create a 12-year coupled reanalysis from 1970 to
mid 1982. In addition, the efforts to develop the EnKF-based
CDA systems for complex coupled models, many challenges
related to CDA have been recognized using low-order cou-
pled models, which are summarized by Penny et al. (2017)
and Zhang et al. (2020).

This paper reviews our efforts in exploring the benefits
of SCDA over other CDA strategies using a wide range of
coupled models with increasing complexities. We focus on
model state estimations and impact of atmosphere–ocean
CDA on coupled analysis and short-range weather forecast.
In addition to model state estimations, Zhang et al. (2020)
recently reviewed parameter estimations and other important
applications of CDA. We identified one issue of SC EnKF
that can significantly degrade SC EnKF analyses and pro-
posed a solution. In Sect. 2, we start our discussion with a
coupled Lorenz model (Peña and Kalnay, 2004), investigat-
ing the capability of SCDA to constrain the slow and fast
modes of a coupled system for both ensemble and variational
methods simultaneously. In Sect. 3, we contrast the perfor-
mance of SC 4D-Var and Estimating the Circulation and
Climate of the Ocean (ECCO)-like 4D-Var for ocean anal-
ysis in the coupled Lorenz system. Section 4 compares the
analysis accuracy of ensemble and variational CDA meth-
ods with different CDA strategies by using a coupled quasi-
geostrophic model. In Sects. 5 and 6, we focus on develop-
ing EnKF-based CDA systems for complex coupled models
(i.e., SPEEDY-NEMO and CFSv2) and comparing the per-
formance of SCDA and WCDA in producing coupled analy-
ses. In Sect. 7, we review the correlation-cutoff method that
significantly improves the SC EnKF analysis when using a
small ensemble and discuss the experimental results with the
coupled Lorenz model. Section 8 shows how to take advan-
tage of neural networks to extend the correlation-off method
to an intermediate-complexity CGCM. Section 9 gives the
summary and discussion.

2 CDA experiments with the coupled Lorenz model

In this section, we discuss results obtained by Single-
ton (2011), who evaluated the capability of 4D-Var and
EnKF in producing coupled analyses with a multi-scale cou-
pled Lorenz system (Peña and Kalnay, 2004). Different ap-
proaches are proposed to enhance those two types of assimi-
lation methods for CDA.

For the CDA experiments, Singleton (2011) adopted the
nine-variable coupled Lorenz system developed by Peña and
Kalnay (2004), of which equations are written as

ẋe = σ (ye− xe)− ce(Sxt+ k1) (1)
ẏe = rxe− ye− xeze+ ce(Syt+ k1) (2)
że = xeye− bze (3)
ẋt = σ (yt− xt)− c (SX+ k2)− ce (Sxe+ k1) (4)
ẏt = rxt− yt− xtzt+ c (SY + k2)+ ce (Sye+ k1) (5)
żt = xtyt− bzt+ czZ (6)
Ẋ = τσ (Y −X)− c(xt+ k2) (7)
Ẏ = τrX− τY − τSXZ+ c(yt+ k2) (8)
Ż = τSXY − τbZ− czzt, (9)

where [xe, ye, ze]T, [xt, yt, zt]T, and [X, Y , Z]T are the state
vectors of the extratropical atmosphere, tropical atmosphere,
and tropical ocean, respectively. For this system, the tropi-
cal atmosphere is strongly coupled with the tropical ocean
(c = cz = 1) but weakly coupled with the extratropical atmo-
sphere (ce = 0.08). Meanwhile, no direct coupling occurs be-
tween the extratropical atmosphere and the tropical ocean.
Other parameters of this model are (σ,r,b,τ,S,k1,k2)=
(10, 28, 8

3 ,0.1, 1 , 10, −11). Though simple, this coupled
Lorenz system presents multi-scale dynamics and can re-
produce El Niño–Southern Oscillation-like (ENSO-like) os-
cillations for its tropical atmosphere and ocean, making it
an ideal test bed for studying predictability and developing
data assimilation strategies for CDA (Peña and Kalnay, 2004;
Norwood et al., 2013; Norwood, 2015; Yoshida and Kalnay,
2018; Yoshida, 2019). Singleton (2011) obtained the nature
run by integrating the model using the fourth-order Runge–
Kutta method with a time step1t = 0.01. The analyzed vari-
ables in the data assimilation experiments are the full nine-
element state vector. Observations are generated every eight
time steps by adding to the true nine-variable model states the
uncorrelated Gaussian errors with zero mean and a standard
deviation of

√
2. In addition, assimilation experiments with

the ensemble transform Kalman filter (ETKF) in this section
use nine members.

Singleton (2011) found that SC ETKF has the smallest
analysis root mean square error (RMSE) when adopting an
assimilation interval of eight time steps, which is the smallest
assimilation interval used in the study. Using longer assimi-
lation intervals for the SC ETKF degrades the coupled anal-
yses and causes the filter divergence eventually, consistent
with the finding by Kalnay et al. (2007) that the EnKF prefers
short assimilation intervals. Adopting 4D-ETKF (Hunt et al.,
2004) or the quasi-outer loop approach (ETKF-QOL; Yang
et al., 2012) allows the SC ETKF to utilize long assimilation
intervals and improve the coupled analyses (Fig. 1). Sepa-
rate ETKF analyses for the fast (i.e., extratropical and tropi-
cal atmosphere) and slow modes (e.g., tropical ocean, corre-
sponding to the “Atmospheric coupling” pattern in Yoshida
and Kalnay, 2018) show lower analysis error than the SC
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Figure 1. Time-averaged analysis RMSE for SC 4D-Var (green), SC ETKF-QOL (red), and SC ETKF with the “atmos coupling” (Fig. 2 of
Yoshida and Kalnay, 2018) as the localization pattern (cyan) and its 4D extension (blue) for the extratropical atmosphere (top left), tropical
atmosphere (top right), and ocean (bottom). Adapted from Singleton (2011).

ETKF, especially when adopting longer assimilation inter-
vals. Among all ETKF-based methods, SC ETKF-QOL us-
ing a short assimilation interval of eight time steps gives the
most accurate analysis.

Figure 1 also presents the analysis errors for SC 4D-
Var that adopts varying assimilation window lengths. Unlike
ETKF, SC 4D-Var analyses with longer assimilation window
length generally show lower analysis errors, consistent with
the findings by Kalnay et al. (2007). However, the optimal as-
similation window lengths for different Lorenz subsystems
are different: the 4D-Var analysis error for the extratropi-
cal atmosphere starts to increase if the assimilation window
length exceeds 72 time steps. Singleton (2011) found that
such degradation caused by long assimilation window length
is due to the multiple minima during the minimization pro-
cedure. Implementing quasi-static variational data assimila-
tion (QVA; Pires et al., 1996; Kalnay et al., 2007) in SC 4D-
Var avoids such degradation and allows the 4D-Var to utilize
an even longer assimilation window to improve the coupled
analyses.

3 Comparison of the SC and the ECCO-like 4D-Var

Unlike ordinary 4D-Var that uses the initial model states as
the analyzed variables, the ocean analysis Estimating the Cir-
culation and Climate of the Ocean (ECCO; Stammer et al.,
2004; Forget et al., 2015; Fukumori et al., 2017) includes ad-
ditional surface forcing fields and mixing parameters as the
analyzed variables in the 4D-Var cost function (Fig. 2). The
approach allows ECCO to use an extremely long assimilation
window of 10 years (Stammer et al., 2004), during which the
ocean analysis is guaranteed to conserve momentum, heat
and salinity.

Singleton (2011) conducted one experiment to compare
the ocean analyses from the SC 4D-Var using the coupled
model and the ECCO-like 4D-Var using the ocean model
forced by the atmosphere. The forced ocean model for the
ECCO-like 4D-Var is revised from the coupled Lorenz model
(Peña and Kalnay, 2004), whereby the ocean is now forced
by the external surface flux:

Ẋ = τσ (Y −X)+ fX (10)
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Figure 2. Schematics for the conventional 4D-Var with the initial model states as the control vector and the ECCO-like 4D-Var with both
the initial model states and the external surface fluxes within the assimilation window as the control vector. Adapted from Singleton (2011).

Ẏ = τrX− τY − τSXZ+ fY (11)
Ż = τSXY − τbZ+ fZ (12)
ḟX = 0 (13)
ḟY = 0 (14)
ḟZ = 0. (15)

The ECCO-like 4D-Var obtained its analysis xa
0 by minimiz-

ing the cost function

J (x0)=
1
2

[
x0− xb

0

]T
B−1

0

[
x0− xb

0

]
+

1
2

∑n

t=1
[H
(
M0,t (x0)

)
− yo

t ]
T

R−1
t [H

(
M0,t (x0)

)
− yo

t ], (16)

where the control variable x0 = [X0,Y0, Z0, fX,1, fY,1, fZ,1,
fX,2, fY,2, fZ,2, . . . , fX,n, fY,n, fZ,n]T in ECCO-like 4D-Var
includes both the initial ocean states [X0,Y0, Z0]T, and the
constant surface fluxes

[
fX,i,fY,i,fZ,i

]
that force the ocean

model for time steps 1+n×(i−1) to n×i for the ith assimila-
tion window. Here, xb

0 represents the initial background state,
n is the length of an assimilation window, H is an observation
operator, M0,t is a forward operator from time 0 to t , yo

t is an
observation vector at time t , and Rt is an observation error
covariance matrix. The background error covariance matrix

B0 is defined as

B0 =

[
Bx,0 0
0 Bf

]
, (17)

where Bx,0 is the background error covariance of the initial
ocean states estimated by the National Meteorological Center
(NMC) method (Parrish and Derber, 1992). Bf is the back-
ground error covariance for all the surface fluxes, which is
assumed diagonal in our experiment, with its diagonal el-
ements representing the time-averaged variance of the flux
estimates.

Running the ECCO-like 4D-Var requires the background
of both initial ocean states and the surface fluxes (e.g.,
f b
X,if

b
Y,if

b
Z,i, k = 1, . . .,n) at all the time steps. The real

ECCO analysis system uses surface flux estimated from the
NCEP Atmospheric Reanalysis (Kalnay et al., 1996) gener-
ated by an uncoupled atmospheric model forced by sea sur-
face temperature. To get NCEP-like surface fluxes for our
simple model, Singleton (2011) first replaced the active trop-
ical ocean with observations that are created from the true
coupled trajectory in the coupled Peña and Kalnay (2004)
model. Then the tropical atmosphere is forced by the ocean
observations every eight time steps, while it keeps a weak
coupling with the extratropical atmosphere. A 10-member
ETKF then produces the analyses for tropical and extrat-
ropical atmosphere every eight time steps. The final NCEP-
like surface fluxes are calculated from the ensemble analysis
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Figure 3. Time-averaged analysis RMSE for conventional 4D-Var
(blue) and the ECCO-like 4D-Var (orange) using the forced ocean
model and the SC 4D-Var (brown) using the fully coupled model.
Adapted from Singleton (2011).

mean of the tropical atmosphere (i.e.,
[
x̄a

t , ȳ
a
t , z̄

a
t

]
) through

fX =−c
(
x̄a

t + k2

)
(18)

fY = c
(
ȳa

t + k2

)
(19)

fZ =−czz̄
a
t . (20)

For the assimilation experiment, ECCO-like 4D-Var inte-
grates the ocean model forced by the constant NCEP-like sur-
face fluxes every eight time steps. As the control experiment,
Singleton (2011) includes one additional experiment which
shares the same setting as the ECCO-like 4D-Var, except that
its analyzed variables only include initial ocean states.

Figure 3 contrasts the performances of different 4D-Var
approaches. For the forced ocean model, the ECCO-like 4D-
Var approach that simultaneously estimates the ocean states
and surface fluxes brings substantial improvements over the
ordinary 4D-Var approach that only estimates the initial
ocean states, with more significant improvement when uti-
lizing a longer assimilation window. Both of these two 4D-
Var analyses have the smallest error when adopting an as-
similation window of 16 time steps. However, the SC 4D-
Var approach using the coupled model produces more accu-
rate ocean analysis than the ECCO-like approach using the
forced ocean model in terms of analysis RMSE. In addition,
the error of SC 4D-Var ocean analyses keeps decreasing with
longer assimilation window length up to 80 time steps.

4 Comparisons of 3/4D-Var and EnKF in a coupled
quasi-geostrophic (QG) model

We now discuss results by Penny et al. (2019) and Da (2022),
who developed a CDA test bed using the coupled quasi-
geostrophic (QG) atmosphere–ocean model MAOOAM (De
Cruz et al., 2016) and compared the performance of 3/4D-
Var and EnKF with different CDA strategies (i.e., UCDA,

WCDA, quasi-SCDA, and SCDA). The MAOOAM model
consists of a two-layer atmosphere and a single-layer ocean.
It also includes Ekman dynamics at the atmosphere–ocean
interface and the simplified radiation parameterizations. The
analyzed variables are the 36 nondimensionalized coeffi-
cients of spectral modes for the atmosphere (Na = 20) and
ocean (No = 16). To avoid interpretation complexity due to
the inflation schemes in the EnKF, we set the ensemble size
as 40, greater than the total dimension of the model states
(36), to avoid filter divergence without applying the inflation
schemes in the experiment.

Figure 4a and b compare the atmosphere and ocean analy-
ses by 3D-Var under three CDA strategies. Each experiment
assimilates the synthetic observations of the full state vec-
tor. Figure 4b shows that the WC and SC 3D-Var are more
accurate than UC 3D-Var for ocean analyses. Increasing the
frequency of surface forcing exchange in UC 3D-Var reduces
the ocean analysis error. However, the analysis error with a
1 d forcing update is still 1 order of magnitude greater than
the ocean analyses obtained from the coupled models. For
the last ∼ 11 model years, the WC 3D-Var achieves an aver-
aged analysis RMSE of 1.160×10−3 for the atmosphere and
5.516× 10−5 for the ocean. For the SC 3D-Var, the corre-
sponding analysis RMSE is 1.159×10−3 for the atmosphere
and 4.915× 10−5 for the ocean, both smaller than the error
from the WC 3D-Var. Among all three CDA configurations,
SCDA analyses are the most accurate for the coupled states.
In addition, the SC 3D-Var shows lower RMSE than the WC
3D-Var for the ocean during the spin-up period, and the SC
3D-Var also experiences a shorter spin-up period (figure not
shown).

Similar to Fig. 4a and b, Fig. 4c and d extend compari-
son to the ETKF. UC ETKF with forcing updated less fre-
quently than every 6 h has filter divergence for the atmo-
sphere, while such filter divergence does not occur for the
WC and SC ETKF that integrate the coupled models. This
demonstrates the necessity of using coupled models for the
ensemble CDA systems. Similar to 3D-Var, switching from
WC to SC ETKF reduces the analysis error for the coupled
states. In addition, SC ETKF produces more accurate ocean
analyses than the WC ETKF consistently, a feature not seen
in the 3D-Var experiments. The improved ocean analyses by
SC ETKF demonstrate one advantage of adopting an ensem-
ble SCDA system.

Since comparisons of different CDA strategies show that
the SCDA approach shows the most accurate analyses for
both 3D-Var and ETKF, we now focus on evaluating the per-
formance of SCDA under different observing networks and
extending the comparison to 4D-Var and CERA-like varia-
tional analyses (Laloyaux et al., 2016). The CERA-like vari-
ational system integrates the coupled model and generates
incremental 4D-Var analysis for the atmosphere and 3D-
FGAT analysis for the ocean using the outer-loop coupling
approach. Both 4D-Var and CERA adopt two outer loops in
our experiments. For the ETKF, the 40-member experiment
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Figure 4. (a, b) The analysis RMSE of the atmosphere and ocean for 3D-Var analysis with different CDA strategies for the last 100 d for
the atmosphere and last 500 d for the ocean. Panels (c) and (d) are similar to (a) and (b) except for the ETKF during the whole experiment
period (∼ 27.4 years). Adapted from Penny et al. (2019) and Da (2022).

uses no inflation, and the 20-member experiment uses mul-
tiplicative background error inflation of 1.01. In addition, all
the assimilation methods adopt a 6 h DA cycle.

Figure 5a and b show that when observing both the at-
mosphere and ocean, the SC 40-member ETKF and 4D-Var
have similar accuracies for the atmosphere and ocean analy-
ses, higher than SC 3D-Var. The 20-member ETKF with in-
flation performs similarly to the 40-member ETKF without
inflation. For 4D-Var, applying more outer loops (i.e., three
and four) and longer assimilation window lengths (i.e., 12 h)
further reduces the analysis error (figures not shown here),
consistent with the findings by Kalnay et al. (2007) and Yang
et al. (2012). The CERA-like system with outer-loop cou-
pling shows comparable performance to the SC 4D-Var and
40-member ETKF in this scenario.

Figure 5c and d compare the performance of different
SCDA methods when only observing the atmosphere. For
the atmosphere, ETKF, SC 4D-Var, and CERA present simi-
lar analysis accuracies higher than SC 3D-Var. For the ocean,
the SC ETKF stabilizes its analysis error after 10 years, while
all variational data assimilation methods fail to stabilize the
analysis error within the experiment period (∼ 27.4 years).
Interestingly, the CERA shows larger analysis errors among
all variational methods than the SC 3D-Var and 4D-Var,
which utilize a coupled state background error in their for-
mulations. This indicates that outer-loop coupling is insuffi-

cient to replace the role of a coupled-state background error
covariance for variational CDA.

Though the CDA experiments with the coupled QG model
indicate that the SC EnKF produces more accurate coupled
analyses than the WC EnKF when the ensemble size is suffi-
cient, it is unclear whether this conclusion still holds for the
real-observation experiments where the ensemble size is far
less than the model dimension. In addition, the QG model
mainly describes the midlatitude dynamics, while tropic dy-
namics is contributed significantly by convection, a mech-
anism not included in the QG model. Past studies (Kalnay
et al., 1986; Peña et al., 2003; Ruiz-Barradas et al., 2017;
Bach et al., 2019) have shown that the main driving force for
the coupled atmosphere–ocean system differs in these two
regions, with the ocean driving the atmosphere over tropics
and the atmosphere driving the ocean in midlatitudes. It is
necessary to examine whether the conclusions drawn from
the QG model can be applied to the tropics.

5 SC EnKF with an intermediate-complexity CGCM

In this section, we compared the performance of the SC and
WC EnKF by conducting identical-twin experiments with an
intermediate-complexity CGCM, SPEEDY-NEMO (Sluka et
al., 2016). The CGCM SPEEDY-NEMO (Kucharski et al.,
2016) couples the atmospheric model Simplified Param-
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Figure 5. (a, b) The analysis RMSE under full-coverage observing network for the atmosphere (a) and ocean (b) with the SC 3D-Var
(green), 4D-Var (blue), 4D-Var/3DFGAT CERA (cyan dash), 40-member ETKF (red), and 20-member ETKF (gray) for the last 1000 d.
Time-averaged analysis RMSE for the last 13.7 years for all methods are shown in the figure. Panels (c) and (d) are similar to (a) and
(b) except for only assimilating atmosphere observations. Adapted from Penny et al. (2019) and Da (2022).

eterizations, primitive-Equation Dynamics (SPEEDY) ver-
sion 41 (Molteni, 2003; Kucharski et al., 2006), with the
ocean model Nucleus for European Modeling of the Ocean
(NEMO) version 3. The atmospheric model SPEEDY ver-
sion 41 is a hydrostatic spectral model that solves primitive
equations at a resolution of T30/L8. The ocean model NEMO
adopts 30 vertical levels with z coordinates and 2◦ tripolar
grids that increase the resolution to 0.25◦ at the Equator.

Sluka et al. (2016) implemented WC and SC EnKF sys-
tems for SPEEDY-NEMO by utilizing the existing sepa-
rate EnKF systems SPEEDY-LETKF (Miyoshi, 2005) and
Ocean-LETKF (Penny, 2011; Penny et al., 2013). A 6-year
perfect model Observation System Simulation Experiment
(OSSE) is then conducted to compare the coupled-state anal-
yses of the WC/SC EnKF. Both experiments use 40 mem-
bers and adopt a 6 h assimilation cycle for the atmosphere
and oceans. Synthetic atmosphere observations (i.e., surface
pressure, vertical profile of temperature, humidity, and zonal
and meridional winds) are assimilated into the atmosphere in
both experiments. In addition, the SCDA experiment assim-
ilates those atmospheric observations into the ocean, while
the WCDA experiment assimilates nothing into the ocean.

Figure 6 demonstrates that SC EnKF produces more accu-
rate analyses of sea surface temperature and salinity than WC

EnKF over the globe during the whole experiment period,
with the most significant improvement in the midlatitude in
the Northern Hemisphere. This analysis error reduction for
the ocean temperature and salinity brought by SCDA also
extends to the deep ocean layer (512–2290 m). Figure 7 ex-
amines the global map of analysis error reduction by SCDA
for the atmosphere and ocean. Overall, SCDA improves the
analysis of the upper ocean temperature and salinity most
significantly over the tropics and the Northern Hemisphere.
Interestingly, with no ocean observations assimilated into the
atmosphere, the atmosphere analysis in the SCDA experi-
ment still improves thanks to the more accurate ocean anal-
ysis through the coupled model integration. Longer model
integration is needed to evaluate the performance of SC and
WC EnKF after the ocean surface temperature and salinity
finishes spin-up.

6 SC EnKF with the state-of-the-art coupled model
CFSv2

Sluka (2018) implemented a prototype WC and SC LETKF
system CFSv2-LETKF for the operational coupled model
Climate Forecast System version 2 (CFSv2; Saha et al.,
2006, 2014). The atmospheric model Global Forecast Sys-
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Figure 6. Spatially averaged difference of analysis RMSE with SCDA and WCDA for the ocean temperature and salinity at the surface (a,
b) and at deep ocean (512–2290 m, panels c, d) in the Northern Hemisphere midlatitudes (blue), tropics (green), Southern Hemisphere
midlatitudes (red), and globally (black). Negative values mean RMSE reduction by adopting SCDA. Adapted from Sluka et al. (2016) and
Sluka (2018).

tem (GFS) within the CFSv2-LETKF is a hydrostatic spectral
model with hybrid pressure-sigma coordinates. It is config-
ured with a resolution of T62/L64 (∼ 2◦). The ocean model
GFDL Modular Ocean Model (MOM) version 4 is config-
ured with 40 vertical levels using z∗ coordinates and tripolar
horizontal grids of 0.5◦ that increase to 0.25◦ at the Equator.
The CFSv2 LETKF system was built upon the GFS-LETKF
(Lien et al., 2016a, b) and the MOM-LETKF (Penny, 2011;
Penny et al., 2013), with many modules refactored so that the
underlying software framework can be reused to implement
WC and SC EnKF systems for other coupled models. The
CFSv2-LETKF is publicly available at https://github.com/
travissluka/CFSv2-LETKF (last access: 24 June 2023).

With the 50-member CFSv2-LETKF, Sluka (2018) con-
ducted 3-month Observing System Experiments (OSEs)
from June to August in 2015 to evaluate the benefits of SCDA
over WCDA using real observations. The atmospheric model
assimilates the same set of observations for both experiments
(Table 3.1 in Sluka, 2018), while additional marine surface
reports are assimilated into the ocean model in the SCDA ex-
periment. Unlike the SPEEDY-NEMO experiment, CFSv2-
LETKF adopts a 6 h assimilation cycle for the atmosphere

and a 24 h assimilation cycle for oceans to minimize the ini-
tial shock due to the frequent analysis update for the ocean.

Figure 8 shows that SCDA leads to reduced observa-
tion departures for the surface temperature observations than
WCDA globally. Substantially improved observation fits are
found in the Northern Hemisphere, with a misfit reduction of
13.1 %, which is probably contributed by the dense marine
surface reports in the Northern Hemisphere. In the Southern
Hemisphere and over the tropics, SCDA reduces the obser-
vation misfit by 3.8 % and 2.1 %, compared to WCDA.

Figure 9 verifies the model ocean temperature against in-
dependent ocean temperature profiles. SCDA shows better
observation fitting than WCDA for the 100 m upper layers
of tropical oceans. In the Northern Hemisphere, SCDA im-
proves the fitting for the 25 m upper layer but degrades the fit-
ting below this depth. Since no vertical localization is applied
in the ocean LETKF update, the degradation below 25 m
depth is probably due to the sampling error caused by the
small ensemble size. With no vertical localization, the long-
distance error correlations between observations and ana-
lyzed variables cannot be reliably estimated by the small en-
semble, especially for the weak correlation from those phys-
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Figure 7. Time-averaged difference of analysis RMSE with SCDA and WCDA for the ocean surface temperature and salinity (a, b),
atmospheric temperature, humidity at the lowest atmospheric model level (c, d), and the zonal wind speed throughout the troposphere (e) for
the final 5 years (2006–2010) of the identical twin experiment. Adapted from Sluka et al. (2016) and Sluka (2018).

Figure 8. RMSD (root mean square difference) of observation mi-
nus 6 h forecast (O−F) for atmospheric surface temperature obser-
vations with the SC (solid) and WC (dashed) CFSv2-LETKF over
the Northern Hemisphere (NH), tropics (TR), and Southern Hemi-
sphere (SH). Adapted from Sluka et al. (2016) and Sluka (2018).

ically “irrelevant” cross-domain state–observation pairs that
appears more frequently in the SCDA.

7 Correlation-cutoff method for the SC EnKF

Yoshida and Kalnay (2018) proposed the correlation-cutoff
method, which can reduce the spurious error correlations
among different state–observation pairs, thus improving the
performance of the SC EnKF with a small ensemble size.
Through the analysis of the Kalman filter equations, Yoshida
and Kalnay (2018) showed that the analysis increment due
to the assimilation of each observation is proportional to the
square of the error correlations between the analyzed model
state and the observation simulations. In the correlation-
cutoff method (Yoshida and Kalnay, 2018), only observa-
tions that show strong time-averaged squared background er-
ror correlation with the model states are assimilated by the
SC EnKF, since a small ensemble cannot reliably estimate
the weak error correlations for “irrelevant” state–observation
pairs.
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Figure 9. RMSD reduction of observation minus 6 h forecast (O−F) for ocean temperature by switching from WC to SC CFSv2-LETKF.
The left panel shows the spatially averaged RMSD change (improvements with positive value and degradation with negative value) that
varies with the ocean depth over the Northern Hemisphere (NH, blue) and tropics (TR, green). The right panel shows the spatial distribution
of the RMSD by switching from WC to SC (improvements in blue and degradation in red) at selected ocean depth. Adapted from Sluka et
al. (2016) and Sluka (2018).

The underlying idea of the correlation-cutoff method is
similar to the “variable localization” technique for the cou-
pled atmosphere–carbon assimilation (Kang et al., 2011),
in which the error correlation between physically irrelevant
variables (e.g., carbon flux and the specific humidity) is man-
ually zeroed out for the EnKF. However, unlike the “variable
localization” that removes the nonzero error correlation em-
pirically, the correlation-cutoff method automates this pro-
cess based on the time-averaged squared background error
correlation using data acquired from offline assimilation ex-
periments, which is desirable for CDA since it is nontriv-
ial to determine whether the error correlation between cross-
domain observation–state pairs should be zeroed out.

Yoshida and Kalnay (2018) then examined the effective-
ness of the correlation-cutoff method on SC EnKF using
the coupled Lorenz system (Peña and Kalnay, 2004). Fig-
ure 10f shows that the localization pattern determined by the
correlation-cutoff method is like ENSO coupling (Fig. 10):
with strong error correlation (corr2 ∼ 0.5) between the trop-
ical atmosphere and the tropical ocean and weak correla-
tion (corr2 < 0.03) between the extratropical atmosphere and

the other two components. This squared correlation map
suggests assimilating the extratropical observations into the
extratropical atmosphere and tropical observations into the
tropical atmosphere and ocean.

Figure 11 compares the analysis accuracy of the SCDA in-
formed by the correlation cutoff of the EnKF with five differ-
ent localization patterns (Fig. 10), including WCDA, SCDA,
and SCDA guided by the correlation-cutoff method. All ex-
periments are repeated with three different ensemble sizes of
4, 6, and 10. Figure 11 shows that SCDA (“full” experiment
in the figure) is less accurate than WCDA (“individual”) or
even experiences filter divergence with an insufficient en-
semble size of 4 or 6, while SCDA is more accurate than
WCDA with a sufficient ensemble size of 10. Meanwhile,
SCDA guided by the correlation-cutoff method (“ENSO cou-
pling”) generates the most accurate analysis regardless of
the ensemble size, demonstrating the necessity to ignore the
weak error correlation for improved SC EnKF analyses.
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Figure 10. (a–e) Covariance localization patterns tested in the assimilation experiments of Yoshida and Kalnay (2018) and (f) the time-
averaged squared background error correlation for different pairs of model state and observation types obtained from the independent offline
LETKF experiments. Adapted from Yoshida and Kalnay (2018) and Yoshida (2019).

8 Emulate the localization functions with the neural
networks

In this section, we discuss the results by Yoshida (2019),
who applied the correlation-cutoff method to the more re-
alistic models by using neural networks (NNs). Extending
the correlation-cutoff method to a more realistic model is
challenging because it requires functions that can predict the
squared error correlations for each pair of observation and
model state types and change values based on their spatial
separation distance. For the operational SCDA application,
this function must also be computationally cheap and fast
since it is evaluated for all the observations within an in-
fluence radius around the analysis grid. Yoshida (2019) pro-
posed to train one NN for each pair of observation and model
state type that predicts the squared error correlation based on
the attributes of the model state (e.g., geophysical location,
time information) and observations (e.g., geophysical loca-
tion and viewing geometry). Once trained, the NN can make
fast predictions with low computational costs.

Yoshida (2019) first demonstrated the effectiveness of the
NN in predicting the error correlation and its square by us-
ing the NN to emulate the error correlations of four toy error
correlation models under geostrophic balance. Predicting the
error correlations instead of their squares is more challenging
since the error correlation changes sign at different quadrants
for error correlations of winds. The trained NNs will predict
the error correlation with varying combinations of explana-
tory variables (up to three) as inputs. The NN for each er-
ror correlation model is a two-layer feedforward NN with 10
hidden units, with the hyperbolic tangent chosen as the ac-
tivation function. The training dataset is created by adding
Gaussian error with a standard deviation of 0.2 to the true
error correlation. The trained NN is then obtained by min-
imizing the squared regression error with 1000 samples of
the training datasets. Figure 12 shows that with proper ex-
planatory variables (from the second to the last columns) as
the input, the NN can effectively predict the signs and values
of the true error correlation (first column). The other experi-
ment that directly predicts the squared error correlation with
the NNs shares similar results.

Nonlin. Processes Geophys., 30, 217–236, 2023 https://doi.org/10.5194/npg-30-217-2023



E. Kalnay et al.: Towards strongly coupled ensemble data assimilation 229

Figure 11. Time-averaged analysis RMSE with different localization patterns. Horizontal lines show the observation errors for the atmo-
sphere (solid) and ocean (dashed). Note that the filter diverged in the four-member full experiment. Adapted from Yoshida and Kalnay (2018)
and Yoshida (2019).

Yoshida (2019) then utilized the NN to predict vertical er-
ror correlations of the zonal wind for the intermediate CGCM
Fast Ocean Atmosphere Model (FOAM; Jacob, 1997). In this
case, the NN is a two-layer feedforward NN with 30 hidden
units, and it uses only four explanatory variables as its inputs:
the distance between the analysis grid and the observation,
the latitude of the analysis grid, and the vertical coordinate of
the analysis grids and its counterpart for the observation. The
NN is trained with the analysis ensemble from an offline 64-
member WC ETKF experiment. Figure 13 shows that the er-
ror correlations predicted by the NN share similar structures
as those acquired using the NMC method, confirming that
the NN can predict the error correlation for different state–
observation pairs.

With the error correlation square predicted by the NNs, the
final localization value ρ informed by the correlation-cutoff
method is calculated as

ρ = g(c)=


0, c2

≤ c2
cutoff

1−
(

1−c2

1−c2
cutoff

)2

, c2
cutoff < c

2
≤ 1

1, c2 > 1

, (21)

where c2 is the squared error correlation predicted by the
NN, and c2

cutoff is a predefined cutoff parameter. A reasonable
c2

cutoff should be at least greater than 1 / (ensemble size−1)

since any correlation under this value is unreliable (Pitman,
1937). For the later assimilation experiments, the cutoff pa-
rameter of 0.1 is selected.

Yoshida (2019) then conducted a 1-year OSSE with
the coupled model FOAM to compare the performance of
SC EnKF with the traditional localization functions and
the localization function informed by the correlation-cutoff
method with the NN. Figure 14 shows that the correlation-
cutoff method with the NN improves the 24 h forecast for
different surface atmospheric variables (i.e., surface pres-
sure, temperature, humidity, and winds) almost everywhere,
except at high latitudes in the Northern Hemisphere, with
the most significant improvements over the tropics. This
improvement also extends to the upper atmosphere up to
250 hPa. For oceans (Fig. 15), the correlation-cutoff method
improves the 24 h forecast of sea surface temperature and
salinity globally, except at high latitudes in the South-
ern Hemisphere. In addition, the correlation-cutoff method
also reduces the forecast error of ocean currents, except
at high latitudes in the Northern Hemisphere. Overall, the
correlation-cutoff method with the NN improves the analy-
ses and forecasts of the SC EnKF.
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Figure 12. The true error correlations modeled by four toy correlation models (first column) and the emulated ones with the neural network
by adopting different sets of explanatory variables (columns 2–5). The rms regression errors verified against independent validation datasets
are shown in each panel. Adapted from Yoshida (2019).

Figure 13. The vertical background ensemble auto-correlation of
zonal winds to the model level of approximately 500 hPa (a) emu-
lated by the neural network for the model FOAM and (b) calculated
with the NMC method for the operational model by Ingleby (2001).
Adapted from Yoshida (2019).

9 Summary and discussion

We have reviewed our research progress about CDA by us-
ing a hierarchy of coupled models with increasing complex-
ities, ranging from the simple coupled Lorenz model to the
state-of-the-art operational coupled model CFSv2. With the
Lorenz model, we proved that SC EnKF and 4D-Var could
constrain the fast and slow modes of the coupled model
simultaneously. EnKF produces the most accurate coupled
analyses with a short assimilation window length. Apply-
ing 4D-extension or the quasi-outer-loop approach allows the
EnKF to utilize longer assimilation windows to improve the
coupled analyses. Unlike EnKF, SC 4D-Var prefers long as-
similation windows, consistent with the findings by Kalnay
et al. (2007). It is shown that the SC EnKF with a sufficient
ensemble size and SC 4D-Var have similar accuracies if us-
ing their optimal assimilation window lengths. Compared to
the ECCO-like 4D-Var with the forced ocean model, the SC
4D-Var using the coupled model can produce more accurate
ocean analysis, demonstrating the benefits of adopting the
SCDA approach even for producing single-domain analysis.

Experiments with a coupled QG model show that SCDA
produces more accurate analyses than WCDA and UCDA
for both variational and ensemble methods. In addition, SC
ETKF shows persistent, smaller ocean analysis errors than
WC ETKF, a phenomenon not observed for 3D-Var. Com-
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Figure 14. Difference of background (24 h forecast) RMSEs between the correlation-cutoff with neural network and standard strongly cou-
pled EnKF OSSEs. Blue (red) colors show smaller (larger) errors in the correlation-cutoff experiment. Errors are for atmospheric variables.
Adapted from Yoshida (2019).

parison of SCDA approaches under a full observing network
shows that EnKF and 4D-Var reach similar analysis accuracy,
higher than 3D-Var. The CERA-like approach using outer-
loop coupling shows comparable performance to the SC 4D-
Var and ETKF. If only assimilating atmosphere observations,
all variational assimilation methods using the static back-
ground error fail to stabilize their analyses for the experiment
period, with the CERA-like system showing the worst per-

formance, indicating that the outer-loop coupling approach
alone cannot replace the role of the full-coupled background
error covariance in variational systems.

Given the similar performance of the SC 4D-Var and
EnKF confirmed by the experiments with low-order mod-
els and the simple structure of the EnKF, we focused on de-
veloping EnKF-based CDA systems to which an underlying
software framework can be applied in the complex CGCM.
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Figure 15. Same as Fig. 14 but for oceanic variables. Adapted from Yoshida (2019).

Sluka et al. (2016) and Sluka (2018) developed a flexible
LETKF-based CDA software framework and applied it to
an intermediate-complexity coupled model SPEEDY-NEMO
and the state-of-the-art operational coupled model CFSv2.
Through assimilation experiments by assimilating synthetic
or real atmospheric observations into the ocean through the
SC EnKF with a small ensemble size, we found that SCDA
produces more accurate lower atmosphere and upper ocean
analyses than WCDA. However, we noticed that SCDA with
the CFSv2-LETKF degrades the observation fits for the deep
ocean layers, probably due to the suboptimal analysis update
arising from the spurious error correlation estimated by the
small ensemble used by the SCDA system.

Yoshida and Kalnay (2018) developed the correlation-
cutoff method to alleviate the spurious error correlation prob-
lem in the SCDA. In the correlation-cutoff method, only
those cross-domain observations that show strong ensemble
correlations with the updated model variables are assimilated
in the SCDA systems. Experiments with the coupled Lorenz
model show that SCDA informed by the correlation-cutoff

method outperforms the SCDA and WCDA regardless of en-
semble size. To apply the correlation-cutoff method to com-
plex CGCMs, Yoshida (2019) utilized the neural networks to
acquire observation localization functions for different state–
observation pairs systematically. The perfect model exper-
iments with a CGCM showed promising results using this
method.

As the computing resources increase, we expect SCDA
with the EnKF to play a more critical role in producing cou-
pled analyses. For now, the tremendous computational re-
sources (i.e., long CPU runtime and related queue time and
high demand for disk storage) required by the EnKF-based
SCDA systems prohibit the wide adoption of the EnKF-
based CDA approaches. Efforts shall be made to reduce the
computational resources related to CDA. For example, the
online assimilation approach by Zhang et al. (2005, 2007) is
an admirable attempt to alleviate this issue. Since their EnKF
is implemented as a subroutine within the CGCM, all CDA
procedures are conducted rapidly in the memory by avoid-
ing frequent I/O of restart files. Other promising solutions
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include running the CGCM and its CDA package with re-
duced precisions (Váňa et al., 2017; Lang et al., 2021) and
developing emulators for the CGCM using machine learn-
ing and artificial intelligence techniques (Pathak et al., 2022;
Lam et al., 2022). In addition, computational resource chal-
lenges, extending the SCDA approach to more coupled Earth
system components is also desirable. While our study has fo-
cused on coupled atmosphere–ocean analyses, the SCDA ap-
proach has shown its superiority to other CDA methods for
other coupled components, such as coupled land–atmosphere
DA (Lin and Pu, 2018, 2020).

Another potential future application for CDA is for cou-
pled Earth–human systems, where Earth system components
are coupled with human system components using bidirec-
tional feedbacks (e.g., Motesharrei et al., 2014). Dynami-
cal models of the human system are not yet broadly de-
veloped, leading to uncertainties when making projections
using coupled models. CDA will be a crucial method to
quantify and constrain these uncertainties (Motesharrei et
al., 2016). Furthermore, there are certain parameters of the
human system that could be reliably estimated from obser-
vations, but there remain many uncertain parameters, espe-
cially coupling parameters. CDA can significantly contribute
to estimation of these parameters (e.g., Liu et al., 2014), es-
pecially when combined with machine learning algorithms.
These advancements can help determine the carrying capac-
ity of coupled human–natural systems and guide policymak-
ers to keep these systems within their sustainable boundaries
(Mote et al., 2020).

Code and data availability. Results with the toy models can be
reproduced following the equations listed in this paper. The CFSv2-
LETKF used to conduct real-observation experiments can be down-
loaded from https://doi.org/10.5281/zenodo.8077444 (Sluka et al.,
2023a) or https://github.com/travissluka/CFSv2-LETKF (last ac-
cess: 24 June 2023). Additional instructions can be found in the wiki
page of the repo: https://github.com/UMD-AOSC/CFSv2-LETKF
(Sluka et al., 2023b).
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