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Abstract. The spring-slider is a simple dynamical sys-
tem consisting in a massive block sliding with friction
and pulled through a spring at a given velocity. Under-
standing the block meotion 1s fundamental for studying
more complex phenomena of frictional sliding, such as
the scismogenic fault motion. We analyze the dynami-
cal properties of the system, subject to rate- and state-
dependent friction laws and forced at a constant load
velocity. In particular we study the limits within which
the quasi-static model can be used. The latter model
approximates the complete model of the system without
taking into account the inertia effects. The system pa-
rameters are here found to be grouped into three charac-
teristic times of the three dynamics preseng in the com-
plete model. A necessary condition [or the quasi-static
. approximation to hold is that the characteristic time
of the inertial equation is much smaller than the other
two characteristic times. We have studied a modifica-
tion of one of the classical forms of the rate- and stale-
dependent friction laws. Subsequently we have devel-
oped a linear analysis in the neighborhood of the equi-
ltbrium point of the system. For the quasi-static modecl
we rigorously found, by means of a noulinear analysis,
a supercritical Hopf bifurcation, a dynamical property
of the complete model. The classical form of the fric-
tion laws can be obtained as a particular case of the one
we considered, but fails to preserve the Hopf bifurcation
in the quasi-static approximation. We conclude that to
have a good quasi-static approximation of the system,
even in nonlinear conditions, the form of the friction
laws considered 1s a critical factor.

1 Imntroduction

In the last three decades sliding with friction has become
a theme of increasing interest for cmpirical and theore-
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tical studies. Friction plays a major role in the relative
motion of rock walls along pre-existing faults. At the
same time the earthquake instability sequences were of-
ten related to stick-slip sequences observed in frictional
experiments (e.g. Tse and Rice, 1986; Cac and Aki,
1986; Carlson and Langer, 1989; Okubo, 1989; Miy-
atake, 1992; Rice, 1993; Cochard and Madariaga, 1994;
Dieterich, 1994). The spatially dependent solutions to
the fault motion problem when complex friction laws
are involved can be better understood knowing the dy-
namics of a simpler one degree of freedom model: the
spring-slider, i.e. a massive block subject to friction
and pulled through a spring at a given velocity (load).
Among the most commonly used friction laws there are
the so-called “rate- and state-dependent laws” with se-
veral formal expressions. One of the laws first proposed
by Ruina (1980) is among the most frequent formaliza-
tions of the rate- and state-dependent laws (e.g. Rice
and Ruina, 1983; Cao and Aki, 1986; Rice and Tse,
1986; Tse and Rice, 1986; Okubo, 1989; Gu and Wong,
1991; Linker and Dieterich, 1992; Miyvatake, 1992, Rice,
1993) and will be referred to as the RR law hereafter.
The rate- and stale-dependent frictional laws imply two
different responses to a sudden velocity variation: an in-
stantaneous (direct) effect and a delayed one {(evolving
effect). The latier consists in a slow variation of friction
where memory of the recent sliding history is kept for
a while (fading memory). The evolving effect is associ-
ated to the change of the “state” of the sliding surface
which cannot be instantaneous since the population of
contacts needs a finite sliding distance to vary (e.g. Di-
eterich and Kilgore, 1994).

The equilibrium state of a spring-slider subject to RR
friction laws is accomplished when the block slides at the
load velocity. A hnear stability analysis in the neighbor-
hood of this state was effected by Rice and Ruina {1983)
and Gu et al. (1984) assuming, respectively, a mas-
sive (dynamic model) or a massless sliding block (quasi-
static model}. Further studics considered the proper
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choice of the parameter values on the basis of physical
criteria in order to effect the numerical simulation of the
dynamical system (Rice and I'se, 1986; Gu and Wong,
1991). Less interest was devoted to the theoretical fun-
damentals, important for a correct interpretation of the
computational results.

The quasi-static model was often used as an approxima-
tion of the dynamic model (Rice and Gu, 1983; Guet al.,
1984; Rice and Tse, 1986), also referred here as the com-
plete model. The quasi static model assumes the veloc-
ity to respond instantaneously, as a dependent variable,
to the dynamics of the remaining variables of the sys-
tem. In fact, a noticeable feature of the complete model
is that the dynamic of its components is frequently so
strongly differentiated, that the fastest variables, such as
velocity, can be considered instantancous. In these cases
the quasi-static approximation can be used. We shall see
that the “smallness” of the time constant characteriz-
ing the velocity equation with respect to the other time
constants 1s a necessary condition for the quasi-static
approximation to hold. The values usually considered
for the system parameters fulfil this condition. More-
over, the quasi-static model is not concerned with the
computational problems due to the logarithmic, short-
term and long-term friction dependence on velocity in
the RR law (overflows at low velocity values). In fact,
the velocity is intrinsically prevented from vanishing by
the quasi-static model, as we will show.

On the other hand, the nonlinear analysis of the quasi-
static model(Gu et al., 1984) showed that when the RR
friction laws are used, “at large” (i.e. starting quite
far from the equilibrium point) an instability occurs for
whatever choice of the parameters and “a stable limit
cycle never occurs” (Horowitz and Ruina, 1989). On
the contrary, the existence of a stable limit cycle for a
particular choice of the dynamic sysiem parameters is
pointed out by several authors (e.g. Rice and Ruina,
1983; Horowitz and Ruina, 1989). This difference be-
tween the quasi-static model and the dynamic model
clearly reduces the validity of the first model as an ap-
proximation of the second, at least when the original
form of the RR friction laws is used.

In the following paragraphs we will show some dynamic,
rigorously deduced, properties of the spring-slider mo-
tion using a modified state evolution equation. The
RR. friction laws can be straightforwardly obtained and
studied as a particular case of the laws proposed here.
Our results are original in that we propose an origi-
nal modification of the state equation form previously
used in other studies. A different modification of the
RR state equation was previously used by Horowitz and
Ruina (1989) in the numerical simulation of the quasi-
static system, to have a stable limit cycle. We rigorously
show in the following paragraphs that the state equa-
tion here proposed expands the validity of the quasi-
static approximation, both preserving the whole set of
dynamic characteristics of the inertial system and keep-
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Fig. 1, Schematic representation of a spring-slider.

ing the numerical implementation feasible.

Finally, a specification is necessary: in the literature
the term “state variable” is used implicitly for the va-
riable representing the “state of the sliding surface”., We
will use the term “state” with this same meaning, and
care must be taken to avoid a possible misunderstand-
ing between the surface state variable and the variables
defining the “state of the system” from the point of view
of the dynamical systems theory. Actually, the surface
state variable is only one of the system state variables.
In the following paragraphs the three dynamics involved
in the spring-slider model are characterized and a linear
analysis is presented both for the dynamic tomplete sy-
stem and the quasi-static system. A nonlinear analysis
of the quasi-static system is finally effected.

2 The spring-slider model

Let us consider (Fig. 1) a block with mass m per unit
of surface, sliding with friction 7, at a velocity ¥ since
it is pulled through a spring, the tip of which moves at
a velocity V3. The motion equation is then

md=mV =1, - 7, (1)

where the dot means differentiation with respect to time,
4 is the slider displacement and 7. is the elastic traction
exerted through the spring on the slider {see also Table
1).

In the Rice-Ruina model 7, is assumed to depend linear-
ly on the spring length variation g — 4

. = k(dy — 4) (2)

where §y, is the loading point displacement, and k is the
elastic stiffness of the spring. Friction depends on both
the velocity and the state variable 4, i.e. on the recent
slip-rate history according to the following equations
(V.0 =1 + 64 Aln(V/W)
- 1 v (3)
#=—————[6+ BIn{(V/V.)],
LT A T BmV/v]

where the parameters 4, B, L, 1., h and V. can be
determined on the basis of physical considerations. The



RR laws can be obtained assuming A = (. The factor
containing A limits the order of infinity of # for ¥V — oo
so that the choice & > 0 seems to be more reasonable
than A = (0, also from a physical point of view. We recall
that hounded time derivatives of the state with respect
to V were often employed as a plausible alternative to
the RR state evolution equation (see e.g. Linker and
Dieterich, 1992). However, this modification of the RR
laws tends to be negligible for V' — (. The system vari-
ables involved in the set of equations (1-3) are 7., V, 0.
If we assumc a constant load point velocity ¥ we have
only one equilibrium point

Te

T+ (A= B)In (V2 /V2)

=2

=V (4)
f=—Bln(VL/V,).

Assuming the following nondimensional variables in or-
der to have the equilibrium point in the origin (Belar-
dinelli, 1994)

7
r= ——
v
Te — 7_-6
= ]
y 3 (5)
_0-4
g = T
we obtain the following equations
P A ly—z—In(z+1)] (6)
T
LR (65)
y= T
1 r+1

- 1 6
T31+hVL!m+11[Z+Rln($+ )]J ( C)

where
B 142 A L

= — = m— T .
R=- Th=mog, S=Y

(7)

The parameters 71, T», 73 have time dimensions and
suggest the speed of the three dynamics involved. Smal-
ler values of Vi, yield larger values of Ty and T3. To have
an estimate of the magnitude of the characteristic times
T;, i = 1,..3, as far as a fault motion is concerned, we
may consider the following mean order of magnitude for
the model parameters (Gu and Wong, 1991}

A ~ 1 MPa, k ~ 10 MPa/m, m ~ 107 kg/m%  (8)

By using two different values for ¥z and L (one suit-
able for fault conditions and the other for experimental
conditions) we obtain from definition (7) the results re-
ported in Table 2.

According to Table 2, Ty << T3, T3 and the solution of
the complete set of equations (6) can be approximated
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Table 1. Symbols

™m slider mass per surface unit
To(V, 6; A, B, L,7,Vy} friction traction
Te elastic traction
8 loading point displacement
Vg = SL loading point velocity
& slider displacement
v=4i slider velocity
7, V, 8 equilibrium values
k spring stiffness
g state variable
R=EB/A friction parameter
Ty, Tz, T3 characteristic times
T nondimensional velocity
y nondimensional elastic traction
z nondimensional state
ALz complex conjugate eigenvalues
T period at critical conditions

with the solution of the following reduced one

1

oL

Y 7 (e 1) (94a)

= [+ R(y—2)], (%)
= — z —

T Tyl + Vg y==

z =¥ 1 (9¢)

obtained from (6) with Ti# — 0. The previous set of
equations represents the so-called “quasi-static” prob-
lem usually adopted when m is very small. Finally, we
may note that Eq. (9¢c) and the z definition (Eq. 5)
imply that for the quasi-static problem the velocity is
always nonnegative; in fact V = V5elv=2) This avoids
the problem of the singularity for V. = ~1/h, A > 0
(Eq. 3) in the state evolution.

3 Linear stability analysis

Civen a set of differential equations like Eq. (6) with
an equilibrium point, we define “subcritical” the condi-
tion on the system parameters which makes the equi-
librium point stable and “supercritical” the condition
which makes it unstable. Defining ¢ = T3/T1/(1 +
T, /T3) with T = Ta(1+ AVL), it can be shown that the
complete set of equations (6) for the dynamic system is

Table 2. Time estimates for ¥V} = 1 mm/a, L; = 10 mm  “fault”
values), Vz = 10 m/a, Lz = 10 pm ( “laboratory” values).

Ve L T (S) T (S) Ts (5)

Vi L 3x 10710 3 x 10° 3x 108
" Ly " " 3x10°
Vo Ly 3% 108 3x 105 3ax10*
" LZ ” n 3% 10 1
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stable in the neighborhood of the equilibrium point if

E—1<¢ (subcriticality) (10)
and unstable if
R-—-12>¢ (supercriticality). (11)

The following condition will be referred to as the critical
condition on the system parameter values

R~ 1=4¢ (criticality). (12)
If the latter condition is fulfilled it ¢an be shown that
one of the eigenvalues of the linearized system is real and
negative, and the other two are imaginary and given by

T=2r/TTi/1+T1/T).  (13)

It is easy to show that these results for A = O repro-
duce those found by Rice and Ruina (1983) by using
the 7i, ¢ = 1,2,3 definitions (7), but it is important
to stress that the stability of the equilibrium point can
change by varying each of the parameters k, A, R, L, h
(h > 0) and not only & as is usually dore.

As shown in the appendix (points i and #) the equili-
brium point of the linearized quasi-static model (9), can
be a node or a focus. The equilibrium point is stable if

Alg—:’:i

R—-1<1, (14),
where 1 = T} /T, and unstable if
R-1>4. (15)

These results are summarized in Fig. 2. The cigenvalues
of the system when the critical condition is fulfilled

R—1=q, (16)

are imaginary and given by

2
Mg:j%%,T:Qmﬁ&ﬂ. (17)

As expected, these results for the quasi-static system can
be obtained from the stability analysis of the dynamical
system in the limit 7] — 0 (cfr. Egs. 10-13).

4 Nonlinear analysis of the quasi-static model

In the previous paragraph we saw that the quasi-staiic
system can be assumed as the limit 712 — 0 of the
dynamic system as far as a linear stability analysis is
concerned ({.e.  “at small”). On the basis of the non-
linear analysis for the quasi-static system in the case
h =0 (Gu et al., 1984), there are always points that are
sufficiently far away from the origin, from which diver-
ging motions develop. For the corresponding dynamical
model a supercritical Hopf bifurcation and therefore a

I 2 3 4
Ty [ Ty=kLIA

Fig. 2. Parameters plane for the linearized system (9) and insta-
bility (dark) and stability {light) domains. T] = T5(1 + AVy) is
the characteristic time of the z evolution in the lincarized set of
equalions. The arrows bound the velocity weakening area (B > A)
from the velocity strengthening (B < A). The discriminant A of
the characteristic equation (A1) is negative in the dashed region,
and the equilibrium point is a focus, The parabola in solid line
is the locus A = 0 and the origin is a node in the region comple-
mentary to the shaded one. The anti-bisector dashed line is the
locus where the origin is a center.

stable limit cycle have been computationally found by
most authors (e.g. Rice and Tse, 1986). The value of
T in (11) is a first approximation estimate of the period
on the limit cycle. Accordingly, for A = 0, the dynamic
and quasi-static models cannot be considered equivalent
“at large”. On the contrary we will show that a positive
value of & deeply modifies the response of the quasi-
static model enabling the existence of a stable limit cy-
cle. In this way the quasi-static model becomes a better
approximation of the corresponding dynamic model.

For a Hopf bifurcation to occur in a two-dimensional
system, such as (6), with an equilibrium state, we have
first to verify that for a given set of parameter values
the linearized system has pure imaginary eigenvalues in
the equilibrium point (“the critical condition™) and that
during the monotonic variation of a single paramecter
through the critical value (determined by the fixed val-
ues of the other parameters), the real part of the eigen-
values changes sign. These two conditions enable us to
state only the existence of periodic orbits {Farkas, 1994,
pp. 417-418) and not the existence of an Hopf bifurca-
tion, as often stated in literature. To completely state
the existence and the kind of an Hopf bifurcation it is
sufficient (Perko, 1991, p. 317} to prove that in critical
conditions the origin is asymptotically stable (supercrit-
ical bifurcation) or unstable (subcritical bifurcation).

As shown in the appendix (point i) the real part of the



eigenvalues vanishes under condition (16), and if we con-
sider the passage from the subcritical to the supercritical
conditions (Eqs. 14-15)} with a single parameter varying,
it is easy lo show that the real part of the eigenvalues
changes sign. In order to discuss the asymptotic sta-
bility of the origin in critical conditions we can refer
(Perko, 1991, pg. 315-317) {0 the sign of the Liapunov
number of the third order approximating system. The
latter system can be obtained from Eqs. 9a-b, by ex-
panding the second members up to third order in the
Taylor expansion in the neighborhood of the origin. The
Liapunov number is given as the following function of
the parameter h

3m 34 5hVy

cr(h) = —-4—}LVL (—1-|-}L—‘VL)3

(18)
If the Liapunov number of the third order approximat-
ing system Is greater than 0, then the Hopf bifurcation
is subcritical, if it is less than 0 then the bifurcation
is supercritical. We cannot state anything on the basis
of this criterion if the Liapunov number is vanishing.
From (18) we can see that for i > 0 ¢ is always nega-
tive; therefore, we have a supercritical bifurcation and,
consequently, a stable limit cycle (Fig. 3).

In the case h = 0 of the RR laws the Liapunov number
is vanishing and the critical condition has to be studied
in another way. The origin 1s a centcr as shown in the
appendix (point #i) and therefore the third condition of
the Hopf bifurcation theorem is not fulfilled.

If the A = 0 quasi-static system had a supercritical Hopf
bifurcation, it would exhibit a stable limit cycle when
the origin is unstable (Eq. 15). But Gu et al. (1984)
demomstrated that in this case the quasi-static model
15 globally unstable. Thus a stable limit cycle does not
exist; therefore a supercritical Hop{ bifurcation does not
exist. '

Finally, another difference between the quasi-static and
dynamic model for A = 0 can be stated. The dynamic
system motion is, at least asymptotically, independent
of the initial position; the quasi-static system in crit-
ical conditions, on the contrary, exhibits a strong de-
pendence on the initial conditions, as hinted also by
Horowitz and Ruina {1989). In fact, by definition, the
trajectories characterizing the center depend on the ini-
tial condition. By the way, for the latter reason, even
if they are periodic, the trajectories of the quasi-static
system in critical conditions cannot be associated to a
limit cycle as they could easily be misinterpreted.

5 Conclusive remarks

According to the numerical simulation (e.g. Rice and
Tse, 1986; Gu and Wong, 1991) the dynamical (or com-
plete) model (6) of a spring-slider motion under rate-
and state-dependent friction exhibits a supercritical
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Hopf bifurcation. Therefore a stable limit cycle necessa-
rily occurs for specific parameter values. A smaller order
model can approximate the behaviour of the third order,
complete system, only if it preserves this fundamental
property.

In the previous paragraphs we dealt with the properties
of such a dynamical system. We introduced nondimen-
sional variables that allows for the definition of three
characteristic times relative to the three independent
dynamics of this system: sliding velocity, state of the
surface, elastic traction. A linear analysis in the neigh-
borhood of the equilibrium point shows that a Hopf
transition is likely for variation of each of the parameters
across the critical condition and not only the stiffness of
the spring k, as is usually reported. In the second para-
graph we state a general necessary condition for the use
of a second order model as an approximaticn of the com-
plete model. The approximating model is the so-called
quasi-static model and is obtained by supposing the in-
ertial dynamics to be instantaneous.

As shown by previously made numerical simulations, if
the RR. frictional laws are not modified, the quasi-static
model does not preserve the property of the existence
of a stable limit cycle. In particular, we proved that in
critical conditions the equilibrium point is & center and
thus is not asymptotically stable and shows a strong de-
pendence on the initial conditions. In the literature, on
the contrary, a Hopf bifurcation was often incorrectly at-
tributed to the quasi-static model with RR laws. Since
the quasi-static model lacks inertia effects, as far as the
RR fricticnal laws are concerned, the existence of a sta-
ble limit cycle for the complete model can be explained
with the dynamic effect of the mass according to the ar-
guments just given. Therefore the effect of the mass can
be regarded as strictly stabilizing, the stable limit cycle
being a system attractor by definition. In particular it
is worth stressing that in a global analysis of the sys-
tem it is not correct to extrapolate a result of the linear
analysis such as “mass is always destabilizing” (Rice and
Ruina, 1983).

However, the quasi-static model has noticeable compu-
tational advantages with respect to the complete sy-
stem, besides that of being of a lower order. We proved,
in fact, in the sccond paragraph that in the quasi-static
model the sliding velocity does not vanish or change
sign, and thus overflows linked to the logarithmic de-
pendence on velocity of the rate- and state- dependent
laws are prevented. Moreover, we saw that the parame-
ter values of geophysical interest fulfil the general con-
dition necessary for the quasi-static model to be a good
approximation of the complete model.

The particular form of the state equation according to
the RR laws is likely to be a destabilizing factor for
the quasi-static model. A suiiable modification of the
state equation with respect to the RR laws gives rise
to a supercritical Hopf bifurcation and in particular a
stable limit cycle. A similar modification can be made
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Fig. 3. Trajectories in the phasc plane
UE - 0 L ¥ versus In{V/Vy) of the quasi-static
¥ ¥ system for R = 2,04, AV, = 0.01 and
Ty = Ts = 1.1 x 10%s. A limit cycle
1 | 5 stable both externally (a, ¢} and inter-
nally (b, d} is evident. Greater values
o v 10 . of the ratio 75 /T3 reduce the transient
-5 0 5 10 -5 0 5 I0 part of trajectories tending to the limit
IN(VIVL) ln(VlV,_) Cycle.

on the complete system without changing the essential
properties (limit cycle) of the system.

In summary, the analytical results we showed in this
paper indicate that: 1) the quasi-static model with un-
changed RR laws is equivalent to the complete model
only as far the LINEAR dynamical properties are con-
cerned, 2) by meodification of the frictional laws it is
possible to obtain a quasi-static model equivalent to the
complete model in a more general sense (i.e. “at small”
and “at large”).

Appendix

In this appendix i) we obtain the stability condition for
the origin in the quasi-static system (9), it} classify the
origin as a critical point (Fig. 2), #ii) prove that the
origin is a center in critical conditions for A = 0.

)
The characteristic polynomial of the linearized set of
equations obtained from (9a) and (9b) is

p(A}) = A 4ax+b
where @« = /T + (1 - R)/[(1 + hVL)T3), (A1}
R R/[TgTs(l -+ hVL)].

Since the eigenvalues are solutions of p{A) = 0, we have

M,2=(—axAYY /2 A=d®—4b (A2)
and a > 0 is the necessary and sufficient condition for
the origin stability, z.e. (14) in the text; analogously (15)
1s the necessary and sufficient condition for the origin

instability.

1

)

The analysis of the discriminant A of the characteristic
equation enables us to classify the character of the origin
as in Fig. 2. Since in {A1) & > 0 for 2 > 0, we have
a node (a focus) in the origin if A > 0 (A < 0). The
locus A = 0 is a parabola in the planc o = T3(l +
RVEY/Ty, B=1-R

o® + 8 + 208 — 4a = 0. (A3)

iii)
The solution y(t), z(t) of the set of equations (9a) and
(9b) for A = 0 represents a point of the family of tra-

jectories with locus F(y,z) = cost, where (Minorsky,
1962, pg. 33) F is such that

ar ar

S 7= Ad

Y@y + Oz o (A4)

with Yy,z) = —Tl(e(y"z) - 1)), (AD)
1

Zyz) =L itRE-2) (A6)

T Tyelvi 4 avy

We solve q. (A4) by subsequent approximations, ex-
panding ¥, Z and F in a series of powersof yand z: ¥ =
Z?il Yi(y:z)s Z = 221 Zi(ya Z); F = 221 F«;(y. 2)1
where Yy, Z;, Fy, 1 =1, 2, ... are homogeneous poly-
nomials of order 7 in ¥ and z. At the first order in the
power expansion we may write Eq.(A4) in the form

Yiy+ Zie=0 (AT)
where we put Iy = vy + €z, Equation (A5) owing lo
the pelynomials identity principle is equivalent to a ho-
mogencous set of linear equations for o, 8, wilh not



vanishing determinant D = (7373)™", and then with
only the vanishing solution. Thus we have F; = 0. We
now consider Eq. (A4) at the second crder

YVi(xy+&z)+ Z1(fy+pz) =0 (A8)

where we put Fy = xy° + 28yz + pz*. Owing to the
polynomials identity principle Eq. (A8) is equivalent to
a homogeneous set of linear equations for y, &, p with
a vanishing determinant if the critical condition (16)
helds.  Accordingly, its solution is a one-dimensional
subspace of %2 parameterized by the value of £, for in-
sbance: y — —RT»/T3E, p = —&. We finally have

R 2 1
o = g7 naipe- R 2 . (
2 = —¢1y (Tsy YT e ) (A9)

The previous one, whereby equated Lo an arbitrary con-
stant, and owing to the condition (16), is the equation
of an ellipses family surrounding the origin, i.e. a fam-
ily of closed curves. Thus we proved that for each point
in the neighborhood of the origin, we have a closed tra-
jectory surrounding it; this is sufficient for asserting that
the origin is a centler for the quasi-static system (9) for
h = 0 and in critical conditions. This result was ob-
tained considering the trajectories embedded in such a
small neighborhood of the origin that we can neglect
terms of order greater than the second order in the ex-
pansion of the trajectory locus F' =cost. Nevertheless,
the former analysis is nonlinear since we took into ac-
count the original form of the system equations (Eq. 9)
and not its linearized form. This is important since the
existence of imaginary eigenvalues in a linear analysis
enables us only to assert that the corresponding equi-
libriumn state is a center or a focus, stable or unstable
{Perko, 1991, p. 142). Only nonlinear analysis can de-
cide among these alternatives.
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