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Abstract. The impact of climate change on weather pattern dynamics over the North Atlantic is explored
through the lens of the information theory of forced dissipative dynamical systems.

The predictability problem is first tackled by investigating the evolution of block entropies on observational
time series of weather patterns produced by the Met Office, which reveals that predictability is increasing as a
function of time in the observations during the 19th century and beginning of the 20th century, while the trend
is reversed at the end of the 20th century and beginning of the 21st century. This feature is also investigated in
the 15-member ensemble of the UK Met Office CMIP5 model for the 20th and 21st centuries under two climate
change scenarios, revealing a wide range of possible evolutions depending on the realization considered, with an
overall decrease in predictability in the 21st century for both scenarios.

Lower bounds of the information entropy production are also extracted, providing information on the degree
of time asymmetry and irreversibility of the dynamics. The analysis of the UK Met Office model runs suggests
that the information entropy production will increase by the end of the 21st century, by a factor of 10 % in the
Representative Carbon Pathway RCP2.6 scenario and a factor of 30 %–40 % in the RCP8.5 one, as compared
to the beginning of the 20th century. This allows one to make the conjecture that the degree of irreversibility
is increasing, and hence heat production and dissipation will also increase under climate change, corroborating
earlier findings based on the analysis of the thermodynamic entropy production.

1 Introduction

The climate system is a forced dissipative system, whose
forcing depends on time. Among the components of this forc-
ing, one can mention the obvious natural forcing (solar, vol-
canic eruptions), but one of the most important forcings in re-
cent decades is the anthropogenic forcing known to strongly
affect the climate system (e.g. Lovejoy, 2014; Hébert and
Lovejoy, 2018; Ghil and Lucarini, 2020; IPCC, 2021). This
anthropogenic forcing is inducing a rapid global increase in
temperature as amply illustrated in the IPCC report (IPCC,
2021). The link between these rapid modifications of the dy-
namics and frequency of weather patterns is an important
question as it could have a strong impact on society (e.g.

Corti et al., 1999; Plaut and Simonnet, 2001; Pope et al.,
2022).

The use of weather patterns to define similar atmospheric
situations goes back to the early 1950s with for instance the
development of the Grosswetterlagen (Hess and Brezowsky,
1952); see also Barry and Perry (1973). Since then, such pat-
terns are mostly used to summarize the information content
in weather forecasts (Neal et al., 2016), to develop statistical
forecasting models (Nicolis et al., 1997; Vannitsem, 2001) or
to investigate the quality of models (Davini and D’Andrea,
2020; Fabiano et al., 2020). The key advantage of such an
approach is to reduce the complexity of the problem at hand
by limiting the number of possible outcomes to a set of sym-
bols that can be studied on their own. The link between the
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succession of patterns and the underlying physical mecha-
nisms of transitions such as large-scale Rossby wave break-
ing is also an important line of research (Michel and Rivière,
2011).

The succession of weather patterns, as the underlying dy-
namics, displays a certain degree of randomness, mainly
rooted in the natural property of sensitivity to initial condi-
tions (e.g. Hannachi et al., 2017; Vannitsem, 2017). To de-
scribe such a dynamics, a probabilistic approach is needed,
which can be naturally cast in the context of information
theory. This framework allows for the characterization of
the predictability properties in terms of persistence, transi-
tion paths, and the degree of surprise of new patterns (Nico-
lis and Nicolis, 2012). Recently considerable progress has
been made in the extension of the concept of information to
dynamical systems out of equilibrium (Daems and Nicolis,
1999; Gaspard, 2004; Andrieux et al., 2007; Gomez-Marin
et al., 2008; Roldán and Parrondo, 2010, 2012; Nicolis and
Nicolis, 2012). Notably, the connections between informa-
tion entropy, irreversibility and dissipation in such systems
have been made, together with the impact of coarse-graining.
Such developments open the way to analyze the dynamical
and thermodynamical properties of non-equilibrium systems
based on single coarse-grained trajectories.

The present work is devoted to investigating the dynami-
cal properties in the succession of the North Atlantic weather
patterns as defined by Neal et al. (2016) in the observations
and in the climate projections of the UK Met Office CMIP5
model (Pope et al., 2022), using recent tools of information
theory. The focus is placed on the understanding of the im-
pact of climate change on the predictability of the system
through the evolution of the information entropy and of the
associated information entropy production. The work is or-
ganized as follows. The notions of information entropy and
its production are first introduced in Sect. 2. In Sect. 3, the
data set used is briefly presented, and in Sect. 4, the results
are discussed. Finally, a summary of the results is provided
in the conclusions.

2 Information theory: information entropy and
entropy production

One key quantity introduced in the context of information
theory is (Shannon) entropy (Shannon, 1951),

SI =−
∑
i

p(i) ln(p(i)), (1)

where p(i) is the probability of being in state i, with∑
i

p(i)= 1. (2)

This quantity (Eq. 1) is an (weighted) average over the en-
semble of states i of a measure, − ln(p(i)), of unexpect-
edness of an event (equivalent to the amount of informa-
tion content in this event). This quantity has three important

properties (Nicolis and Nicolis, 2012). (i) It is maximized
when all the possible events have the same probabilities,
like for instance in drawing random numbers from a dice.
(ii) Adding an impossible event does not change SI. (iii) The
additivity property, i.e. the entropy of a composite system
SI(A,B)= SI(A)+ SI(B|A).

The Shannon entropy used in this form is however static
and does not provide insight into the dynamics of the process.
Other tools should therefore be used. A natural extension of
this concept can be made to series of symbols, called words,
known as the block entropy:

Sn =−
∑

i1,i2,...,in

p(i1, i2, . . ., in) ln(p(i1, i2, . . ., in)), (3)

where p(i1, i2, . . ., in) is the joint probability of the sequence
i1, i2, . . ., in. Block entropies have already been used to char-
acterize the succession of weather patterns over Switzerland
in Nicolis et al. (1997). They showed in particular that this
evolution is not a first-order Markov process that could, oth-
erwise, be reduced to the analysis of the two-state transition
matrix between successive patterns (Gardiner, 1996). This
type of analysis is also performed to characterize the com-
plexity of processes in many different fields from biology
(e.g. Provata et al., 2014) to music (e.g. Basios et al., 2021).

Gaspard (2004) introduced the additional notion of time-
reversed information entropy per unit time,

SR
n =−

∑
i1,i2,...,in

p(i1, i2, . . ., in) ln(p(in, in−1, . . ., i1)), (4)

where now the path through the different patterns is reversed
in time, and the average is still performed along the for-
ward path. If this quantity is subtracted to Sn, one gets the
Kullback–Leibner divergence between the forward and back-
ward trajectories in the form of

dn = S
R
n − Sn =

∑
i1,i2,...,in

p(i1, i2, . . ., in)

ln
p(i1, i2, . . ., in)
p(in, in−1, . . ., i1)

, (5)

which is positive definite. This quantity is meant to charac-
terize the time asymmetry of the trajectory and hence the ir-
reversibility of the underlying process (Gaspard, 2004).

For n tending to infinity, this quantity converges to an
asymptotic value d∞, which is equal to the rate of contrac-
tion in phase space provided the partition is generated by a
Markov process with infinitesimally small cells and infinites-
imally small time steps (Gaspard, 2004; Nicolis and Nicolis,
2012), already demonstrating a strong connection of the in-
formation content with the underlying dynamics. At a micro-
scopic level, the quantity, d∞, can also be related to the phys-
ical entropy production under some appropriate assumptions
(Andrieux et al., 2007; Gomez-Marin et al., 2008; Roldán
and Parrondo, 2010, 2012). In this work, d∞ will be referred
to as the information entropy production.
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In general, it can be shown that (e.g. Roldán and Parrondo,
2012)

d∞ ≥ . . .≥ d3 ≥ d2 ≥ d1 = 0, (6)

and when the process is generating a first-order Markov dy-
namics, d2 = d∞, which is readily available when comput-
ing the two-state joint probabilities. When it is not first-order
Markov, d∞ can be accessed by computing the sequence of
dk and, using empirical laws, estimating d∞ (Roldán and Par-
rondo, 2010). In the current work, the process of succession
of weather patterns is not first-order Markov (as discussed in
the Appendix), and one must evaluate the sequence of lower
bounds. This needs considerable data, and one can only esti-
mate a small number of these lower bounds that still provide
very important information on the information entropy pro-
duction.

The process of coarse-graining also has an impact on the
amplitude of dk as shown in Gomez-Marin et al. (2008) and
also Pierre Gaspard (2022, personal communication): when
reducing the number of symbols (or patterns) to character-
ize the system, the amplitude of dk decreases. This could
lead to estimates of the information entropy production for
very coarse partitions of the dynamics that are not statisti-
cally very well defined. This is most probably the case of the
analyses that are done with the coarser partition for the ob-
servations below. This problem is however alleviated when
investigating the set of model runs, as better statistics can be
obtained.

3 Data

At the Met Office, 30 weather patterns were defined and are
used on a daily basis in the operational forecasting suite in or-
der to draw the overall evolution of the weather over the east-
ern part of the North Atlantic and the western part of Europe
(Neal et al., 2016). The evolution of the weather on a daily
basis is available starting from 1 January 1850 until now. In
the present work, the series used go from 1 January 1850
to 31 December 2019, featuring 62 091 daily weather situa-
tions.

As the application of the tools mentioned in Sect. 2 can be
effectively used provided the number of data is large and the
number of different patterns is small, it is important to find
an appropriate balance between the length of the series and
the number of patterns. Thirty regimes is very large, and 900
entries already have to be estimated for the two-state joint
probabilities, and this becomes even worse when increasing
the length of the words. With such a small number of daily
events, it is therefore unrealistic to keep a large number of
weather patterns. To solve that problem, one can further clus-
ter the patterns, as done for instance in Neal et al. (2016)
to eight states. The eight weather patterns are described in
Table 1 of Neal et al. (2016) and displayed in their Fig. 3.
The first two patterns with the largest populations in their

analysis are referred to as North Atlantic Oscillation (NAO)+
(21.2 %) and NAO- (17.8 %), with opposite positive and neg-
ative mean sea level pressure anomalies over Iceland. These
two patterns are usually found in the investigation of weather
patterns over the North Atlantic and its surroundings. The
other patterns mostly related to the local weather fields over
Ireland, the United Kingdom, and western Europe are defined
in Neal et al. (2016) as north-westerly, south-westerly, Scan-
dinavian high, high pressure centred over the UK, low close
to the UK and Azores high, respectively.

This number is still large to evaluate joint probabilities
with such a small amount of data. We therefore further re-
duce the number of clusters to six with a merging of simi-
lar patterns, eight with six and seven with five, as in Allen
(2021). This can even be further reduced to three, with the
two dominant patterns 1 and 2, representing the positive and
negative phases of the NAO, and the third one regrouping all
other possible patterns (Allen, 2021). Besides their use for
forecasting purposes, these data were used for different re-
search purposes, such as for investigating the persistence of
weather patterns (Richardson et al., 2018).

Besides the observational weather patterns, the UK Met
Office produces the time series of weather patterns for a set
of 15 different perturbed-parameter climate model versions
under two climate scenarios (Pope et al., 2022). The two cli-
mate scenarios are defined based on two Representative Car-
bon Pathways (RCPs), namely RCP 2.6 and RCP 8.5. The
model versions differ only by the choice of parameters and
not by the forcing (Pope et al., 2022; Sexton et al., 2021).

All simulations are run from 1 December 1899 to
30 November 2099 at a resolution of N216. The model is first
forced by the historical forcing until 2005 and then forced
with the Representative Carbon Pathway scenarios. More in-
formation can be found in Pope et al. (2022). The simulations
are projected on the same weather patterns as in Neal et al.
(2016), leading to a set of temporal evolutions for the eight,
six and three weather partitions defined above. For the simu-
lations, 15× 71 970 d are available.

4 Results

4.1 Information entropy analysis of the observed data

The changes in the statistical and dynamical properties of the
weather patterns are investigated through the analysis of the
probabilities, the block entropies and the information entropy
production as a function of time. It should be first assumed
that the impact of climate change on the natural variability is
slow, allowing one to consider that the statistical properties of
the weather are stationary during a sufficiently long period.
Here a sliding window of 50 years has been defined for the
evaluation of the statistics, progressively moved forward in
time. As the observation data start in 1850, the first period
to consider is 1850–1899, which is then shifted forward in
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Figure 1. Temporal evolution of (a) the probability of being in one of the three patterns, (b) the probability of being in one of the six patterns,
(c) the probability of being in one of the eight patterns, and (d) the Shannon entropy for the three partitions.

time every year. Note that the statistics will be associated
(arbitrarily) with the 25th year of the window in the figures.

Figure 1 displays the probabilities for (a) three, (b) six,
and (c) eight partitions as a function of time. A clear evo-
lution in the probabilities is visible. χ2 tests of differences
between the first and last values have been computed. The
χ2 test of differences between the two distributions are 50,
176 and 214 for three, six and eight clusters, respectively.
With their respective degrees of freedom of 2, 5 and 7, these
values indicate that the two distributions are significantly dif-
ferent at a probability level much lower than 0.001. Panel d
shows the evolution of the Shannon entropy for the three par-
titions. Here, however, the (static) information content does
not change much as a function of time whatever the partition
chosen.

The Shannon entropy, however, does not provide any in-
formation on the dynamics. Let us then turn to the dynamics
of the weather patterns by investigating the two-state entropy,
S2, providing information on the dynamics of the succession
of pairs of patterns, together with the backward-in-time en-
tropy, SR

2 , for the three partitions of interest (Fig. 2). A first
general remark is the fact that S2 is decreasing for most of
the period and then slightly increases whatever the partition.
This suggests that the information content decreases, with a

less diverse set of pairs of events. When looking at the diago-
nal of the transition matrix,W (i|j ), featuring the persistence
from one day to the next, these conditional probabilities (for
i = j ) are increasing, while S2 is decreasing (not shown).
This result suggests that the system becomes progressively
more predictable and persistent during the historical period,
except at the very end of the period.

In the same panels, SR
2 is displayed, which would be larger

than the S2 if a time asymmetry is present in the data (Gas-
pard, 2004; Andrieux et al., 2007). The amplitude of SR

2 is
indeed larger when considering the six-pattern and eight-
pattern partitions, but not for the three-pattern partition. Con-
sidering the latter case first, this type of behavior suggests a
time symmetry (or detailed balance) of the dynamical pro-
cess generated by that partition, as for instance found in the
analysis of different alphabets used to “read” the DNA in
Provata et al. (2014). Whether this feature is due to the fact
that the series is too short or to a very specific feature of this
three-pattern partition remains to be explored.

For the former cases of six and eight patterns, the re-
sults are very interesting as the backward entropy is always
much larger than the forward one, suggesting a time asym-
metry related to the irreversibility of the process (Gaspard,
2004). This is further illustrated in Fig. 2d by the evolution of
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Figure 2. Temporal evolution of forward and backward entropies, S2 and SR
2 , for (a) three patterns, (b) six patterns, and (c) eight patterns.

(d) The lower bound of the information entropy production, d2, for the three partitions.

the difference between the backward and forward entropies,
d2. Note that d2 shows an overall increase as a function of
time. This would suggest an increase in the lower bound,
d2, of the information entropy production over the North At-
lantic. However, the trend is not reproduced when analyzing
d3 associated with the joint probabilities of three successive
weather patterns, questioning the validity of the trend found
with d2. This type of analysis however suffers from a lack of
data that can only be compensated for by investigating model
runs. This point will be taken up further in the analysis of the
UK Met Office models.

The analysis of the information entropies of pairs of events
can be extended to longer blocks of symbols. In Fig. 3, a de-
crease is also experienced whatever the length of the blocks
of symbols (until i = 7 d), except in the last decades. This
feature is going in the same direction as for S2, with an in-
crease in the predictability of the system. An additional in-
dication of that is the progressive decrease in the number of
words (sequences of symbols) that are present in the window
of 50 years as we move forward in time until the end of the
time series (not shown). In other words, the diversity of pos-
sible sequences is decreasing during the historical period. In
panel d, a different view of this evolution is displayed with
the block entropy as a function of the length of the words at

the beginning of the historical period and at the end, further
illustrating the change.

The analysis reveals a drastic modification of the dynamics
of the succession of weather patterns over the North Atlantic
and western Europe, with an increase in predictability except
at the end of the period. Is this feature a response to climate
change or the presence of some low-frequency variability is
not clear at this stage. Another aspect that could affect the
statistics is the number and quality of the observations used.
A natural conjecture would be to believe that the first part
of the period is not much influenced by climate change and
therefore could reflect a natural tendency of the system pro-
vided that the dynamics is not affected much by the number
and quality of observations. This conjecture could be chal-
lenged, either by analysing weather pattern dynamics based
on the same set of observation stations throughout the period
or with long reference runs of models allowing one to clarify
the impact of the low-frequency variability on the evolution
of the dynamics of weather patterns.

4.2 Information entropy analysis of the UK Met Office
model

Figures 4 and 5 show the entropy, S2, for the 15 model runs
of the Met Office. The estimation based on the 15 realiza-
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Figure 3. Temporal evolution of normalized forward block entropies, Si/i, for (a) three regimes, (b) six regimes, and (c) eight regimes.
(d) Dependencies of the block entropies as a function of the length of the words, i, for the three partitions for the initial and final windows of
50 years of the observation dataset.

tions altogether is also shown (blue curve) together with the
observations (red curve).

For RCP2.6, S2 shows a strong variability among the dif-
ferent realizations. One first remark is that S2 for the different
partitions over the overlapping periods is generally larger for
the model runs than for the observations. This suggests that
fewer regularities are present in the dynamics of the model
with less predictability. Moreover, it is not clear at this stage
whether the large variability among the realizations is the im-
pact of slightly different parameterizations within the model,
a different possible realization of the dynamics starting from
different initial states, or both.

For RCP8.5, a similar picture is found, except that S2 for
most of the model runs shows larger values at the end of the
21st century.

In Figs. 4d and 5d, the evolution of the lower bound, d2, of
the information entropy production of the model, combined
over the 15 different model versions, and of the observations
is displayed for the three partitions. The interesting message
here is that d2 is larger in the model than in the observations.
This feature is also present for d3 (not shown), which could
reflect a larger information entropy production and degree of
irreversibility than in reality.

Finally, in Fig. 6, d2, d3 and d4 are shown for both RCP
scenarios. The larger bounds are not displayed as they show
values smaller than the first three, in violation of their order-
ing, further indicating that the number of realizations is still
not sufficient to provide reliable estimates of high-order joint
probabilities. Interestingly, these three lower bounds are in-
creasing as a function of time in both scenarios, suggesting
that the information entropy production is also increasing as
a function of time and hence the atmospheric irreversibility.
Furthermore, there is a change in the rate of increase in the
lower bounds for one scenario or the other. In the case of
RCP8.5, the increase is faster around 2030 (corresponding
to the period 2010–2050), indicating an acceleration of the
change in information entropy production.

These remarkable results suggest that the information en-
tropy production in the North Atlantic will considerably
change depending on the type of scenario the Earth climate
system will follow. As the information entropy production
is related to irreversibility of the dynamics, one may conjec-
ture that production of heat and dissipation of the underlying
dynamics will also increase substantially for large increases
in the greenhouse gases. This is corroborated by works that
have been done on the increase in dissipation on the North
Atlantic region (Coumou and Rahmstorf, 2012) and (physi-
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Figure 4. Temporal evolution of S2 for the 15 model runs of the Met Office model from 1900 to 2099 under the RCP2.6 scenario (black
lines), for (a) three patterns, (b) six patterns, and (c) eight patterns. The red curves represent the reference historical data and the blue triangle
curve the average entropy over the 15 runs. (d) The lower bound of the information entropy production, d2, for the three regime partitions for
the observations (red) and for the average information entropy production of the model runs (blue). The different symbols (star, open square,
full square) correspond to the three partitions three, six and eight patterns, respectively.

cal) entropy production in general in climate models under
climate change (Lucarini et al., 2010, 2011; Lembo et al.,
2019; Kanno and Iwasaki, 2022).

5 Conclusions

The dynamics of weather patterns over the North Atlantic
under climate change is explored from the perspective of in-
formation theory with a focus on information entropy and its
production. The weather patterns are the ones defined by the
Met Office (Neal et al., 2016), on which both the observa-
tions starting in 1850 and the model projections from 1900
to 2099 are projected. Three sets of weather pattern partitions
are used, 3, 6 and 8.

The first key message conveyed by this analysis is the
overall decrease in the information entropy in the observa-
tions, except at the end of the period. This decrease indicates
that the predictability increased during the historical period,
with a slight decrease at the end. One key question is now
to know whether this evolution is directly related to climate
change, to a natural low-frequency variability, or even to the

change in the observational system over the North Atlantic.
This question will be addressed in the future.

To further clarify the role of climate change in the evo-
lution of the information entropy, the UK Met Office cli-
mate model runs under two climate scenarios, RCP2.6 and
RCP8.5, were explored. The analysis of the Met Office cli-
mate model indicates that the information entropy is for most
of the realizations larger than the one of the observations,
suggesting a lower predictability in the model. At the same
time, all the realizations suggest that the information entropy
will be larger by the end of the 21st century, further suggest-
ing a decrease in weather pattern predictability.

The lower bounds of the information entropy production
have been computed for both the observations and the model
runs. For the observations, an increase of d2 is found dur-
ing the historical period, but the limited number of data do
not allow us to confirm this with the other bounds. For the
model runs, these bounds are increasing as a function of time
with a rate that depends on the specific scenario chosen, in-
dicating an increase in the degree of irreversibility. Over-
all, the information entropy production increases by a fac-
tor of 10 % in the RCP2.6 scenario and a factor of 30 %–
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Figure 5. Temporal evolution of S2 for the 15 model runs of the Met Office model from 1900 to 2099 under the RCP8.5 scenario (black
lines) for (a) three patterns, (b) six patterns, and (c) eight patterns. The red curves represent the reference historical data and the blue triangle
curve the average entropy over the 15 runs. (d) The lower bound of the information entropy production, d2, for the three regime partitions for
the observations (red) and for the average information entropy production of the model runs (blue). The different symbols (star, open square,
full square) correspond to the three partitions three, six and eight patterns, respectively.

Figure 6. Temporal evolution of the lower bounds of the entropy production d2, d3 and d4 combining the statistics of the 15 Met Office
model versions, under (a) RCP2.6 and (b) RCP8.5.

Nonlin. Processes Geophys., 30, 1–12, 2023 https://doi.org/10.5194/npg-30-1-2023
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40 % in the RCP8.5 one as compared to the beginning of
the 20th century. This further allows us to make the con-
jecture that heat production and dissipation associated with
the emergence of irreversibility are increasing with climate
change, corroborating earlier findings (Lucarini et al., 2010;
Coumou and Rahmstorf, 2012; Lembo et al., 2019; Kanno
and Iwasaki, 2022). As the rate of increase is much larger
in the RCP8.5 scenario than in the RCP2.6 one, a further in-
crease in heat production and dissipation should be expected
under RCP8.5.

The novel approach of evaluating the (physical) entropy
production based on coarse-grained time series at the micro-
scopic level proposed by Gomez-Marin et al. (2008), Roldán
and Parrondo (2010), and Roldán and Parrondo (2012) of-
fers an important opportunity to estimate experimentally this
quantity. However, when dealing with the dynamics of a
macroscopic system like the atmosphere, the connection be-
tween the information entropy production, the physical en-
tropy production, dissipation and global constraints is still
missing. The possibility offered by these advances however
opens the way to improve our knowledge of the dynamics of
the climate system, provided appropriate research is done in
that direction.

The current model analysis is based on a set of slightly
different model versions of the UK Met Office model. These
differences could bias the estimates. A natural extension will
be to explore large ensembles of a single model and to ex-
plore different models of the CMIP class.

Appendix A: Markovianity of the succession of
weather patterns

The Markovian nature of the dynamics can provide consider-
able simplifications in the description of coarse-grained dy-
namics. It is however now well known that lumping contin-
uous state-space variables into a set of discrete states does
not lead in general to a Markov dynamics (Nicolis and Nico-
lis, 2012). To check the Markovian character of the dynam-
ics, statistical tests can be performed. A test of the order of
Markovianity has been proposed by Bilingsley (1961) and
used in Provata et al. (2014). This is a χ2 test under the hy-
pothesis that the Markov chain is of order r:

χ2
=

∑
i1,...,is

[Np(i1, . . ., is)−Np(i1, . . ., is−1)W (is |is−r , . . ., is−1)]2

Np(i1, . . ., is−1)W (is |is−r , . . ., is−1)
, (A1)

with a number of degrees of freedom of

NF =N
s
−N s−1

− (N r
−N r−1), (A2)

where N is the number of successive times in the series,
W (is |is−r , . . ., is−1), the entries of the transition matrix from
the path is−r , . . ., is−1 to the new symbol is . The null hypoth-
esis of the test is to assume that the process is Markov of
order r . If the statistics of the test are larger than a certain
threshold fixed by the level of confidence, then the null hy-
pothesis is rejected. The test is applied to the data at our dis-
posal with a level of confidence of 5 %.

The test has been used for the three, six and eight patterns
defined in Sect. 3. The results are shown in Table 1 for the
observations.

This table indicates that whatever the number of patterns
used here, they cannot be represented as first-order Markov
processes. It is however interesting to note that when the
number of patterns increases, the order of the Markov pro-
cess needed to represent properly the dynamics seems to
decrease. This particular feature has however to be taken
with caution as the computation of the probabilities of large
blocks of symbols and with a large number of patterns needs
a large number of data much larger than the one currently at
our disposal. A similar analysis has been performed for the
different model runs with similar conclusions.

https://doi.org/10.5194/npg-30-1-2023 Nonlin. Processes Geophys., 30, 1–12, 2023
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Table A1. Test χ2 for three, six and eight weather patterns for the series of observations. The first two columns represent the two Markov
orders that are compared. The third column contains the number of degrees of freedom of the test. The fifth and sixth columns contain the p
value of the test at the 5 % level and the actual value of the test. If the actual value is smaller than the p value, the order r is considered the
order of the Markov chain necessary to describe the dynamics of the weather patterns.

Order r r + 1 No. of degrees of freedom 5 % p value Value of the test

0 1 4 9.5 39 432.5
1 2 12 21.0 581.7

3 patterns 2 3 36 51.0 272.3
3 4 108 133.3 135.2
4 5 324 367.0 281.6

Order r r + 1 No. of degrees of freedom 5 % p value Value of the test

0 1 25 37.7 85 806.6
1 2 150 179.6 1664.9

6 patterns 2 3 900 970.9 1600.6
3 4 5400 5572.1 3312.0
4 5 32 400 32 819.8 9743.8

Order r r + 1 No. of degrees of freedom 5 % p value Value of the test

0 1 49 66.3 108 108
1 2 392 439.2 2402.9

8 patterns 2 3 3136 3267.4 3190.2
3 4 25 088 25 457.6 6944.2
4 5 200 704 201 747.0 18 371.7

Data availability. The observation data set of the historical
classifications are available on request to the Met Office.
Part of it can also be found on the Pangaea website at
https://doi.org/10.1594/PANGAEA.942896 (Neal, 2022). The UK
Met Office Global model data used in this study are all available
from the Centre for Environmental Data Analysis http://data.ceda.
ac.uk/badc/ukcp18/data (Met Office Hadley Centre, 2023).
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