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Abstract. We consider the statistical properties of solutions
of the stochastic fractional relaxation equation and its frac-
tionally integrated extensions that are models for the Earth’s
energy balance. In these equations, the highest-order deriva-
tive term is fractional, and it models the energy storage
processes that are scaling over a wide range. When driven
stochastically, the system is a fractional Langevin equation
(FLE) that has been considered in the context of random
walks where it yields highly nonstationary behaviour. An im-
portant difference with the usual applications is that we in-
stead consider the stationary solutions of the Weyl fractional
relaxation equations whose domain is −∞ to t rather than 0
to t .

An additional key difference is that, unlike the (usual)
FLEs – where the highest-order term is of integer order and
the fractional term represents a scaling damping – in the frac-
tional relaxation equation, the fractional term is of the high-
est order. When its order is less than 1/2 (this is the main
empirically relevant range), the solutions are noises (gener-
alized functions) whose high-frequency limits are fractional
Gaussian noises (fGn). In order to yield physical processes,
they must be smoothed, and this is conveniently done by
considering their integrals. Whereas the basic processes are
(stationary) fractional relaxation noises (fRn), their integrals
are (nonstationary) fractional relaxation motions (fRm) that
generalize both fractional Brownian motion (fBm) as well as
Ornstein–Uhlenbeck processes.

Since these processes are Gaussian, their properties are de-
termined by their second-order statistics; using Fourier and
Laplace techniques, we analytically develop corresponding
power series expansions for fRn and fRm and their fraction-
ally integrated extensions needed to model energy storage

processes. We show extensive analytic and numerical results
on the autocorrelation functions, Haar fluctuations and spec-
tra. We display sample realizations.

Finally, we discuss the predictability of these processes
which – due to long memories – is a past value problem, not
an initial value problem (that is used for example in highly
skillful monthly and seasonal temperature forecasts). We de-
velop an analytic formula for the fRn forecast skills and com-
pare it to fGn skill. The large-scale white noise and fGn lim-
its are attained in a slow power law manner so that when the
temporal resolution of the series is small compared to the re-
laxation time (of the order of a few years on the Earth), fRn
and its extensions can mimic a long memory process with a
range of exponents wider than possible with fGn or fBm. We
discuss the implications for monthly, seasonal, and annual
forecasts of the Earth’s temperature as well as for projecting
the temperature to 2050 and 2100.

1 Introduction

Over the last decades, stochastic approaches have rapidly de-
veloped and have spread throughout the geosciences. From
early beginnings in hydrology and turbulence, stochasticity
has made inroads in many traditionally deterministic areas.
This is notably illustrated by stochastic parameterizations
of numerical weather prediction models, e.g. Buizza et al.
(1999), and the “random” extensions of dynamical systems
theory, e.g. Chekroun et al. (2010).

In parallel, pure stochastic approaches have developed pri-
marily along two distinct lines. One is the classical (integer-
ordered) stochastic differential equation approach based on
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94 S. Lovejoy: Fractional relaxation noises, motions and the fractional energy balance equation

the Itô or Stratonovich calculus that goes back to the 1950s
(see the useful review by Dijkstra, 2013). The other is the
scaling strand that encompasses both linear (monofractal,
Mandelbrot, 1982) and nonlinear (multifractal) models (see
the review by Lovejoy and Schertzer, 2013) that are based
on phenomenological scaling models, notably cascade pro-
cesses. These and other stochastic approaches have played
important roles in nonlinear geoscience.

Up until now, the scaling and differential equation strands
of stochasticity have had surprisingly little overlap. This is
at least partly for technical reasons: integer-ordered stochas-
tic differential equations have exponential Green functions
that are incompatible with wide-range scaling. However, this
shortcoming can – at least in principle – be easily over-
come by introducing at least some derivatives of fractional
order. Once the (typically) ad hoc restriction on integer or-
ders is dropped, the Green functions are based on “gen-
eralized exponentials” that in turn are based on fractional
powers (see the review by Podlubny, 1999). The integer-
ordered stochastic equations that have received the most at-
tention are thus the exceptional, non-scaling special cases.
In physics they correspond to classical Langevin equations;
in geophysics and climate modelling, they correspond to the
linear inverse modelling (LIM) approach that goes back to
Hasselmann (1976) and later elaborated notably by Penland
and Magorian (1993), Penland (1996), Sardeshmukh et al.
(2000), Sardeshmukh and Sura (2009) and Newman (2013).
Although LIM is not the only stochastic approach to climate,
in two recent representative multi-author collections (Palmer
and Williams, 2010; Franzke and O’Kane, 2017), all 32 pa-
pers shared the integer-ordered assumption (a single excep-
tion being Watkins, 2017; see also Watkins et al., 2020).

Under the title “Fractal operators”, West et al. (2003) re-
view and emphasize that, in order to yield scaling behaviours,
it suffices that stochastic differential equations contain frac-
tional derivatives. However, when it is the time derivatives of
stochastic variables that are fractional – fractional Langevin
equations (FLEs) – then the relevant processes are generally
non-Markovian (Jumarie, 1993), so that there is no Fokker–
Planck (FP) equation describing the corresponding probabil-
ities. Even in the relatively few cases where the FLE has been
studied, the fractional terms are generally models of viscous
damping, so that the highest-order terms are still integer-
ordered (an exception is Watkins et al., 2020, who mention
“fractionally integrated FLE” of the type studied here but
without investigating its properties). Integer-ordered terms
have the convenient consequence of regularizing the solu-
tions, so that they are at least root mean square continuous;
in this paper the highest-order derivatives are fractional, so
that when the highest-order terms are≤ 1/2, the solutions are
“noises”, i.e. generalized functions that must be smoothed in
order to represent physically meaningful quantities.

An additional obstacle is that – as with the simplest scaling
stochastic model, fractional Brownian motion (fBm, Man-
delbrot and Van Ness, 1968) – we expect that the solutions

will not be semi-martingales and hence that the Itô calculus
used for integer-ordered equations will not be applicable (see
Biagini et al., 2008). This may explain the relative paucity
of mathematical literature on stochastic fractional equations
(see however Karczewska and Lizama, 2009). In statistical
physics, starting with Mainardi and Pironi (1996), Metzler
and Klafter (2000) and Lutz (2001) helped with numerics;
the FLE (and a more general “Generalized Langevin Equa-
tion”, Kou and Sunney Xie, 2004; Watkins et al., 2019) has
received a little more attention as a model for (nonstationary)
particle diffusion (see West et al., 2003, for an introduction,
or Vojta et al., 2019, for a more recent example). These tech-
nical aspects may explain why the statistics of the resulting
processes are not available in the literature.

Technical difficulties may also explain the apparent para-
dox of continuous-time random walks (CTRWs) and other
approaches to anomalous diffusion that involve fractional
equations. While CTRW probabilities are governed by the
deterministic fractional-ordered generalized fractional diffu-
sion equation (e.g. Hilfer, 2000; Coffey et al., 2012), the
walks themselves are based on specific particle jump mod-
els rather than (stochastic) Langevin equations. Alterna-
tively, a (spatially) fractional-ordered Fokker–Planck equa-
tion may be derived from an integer-ordered but nonlin-
ear Langevin equation for a diffusing particle driven by an
(infinite-variance) Levy motion (Schertzer et al., 2001).

In nonlinear geoscience, it is all too common for math-
ematical models and techniques developed primarily for
mathematical reasons to be subsequently applied to the real
world. This approach – effectively starting with a solution
and then looking for a problem – occasionally succeeds, yet
historically the converse has generally proved more fruit-
ful. The proposal that an understanding of the Earth’s en-
ergy balance requires the fractional energy balance equation
(FEBE, Lovejoy et al., 2021, announced in Lovejoy, 2019a)
is an example of the latter. First, the scaling exponent of
macroweather (monthly, seasonal, interannual) temperature
stochastic variability was determined (HI ≈−0.085± 0.02)
and shown to permit skillful global temperature predictions
(Lovejoy, 2015b; Lovejoy et al., 2015; Del Rio Amador
and Lovejoy, 2019), and then it was extended to regional
temperatures (at 2◦× 2◦ resolution) (Del Rio Amador and
Lovejoy, 2019, 2021a, b). The latter papers showed how
the long-memory high-frequency approximation to the FEBE
can not only make state-of-the-art multi-month temperature
forecasts, but also how the corresponding simulations gener-
ate emergent properties such as realistic El Niño events.

In parallel, the multidecadal deterministic response to ex-
ternal (anthropogenic, deterministic) forcing was shown to
also obey a scaling law but with a different exponent (Hébert,
2017; Lovejoy et al., 2017; Procyk et al., 2020, 2022; Procyk,
2021), HF ≈−0.5± 0.2. It was only then realized that the
order h FEBE naturally accounts for both the high- and low-
frequency global temperature exponents with h=HI+ 1/2
andHF =−h, with both empirical exponents recovered with
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a FEBE of order h≈ 0.38± 0.03. The realization that the
FEBE fit these basic empirical facts motivated the present re-
search into its statistical properties, including its predictabil-
ity.

In the EBE, energy storage is modelled by a uniform
slab of material, implying that, when perturbed, the temper-
ature exponentially relaxes to a new thermodynamic equilib-
rium. However, as reviewed in Lovejoy and Schertzer (2013),
both conventional global circulation models and observa-
tions show that atmospheric, oceanic and surface (e.g. to-
pographic) structures are spatially scaling. A consequence
is that the temperature relaxes to equilibrium in a power
law manner. This motivated earlier approaches (van Hateren,
2013; Rypdal, 2012; Hébert, 2017; Lovejoy et al., 2017) to
postulate that the climate response function (CRF) itself is
scaling. However, these models require either ad hoc trunca-
tions or imply infinite sensitivity to small perturbations (Ryp-
dal, 2015; Hébert and Lovejoy, 2015).

The FEBE instead situates the scaling in the energy stor-
age processes; this is the physical basis for the phenomeno-
logical derivation of the FEBE proposed in Lovejoy et al.
(2021), and the zeroth-order term guarantees that equilibrium
is reached after long enough times. The scaling of the ba-
sic physical quantities in both time and space motivates the
study of the FEBE and its fractionally integrated extensions
discussed below with temperature treated as a stochastic vari-
able. The FEBE determines the Earth’s global temperature
when the energy storage processes are scaling and modelled
by a fractional time-derivative term. Recently, analysis of the
atmospheric radiation budget has shown that, at least over
some regions, the internal component of the radiative forcing
may itself be scaling: this justifies the consideration of the
extensions to fGn forcing.

The FEBE differs from the classical energy balance equa-
tion (EBE) in several ways. Whereas the EBE is integer-
ordered and describes the deterministic, exponential relax-
ation of the Earth’s temperature to equilibrium, the FEBE is
of fractional order, and because it is both deterministic and
stochastic, it unites all the forcings and responses into a sin-
gle model. Whereas the stochastic part represents the forcing
and response to the unresolved degrees of freedom – the “in-
ternal variability” – and is treated as a zero mean Gaussian
noise, the deterministic part represents the external (e.g. an-
thropogenic) forcing and the forced response modelled by
the total external forcing. Complementary work (Procyk et
al., 2020, 2022; Procyk, 2021) uses the deterministic FEBE
as the basic model for the response to external forcing, but its
Bayesian parameter estimation uses the stochastic FEBE to
characterize the likelihood function of the residuals assumed
to be the responses to stochastic internal forcing and gov-
erned by the same equation. It thus avoids the ad hoc error
models involved in conventional Bayesian parameter estima-
tion. The result is a parsimonious, FEBE projection of the
Earth’s temperature to 2100 that has much lower uncertainty
than the classical global circulation model alternative. This is

the first time that classical general circulation model climate
projections have been confirmed by an independent, qualita-
tively different, approach.

An important but subtle EBE–FEBE difference is that,
whereas the former is an initial value problem whose ini-
tial condition is the Earth’s temperature at t = 0, the FEBE
is effectively a past value problem whose prediction skill im-
proves with the amount of available past data, and – depend-
ing on the parameters – it can have an enormous memory
(Del Rio Amador and Lovejoy, 2021b). To understand this,
recall that an important aspect of fractional derivatives is that
they are defined as convolutions over various domains. To
date, the main one that has been applied to physical prob-
lems is the Riemann–Liouville (and the related Caputo) frac-
tional derivative specialized to convolutions over the interval
between an initial time= 0 and a later time t . With one or
two exceptions, this is the domain considered in Podlubny’s
mathematical monograph on deterministic fractional differ-
ential equations (Podlubny, 1999) as well as in the stochas-
tic fractional physics discussed in West et al. (2003), Her-
rmann (2011), Atanackovic et al. (2014), and most of the pa-
pers in Hilfer (2000) (with the partial exceptions of Schies-
sel et al., 2000, and Nonnenmacher and Metzler, 2000). A
key point of the FEBE is that it is instead based over semi-
infinite domains – here from −∞ to t – often called Weyl
fractional derivatives. This is the natural range to consider for
the Earth’s energy balance, and it is needed to obtain statis-
tically stationary responses. Random walk problems involv-
ing fractional equations over the domain 0 to t can be dealt
with using Laplace transform techniques. In comparison, the
Earth’s temperature balance involves statistically stationary
stochastic forcings that are more conveniently dealt with us-
ing Fourier techniques.

We have mentioned that the FEBE can be derived phe-
nomenologically where the fractional derivative of order h
term represents the energy storage processes (Lovejoy et al.,
2021). In this approach order h is an empirically determined
parameter with h= 1 corresponding to the classical (expo-
nential) exception. Alternatively, it may derived from a more
fundamental starting point, the classical heat equation – the
same starting point as the classical Budyko–Sellers energy
balance models (Budyko, 1969; Sellers, 1969). Recently it
was shown with the help of Babenko’s operator method that
the special h= 1/2 FEBE – the half-ordered energy balance
equation (HEBE) – could be derived analytically from the
classical heat equation (Lovejoy, 2021a, b).

To obtain the HEBE, it is sufficient to follow the Budyko–
Sellers approach but to avoid one of their key approxima-
tions. The Earth’s atmosphere and ocean are driven by lo-
cal imbalances in radiative fluxes. While Budyko–Sellers
models simply redirect this flux away from the Equator, the
HEBE improvement (Lovejoy, 2021a, b) is to instead use the
mathematically correct radiative–conductive surface bound-
ary conditions. When this is done in the classical energy
transport equation, one obtains an important h= 1/2 special
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case of the FEBE, the half-order EBE or HEBE. The use of
half-order derivatives in the heat equation is completely clas-
sical and goes back to at least Oldham (1973), Oldham and
Spanier (1972), Babenko (1986), Magin et al. (2004), and
Sierociuk et al. (2013). The extension to h 6= 1/2 can be ob-
tained using the same mathematical techniques by starting
with the fractional generalization of the classical heat equa-
tion, the fractional heat equation. Further generalizations are
also possible and will be reported elsewhere.

The choice of a Gaussian white noise forcing was made
not so much for its theoretical simplicity as for its physical
realism. Using scaling to divide atmospheric dynamics into
dynamical ranges (Lovejoy, 2013, 2015a, 2019b), the main
ones are weather, macroweather and climate. While the tem-
perature variability in both space and time is generally highly
intermittent (multifractal), there is one exception: the tempo-
ral macroweather regime (starting at the lifetime of plane-
tary structures – roughly 10 d – up until the climate regime at
much longer scales). Macroweather is the regime over which
the FEBE applies, and it has exceptionally low intermittency:
temporal (but not spatial) temperature anomalies are not far
from Gaussian (Lovejoy, 2018). Responses to multifractal or
Levy process FEBE forcings may however be of interest else-
where.

This paper is structured as follows. In Sect. 2 we present
the fractional relaxation equation, forced by a Gaussian
white noise as a natural generalization of classical fractional
Brownian motion, fractional Gaussian noise and Ornstein–
Uhlenbeck processes (Sect. 2.1 and 2.2). When forced by
Gaussian white noises, the solutions define the correspond-
ing fractional relaxation motions (fRm) and fractional re-
laxation noises (fRn). We consider further extensions to the
case where the equation is forced by a scaling noise fGn
(Sect. 2.3, Eqs. 21 and 22). This is equivalent to consider-
ing the fractionally integrated fractional relaxation equation
with white noise forcing. In Sect. 2, we first solve the equa-
tions in terms of Green’s functions and then introduce pow-
erful Fourier techniques that yield integral representations of
the second-order statistics, including autocorrelations, struc-
ture functions (Eqs. 33 and 35), Haar fluctuations and spectra
(with many details in Appendix A and in Appendix B, we de-
rive the properties of the HEBE special case). In Sect. 3, we
develop both short- and long-time (asymptotic) series expan-
sions for the statistics (Eqs. 49 and 51), and we display and
discuss sample fRn and fRm processes. In Sect. 4 we dis-
cuss the problem of prediction – important for macroweather
forecasting – and derive expressions for the optimum predic-
tor (Eq. 63) and its theoretical prediction skill as a function
of forecast lead time (Eq. 68). In Sect. 5 we conclude.

We could note that the paper is somewhat complex due
to the necessity of developing several approaches: Fourier
for the main integral representations (Sect. 2), Laplace for
the asymptotic expansions (Sect. 3), and real space for the
predictability results (Sect. 4).

2 The fractional relaxation equation

2.1 fRn, fRm, fGn and fBm

In the introduction, we outlined physical arguments that the
Earth’s global energy balance could be well modelled by the
fractional energy balance equation. Taking T as the glob-
ally averaged temperature, τ as the characteristic timescale
for energy storage/relaxation processes, F as the (stochastic)
forcing (energy flux; power per area), and s as the climate
sensitivity (temperature increase per unit flux of forcing), the
FEBE can be written in Langevin form as

τh
(
aD

h
t T
)
+ T = sF , (1)

where the Riemann–Liouville fractional derivative symbol
aD

h
t is defined as

aD
h
t T =

1
0(1−h)

d
dt

t∫
a

(t − s)−hT (s)ds; 0< h < 1 , (2)

where 0 is the standard gamma function. Derivatives of order
ν > 1 can be obtained using ν = h+m, wherem is the integer
part of ν, and then applying this formula to the mth ordinary
derivative. The main case studied in applications (e.g. ran-
dom walks) is a = 0, so that Laplace transform techniques
are often used (alternatively, the somewhat different Caputo
fractional derivative is used). However, here we will be in-
terested in a =−∞: the Weyl fractional derivative −∞Dht ,
which is naturally handled by Fourier techniques (Sect. 2.4
and Appendices A and B), and, in this case, this distinction
is unimportant.

Since Eq. (1) is linear, by taking ensemble averages, it can
be decomposed into deterministic and random components
with the former driven by the mean forcing external to system
〈F 〉 and the latter by the fluctuating stochastic component
F −〈F 〉 representing the internal forcing driving the internal
variability. The deterministic part has been used to project
the Earth’s temperature throughout the 21st century (Procyk
et al., 2020, 2022); in the following we consider the simplest
purely stochastic model in which 〈F 〉 = 0 and F = γ , where
γ is a Gaussian “delta-correlated” and with unit amplitude
white noise:

〈γ (v)〉 = 0; 〈γ (v)γ (u)〉 = δ(u− v) . (3)

In Hébert (2017), Lovejoy et al. (2017), and Hébert et
al. (2021), it was argued on the basis of an empirical study
of ocean–atmosphere coupling that τr ≈ 2 years, while re-
cent work indicates a value somewhat higher,≈ 5 years (Pro-
cyk et al., 2022). At high frequencies, Lovejoy et al. (2015)
and Del Rio Amador and Lovejoy (2019, 2021a) showed
that the value h≈ 0.4 reproduced the Earth’s temperature
at scales < τ as well as for macroweather scales (longer
than the weather regime scales of about 10 d) but still < τ .
Procyk et al. (2020) also used the FEBE to estimate (the
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global) s = [0.45,0.67]K (Wm−2)−1 (90 % confidence in-
terval), and the amplitude of the radiative forcing at monthly
resolution was [0.89;1.42]Wm−2 (90 % confidence inter-
val).

When 0< h < 1, Eq. (1) with γ (t) replaced by a determin-
istic forcing is a fractional generalization of the usual (h= 1)
relaxation equation; when 1< h < 2, it is the “fractional os-
cillation equation”, a generalization of the usual (h= 2) os-
cillation equation (Podlubny, 1999).

To simplify the development, we use the relaxation time
τ to nondimensionalize time, i.e. to replace time by t/τ to
obtain the canonical Weyl fractional relaxation equation:

(
−∞D

h
t + 1

)
Uh = γ ; Qh(t)=

t∫
0

Uh(v)dv, (4)

for the nondimensional process Uh. The dimensional so-
lution of Eq. (1) with nondimensional γ = sF is simply
T (t)= τ−1 Uh(t/τ ), so that in the nondimensional Eq. (4),
the characteristic transition “relaxation” time between dom-
inance by the high frequency (differential) and the low fre-
quency (Uh term) is t = 1. Although we give results for the
full range 0< h < 2 – i.e. both the “relaxation” and “oscilla-
tion” ranges – for simplicity, we refer to the solution Uh(t)
as “fractional relaxation noise” (fRn) and to Qh(t) as “frac-
tional relaxation motion” (fRm). Note that fRn is only strictly
a noise when h≤ 1/2.

In dealing with fRn and fRm, we must be careful of vari-
ous small and large t divergences. For example, Eqs. (1) and
(4) are the fractional Langevin equations corresponding to
generalizations of integer-ordered stochastic diffusion equa-
tions: the classical h= 1 case is the Ohrenstein–Uhlenbeck
process. Since γ (t) is a “generalized function” – a “noise” –
it does not converge at a mathematical instant in time, and it
is only strictly meaningful under an integral sign. Therefore,
a standard form of Eq. (4) is obtained by integrating both
sides by order h (i.e. by differentiating by −h and assuming
that differentiation and integration of order h commute):

Uh(t)= −−∞D
−h
t Uh+−∞D

−h
t γ

= −
1

0(h)

t∫
−∞

(t − v)h−1Uh(v)dv

+
1

0(h)

t∫
−∞

(t − v)h−1γ (v)dv , (5)

(see e.g. Karczewska and Lizama, 2009). The white noise
forcing in the above is statistically stationary; the solution
for Uh(t) is also statistically stationary. It is tempting to ob-
tain an equation for the motion Qh(t) by integrating Eq. (4)
from −∞ to t to obtain the fractional Langevin equation
−∞D

h
t Qh+Qh =W , whereW is the Wiener process (a stan-

dard Brownian motion) satisfying dW = γ (t)dt . Unfortu-
nately the Wiener process-integrated −∞ to t almost surely

diverges, and hence we relate Qh to Uh by an integral from
0 to t .

In the high-frequency limit, the derivative dominates, and
we obtain the simpler fractional Langevin equation

−∞D
h
t Fh = γ ; Bh(t)=

t∫
0

Fh(v)dv, (6)

whose solution Fh is the fractional Gaussian noise process
(fGn, not to be confused with the forcing) and whose integral
Bh is fractional Brownian motion (fBm). We thus anticipate
that Fh and Bh are the high-frequency limits of fRn and fRm.

2.2 Green’s functions

Although it will turn out that Fourier techniques are very con-
venient for calculating the statistics, there are also advantages
to classical (real-space) approaches, and in any case they are
needed for studying the predictability properties (Sect. 4).
We therefore start with a discussion of Green’s functions that
are the classical tools for solving inhomogeneous linear dif-
ferential equations:

Fh(t)=

t∫
−∞

G
(fGn)
0,h (t − v)γ (v)dv,

Uh(t)=

t∫
−∞

G
(fRn)
0,h (t − v)γ (v)dv , (7)

where G(fGn)
0,h and G(fRn)

0,h are Green’s functions for the dif-
ferential operators corresponding respectively to −∞Dht and
−∞D

h
t + 1. Note that, due to causality, all Green’s functions

used in this paper vanish for t < 0.
G
(fGn)
0,h andG(fRn)

0,h are the usual “impulse” (Dirac) response
Green’s functions (hence the subscript “0”). For the differen-
tial operator 4, they satisfy

4G0,h(t)= δ(t) . (8)

Integrating this equation, we find an equation for their in-
tegralsG1,h, which are thus “step” (Heaviside, subscript “1”)
response Green functions satisfying

4G1,h(t)=2(t); 2(t)=

t∫
−∞

δ(v)dv;
dG1,h

dt
=G0,h , (9)

where 2 is the Heaviside (step) function (= 0 for t < 0, = 1
for t ≥ 0). The inhomogeneous equation

4f (t)= F(t) (10)
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has a solution in terms of either an impulse or a step Green
function:

f (t) =

t∫
−∞

G0,h(t − v)F (v)dv

=

t∫
−∞

G1,h(t − v)F
′(v)dv; F ′(v)=

dF
dv
, (11)

the equivalence being established by integration by parts with
the conditions F(−∞)= 0 and G1,h(0)= 0. The use of the
step rather than impulse response is standard in the energy
balance equation literature since it gives direct information
on energy balance and the approach to equilibrium (see e.g.
Lovejoy et al., 2021). The step response for the noise is also
the basic impulse response function for the motion.

For fGn, Green’s functions are simply the kernels of the
fractional integrals

Fh(t)=
1

0(h)

t∫
−∞

(t − v)h−1γ (v)dv (12)

obtained by integrating both sides of Eq. (6) by order h. We
conclude that

G
(fGn)
0,h =

th−1

0(h)
; G

(fGn)
1,h =

th

0(h+ 1)
; −

1
2
≤ h <

1
2
. (13)

For fRn, we now recall some classical results useful in
geophysical applications. First, these Green functions are of-
ten equivalently written in terms of Mittag–Leffler functions
(“generalized exponentials”), Eα,β .

G0,h(t)= t
h−1Eh,h(−t

h); Eα,β(z)=

∞∑
n=0

zn

0(αn+β)
(14)

G0,h(t)=

∞∑
n=1
(−1)n+1 t

nh−1

0(nh)
; 0< h≤ 2

To lighten the notation in Eq. 14 and in the following, we
suppress the superscripts for fRn and fRm processes. A con-
venient feature of Mittag–Leffler functions is that they can
easily be integrated by any positive order α:

Gα,h(t)= 0D
−α
t (G0,h(t))=

th−1+αEh,h+α(−t
h)= tα−1

∞∑
n=1
(−1)n+1 tnh

0(α+ nh)
; t ≥ 0

= 0; t < 0

α ≥ 0; 0≤ h≤ 2 (15)

(Podlubny, 1999). As mentioned, the constraint t > 0 is due
to causality, and physical Green functions vanish for nega-
tive arguments. In the following this will simply be assumed.
With α = 1, we obtain the useful formulas

G1,h(t)= t
hEh,h+1(−t

h), G1,h(t)=

∞∑
n=1
(−1)n+1 tnh

0(1+ nh)
. (16)

Figure 1. The impulse (a, b) and step response functions (c, d) for
the fractional relaxation range (a, c: 0< h < 1, and red is h= 1,
the exponential), the black curves, bottom to top, are for h= 1/10,
2/10, . . . 9/10 and the fractional oscillation range (b, d: 1< h < 2,
red is the integer values h= 1, c, d is the exponential, and a, b
h= 2), and the sine function, the black curves, bottom to top are
for h= 11/10, 12/10, . . . , 19/10.

With this, we see that G(fGn)
0,h and G(fGn)

1,h are simply the first
terms in the power series expansions of the corresponding
fRn and fRm Green functions. The solution to Eq. (4) with
the white noise forcing γ (t) is therefore

U0,h(t)=

t∫
−∞

G0,h(t − v)γ (v)dv , (17)

where for this “pure” fRn process, we have added the sub-
script “0” for reasons discussed below. We note that, at the
origin, for 0< h < 1, G0,h is singular, whereas G1,h is regu-
lar, so that it may be advantageous to use the latter (step) re-
sponse function (for example in the numerical simulations in
Sect. 4). These Green function responses are shown in Fig. 1.
When 0< h≤ 1, the step response is monotonic; in an en-
ergy balance model, this would correspond to relaxation to
equilibrium. When 1< h < 2, we see that there are overshoot
and oscillations around the long-term value; it is therefore
(presumably) outside the physical range of an equilibrium
process.

In order to understand the relaxation process – i.e. the ap-
proach to the asymptotic value 1 in Fig. 1 for the step re-
sponse G1,h – we need the asymptotic expansion

Gα,h(t)=

∞∑
n=0

(−1)n

0(α− nh)
tα−1−nh

; t � 1 . (18)
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For α = 0, 1 we obtain the special cases corresponding to
impulse and step responses:

G0,h(t)=

∞∑
n=0
(−1)n

t−1−nh

0(−nh)
,

G1,h(t)=

∞∑
n=0
(−1)n

t−nh

0(1− nh)
; t � 1, (19)

(0< h < 1, 1< h < 2; note that the n= 0 terms are 0 and
1 for G0,h and G1,h respectively) (Podlubny, 1999), i.e. the
asymptotic expansions are power laws in t−h rather than th.
According to this, the asymptotic approach to the step func-
tion response (bottom row in Fig. 1) is a slow, power law
process. In the FEBE, this implies for example that the classi-
cal CO2 doubling experiment would yield a power law rather
than exponential approach to a new thermodynamic equilib-
rium. Comparing this to the EBE, i.e. the special case h= 1,
we have

G0,1(t)= e
−t
; G1,1(t)= 1− e−t , (20)

so that when h= 1, the asymptotic step response is instead
approached exponentially quickly. We see that when h= 1,
the process is a classical Ornstein–Uhlenbeck process, so that
fRn can be considered a generalization of the latter. There
are also analytic formulae for fRn when h= 1/2 (the HEBE)
is discussed in Appendix B, notably involving logarithmic
corrections.

2.3 The α-order fractionally integrated fRn and fRm
processes

Before proceeding to discuss the statistics of fRn and fRm
processes, it is useful to make a generalization to the frac-
tionally integrated processes:

Uα,h = −∞D
−α
t U0,h. (21)

Uα,h is the “α-order-integrated, fractional h relaxation
noise”. Combined with Green’s function relation Gα,h =

−∞D
−α
t G0,h (Eq. 15; recall that G0,h(t)= 0 for t < 0), we

find that Uα,h and Gα,h are respectively the fractionally in-
tegrated relaxation noises and Green’s functions of the frac-
tionally integrated fractional relaxation equation:(
−∞D

α+h
t +−∞D

α
t

)
Uα,h = γ,(

−∞D
α+h
t +−∞D

α
t

)
Gα,h = δ(t). (22)

If the highest-order derivative is constrained to be an integer
(i.e. α+h= 1 or 2), then the equation is a standard fractional
Langevin equation; for example, U could be for the velocity
of a particle with fractional damping and white noise forcing,
although even here, the initial conditions are usually taken to
be at t = 0 and not t =−∞. Equivalently, Uα,h is the solu-
tion of the relaxation equation but with an fGn forcing:(
−∞D

h
t + 1

)
Uα,h = −∞D

−α
t γ = Fα(t); 0≤ α < 1/2 (23)

(the Weyl fractional derivatives commute). Fα is the α-order
fGn process, and the restriction α < 1/2 is needed to ensure
low-frequency convergence (see below).

In the Earth’s radiative balance, such fractionally inte-
grated fRn processes arise in two physically interesting situ-
ations. The first is where the forcing itself has a long mem-
ory – e.g. it is an fGn process. Whereas the memory in a
pure fRn process is purely from the high-frequency storage
term, in this case, the forcing (the overall radiative imbal-
ance) also contributes to the memory, and this has important
consequences for the predictability (Sect. 4). Although the
solutions Uα,h are mathematically the same whether from
the fractional relaxation equation with fGn forcing (Eq. 23)
or the fractionally integrated fractional relaxation equation
with white noise forcing (Eq. 22), only the former is directly
relevant for the Earth’s energy balance. This is because the
energy balance involves the response from both stochastic
(internal) and deterministic (external) forcing. For the latter,
it is important that, following a step function forcing, at long
times, the system will approach a new state of thermody-
namic equilibrium. This implies that the term in the equation
that dominates at low frequencies – the lowest-order term –
is of order zero, so that if F in Eq. (1) is a step function, the
new equilibrium temperature (anomaly) is T = sF .

The second situation where fractionally integrated fRn
processes arise is for the energy storage (even in the purely
white noise forcing case). The storage process is the differ-
ence between the forcing and the response:

Sα,h = Fα −Uα,h, (24)

so that

Sα,h = −∞D
h
t Uα,h = Uh−α,h. (25)

Even when the forcing is pure white noise (α = 0), the stor-
age is an h-ordered fractionally integrated process: S0,h =

Uh,h; this corresponds to the storage following an impulse
forcing. The storage following a step forcing is obtained by
integration order 1: U1+h,h. Similarly, Green’s function for
the fRn storage following an impulse forcing is Gh,h and,
following a step forcing, G1+h,h (Fig. 2). Since it turns out
that most of the pure fRn (α = 0) results are readily general-
ized to 0< α < 1/2, many fractionally integrated results are
given below.

2.4 Statistics

In the above, we discussed fGn, fRn and their order 1 in-
tegrals fBm, fRm as well as fractional generalizations, pre-
senting a classical (real-space) approach stressing the links
with fGn and fBm. We now turn to their statistics. Uα,h(t)
is a mean zero stationary Gaussian process (i.e. 〈Uα,h(t)〉 =
0, where “〈.〉” indicates ensemble or statistical averaging);
therefore, its statistics are determined completely by its auto-
correlation function Rα,h(t), which is only a function of the
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Figure 2. The storage Green functions for the fractional relaxation
equation (α = 0): (a) impulse response (Gh,h); (b) step response
(G1+h,h). Black is for h= 1/10, 2/10, . . . 10/10 and red for 11/10,
12/10, . . . 19/10 (to identify the curves; use the fact that at large
t , they are in order of increasing h – bottom to top). For small t ,
Gh,h ∝ t

2h−1 (Eq. 15), so that for h≤ 1/2, the impulse response
is singular at the origin. For large t , Gh,h ∝ th−1 (Eq. 18), so that
for h < 1, the total impulse response storage decreases following
the impulse; for h= 1 (the EBE), it tends to unity, and for h > 1, it
diverges.

lag t :

Rα,h(t)=
〈
Uα,h(t + v)Uα,h(v)

〉
=

∞∫
0

Gα,h(t + v)Gα,h(v)dv. (26)

The far-right equality follows from Uα,h =Gα,h∗γ and〈
γ (t)γ (t ′)

〉
= δ(t − t ′) (“*” indicates “convolution”). The

process can only be normalized by Rα,h(0) when there is no
small-scale divergence, i.e. when

Rα,h(0)=
〈
U2
α,h

〉
=

∞∫
0

Gα,h(v)
2dv <∞; α+h > 1/2. (27)

When α+h≤ 1/2, this diverges; in order to be normalized,
the process must be averaged at a finite resolution (below).

Although it is possible to follow Mandelbrot and Van Ness
(1968) and derive many statistical properties in real space, a
Fourier approach is not only more streamlined, but is also
more powerful. The reason for the simplicity of the Fourier
approach is that the Fourier transform (FT, indicated by the
tilde) of the Weyl fractional derivative is symbolically

(iω)h
FT
↔ −∞D

h
t (28)

(e.g. Podlubny, 1999). This is simply the extension of the
usual rule for the FT of integer-ordered derivatives. There-
fore, since Uα,h and Gα,h are respectively solutions and
Green’s functions of the fractionally integrated fractional re-
laxation equation (Eq. 22), we have(
(iω)α+h+ (iω)α

)
Ũα,h = γ̃

FT
↔
(
−∞D

α+h
t +−∞D

α
t

)
Uα,h = γ,(

(iω)α+h+ (iω)α
)
G̃α,h = 1

FT
↔
(
−∞D

α+h
t +−∞D

α
t

)
Gα,h = δ, (29)

so that

Ũα,h(ω)=
γ̃

(iω)α(1+ (iω)h)
,

G̃α,h(ω)=
1

(iω)α(1+ (iω)h)
, 0< α < 1,

0< h < 2. (30)

We see that in the limit h→ 0,Uα,0 is an α-order fGn process
(see e.g. Eq. 23).

Now we can use the fact that the white noise γ has a flat
spectrum:〈
γ̃ (ω)γ̃ (ω′)

〉
= δ(ω+ω′)

〈
|γ̃ (ω)|2

〉
= 2πδ(ω+ω′)

FT
↔ 〈γ (t)γ (t ′)〉 = δ(t − t ′). (31)

The modulus (vertical bars) intervenes since for any real
function f (t) we have f̃ (ω)= f̃ ∗(−ω), where the super-
script “*” indicates a complex conjugate.

Application of Eq. (31) leads to

Rα,h(t)=
1

2π

∞∫
−∞

eiωtEU (ω)dω,

EU (ω)=
〈∣∣Ũα,h(ω)∣∣2〉
=

1
|ω|2α(1+ (−iω)h)(1+ (iω)h)

; (32)

i.e. the spectrum EU is the FT of the correlation function
Rα,h(t) (the Wiener–Khinchin theorem). Applying this to
Uα,h, we obtain

Rα,h(t)=
1

2π

∞∫
−∞

cos(ωt)dω
|ω|2α(1+ (iω)h)(1+ (−iω)h)

. (33)

This shows that Rα,h(t)= Rα,h(−t), so that below, we only
consider t ≥ 0.

Since Rα,h(0) diverges for α+h < 1/2, we consider the
integral Qα,h of the process (the “motion”) from which we
can easily compute the average. The corresponding variance
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Vα,h is

Vα,h(t)=
〈
Qα,h(t)

2〉, Qα,h(t)=

t∫
0

Uα,h(v)dv. (34)

In terms of Ũα,h(ω),

Vα,h(t)=
1
π

∞∫
−∞

(1− cosωt)
ω2

〈∣∣Ũα,h(ω)∣∣2〉dω
=

1
π

∞∫
−∞

(1− cosωt)
|ω|2+2α

dω
(1+ (iω)h)(1+ (−iω)h)

,

α < 1/2, 0< h < 2. (35)

We see that at low frequencies, when α ≥ 1/2, the integral
diverges for all t . Also note that a series expansion for Vα,h(t)
in t will only have even-ordered integer power terms.

Comparing Eqs. (33) and (35), we see that R and V are
linked by the simple relation

Rα,h(t)=
1
2

d2Vα,h(t)

dt2
. (36)

Therefore, by integrating Eq. (26) (twice), we can express
Vα,h in terms of Gα,h:

Vα,h(t)=

∞∫
0

(Gα+1,h(t + v)−Gα+1,h(v))
2dv

+

t∫
0

Gα+1,h(v)
2dv. (37)

This can be verified by differentiation and using

dGα+1,h

dt
=Gα,h .

The basic behaviour can be understood in the Fourier do-
main. First, putting t = 0 in Eq. (32) (i.e. “Parseval’s theo-
rem”), we have

Rα,h(0)=
1

2π

∞∫
−∞

EU (ω)dω

=
1

2π

∞∫
−∞

dω
|ω|2α(1+ (iω)h)(1+ (−iω)h)

, (38)

so that when α+h < 1/2, R diverges at high frequencies
(small t), and hence to represent a physical process (here,
the Earth’s temperature), the process must be averaged over
a finite-resolution τ . When α+h > 1/2, R(0) is finite and

can therefore be used to obtain a normalized autocorrelation
function (Eq. 27).

From Eq. (32), we may also easily obtain the asymptotic
high- and low-frequency behaviours of the energy spectrum:

EU (ω)

∝

ω−2(α+h)
+O(ω−2α−3h), ω� 1,

ω−2α
− 2cos

(πh
2

)
ωh−2α

+O(ω2h−2α), ω� 1.
(39)

2.5 Finite-resolution processes

When α+h < 1/2, the process does not converge at any in-
stant t : it is a noise, a generalized function. To represent the
Earth’s temperature, it must therefore be averaged at a finite-
resolution τ :

Uα,h,τ (t)=
Qα,h(t)−Qα,h(t − τ)

τ
. (40)

Applying Eqs. (34) and (40), we obtain the “resolution τ”
autocorrelation:

Rα,h,τ (1t)=
〈
Uα,h,τ (t)Uα,h,τ (t −1t)

〉
= τ−2〈(Qα,h(t)−Qα,h(t − τ))

·
(
Qα,h(t −1t)−Qα,h(t −1t − τ)

) 〉
= τ−2 1

2

(
Vα,h(1t − τ)+Vα,h(1t + τ)

, 1t ≥ τ,

− 2Vα,h(1t)
)

Rα,h,τ (0)= τ−2Vα,h(τ ).

(41)

Alternatively, measuring time in units of the resolution λ=
1t/τ ,

Rα,h,τ (λτ)=
〈
Uα,h,τ (t)Uα,h,τ (t − λτ)

〉
= τ−2 1

2

(
Vα,h((λ− 1)τ )+Vα,h((λ+ 1)τ )

− 2Vα,h(λτ)
)
, λ≥ 1. (42)

Ra,h,τ can be conveniently written in terms of centred finite
differences:

Rα,h,τ (λτ)=
1
2
12
τVα,h(λτ)≈

1
2
V ′′α,h(1t),

1τf (t)=
f (t + τ/2)− f (t − τ/2)

τ
. (43)

The finite-difference formula is valid for1t ≥ τ . For finite τ ,
it allows us to obtain the correlation behaviour by replacing
the second difference with a second derivative, an approxi-
mation that is very good except when1t is close to τ . Taking
the limit τ → 0 in Eq. (43), we obtain the second derivative
formula Eq. (36).
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3 Application to fBm, fGn, fRm, and fRn

3.1 fBm and fGn

The above derivations were for noises and motions derived
from differential operators whose impulse and step Green
functions had convergent Vα,h(t). Before applying them to
fRn and fRm, we illustrate this by applying them first to fBm
and fGn.

The fBm results are obtained by using the fGn step Green
function (Eq. 13) in Eq. (35) with h= 0 to obtain

V
(fBm)
h (t)= 4Vα=h,0(t)

=

(
2sin(πh)0(−1− 2h)

π

)
t2h+1
;

−
1
2
≤ h <

1
2
. (44)

The standard normalization and parametrization are

Nh =Kh =

(
π

2sin(πh)0(−1− 2h)

)1/2

=

(
−

π

2cos(πH)0(−2H)

)1/2

;

H = h+
1
2
; 0≤H < 1 . (45)

This normalization turns out to be convenient not only for
fBm, but also for fRm, so that for the normalized process,

V
(fBm)
H (t)= t2h+1

= t2H ; 0≤H < 1 , (46)

where we have introduced the standard fBm parameter H =
h+ 1/2, so that〈
1BH (1t)

2〉1/2
=1tH ,

1BH (1t)= BH (t)−BH (t −1t) , (47)

and hence H is the fluctuation exponent for fBm. Note that
fBm is usually defined as the Gaussian process with VH given
by Eq. (46), i.e. with this normalization (e.g. Biagini et al.,
2008).

We can now calculate the correlation function relevant for
the fGn statistics. With the above normalization,

R
(fGn)
h,τ (λτ)=

1
2
τ 2h−1((λ+ 1)2h+1

+ (λ− 1)2h+1

− 2λ2h+1), λ≥ 1,−
1
2
< h <

1
2
,

R
(fGn)
h,τ (0)= τ 2h−1,

R
(fGn)
H,τ (λτ)≈ h(2h+ 1)(λτ)2h−1

=H(2H − 1)(λτ)2(H−1)
; λ� 1 , (48)

the bottom approximations are valid for large-scale ratios λ.
We note the difference in sign for H > 1/2 (“persistence”)

and for H < 1/2 (“anti-persistence”). When H = 1/2, the
noise corresponds to standard Brownian motion, and it is un-
correlated.

3.2 fRm and fRn

3.2.1 Rα,h(t)

Since fRm and fRn are Gaussian, their properties are de-
termined by their second-order statistics, by Vα,h(t) and
Rα,h(t). These statistics are second order in Gα,h(t) and can
most easily be determined using the Fourier representation of
Gα,h(t) (Sect. 2.4, Appendices A and B). The development
is challenging because unlike the Gα,h(t) functions that are
entirely expressed in series of fractional powers of t , Vα,h(t)
and Rα,h(t) involve mixed fractional and integer power ex-
pansions; the details are given in the Appendices, and here
we summarize the main results.

First, for the noises, we have

Rα,h(t)=

∞∑
n=2

Dn0(1−hn− 2α)t−1+hn+2α

+

∞∑
j=1,odd

Fj
tj−1

0(j)
,

Fj =−
cosπ

(
h
2 +α

)
hsin

(
πh
2

)
sin
(
π
h
(j − 2α)

) ,
Dn = (−1)n

sin
(
nπh

2 +απ
)

sin
(
(n−1)πh

2

)
π sin

(
πh
2

) . (49)

At small t , the lowest-order terms dominate, and the normal-
ized autocorrelations are thus

R
(norm)
α,h (t)= (h+α)(1+ 2(h+α))t−1+2(h+α)

+O(t−1+3h+2α),

τ � t � 1, 0< (h+α) < 1/2,

R
(norm)
α,h (t)= 1−

|0(1− 2(h+α))|sin(π(h+ 2α))
πF1

· t−1+2(h+α)
+O(t−1+3h+2α),

t � 1, 1/2< (h+α) < 3/2,

R
(norm)
α,h (t)= 1+

t2

2F1
F3+O(t

−1+2(h+α)). . .,

t � 1, 3/2< (h+α) < 2 (50)

(note that F3 < 0 for 3/2< h+α < 2; see Appendix A). We
see that at small t , the behaviour of the normalized autocor-
relations depends essentially on the sum h+α; in particular,
when h+α < 1/2, the process is effectively an fGn process
with an effective fluctuation exponent H =−1/2+ (h+α).
This is to be expected since α+h is the highest-order term
in the fractionally integrated fractional relaxation equation
(Eq. 22).
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3.2.2 Vα,h(t)

Integrating twice

Vα,h(t)= 2

t∫
0

 v∫
0

Rα,h(u)du

dv ,

we obtain

Vα,h(t)= 2
∞∑
n=2

Dn0(−1−hn− 2α)t1+hn+2α

+ 2
∞∑

j=1,odd
Fj

tj+1

0(j + 2)
,

0< h < 2, 0≤ α < 1/2. (51)

When 0< α+h < 1/2, the leading (n= 2) term for Vα,h
is t1+2(h+α) (∝ V (fBm)

α+h ), so that the fBm coefficient can be
used for normalization using Rα,h,τ (0)= τ−2Vα,h(τ ). When
h+α > 1/2, this normalization becomes negative, so that it
cannot be used; however, in this case, Rα,h(0)= F1 and may
be used for normalization instead. For an analytic expression,
convergence properties including numerical results and mod-
ified expansions converge more rapidly; see Appendix A and,
for the special case h= 1/2, Appendix B.

For convenience, the leading terms of the normalized Vα,h
are

V
(norm)
α,h (t)= t1+2(h+α)

+O(t1+3h+2α)+O(t2),

0< (h+α) < 1/2, (52)

V
(norm)
α,h (t)= t2−

20(−1− 2(h+α))sin(π(h+ 2α))
πF1

· t1+2(h+α)
+O(t1+3h+2α),

1/2< (h+α) < 3/2,

V
(norm)
α,h (t)= t2+

F3

12F1
t4+O(t2(h+α)+1),

3/2< (h+α) < 2.

3.2.3 Asymptotic expansions

For multidecadal global climate projections, the relaxation
time has been estimated at ≈ 5 years (Procyk et al., 2020,
2022), so that we are interested in the long-time behaviour
(exploited for example in Hébert et al., 2021). For this,
asymptotic expansions are needed: in Appendix A we show

Rα,h(t)= −

∞∑
n=0

D−n0(1+ nh− 2α)t2α−(1+nh)

+Pα,h,+(t), t � 1 , (53)

where Pα,h,+(t)= 0 for h < 1, while for 1< h < 2 it has
exponentially damped oscillations (see Fig. 3d and Ap-
pendix A).

Figure 3. The normalized correlation functions R0,h for fRn cor-
responding to the V0,h function in Fig. 4: 0< h < 1/2 (a), 1/2<
h < 1 (b), 1< h < 3/2 (c), and 3/2< h < 2 (d). In each plot, the
curves correspond to h increasing from bottom to top in units of
1/10 starting from 1/20 (a) to 39/20 (d). For h < 1/2, the resolu-
tion is important since R0,h,τ diverges at small τ . In (a), R0,h,τ is
shown with τ = 10−5; they were normalized to the value at reso-
lution τ = 10−5, and for h > 1/2, the curves are normalized with
F
−1/2
3 . In all cases, the large t slope is −1−h.

For pure fRn processes, a useful formula is

R0,h(t)=

∞∑
n=1
(−1)n

1+ cot
(
πh
2

)
tan
(
nπh

2

)
20(−nh)

t−(1+nh)

+P0,h,+(t), t � 1, (54)

or, more generally,

Rα,h(t)=
0(1− 2α)sin(πα)

π
t2α−1

−
cos

(
πh
2

)
cos

(
πh
2 −πα

)
0(2α−h)

t2α−(1+h)+ . . .,

t � 1, 0≤ h < 2, 0≤ α < 1/2. (55)

We see that when α 6= 0, D0 > 0, so that, as expected, the
leading behaviour has no h dependence: it is only due to the
long-range correlations in the forcing; we obtain the fGn re-
sult: ≈ t2α−1. For pure fRn processes this reduces to

R0,h(t)=−
1

0(−h)
t−1−h

(note that 0(−h) < 0 for 0< h < 1).
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Figure 4. The normalized V0,h functions for the various ranges of
h for fRm. The plots from (a) to (d) are for the ranges 0< h <
1/2, 1/2< h < 1, 1< h < 3/2, and 3/2< h < 2. Within each plot,
the lines are for h increasing in units of 1/10 starting at a value
1/20 above the plot minimum; overall, h increases in units of 1/10
starting at values 1/20 (a) to 39/20 (d) (e.g. for a, the lines are
for h= 1/20, 3/10, 5/20, 7/20, and 9/20). For all h the large t
behaviour is linear (slope = 1, although note the oscillations for the
lower right-hand plot (d) for 3/2< h < 2). For small t , the slopes
are 1+ 2h (0< h≤ 1/2) and 2 (1/2≤ h < 2).

Integrating Rα,h twice and doubling, we obtain

Vα,h(t)=
20(−1− 2α)sin(πα)

π
t1+2α

+ aα,ht + bα,h

−
1+ cos(πh)− sin(πh)cot(π(h− 2α))

0(2− (h− 2α))
· t1+2α−h

+ . . ., t � 1 (56)

(the full expansion is given in Appendix A; see Fig. 4 for
plots). The constants of integration aα,h and bα,h are not de-
termined since the expansion is not valid at t = 0; they can
be determined numerically if needed. However, in the limit
α→ 0 (the pure fRn case), the leading term is exactly t (cor-
responding to ordinary Brownian motion), so that an extra
a0,h is not needed (Appendix A). When α > 0, the far-left
(fGn) term from the forcing dominates; at large enough t ,
Vα,h(t)∝ t

2H withH = α+1/2, and the corresponding mo-
tion is an fBm.

Using the above results, we see that there are three limiting
fRn/fRm cases that yield fGn/fBm processes:

Rα,0(t)=
1
4
R(fGn)
α (t), 0< α < 1/2, h= 0,

Rα,h(t)= R
(fGn)
α (t), 0< α < 1/2, t � 1,

Rα,h(t)= R
(fGn)
α+h (t), 0< α+h < 1/2, t � 1. (57)

3.3 Haar fluctuations

A useful statistical characterization of the processes is by the
statistics of their Haar fluctuations over an interval1t . For an
interval 1t , Haar fluctuations (based on Haar wavelets) are
the differences between the averages of the first and second
halves of an interval. For a process U , the Haar fluctuation is

1U(1t)Haar =
2
1t

t∫
t−1t/2

U(v)dv

−
2
1t

t−1t/2∫
t−1t

U(v)dv . (58)

In terms of the process at resolution 1t/2 (i.e. averaged at
this scale), U1t/2(t):

1U(1t)Haar =
2
1t
(U1t/2(t)−U1t/2(t −1t/2)) . (59)

Therefore,

〈
1U(1t)2Haar

〉
=

(
2
1t

)2

(4V (1t/2)−V (1t)), (60)

where V (t) is the variance of the integral of U over an inter-
val t (Eq. 34).

Using Eq. (60), we can determine the behaviour of
the root mean square (rms) Haar fluctuations; terms like
Vα,h(t)∝ t

ξ contribute ∝ tξ/2−1 to the rms Haar fluctuation〈
1Uα,h(1t)

2
Haar

〉1/2 (the exception is when ξ = 2, which con-
tributes nothing). Applying this equation to fGn parameter h,
we obtain

〈
1Fh(1t)

2
Haar

〉1/2
∝1tH with H = h− 1/2.

Using the results above for Vα,h, we therefore obtain the
leading exponents:

H = h+α− 1/2, 0< h+α < 3/2
H = 1, 3/2< h+α < 2

, 1t � 1

H = α−
1
2
, 1t � 1.

(61)

Figure 5 shows that the theory agrees well with the numerics.
For the range of α, h discussed here (0≤ α < 1/2, 0≤ h≤

2), H spans the range −1/2 (white noise) to 1. In compari-
son, fGn processes have H covering the range −1<H < 0
and fBm processes have 0<H < 1; therefore, depending on
whether the process is observed at timescales below or above
the relaxation timescale (1t = 1), fractionally integrated fRn
processes can mimic fGn or fBm processes. If we consider
the integrals – the motions – the value of H is increased by
1 (although for Haar fluctuations, it cannot exceed H = 1).
Overall, from an empirical viewpoint, if over some range of
scales (that may only be a factor of 100 or less), it may be
quite hard to distinguish the various models, especially since
the transition from low- to high-frequency scaling may be
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Figure 5. The rms Haar fluctuation plots for the pure (α = 0)
fRn process for 0< h < 1/2 (a), 1/2< h < 1 (b), 1< h < 3/2 (c),
and 3/2< h < 2 (d). The individual curves correspond to those of
Figs. 3 and 4. The small 1t slopes follow the theoretical values
h− 1/2 up to h= 3/2 (slope= 1); for larger h, the small t slopes
all equal 1. Also, at large t due to dominant V ≈ t terms, in all cases
we obtain slopes t−1/2.

very slow (see especially Appendix B for the h= 1/2 case).
Recent work shows that the maximum likelihood method
may be the optimum parameter estimation technique (Pro-
cyk, 2021).

3.4 Sample processes

It is instructive to view some samples of fRn and fRm pro-
cesses (here we consider only α = 0). For simulations, both
the small- and large-scale divergences must be considered.
Starting with the approximate methods developed by Man-
delbrot and Wallis (1969), it took some time for exact fBm
and fGn simulation techniques to be developed (Hipel and
McLeod, 1994; Palma, 2007). Fortunately, for fRm and fRn,
the low-frequency situation is easier since the long-time
memory is much smaller than for fBm and fGn. Therefore, as
long as we are careful to always simulate series a few times
longer than the relaxation time and then to throw away the
earliest 2/3 or 3/4 of the simulation, the remainder will have
accurate statistics. With this procedure to take care of low-
frequency issues, we can therefore use the solution for fRn
in the form of a convolution and use standard numerical con-
volution algorithms.

We must nevertheless be careful about the high frequen-
cies since the impulse response Green functionsG0,h are sin-
gular for h < 1. In order to avoid singularities, simulations
of fRn are best made by first simulating the motionsQ0,h us-
ingQ0,h ∝G1,h∗γ and obtaining the resolution τ fRn, using
U0,h,τ (t)= (Q0,h(t + τ)−Q0,h(t))/τ . Numerically, this al-
lows us to use the smoother (nonsingular)G1,h in the convo-
lution rather than the singular G0,h. The simulations shown

in Figs. 6–9 follow this procedure, and the Haar fluctuation
statistics were analysed, verifying the statistical accuracy of
the simulations.

In order to clearly display the behaviours, recall that when
t � 1, we showed that all the fRn converge to Gaussian white
noises and the fRm to Brownian motions (albeit in a slow
power law manner). At the other extreme, for t � 1, we ob-
tain the fGn and fBm limits (when 0< h < 1/2) and their
generalizations for 1/2< h < 2.

Figure 6 shows three simulations, each of length 219 pix-
els, with each pixel corresponding to a temporal resolution
of τ = 2−10, so that the unit (relaxation) scale is 210 elemen-
tary pixels. Each simulation uses the same random seed, but
they have h’s increasing from h= 1/10 (top set) to h= 5/10
(bottom set). The fRm on the right is from the running sum
of the fRn on the left. Each series has been rescaled, so that
the range (maximum–minimum) is the same for each. Start-
ing at the top line of each group, we show 210 points of the
original series degraded by a factor of 29. The second line
shows a blow-up by a factor of 8 of the part of the upper
line to the right of the dashed vertical line. The line below
is a further blow-up by a factor of 8 until the bottom line
shows a 1/512 part of the full simulation but at full resolu-
tion. The unit scale indicating the transition from small to
large is shown by the horizontal red line in the middle-right
figure. At the top (degraded by a factor of 29), the unit (re-
laxation) scale is 2 pixels, so that the top line degraded view
of the simulation is nearly a white noise (left) or (ordinary)
Brownian motion (right). In contrast, the bottom series is ex-
actly of length unity, so that it is close to the fGn limit with
the standard exponent H = h+ 1/2. Moving from bottom to
top in Fig. 6, one effectively transitions from fGn to fRn (left
column) and from fBm to fRm (right column).

If we take the empirical relaxation scale for the global
temperature to be 27 months (≈ 10 years, Lovejoy et al.,
2017) and we use monthly-resolution temperature anomaly
data, then the nondimensional resolution is 2−7, correspond-
ing to the second series from the top (which is thus 210

months ≈ 80 years long). Since h≈ 0.38± 0.03 (Procyk et
al., 2022), the second series from the top in the bottom set
is the most realistic, and we can make out the low-frequency
undulations that are mostly present at scales 1/8 of the series
(or less).

Figure 7 shows realizations constructed from the same ran-
dom seed but for the extended range 1/2< h < 2 (i.e. be-
yond fGn). Over this range, the top (large-scale, degraded-
resolution) series are close to white noises (left) and Brow-
nian motions (right). For the bottom series, there is no
equivalent fGn or fBm process and the curves become
smoother, although the rescaling may hide this somewhat
(see for example the h= 13/20 set, the blow-up of the far-
right 1/8 of the second series from the top shown in the third
line). For 1< h < 2, also note the oscillations with frequency
2π/sin(π/h) (Eqs. 53 and A3): this is the fractional oscilla-
tion range.
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Figure 6. fRn and fRm simulations (left and right columns respec-
tively) for h= 1/10, 3/10, and 5/10 (top to bottom sets, all with
α = 0), i.e. the exponent range that overlaps with fGn and fBm.
There are three simulations, each of length 219 pixels, and each uses
the same random seed with the unit scale equal to 210 pixels (i.e. a
resolution of τ = 2−10). The entire simulation therefore covers the
range of scale 1/1024 to 512 units. The fRm on the right is from the
running sum of the fRn on the left. Starting at the top line of each
set, we show 210 points of the original series degraded in resolution
by a factor 29. Since the length is t = 29 units long, each pixel has
resolution τ = 1/2. The second line of each set takes the segment
of the upper line lying to the right of the dashed vertical line, 1/8 of
its length. It therefore spans t = 0 to t = 29/8= 26, but resolution
was taken as τ = 2−4, and hence it is still 210 pixels long. Since
each pixel has a resolution of 2−4, the unit scale is 24 pixels long:
this is shown in red in the second series from the top (middle set).
The process of taking 1/8 and blowing up by a factor of 8 continues
to the third line (length t = 23, resolution τ = 2−7), unit scale= 27

pixels (shown by the red arrows in the third series), until the bottom
series which spans the range t = 0 to t = 1, and resolution τ = 2−10

with unit scale 210 pixels (the whole series displayed). Each series
was rescaled in the vertical so that its range between maximum and
minimum was the same. The unit relaxation scales indicated by the
red arrows mark the transition from small to large scales. Since the
top series in each set has a unit scale of 2 (degraded), it is nearly a
white noise (a, c, e) or (ordinary) Brownian motion (b, d, f). In con-
trast, the bottom series is exactly of length t = 1, so that it is close
to the fGn and fBm limits (left and right) with the standard expo-
nent H = h+ 1/2. As indicated in the text, the second series from
the top in the bottom set is most realistic for monthly temperature
anomalies.

Figure 8 shows simulations similar to Fig. 5a (fRn on the
left, fRm on the right), except that instead of making a large
simulation and then degrading and zooming, all the simu-
lations were of equal length (210 points), but the relaxation
scale was changed from 215 pixels (bottom) to 210, 25 and 1
pixel (top). Again, the top is white noise (left) and Brownian
motion (right), and the bottom is (nearly) fGn (left) and fBm
(right); Fig. 9 shows the extensions to 1/2< h < 2.

Figure 7. The same as Fig. 6 but for h= 7/10, 13/10 and 19/10
(top to bottom). Over this range, the top (large-scale, degraded-
resolution) series is close to a white noise (a, c, e) and Brownian
motion (b, d, f). For the bottom series, there is no equivalent fGn or
fBm process and the curves become smoother, although the rescal-
ing may hide this somewhat (see for example the middle h= 13/20
set, the blow-up of the far-right 1/8 of the second series from the
top shown in the third line). Also note for the bottom two sets with
1< h < 2 the oscillations that have frequency 2π/sin(π/h): this is
the fractional oscillation range.

4 Prediction

The initial value for Weyl fractional differential equations
is effectively at t =−∞, so that for fRn, it is not di-
rectly relevant at finite times (although the ensemble mean
is assumed= 0; for fRm, the initial conditionQα,h(0)= 0 is
important). The prediction problem is thus to use past data
(say, for t < 0) in order to make the most skillful predic-
tion for t > 0. We are therefore dealing with a past value
rather than usual initial value problem. The emphasis on
past values is particularly appropriate since in the fGn limit,
the memory is so large that values of the series in the dis-
tant past are important. Indeed, prediction of fGn with a fi-
nite length of past data involves placing strong (mathemati-
cally singular) weight on the most ancient data available (see
Gripenberg and Norros, 1996; Del Rio Amador and Love-
joy, 2019, 2021a, b). This is quite different from standard
stochastic predictions that are based on short-memory (ex-
ponential) auto-regressive or moving-average-type processes
that are not much different from initial value problems.

To deal with the small-scale divergences when 0< h+
α ≤ 1/2, it is necessary to predict the finite-resolution fRn:

Nonlin. Processes Geophys., 29, 93–121, 2022 https://doi.org/10.5194/npg-29-93-2022



S. Lovejoy: Fractional relaxation noises, motions and the fractional energy balance equation 107

Figure 8. This set of simulations is similar to Fig. 6 ((a, c, e) fRn,
(b, d, f) fRm) except that instead of making a large simulation
and then degrading and zooming, all the simulations were of equal
length (210 points) but resolutions τ = 2−15, 2−10, 2−5, and 1 (bot-
tom to top). The simulations therefore spanned the ranges of scale
2−15 to 2−5, 2−10 to 1, 2−5 to 25, and 1 to 210, and the same ran-
dom seed was used in each so that we can see how the structures
slowly change when the relaxation scale changes. The bottom fRn,
h= 5/10 set is the closest to that observed for the Earth’s temper-
ature, and since the relaxation scale is of the order of a few years,
the second series from the top of this set (with 1 pixel= 1 month) is
close to that of monthly global temperature anomaly series. In that
case the relaxation scale would be 32 months and the entire series
would be 210/12≈ 85 years long. The top series (of total length
210 relaxation times) is (nearly) a white noise (a, c, e) and Brown-
ian motion (b, d, f), and the bottom is (nearly) an fGn (a, c, e) and
fBm (b, d, f). The total range of scales covered here (210

× 215) is
larger than in Fig. 5a and allows one to more clearly distinguish the
high- and low-frequency regimes.

Figure 9. The same as Fig. 8 but for larger h values; see also Fig. 7.

Uα,h,τ (t). Using Eq. (40) for Uα,h,τ (t), we have

Uα,h,τ (t)=
1
τ

[ t∫
−∞

G1+α,h(t − v)γ (v)dv

−

0∫
−∞

G1+α,h(−v)γ (v)dv
]

−
1
τ

[ t−τ∫
−∞

G1+α,h(t − τ − v)γ (v)dv

−

0∫
−∞

G1+α,h(−v)γ (v)dv
]

=
1
τ

[ t∫
−∞

G1+α,h(t − v)γ (v)dv

−

t−τ∫
−∞

G1+α,h(t − τ − v)γ (v)dv
]
. (62)

Now define the predictor for t ≥ 0 (indicated by a circum-
flex):

Ûα,h,τ (t)=
1
τ

 0∫
−∞

G1+α,h(t − v)γ (v)dv

−

0∫
−∞

G1+α,h(t − τ − v)γ (v)dv

 . (63)

To show that it is indeed the optimal predictor, consider
the predictor error Eτ (t):

Eτ (t)= Uα,h,τ (t)− Ûα,h,τ (t)

= τ−1

 t∫
−∞

G1+α,h(t − v)γ (v)dv

−

t−τ∫
−∞

G1+α,h(t − τ − v)γ (v)dv


− τ−1

 0∫
−∞

G1+α,h(t − v)γ (v)dv

−

0∫
−∞

G1+α,h(t − τ − v)γ (v)dv
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= τ−1

 t∫
0

G1+α,h(t − v)γ (v)dv

−

t−τ∫
0

G1+α,h(t − τ − v)γ (v)dv

 . (64)

Equation (64) shows that the error depends only on γ (v) for
v > 0, whereas the predictor (Eq. 63) only depends on γ (v)
for v < 0, and hence they are orthogonal:〈
Eτ (t)Ûα,h,τ (t)

〉
= 0. (65)

This is a sufficient condition for Ûα,h,τ (t) to be the minimum
square predictor, which is the optimal predictor for station-
ary Gaussian processes (e.g. Papoulis, 1965). The prediction
error variance is〈
Eτ (t)

2〉
= τ−2

t−τ∫
0

(G1+α,h(t − v)−G1+α,h(t − τ − v))
2dv

+

t∫
t−τ

G1+α,h(t − v)
2dv

 , (66)

or, with a change in variables,〈
Eτ (t)

2〉
= τ−2Vα,h(τ )

−τ−2

 ∞∫
t−τ

(G1+α,h(v+ τ)−G1+α,h(v))
2dv

 , (67)

where we have used
〈
U2
α,h,τ

〉
= τ−2Vα,h(τ ) (the uncondi-

tional variance).
There are numerous skill indicators, but the most popular

and easy-to-interpret definition of forecast skill is the mini-
mum square skill score or MSSS (Sk,τ , see Del Rio Amador
and Lovejoy, 2021a, for a discussion of this and other indi-
cators). For this, we obtain

Sk,τ (t)= 1−

〈
Eτ (t)

2〉〈
Eτ (∞)2

〉
=

∫
∞

t−τ
(G1+α,h(u+ τ)−G1+α,h(u))

2du

Vα,h(τ )

=

∫
∞

t−τ
(G1+α,h(v+ τ)−G1+α,h(v))

2dv[ ∫
∞

0 (G1+α,h(v+ τ)−G1+α,h(v))
2dv

+
∫ τ

0 G1+α,h(v)
2dv

] . (68)

When h < 1/2 and

G1,h(t)=G
(fGn)
1,h (t)=

th

0(1+h)
,

Figure 10. The prediction skill (Sk) for pure fGn processes for fore-
cast horizons up to λ= 10 steps (10 times the resolution). This plot
is nondimensional, and it is valid for time steps of any duration.
From bottom to top, the curves correspond to h= 1/20, 3/10, . . .
9/20 (red, top, close to the empirical h).

we obtain the fGn result:

Sk =
ξh(∞)− ξh(λ)

ξh(∞)+
1

2h+1

,

ξh(λ)=

λ−1∫
0

((v+ 1)h− vh)2dv (69)

(Lovejoy et al., 2015), where λ is the forecast horizon (lead
time) measured in the number of time steps in the future (due
to the fGn scaling, it is independent of the resolution τ ). The
MSSS gives the fraction of the variance explained by the op-
timum predictor; when skill= 1, the forecast is perfect.

To survey the implications, let us start by showing the τ
independent results for fGn, shown in Fig. 10, which is a
variant on a plot published in Lovejoy et al. (2015). We see
that when h≈ 1/2 (H ≈ 1), the skill is very high; indeed,
in the limit h→ 1/2, we have perfect skill for fGn forecasts
(this would of course require an infinite amount of past data
to attain).

Now consider the fRn skill: we will start by considering
the pure (α = 0) fRn case where the memory comes com-
pletely from the (high-frequency) storage, anticipating that
the fGn forced case (α 6= 0) obtains its memory and skill
from both storage and forcing. In comparison with fGn, fRn
has an extra parameter, the resolution of the data, τ . Figure 11
shows curves corresponding to Fig. 10 for fRn with forecast
horizon integer multiples (λ) of τ , i.e. for times t = λτ in
the future but with separate curves, one for each of five τ
values increasing from 10−4 to 10 by factors of 10. When
τ is small, the results should be close to those of fGn, i.e.
with potentially high skill, and in all cases, the skill is ex-
pected to vanish quite rapidly for τ > 1 since in this limit,
fRn becomes an (unpredictable) white noise (although there
are scaling corrections to this).
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Figure 11. Panels (a, c, e) show the skill (Sk) of pure (α = 0) fRn
forecasts (as in Fig. 10 for fGn) for fRn skill with h= 1/20, 5/20,
and 9/20 (top to bottom sets); λ is the forecast horizon, the number
of steps of resolution τ forecast into the future. Panels (b, d, f) show
the ratio (r) of the fRn to the corresponding fGn skill. Here the result
depends on τ ; each curve is for different values increasing from
10−4 (top, black) to 10 (bottom, purple) and increasing by a factor
of 10 (the red set in the bottom plots with τ = 10−2; h= 9/20 are
closest to the empirical values).

To better understand the fGn limit, it is helpful to plot the
ratio of the fRn-to-fGn skill (Fig. 11, right column). We see
even with quite small values τ = 10−4 (top, black curves)
that some skill has already been lost. Figure 12 shows this
more clearly: it shows 1-time-step and 10-time-step skill ra-
tios. To put this into perspective, it is helpful to compare
this using some of the parameters relevant to macroweather
forecasting. According to Lovejoy et al. (2015) and Del Rio
Amador and Lovejoy (2019), the relevant empirical Haar ex-
ponent is ≈−0.1 for the global temperature, so that h=
1/2− 0.1≈ 0.4. Although direct empirical estimates of the
relaxation time are difficult since the responses to anthro-
pogenic forcing begin to dominate over the internal vari-
ability after ≈ 10 years, Procyk et al. (2022) have used the
deterministic response to estimate a global relaxation time
of ≈ 5 years (work in progress using maximum likelihood
estimates shows that at scales of hundreds of kilometres,
it is quite variable, ranging from months to decades; Pro-
cyk, 2021). For monthly-resolution forecasts, the nondimen-
sional resolution is τ ≈ 1/100. With these values, we see (red
curves) that we may have lost ≈ 30 % of the fGn skill for
1-month forecasts and ≈ 85 % for 10-month forecasts. Com-
paring this with Fig. 10, we see that this implies about 60 %
and 10 % skill (see also the red curve in Fig. 11, bottom set).

Figure 12. The ratio of (α = 0) fRn skill to fGn skill (a: 1-step
horizon, b: 10-step forecast horizon) as a function of resolution τ
for h increasing from (at left) bottom to top (h= 1/20, 2/20, 3/20
. . . 9/20); the h= 9/20 curve (close to the empirical value) is the
curve that starts at the upper left of each plot.

Figure 13. The 1-step (a) and 10-step (b) pure (α = 0) fRn fore-
cast skill as a function of h for various resolutions (τ ) ranging from
τ = 10−4 (black, left of each set) through τ = 10−3 (brown) 10−2

(red), 0.1 (blue), 1 (orange), and 10 (purple). In the right set τ = 1
(orange), 10 (purple) lines are nearly on top of the Sk = 0 line.
Again, red (τ = 10−2) is the more empirically relevant value for
monthly data. Recall that the regime h < 1/2 (to the left of the ver-
tical dashed lines) corresponds to the overlap with fGn.

Going beyond the 0< h < 1/2 region that overlaps fGn,
Figs. 12 and 13 clearly show that the skill continues to in-
crease with h. We already saw (Fig. 4) that the range 1/2<
h < 3/2 has rms Haar fluctuations that for 1t < 0 mimic
fBm, and these do indeed have higher skill, approaching
unity for h near 1 corresponding to a Haar exponent ≈ 1/2,
i.e. close to an fBm with H = 1/2, i.e. a regular Brown-
ian motion. Recall that for Brownian motion, the increments
are unpredictable but the process itself is predictable (persis-
tence). In Fig. 12, we show the skill for various h’s as a func-
tion of resolution τ . Figure 14 shows that for h < 3/2, the
skill decreases rapidly for τ > 1. Figure 15 in the fractional
oscillation equation regime shows that the skill oscillates.

We may now consider the skill of the fGn-forced process
(α 6= 0) in Fig. 16. For small τ , short lags, λ (the upper left),
the contours are fairly linear along lines of constant h+α,
so that, as expected, the predictability is essentially that of
an fGn process but with an effective exponent h+α. At the
opposite extreme, (large τ , h) the lines are fairly horizontal,
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Figure 14. One-step pure (α = 0) fRn prediction skills as a function
of resolution for hs increasing from 1/20 (bottom) to 29/20 (top)
every 1/10. Note the rapid transition to low skill (white noise) for
τ > 1. The curve for h= 9/20 is shown in red.

Figure 15. Same as Fig. 14 except for h= 37/20 and 39/20 show-
ing the 1-step skill (black) and 10-step skill (dashed). The right-
hand dashed and right-hand solid lines are for h= 39/20: they
clearly show that the skill oscillates in this fractional oscillation
equation regime. The corresponding left lines are for h= 37/20.

indicating that the skill from the storage (i.e. from h) is neg-
ligible and that all the memory (and hence skill) comes from
the forcing fGn, exponent α. The in-between resolutions and
lags generally have in-between slopes. As expected, the skill
from the storage drops off quickly for resolutions ≈> τ . For
h≥ 1, there is some waviness in the contours due to the os-
cillatory nature of the Green functions.

Figure 16. Contour plots of the forecast skill, with h along the hori-
zontal axis and α along the vertical axis. The plots are for increasing
nondimensional resolutions: τ = 0.001, 0.01, 0.1, 1, and 10 (top to
bottom), with forecasts for lags λ= 1, 3, and 10 (left to right) and
with contour levels (legend) varying from nearly no skill (0.03) to
nearly full skill (0.98).

5 Conclusions

Ever since Budyko (1969) and Sellers (1969), the energy bal-
ance between the Earth and outer space has been modelled by
the energy balance equation (EBE) based on the continuum
heat equation; see North and Kim (2017) for a recent review
and see Ziegler and Rehfeld (2020) for a recent regional ap-
plication. It is most commonly used as a model for the glob-
ally averaged temperature, where it is usually derived by ap-
plying Newton’s law of cooling applied to a uniform slab of
material, a “box”. The resulting EBE is a first-order relax-
ation equation describing the exponential relaxation of the
temperature to a new equilibrium after it has been perturbed
by an external forcing. Its first-order (h= 1) derivative term
accounts for energy storage.

The resulting model relaxes to equilibrium much too
quickly, so that to increase realism, it is usual to intro-
duce a few interacting slabs (representing for example the
atmosphere and ocean mixed layer; the Intergovernmental
Panel on Climate Change recommends two such compo-
nents; IPCC, 2013). However, it turns out that these h=
1 box models do not use the correct surface radiative–
conductive boundary conditions. If one assumes heat trans-
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port by the classical heat equation and radiative–conductive
boundary conditions are used instead, one instead obtains the
half-order EBE, the HEBE with h= 1/2 (Lovejoy, 2021a,
b), which is already close to the global empirical value (h=
0.38± 0.03, Procyk et al., 2022; Del Rio Amador and Love-
joy, 2019; see also Lovejoy et al., 2015). However, this model
is only valid in the macroweather regime – for timescales of
weeks and longer and, due to the spatial scaling in the at-
mosphere, the fractional heat equation (FHE) may be a more
appropriate model than the classical one. The use of the FHE
can be justified by recognizing that a realistic energy trans-
port model involves a continuous hierarchy of mechanisms.
The extension to the FHE leads directly to a fractional relax-
ation equation that generalizes the EBE: the fractional energy
balance equation (Lovejoy, 2021a, b) (FEBE). The FEBE can
also be derived phenomenologically by assuming that energy
storage processes are scaling (Lovejoy, 2019; Lovejoy et al.,
2021).

When forced by a Gaussian white noise, the FEBE is also
a generalization of fractional Gaussian noise (fGn), and its
integral (fractional relaxation motion, fRm) generalizes frac-
tional Brownian motion (fBm). More classically, it general-
izes the Orenstein–Uhlenbeck process that corresponds to the
h= 1 special case (i.e. the standard EBE with white noise
forcing). Over the parameter range 0< h < 1/2, the high-
frequency FEBE limit (fGn) has been used as the basis of
monthly and seasonal temperature forecasts (Lovejoy et al.,
2015; Del Rio Amador and Lovejoy, 2019, 2021a, b); at 1-
month lead times, these macroweather forecasts are similar
in skill to conventional numerical models, whereas for bi-
monthly, seasonal and annual forecasts, they are more skill-
ful (Del Rio Amador and Lovejoy, 2021a). For multidecadal
timescales the low-frequency limit has been used as the ba-
sis of climate projections through to the year 2100 (Hébert,
2017; Lovejoy et al., 2017; Hébert et al., 2021), and more
recently, the full FEBE has been used directly (Procyk et al.,
2020, 2022; Procyk, 2021).

It was the success of predictions and projections with dif-
ferent exponents but the same theoretically derived empirical
underlying FEBE h≈ 0.4 that, over recent years, motivated
the development of the FEBE (announced in Lovejoy, 2019)
and the work reported here. The statistical characterizations,
correlations, structure functions, Haar fluctuations and spec-
tra as well as the predictability properties are important for
these and other FEBE applications and are derived in this pa-
per.

While the deterministic fractional relaxation equation is
classical, various technical difficulties arise when it is gen-
eralized to the stochastic case: in the physics literature, it is
a fractional Langevin equation (FLE) that has almost exclu-
sively been considered a model of diffusion of particles start-
ing at an origin. This requires t = 0 initial conditions that im-
ply that the solutions are strongly nonstationary. In compar-
ison, the Earth’s temperature fluctuations that are associated
with its internal variability are statistically stationary. This

can easily be modelled with initial conditions at t =−∞, i.e.
by using Weyl fractional derivatives. In addition, in the usual
FLE, the highest-order derivative is an integer, so that sample
processes are rms differentiable of order at least 1 (Watkins
et al., 2020, have called the FEBE a “Fractionally Integrated
FLE”). In the FEBE and the fractionally integrated exten-
sions, the highest-order derivative is readily of order < 1/2,
so that sample processes are generalized functions (“noises”)
and must be smoothed/averaged for physical applications.

Although EBEs were originally developed to understand
the deterministic temperature response to external forcing,
the temperature also responds to stochastic “internal” forc-
ing. While the Earth’s system variability is generally highly
non-Gaussian (multifractal, Lovejoy, 2018), the temporal
macroweather regime modelled here is the quasi-Gaussian
exception. This paper therefore explores the statistics of the
temperature response when it is stochastically forced by
Gaussian processes, both by white noise (α = 0) and by a
(long-memory) fractional Gaussian noise (fGn) process. The
white noise special case – “pure fRn and fRm” – is the α = 0
special case; the fGn-forced case extends the parameter range
to 0≤ α < 1/2. According to work in progress using satellite
and reanalysis radiances, both cases appear to be empirically
relevant for modelling the Earth’s energy balance.

A key novelty is therefore to consider the fractional relax-
ation equation (a FLE) forced by white and scaling noises
starting from t =−∞, equivalent to Weyl’s “fractionally
integrated fractional relaxation equation”. In addition, the
highest-order terms in standard FLEs are integer-ordered: the
fractional terms represent damping and are of lower order,
guaranteeing that solutions are regular functions. However,
the FEBE’s highest-order term is fractional, and over the
main empirically significant parameter range (α+h < 1/2)
the processes are noises (generalized functions): in order to
represent physical processes, they must be averaged. This is
conveniently handled by introducing their integrals or “mo-
tions”. We proceeded to derive their fundamental statistical
properties, including series expansions about the origin and
infinity. These expansions are nontrivial since they mix frac-
tional and integer-ordered terms (Appendix A). Since the
FEBE is used as the basis for macroweather predictions,
the theoretical predictability skill is important in applications
and was also derived.

With these stationary Gaussian forcings, the solutions are
a new stationary process – fRn (α = 0) and its extensions
to fractionally integrated fRn processes (α > 0). Over the
range 0< α+h < 1/2, we show that the small-scale limit
is an fGn, and its integral – fRm – has stationary increments
and generalizes fBm. Although at long enough times the fRn
(α = 0) tends to a Gaussian white noise and fRm to a stan-
dard Brownian motion, this long time convergence is typi-
cally very slow (when α > 0, the long time behaviours are
fGn and fBm processes, parameter α).

Much of the effort was in deducing the asymptotic small-
and large-scale behaviours of the autocorrelation functions
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that determine the statistics and in verifying these with ex-
tensive numerical simulations. An interesting exception was
the h= 1/2 special case, which for fGn corresponds to an
exactly 1/f noise. Here, we give the exact mathematical
expressions for the full correlation functions, showing that
they had logarithmic dependencies at both small and large
scales. The resulting HEBE has an exceptionally slow transi-
tion from small to large scales (a factor of a million or more
is needed), and empirically it is quite close to the global tem-
perature series over scales of months, decades and possibly
longer.

Beyond improved monthly and seasonal temperature fore-
casts and multidecadal projections, the stochastic FEBE
opens up several paths for future research. One of the more
promising is to apply these techniques to the spatial FEBE
and generalize it in various directions. This is a follow-up
on the special value h= 1/2 that is very close to that found
empirically and that can be analytically deduced from the
classical Budyko–Sellers energy transport equation by im-
proving the mathematical treatment of the radiative bound-
ary conditions (Lovejoy, 2021a, b). In the latter case, one ob-
tains a partial fractional differential equation for the horizon-
tal space–time variability of temperature anomalies over the
Earth’s surface, allowing regional forecasts and projections.
This has already allowed improved regional projections (Pro-
cyk, 2021) and promises better monthly and seasonal fore-
casts.

While the FEBE has already demonstrated its ability to
project future climates, these improvements will allow for the
modelling of the nonlinear albedo–temperature feedbacks
needed for modelling of transitions between different past
climates. Finally, FEBE-based projections have shown that,
in spite of improved computer power and algorithms, con-
ventional GCM approaches may be suffering from diminish-
ing returns; the GCMs in the latest IPCC assessment (AR6,
2021) are even more uncertain: a range of 2–5.5 K/CO2 dou-
bling (90 % confidence) those in the previous assessment
(AR5, 2013, 1.5–4.5 K per doubling) while also being some-
what warmer. The FEBE had the somewhat lower but much
less uncertain range 1.6–2.4 K/CO2 doubling (90 % confi-
dence). Conventional GCM approaches attempt to explicitly
model as many degrees of freedom as possible, and by the
year 2030 they are expected to have kilometric-scale (“cloud-
resolving”) resolutions that will model structures that live for
only 15 min and then average them over decades. The FEBE
(with regional and other future extensions) is, in contrast, a
high-level stochastic model that accounts for the collective
interactions of huge numbers of degrees of freedom (Love-
joy, 2019). It is thus a promising candidate for a new genera-
tion of climate models.

Appendix A: The small- and large-scale fRn and fRm
statistics

A1 Rα,h(t) as a Laplace transform

In Sect. 2.4, we derived general statistical formulae for the
autocorrelation functions of motions and noises defined in
terms of Green’s functions of fractional operators. Since the
processes are Gaussian, autocorrelations fully determine the
statistics. While the autocorrelations of fBm and fGn are
well known, those for fRm and fRn are new and are not
so easy to deal with since they involve quadratic integrals
of Mittag–Leffler functions. In this Appendix, we derive the
basic power law expansions as well as large t (asymptotic)
expansions, and we numerically investigate their accuracy.

It is simplest to start with the Fourier expression for the
autocorrelation function for the unit white noise forcing
(Eq. 33). First convert the inverse Fourier transform (Eq. 66)
into a Laplace transform. For this, consider the integral over
the contour C in the complex plane:

IC(t)=
1

2π

∫
C

ezt

zα(−z)α
(
1+ zh

)(
1+ (−z)h

)dz. (A1)

Take C to be the closed contour obtained by integrating
along the imaginary axis (this part gives Rα,h(t), Eq. 33)
and closing the contour along an (infinite) semicircle over
the second and third quadrants. When 0< h < 1, there are
no poles in these quadrants, but we must integrate around
a branch cut on the negative real axis. When 1< h < 2, we
must take into account two new branch cuts and two new
poles in the negative real half-plane. In a polar representa-
tion z= reiθ , the additional branch cuts are along the rays
z= re±iπ/h, r > 1, circling around the poles at z= e±iπ/h.
The additional branch cuts give no net contribution, but the
residues of the poles do make a contribution (Pα,h 6= 0 be-
low). We can express both cases with the formula

Rα,h(t)= −
1
π

Im

∞∫
0

e−xtdx
x2αeiαπ (1+ xh)(1+ xheiπh)

+Pα,h,+(t); t > 0 0≤ α < 1/2. (A2)

“Im” indicates the imaginary part and

Pα,h,±(t)= 0, 0< h < 1,

Pα,h,±(t)=−e
t cos( π

h
)
sin
(
±
π
h
(1−α)+ hπ

2 + t sin
(
π
h

))
hsin

(
πh
2

) ,

1< h < 2, (A3)

While the integral term is monotonic, the Pα,h term oscillates
with frequency ω = 2π/sin(π/h). Pα,h accounts for the os-
cillations visible in Figs. 3, 4, and 7, although since when
1< h < 2, cos(π/h) < 1, they decay exponentially. When
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h > 1, this pole contribution dominates Rα,h(t) for a wide
range of t values around t = 1, although as we see below,
eventually at large t , power law terms come to the fore.

Comments

a. When α = 0, h= 1, and we obtain the classical
Ornstein–Uhlenbeck autocorrelation: R0,1(t)=

1
2e
−|t |.

b. In the case h= 0, the process reduces to an fGn pro-
cess: Rα,0(t)= t−1+2α0(1− 2α)sin(πα)/(4π). There
is an extra factor of 4 that comes from the small h limit
−∞D

h
t + 1→ 2.

A2 Asymptotic expansions

An advantage of writing Rα,h(t) as a Laplace transform is
that we can use Watson’s lemma to obtain an asymptotic
expansion (e.g. Bender and Orszag, 1978). The idea is that
an expansion of Eq. (A2) around x = 0 can be Laplace-
transformed term by term to yield an asymptotic expansion
for large t .

The expansion of the integrand around x = 0 can be ob-
tained from a binomial expansion (see also Eq. A10):

1
x2αeiπα

(
1+ xh

)(
1+ xheiπh

)
=

e−iπα

eiπh− 1

∞∑
n=0
(−1)n

(
ei(n+1)πh

− 1
)
x−2α+nh, x < 1. (A4)

This leads to

−
1
π

Im
1

x2αeiαπ (1+ xh)(1+ xhehiπ )

=−

∞∑
n=0

D−nx
nh−2α, (A5)

Dn = (−1)n+1 cos
((
n− 1

2

)
πh+απ

)
− cos

(
πh
2 +απ

)
2π sin

(
πh
2

)
= (−1)n

sin
(
nπh

2 +απ
)

sin
(
(n−1)πh

2

)
π sin

(
πh
2

)
(note that D−n is used in the expansion here; Dn is used be-
low).

Therefore, taking the term-by-term Laplace transform and
using Watson’s lemma,

Rα,h(t)= −

∞∑
n=0

D−n0(1+ nh− 2α)t2α−(1+nh)

+Pα,h,+(t); t � 1 (0< α < 1/2) . (A6)

We have included the exponentially decaying residue Pα,h,+
that contributes when 1< h < 2. Note that although 0 di-
verges for all negative integer arguments, using the identity

0(1+hn−2α)sin((nh−2α)π)=−π/0(2α−nh), we see
that the product sin((nh− 2α)π)0(2α− nh) is finite.

The first terms are explicitly

Rα,h(t)=
0(1− 2α)sin(πα)

π
t2α−1

−
cos

(
πh
2

)
cos

(
πh
2 −πα

)
0(2α−h)

t2α−(1+h)+ . . .,

t � 1 . (A7)

We see that when α 6= 0, D0 > 0, so that, as expected, the
leading behaviour has no h dependence: it is only due to
the long-range correlations in the forcing. We obtain the
fGn result t2α−1. However, for the pure fRn case, α = 0 and
D0 = 0, so that we obtain

R0,h(t)=

∞∑
n=1
(−1)n

1+ cot
(
πh
2

)
tan
(
nπh

2

)
20(−nh)

t−(1+nh)

+P0,h,+(t), t � 1; (A8)

i.e. the leading behaviour is t−(1+h). Note that the leading
n= 1 coefficient reduces to−1/0(−h) and that for 0< h <
1, 0(−h) < 0.

For the motions (fRm), we need the expansion of
Vα,h(t); this can be obtained by integrating Rα,h twice (using
Eq. 36):

Vα,h(t)= aα,ht + bα,h− 2
∞∑
n=0

D−n0(−1+ nh− 2α)

· t2α+1−nh
+ 2Pα,h,−(t);

t � 1 0≤ α < 1/2 , (A9)

where Pa,h− is from the poles when 1< h < 2. Since the
asymptotic expansion is not valid for t = 0, we used the
indefinite integrals of Rα,h, and hence there is a linear
aα,ht + bα,h term from the constants of integration. How-
ever, when α > 0, the leading term is the t2α+1 term from
the fGn forcing, and in the pure fRn case (α = 0), we can take
limα→0(−2D00(−1−2α)t2α+1)= t so that the leading term
n= 0 already gives the correct fRm behaviour: Vα,h(t)≈ t ,
so that a0,h = 0 (b0,h can be determined numerically).

A3 Power series expansions about the origin

For many applications, one is interested in the behaviour of
Rα,h(t) for scales of months, which is typically less than the
relaxation time, i.e. t < 1. It is therefore important to under-
stand the small t behaviour. We again consider the Laplace
integral for the 0< h < 1 case. In this case, we can divide the
range of integration in Eq. (A2) into two parts for 0< x < 1
and x > 1. For the former, we use the expansion in Eq. (A4)
and, for the latter,

1
x2αeiπα(1+ xh)(1+ xheiπh)

=
e−iπα

eiπh− 1

∞∑
n=1
(−1)n+1(e−i(n−1)πh

− 1)x−2α−nh
; x > 1. (A10)
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We can now integrate each term separately using

1∫
0

e−xtxnh−2αdx =
∞∑
j=1

(−1)j−1

(hn− 2α+ j)0(j)
tj−1,

∞∫
1

e−xtx−(nh+2α)dx = Enh+2α(t)

= π
t−1+hn+2α

sin(πnh+ 2πα)0(hn+ 2α)

+

∞∑
j=1

(−1)j−1

(hn+ 2α− j)0(j)
tj−1 , (A11)

where Eβ(t)=
∫
∞

1 e−xtx−βdx is the exponential integral.
Adding the two integrals and summing over n, we obtain

Rα,h(t)=

∞∑
n=2

Dn0(1−hn− 2α)t−1+hn+2α

+

∞∑
j=1

Fj
tj−1

0(j)
, (A12)

Fj =
1
πh

Im
[
e−iαπ

eiπh− 1

(
eiπh

∞∑
n=−∞

(−1)n
eiπnh

(n+ a)

−

∞∑
n=−∞

(−1)n
1

(n+ a)

)]
, a =

j − 2α
h

(we have interchanged the order of summations and usedDn
from Eq. A5 with n > 0).

The series for the coefficient Fj can now be summed an-
alytically. Although the sum is a special case of the Lip-
chitz summation and Poisson summation formulae, the eas-
iest method is to use the Sommerfeld–Watson transforma-
tion (e.g. Mathews and Walker, 1973) that converts an infi-
nite sum into a contour integral that is then deformed. The
Sommerfeld–Watson transformation states that for an ana-
lytic function f (z) that goes to zero at least as fast as |z|−1,

∞∑
n=−∞

(−1)nf (n)=−π
∑
k

Rk

sinπzk
, (A13)

where zk is the location of the poles of f (z) and Rk is the
residue of the corresponding pole. In the above, take

f (z)=
eizπh

(z+ a)
. (A14)

There is a single pole at z1 =−a, and the residue is R1 =

e−iaπh; therefore,

eiπh
∞∑

n=−∞

(−1)neinπh

(n+ a)
= π

eiπh(1−a)

sinπa
. (A15)

The second sum needed in Fj can be obtained using h= 0
in the above, so that, overall,

Fj =
1
hπ

Im

[
e−iαπ

eiπh− 1

(
π
eiπh(1−a)− 1

sinπa

)]

=
1

hsin(π(j − 2α)/h)

· Im

[
e−iπj eiπ(h/2+α)− e−iπ(h/2+α)

eiπh/2− e−iπh/2

]
. (A16)

If j is even, then the term in the square bracket is pure real,
hence Fj vanishes. Otherwise

Fj =−
cosπ

(
h
2 +α

)
hsin

(
πh
2

)
sin
(
π
h
(j − 2α)

) , j = odd. (A17)

Note that F1 > 0 for h+α > 1/2 (with 0≤ α < 1/2, 0≤ h <
2), whereas for h+α < 1/2 it is quite complicated (see be-
low).

Comments

1. These and the following formulae are for t > 0; in ad-
dition, only the even integer-ordered terms are non-zero
(the sum over odd j ).

2. Each integer term of the expansion Fj is itself obtained
as an infinite sum, so that the overall result forRα,h(t) is
effectively a doubly infinite sum. This procedure swaps
the order of the summation and apparently explains the
fact that, while the expansions were derived for the case
0< h < 1, the final expansion is valid for 0≤ α < 1/2
and the full range 0< h < 2: numerically, it accurately
reproduces the oscillations when h > 1.

3. The fGn correlation function is given by the single n=
2 term:

R
(fGn)
h (t)= D20(1− 2h)t−1+2h

=
sin(hπ)
π

0(1− 2h)t−1+2h. (A18)

It is also proportional to the correlation function of the
fGn-forced h= 0; fRn process:R(fGn)

h (t)= 4Rα=h,0(t).

4. When 0< α+h < 1/2, R is divergent at the ori-
gin; this leading term 0(−1− 2(h+α))sin(π(h+
α))t−1+2(h+α)/π is only dependent on h+α corre-
sponding to an fGn with parameter h+α. When 1/2<
h+α < 2, it is still the leading fractional term, but the
constant F1 dominates at small t .

5. The Fj terms diverge when (j − 2α)/h is an integer.
For example, if α = 0, the overall sum over all j thus
diverges for all rational h. For irrational h, the conver-
gence properties are not easy to establish, although due
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to the 0 functions, these series apparently converge for
all t ≥ 0, but the convergence is rather slow.

Figure A1 shows some numerical results for α =

0 showing the convergence of the 10th-order frac-
tional 10th-order integer power approximation (nmax =

jmax = 10). Since the leading (fGn) term diverges for
small t, when h≤ 1/2, it is more useful to consider the
convergence of the difference with respect to the fGn
term, i.e. R(fGn)

h (t)−R0,h,a(t), where the approxima-
tion R0,h,a(t) is from the sum from n= 3 to 10 and odd
j ≤ 9. Figure A1 shows the logarithm of the ratio of
the approximation with respect to the true value: r =
log10

∣∣1−(R(fGn)
h (t)−R0,h,a(t)

)/(
R
(fGn)
h (t)−R0,h(t)

)∣∣
(to avoid exact rationals, 10−4 was added to the h val-
ues). From the figure we see that the approximation is
satisfactory except for small h. In the next section we
return to this.

6. For α+h > 1/2, when t = 0, the only nonzero term
is from the constant F1: Rα,h(0)= F1. This gives the
normalization constant. Comparing with Eq. (27), we
therefore have

Rα,h(0)=

∞∫
0

Gα,h(u)
2du= F1

=−
cosπ

(
h
2 +α

)
hsin

(
πh
2

)
sin
(
π
h
(1− 2α)

) ,
α+h > 1/2,

0≤ α < 1/2,
1/2< h < 2. (A19)

Similarly, when α+h > 3/2, for the quadratic the
squared integral of G′α,h is finite, and it gives the co-
efficient of the t2 term, so that

∞∫
0

G′α,h(s)
2ds =−

F3

0(3)

=
cos

(
π
2 (h+ 2α)

)
2hsin

(
πh
2

)
sin
(
π
h
(3− 2α)

) ,
h+α >

3
2
. (A20)

7. The expression for Vα,h(t) can be obtained by integrat-
ing twice (Eq. 36).

8. In the special cases h= 1/m, with m a positive integer,
Fj is independent of j , and the integer-powered series
can be summed, yielding a result proportional to cosh t .
However, this large t divergence is cancelled out by the
fractional term, and the result is finite (this partial can-
cellation is discussed in the next subsection). The spe-
cial important case h= 1/2 is dealt with in Appendix B.

Figure A1. This shows the logarithm of the relative error in
the R(10,10)

0,h (t) approximation (i.e. with 10 fractional terms and
10 integer-ordered terms) with respect to the deviation from
the fGn R0,h(t) r = log10

∣∣1−(RfGn
h

(t)−R
(10,10)
0,h (t)

)/(
RfGn
h

(t)−

R0,h(t)
)∣∣. The lines are for h= 2/10, 4/10, . . . , 16/10, 18/10 (ex-

cluding the exponential case h= 1), from left to right (note that
convergence is only for irrational h, and therefore an extra 10−4

was added to each h). For the low h values the convergence is par-
ticularly slow.

A4 A convenient approximation

The expansion forRα,h is the sum of a fractional-ordered and
an integer-ordered series. Partial sums appear to converge
(Fig. A1), albeit slowly. For simplicity, we consider the case
of primary interest, a pure fRn process (α = 0). Examination
of partial sums shows that the integer-ordered and fractional-
ordered terms tend to cancel, the difficulty being due to
the coefficient of the integer-ordered terms j ≈ hn+ 2α that
comes from the exponential integral and that can be large
when j ≈ hn+ 2α. This suggests an alternative way of ex-
pressing the series:

R0,h(t)=

∞∑
n=2

DnEnh(t)+

∞∑
j=1

Cj
(−1)j−1

0(j)
tj−1,

Cj =

∞∑
n=2

Dn

(hn+ j)
, (A21)

where Dn is given by Eq. (A5) and the n sums start at n= 2
since D1 = 0. Cj can be expressed as

Cj = −
ie−ihπ

2πh(eihπ − 1)

(
−
(
eihπ+e

2ihπ )
8
(
− 1,1,1+

j

h

)
+8

(
eihπ ,1,1+

j

h

)
+ e3ihπ8

(
e−ihπ ,1,1+

j

h

))
, (A22)

where 8 is the Hurwitz–Lerch phi function 8(z,s,a)=
∞∑
n=0

zn(n+ a)−s .
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We can also expand the exponential integral:

Enh(t)= π
t−1+hn

sin(πnh)0(hn)
+

∞∑
j=1

(−1)j−1

(hn− j)0(j)
tj−1. (A23)

For the jmax and nmax partial sums, we have

R
(nmax,jmax)
0,h (t)=

nmax∑
n=2

Dn0(1− nh)t−1+hn

+

jmax∑
j=1

Fj,nmax

(−1)j−1

0(j)
tj−1,

Fj,nmax = Cj +

nmax∑
n=2

Dn

hn− j
. (A24)

Now define the (jmax, nmax) approximation by

R0,h,nmax,jmax(t)=
R
(nmax+1,jmax)
0,h (t)+R

(nmax,jmax)
0,h (t)

2
. (A25)

This has the effect of adding half the next-highest n term and
is more accurate; overall, jmax and nmax may now be taken
to be much smaller than in the previous approximation. For
example, putting nmax = 2, jmax = 1, we get with the partial
sum

R0,h,2,1(t)= R
(fGn)
h (t)+

D3

2
0(1− 3h)t−1+3h

+F1 , (A26)

where

F1 = C1+
D2

2h− 1
+

D3

2(3h− 1)
,

D2 =
sin(πh)
π

, D3 =−
sin(πh)(1+ 2cos(πh))

π
. (A27)

To understand the behaviour, Fig. A2 shows the behaviour
of the coefficient of the t−1+3h term D3

2 0(1− 3h), the con-
stant term F1 and the coefficient of the next integer (linear in
t) term

F2 = C2+
D2

2h− 2
+

D3

2(3h− 2)
.

Up until the end of the fGn region (h= 1/2), the t−1+3h and
F1 terms have opposite signs and tend to cancel. In addi-
tion, we see that for t ≈< 1 and h < 1, they dominate over
the (omitted) linear term. Figure A3 shows that the R0,h,2,1
approximation is surprisingly good for h < 1 and is still
not so bad for 1< h < 2. This approximation is thus use-
ful for monthly-resolution macroweather temperature fields
that have relaxation times of years or longer and where h
is mostly over the range 0< h < 1/2 but over some tropi-
cal ocean regions can increase to as much as h≈ 1.2 (Del
Rio Amador and Lovejoy, 2021a). Figure A3 shows that the
(2,1) approximation is reasonably accurate for t ≈< 1, es-
pecially for h < 1.

Figure A2. The solid line is the constant term F1, the long dashes
are the coefficients D3

2 0(1− 3h) of the fractional power, and the
short dashes are the coefficients of the linear term: F2 = C2+
D2

2h−2 +
D3

2(3h−2) . We can see that the contribution of the linear term
(used in the R0,h,2,2(t) approximation) for h < 1 and t < 1 is fairly
small, whereas for 1< h < 2, it is larger and theR0,h,2,2(t) approx-
imation is significantly better than the R0,h,2,1(t) approximation
(see Fig. A3).

Figure A3. This shows the logarithm of the relative error in
the (2,1) approximation with respect to the deviation from
the fGn Rh(t) (r = log10

∣∣1− (RfGn
h

(t)−R0,h,2,1(t)
)/(

RfGn
h

(t)−

R0,h(t)
)∣∣). For h < 1, t < 0 is of the order ≈ 30%, whereas for

h > 1, it of the order 100 %. The h= 1 (exponential) curve is not
shown, although when t < 0, the error is of order 60 %.

Appendix B: The h= 1/2 special case

When α = 0, h= 1/2, and the high-frequency fGn limit is
an exact “1/f noise” (spectrum ω−1); it has both high- and
low-frequency divergences. The high-frequency divergence
can be tamed by averaging, but not the low-frequency di-
vergence, so that fGn is only defined for h < 1/2. However,
for fRn, the low frequencies are convergent over the whole
range 0< h < 2, and for h= 1/2 we find that the correla-
tion function has a logarithmic dependence at both small and
large scales. This is associated with particularly slow tran-
sitions from high- to low-frequency behaviours. The critical
value h= 1/2 corresponds to the HEBE (Lovejoy, 2021a, b),
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where it was shown that the value h= 1/2 could be derived
analytically from the classical Budyko–Sellers energy bal-
ance equation. Therefore, Rα,1/2(t) and Vα,1/2(t) character-
ize the statistics of the temperature response of the classical
heat equation response to an fGn-order α forcing.

It is possible to obtain exact analytic expressions for
Rα,1/2(t), Vα,1/2(t) and the Haar fluctuations; we develop
these in this Appendix; for some early results, see Mainardi
and Pironi (1996).

The starting point is the Laplace expression (Eq. A2) with
h= 1/2:

Rα,h(t)= −
1
π

Ime−iαπ
∞∫

0

e−xtdx
x2α(1+ x1/2)(1+ ix1/2)

= −
1

π
√

2
Ime−iπα

∞∫
0

x−2α

·

(
eiπ/4

1+ x1/2 +
e−iπ/4

1+ x
−
eiπ/4x1/2

1+ x

)
e−xtdx. (B1)

We require the following Laplace transforms:

L1(t)=

∞∫
0

e−xt

x2α(1+ x1/2)
dt

= e−t−2iπα
(
0(1− 2α)0(2α,−t)− i0

(
3
2
− 2α

)
·0

(
2α−

1
2
,−t

))
,

L2(t)=

∞∫
0

e−xt

x2α(1+ x)
dt = et0(1− 2α)0(2α, t),

L3(t)=

∞∫
0

e−xtx1/2

x2α(1+ x)
dt = et0

(
3
2
− 2α

)
0

(
2α−

1
2
, t

)
, (B2)

where we have introduced the incomplete gamma function:
0(a,z)=

∫
∞

z
ua−1e−udu (with a branch cut in the complex

plane from −∞ to 0). The general result is thus

Rα,1/2(t)=
1

2π
(sinπα(L1(t)+L2(t)−L3(t))

+ cosπα(−L1(t)+L2(t)+L3(t))). (B3)

Figure B1 shows plots Rα,1/2(t) over 8 orders of mag-
nitude in t , indicating the generally very slow convergence
to the asymptotic behaviour (shown as straight lines on the
right).

Figure B1 also shows the singular small t behaviour of the
pure fRn case (α = 0). In this limit both L1 and L2 are sin-
gular – they both yield logarithmic small-scale divergences.
Pure fRn is of special interest and yields the somewhat sim-

Figure B1. Rα,1/2 for α increasing from 0 (pure fRn) to 8/10 in
steps of 1/10 (on the right: bottom to top). The α = 0 curve has a
logarithmic divergence at small t (far left). Recall from the section
that at large t , R0,1/2 ≈ t

−3/2 and that for α > 0, Rα,1/2 ≈ t2α−1;
for α = 0, 1/5, and 2/5 the theoretical asymptotes of the leading
terms are indicated for reference.

pler result:

R0,1/2(t)=
1
2

(
e−terfi

√
t − eterfc

√
t
)

−
1

2π
(etEi(−t)+ e−tEi(t)),

Ei(z)= −

∞∫
−z

e−u
du
u
, erfi(z)=−i(erf(iz)),

erf(z)=
2
√
π

z∫
0

e−s
2
ds. (B4)

We can use these results to obtain small and large t expan-
sions:

R0,1/2(t)= −

(
2γE +π + 2log t

2π

)
+

2
√
t

√
π
−
t

2

−

(
3+ 2γE +π + 2log t

4π

)
t2

+O(t3/2), t � 1, (B5)

R0,1/2(t)=
1

2
√
π
t−3/2

−
1
π
t−2
+

15
8
√
π
t−7/2

+O(t−4),

t � 1,

where γE is Euler’s constant= 0.57. . . (the asymptotic for-
mula can be obtained as a special case of Eq. A8 in Ap-
pendix A, but not the logarithmic small-scale divergence).

To obtain the corresponding results for V0,1/2, use

V0,1/2(t)= 2

t∫
0

 v∫
0

R0,1/2(u)du

dv .
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The exact V0,1/2 is

V0,1/2(t)=G
2,2
3,4

[
t

∣∣∣∣2, 2, 5/2
2, 2, 0, 5/2

]
+
et

π
(Shi(t)−Chi(t))+

(
e−terfi(

√
t)− eterf(

√
t)
)

+t

(
1+

γE − 1
π

)
− 4

√
t

π
+
(1+ t) log t

π
+ 1+

γE

π
, (B6)

where G2,2
3,4 is the MeijrG function, Chi is the CoshIntegral

function and Shi is the SinhIntegral function. The expansions
are

V0,1/2(t)= −
t2 log t
π
+

191− 156γE − 78π
144π

+
16

15
√
π
t5/2

−
t3

6
−
t4 log t
12π

+O(t3/2), t � 1, (B7)

V0,1/2(t)= t +
π + 2γE
π

+
2log t
π
−

4
√
π
t1/2+

1
√
π
t−1/2

−
2
π
t−2
+

15
4
√
π
t−3/2

+O(t−4), t � 1 .

We can also work out the variance of the Haar fluctuations:〈
1U2

0,1/2(1t)Haar

〉
=
1t2 log1t

4π
+

6π + 12γE − log16+ 960log2
240π

+
512(
√

2− 2)
240
√
π

1t1/2+
1t

3
+O(1t3/2), 1t � 1, (B8)

〈
1U2

0,1/2(1t)Haar

〉
= 41t−1

−
32
√

2
√
π
1t−3/2

+
31t−2 log1t

π
+O(1t−2),

1t � 1.

Figure B2 shows numerical results for α = 0 and h=

1/2. The transition between small and large t behaviour is
extremely slow; the nine orders of magnitude depicted in
the figure are barely enough. The extreme low (R1/2)

1/2

(dashed) asymptotes on the left to a 0 slope (a square root
logarithmic limit, Eq. B8) and to a −3/4 slope on the right.
The rms Haar fluctuation (black) changes slope from H = 0
to −1/2 (left to right). Figure B2 also shows the logarith-
mic derivative of the rms Haar (black) compared to a regres-
sion estimate over 2 orders of magnitude in scale (dashed;
a factor of 10 smaller and 10 larger than the indicated scale
was used; this represents a possibly empirically accessible
range). This figure underlines the gradualness of the transi-
tion from H = 0 to H =−1/2. If empirical data were avail-
able only over a factor of 100 in scale, depending on where
this scale was with respect to the relaxation timescale (unity
in the plot), the rms Haar fluctuations could have any slope
in the range 0 to −1/2, with only small deviations.

Figure B2. The logarithmic derivative of the rms Haar fluctuations
of U0,1/2 (solid) in Fig. B1 compared to a regression estimate over
2 orders of magnitude in scale (dashed; factors of 10 smaller and 10
larger than the indicated scale were used). This plot underlines the
gradualness of the transition from slopes 0 to−0.5 corresponding to
apparent H = 0 to H =−1/2 scaling. Over a range of 100 or so in
scale there is approximate scaling but with exponents that depend on
the range of scales covered by the data. If data were available only
over a factor of 100 in scale, the rms Haar fluctuations could have
any slope in the fGn range 0 to −1/2, with only small deviations.

Code availability. Mathematica code for generating sample fRn
and fRm processes is available on request to the author. Analysis
and simulation software is available from http://www.physics.
mcgill.ca/~gang/software/doc/mathematicasoftware.17.9.14.nb.zip
(last access: 14 February 2022; Lovejoy, 2014).

Data availability. No data sets were used in this article.

Competing interests. The author is a member of the editorial board
of Nonlinear Processes in Geophysics. The peer-review process was
guided by an independent editor, and the author also has no other
competing interests to declare.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Special issue statement. This article is part of the special issue
“Centennial issue on nonlinear geophysics: accomplishments of the
past, challenges of the future”. It is not associated with a conference.

Acknowledgements. I thank Lenin Del Rio Amador, Roman Pro-
cyk, Raphaël Hébert, Cécile Penland, and Nicholas Watkins for
discussions. We are also grateful for an exchange with Kristof-

Nonlin. Processes Geophys., 29, 93–121, 2022 https://doi.org/10.5194/npg-29-93-2022

http://www.physics.mcgill.ca/~gang/software/doc/mathematicasoftware.17.9.14.nb.zip
http://www.physics.mcgill.ca/~gang/software/doc/mathematicasoftware.17.9.14.nb.zip


S. Lovejoy: Fractional relaxation noises, motions and the fractional energy balance equation 119

fer Rypdal. We thank anonymous referees for suggestions, includ-
ing the fifth referee for encouraging comments on the Fourier ap-
proach. This work was unfunded, and there were no conflicts of
interest.

Review statement. This paper was edited by Daniel Schertzer and
reviewed by five anonymous referees.

References

Atanackovic, M., Pilipovic, S., Stankovic, B., and Zorica, D.: Frac-
tional Calculus with applications in mechanics: variations and
diffusion processes, Wiley, 313 pp., 2014.

Babenko, Y. I.: Heat and Mass Transfer, Khimiya, Leningrad, 1986
(in Russian).

Bender, C. M. and Orszag, S. A.: Advanced mathematical methods
for scientists and engineers, Mc Graw Hill, 1978.

Biagini, F., Hu, Y., Øksendal, B., and Zhang, T.: Stochastic Calcu-
lus for Fractional Brownian Motion and Applications, Springer-
Verlag, https://doi.org/10.1007/978-1-84628-797-8, 2008.

Budyko, M. I.: The effect of solar radiation variations on the climate
of the earth, Tellus, 21, 611–619, 1969.

Buizza, R., Miller, M., and Palmer, T. N.: Stochastic representation
of model uncertainties in the ECMWF Ensemble Prediction Sys-
tem, Q. J. Roy. Meteor. Soc., 125, 2887–2908, 1999.

Chekroun, M. D., Simonnet, E., and Ghil, M.: Stochastic Climate
Dynamics: Random Attractors and Time-dependent Invariant
Measures, Physica D, 240, 1685–1700, 2010.

Coffey, W. T., Kalmykov, Y. P., and Titov, S. V.: Characteristic times
of anomalous diffusion in a potential, in: Fractional Dynamics:
Recent Advances, edited by: Klafter, J., Lim, S., and Metzler, R.,
World Scientific, 51–76, 2012.

Del Rio Amador, L. and Lovejoy, S.: Predicting the global
temperature with the Stochastic Seasonal to Interannual Pre-
diction System (StocSIPS), Clim. Dynam., 53, 4373–4411,
https://doi.org/10.1007/s00382-019-04791-4, 2019.

Del Rio Amador, L. and Lovejoy, S.: Using regional scaling for
temperature forecasts with the Stochastic Seasonal to Interan-
nual Prediction System (StocSIPS), Clim. Dynam., 57, 727–756,
https://doi.org/10.1007/s00382-021-05737-5, 2021a.

Del Rio Amador, L. and Lovejoy, S.: Long-range Forecasting as a
Past Value Problem: Untangling Correlations and Causality with
scaling, Geophys. Res. Lett., 48, e2020GL092147, 2021b.

Dijkstra, H.: Nonlinear Climate Dynamics, Cambridge University
Press, 357 pp., https://doi.org/10.1017/CBO9781139034135,
2013.

Franzke, C. and O’Kane, T. (Eds.): Nonlinear and Stochastic
Climate Dynamics, Cambridge University Press, Cambridge,
https://doi.org/10.1017/9781316339251, 2017.

Gripenberg, G. and Norros, I.: On the Prediction of Fractional
Brownian Motion, J. Appl. Probab., 33, 400–410, 1996.

Hasselmann, K.: Stochastic Climate models, part I: Theory, Tellus,
28, 473–485, 1976.

Hébert, R.: A Scaling Model for the Forced Climate Variability
in the Anthropocene, MSc thesis, McGill University, Montreal,
2017.

Hébert, R. and Lovejoy, S.: The runaway Green’s function effect:
Interactive comment on “Global warming projections derived
from an observation-based minimal model” by K. Rypdal, Earth
System Dyn. Disc., 6, C944–C953, 2015.

Hébert, R., Lovejoy, S., and Tremblay, B.: An Observation-
based Scaling Model for Climate Sensitivity Estimates and
Global Projections to 2100, Clim. Dynam., 56, 1105–1129
https://doi.org/10.1007/s00382-020-05521-x, 2021.

Herrmann, R.: Fractional Calculus: an Introduction for Physicists,
World Scientific, ISBN: 139789814340243, 2011.

Hilfer, R. (Ed.): Applications of Fractional Calculus in Physics,
World Scientific, ISBN: 9810234570, 2000.

Hipel, K. W. and McLeod, A. I.: Time series modelling of wa-
ter resources and environmental systems, 1st edn., Elsevier,
ISBN: 9780080870366, 1994.

IPCC: Climate Change 2013: The Physical Science Basis. Contri-
bution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, Cambridge Univer-
sity Press, Cambridge, ISBN: 9781107661820, 2013.

Jumarie, G.: Stochastic differential equations with fractional Brow-
nian motion inputs, Int. J. Syst. Sci., 24, 1113–1131, 1993.

Karczewska, A. and Lizama, C.: Solutions to stochastic frac-
tional relaxation equations, Phys. Scripta, T136, 7 pp.,
https://doi.org/10.1088/0031-8949/2009/T136/014030, 2009.

Kou, S. C. and Sunney Xie, X.: Generalized Langevin
Equation with Fractional Gaussian Noise: Subdiffusion
within a Single Protein Molecule, Phys. Rev. Lett., 93, 4,
https://doi.org/10.1103/PhysRevLett.93.180603, 2004.

Lovejoy, S.: What is climate?, EOS, 94, 1–2, 2013.
Lovejoy, S.: Mathematica software for simulation and analysis

of scaling and multifractals, Department of Physics, McGill
University, http://www.physics.mcgill.ca/~gang/software/doc/
mathematicasoftware.17.9.14.nb.zip (last access: 14 February
2022), 2014.

Lovejoy, S.: A voyage through scales, a missing quadrillion and
why the climate is not what you expect, Clim. Dynam., 44, 3187–
3210, https://doi.org/10.1007/s00382-014-2324-0, 2015a.

Lovejoy, S.: Using scaling for macroweather forecasting in-
cluding the pause, Geophys. Res. Lett., 42, 7148–7155,
https://doi.org/10.1002/2015GL065665, 2015b.

Lovejoy, S.: The spectra, intermittency and extremes of weather,
macroweather and climate, Nature Scientific Reports, 8, 1–13,
https://doi.org/10.1038/s41598-018-30829-4, 2018.

Lovejoy, S.: Weather, Macroweather and Climate: our random
yet predictable atmosphere, Oxford University Press, 334 pp.,
ISBN: 978-0-19-086421-7, 2019.

Lovejoy, S.: The half-order energy balance equation – Part 1:
The homogeneous HEBE and long memories, Earth Syst.
Dynam., 12, 469–487, https://doi.org/10.5194/esd-12-469-2021,
2021a.

Lovejoy, S.: The half-order energy balance equation – Part 2: The
inhomogeneous HEBE and 2D energy balance models, Earth
Syst. Dynam., 12, 489–511, https://doi.org/10.5194/esd-12-489-
2021, 2021b.

Lovejoy, S. and Schertzer, D.: The Weather and Climate: Emergent
Laws and Multifractal Cascades, Cambridge University Press,
496 pp., ISBN: 978-1-107-01898-3, 2013.

Lovejoy, S., Del Rio Amador, L., and Hébert, R.: Harnessing but-
terflies: theory and practice of the Stochastic Seasonal to Inter-

https://doi.org/10.5194/npg-29-93-2022 Nonlin. Processes Geophys., 29, 93–121, 2022

https://doi.org/10.1007/978-1-84628-797-8
https://doi.org/10.1007/s00382-019-04791-4
https://doi.org/10.1007/s00382-021-05737-5
https://doi.org/10.1017/CBO9781139034135
https://doi.org/10.1017/9781316339251
https://doi.org/10.1007/s00382-020-05521-x
https://doi.org/10.1088/0031-8949/2009/T136/014030
https://doi.org/10.1103/PhysRevLett.93.180603
http://www.physics.mcgill.ca/~gang/software/doc/mathematicasoftware.17.9.14.nb.zip
http://www.physics.mcgill.ca/~gang/software/doc/mathematicasoftware.17.9.14.nb.zip
https://doi.org/10.1007/s00382-014-2324-0
https://doi.org/10.1002/2015GL065665
https://doi.org/10.1038/s41598-018-30829-4
https://doi.org/10.5194/esd-12-469-2021
https://doi.org/10.5194/esd-12-489-2021
https://doi.org/10.5194/esd-12-489-2021


120 S. Lovejoy: Fractional relaxation noises, motions and the fractional energy balance equation

annual Prediction System (StocSIPS), in: Nonlinear Advances
in Geosciences, edited by: Tsonis, A. A., Springer Nature, 305–
355, https://doi.org/10.1007/978-3-319-58895-7_17, 2017.

Lovejoy, S., del Rio Amador, L., and Hébert, R.: The ScaLIng
Macroweather Model (SLIMM): using scaling to forecast global-
scale macroweather from months to decades, Earth Syst. Dy-
nam., 6, 637–658, https://doi.org/10.5194/esd-6-637-2015, 2015.

Lovejoy, S., Procyk, R., Hébert, R., and del Rio Amador, L.: The
Fractional Energy Balance Equation, Q. J. Roy. Meteor. Soc., 1–
25, https://doi.org/10.1002/qj.4005, 2021.

Lutz, E.: Fractional Langevin equation, Phys. Rev. E, 64, 4,
https://doi.org/10.1103/PhysRevE.64.051106, 2001.

Magin, R., Sagher, Y., and Boregowda, S.: Application of fractional
calculus in modeling and solving the bioheat equation, in: Design
and Nature II, edited by: Collins, M. W. and Brebbia, C. A., WIT
Press, 207–216, ISBN: 1-85312-721-3, 2004.

Mainardi, F. and Pironi, P.: The Fractional Langevin Equation:
Brownian Motion Revisited, Extracta Mathematicae, 10, 140–
154, 1996.

Mandelbrot, B. B.: The Fractal Geometry of Nature, Freeman,
ISBN-10.0716711869, 1982.

Mandelbrot, B. B. and Van Ness, J. W.: Fractional Brownian mo-
tions, fractional noises and applications, SIAM Rev., 10, 422–
450, 1968.

Mandelbrot, B. B. and Wallis, J. R.: Computer Experi-
ments with fractional gaussian noises: part 3, math-
ematical appendix, Water Resour. Res., 5, 260–267,
https://doi.org/10.1029/WR005i001p00260, 1969.

Mathews, J. and Walker, R. L.: Mathematical methods of Physics,
W. A. Benjamin, ISBN: 8053-7002-1, 1973.

Metzler, R. and Klafter, J.: The Random Walks Guide To Anoma-
lous Diffusion: A Fractional Dynamics Approach, Phys. Rep.,
339, 1–77, 2000.

Newman, M.: An Empirical Benchmark for Decadal Forecasts of
Global Surface Temperature Anomalies, J. Climate, 26, 5260–
5269, https://doi.org/10.1175/JCLI-D-12-00590.1, 2013.

Nonnenmacher, T. F. and Metzler, R.: Applications of fractional cal-
culus techniques to problems in biophysics, in: Fractional Calcu-
lus in Physics, edited by: Hilfer, R., World Scientific, 377–427,
ISBN: 9810234570, 2000.

North, G. R. and Kim, K. Y.: Energy Balance Climate Models,
Wiley-VCH, 369 pp., ISBN: 978-3-527-41132-0, 2017.

Oldham, K. B.: Diffusive transport to planar, cylindrical and spher-
ical electrodes, J. Electroanal. Chem. Interfacial Electrochem.,
41, 351–358, 1973.

Oldham, K. B. and Spanier, J.: A general solution of the diffusion
equation for semi infinite geometries, J. Math. Anal. Appl., 39,
665–669, 1972.

Palma, W.: Long-memory time series, Wiley,
ISBN: 9780470114025, 2007.

Palmer, T. N. and Williams, P. (Eds.): Stochastic physics and Cli-
mate models, Cambridge University Press, Cambridge, 480 pp.,
ISBN: 9780521761055, 2010.

Papoulis, A.: Probability, Random Variables and Stochastic Pro-
cesses, Mc Graw Hill, ISBN-10: 0070484481, 1965.

Penland, C.: A stochastic model of IndoPacific sea surface temper-
ature anomalies, Phys. D, 98, 534–558, 1996.

Penland, C. and Magorian, T.: Prediction of Nino 3 sea surface
temperatures using linear inverse modeling, J. Climate, 6, 1067–
1076, 1993.

Podlubny, I.: Fractional Differential Equations, Academic Press,
340 pp., ISBN 9780125588409, 1999.

Procyk, R.: The Fractional Energy Balance Equation: the Unifica-
tion of Externally Forced and Internal Variability, MSc thesis,
McGill University, Montreal, Canada, 111 pp., 2021.

Procyk, R., Lovejoy, S., and Hébert, R.: The fractional energy
balance equation for climate projections through 2100, Earth
Syst. Dynam., 13, 81–107, https://doi.org/10.5194/esd-13-81-
2022, 2020.

Procyk, R., Lovejoy, S., and Hébert, R.: The fractional energy
balance equation for climate projections through 2100, Earth
Syst. Dynam., 13, 81–107, https://doi.org/10.5194/esd-13-81-
2022, 2022.

Rypdal, K.: Global temperature response to radiative forcing: Solar
cycle versus volcanic eruptions, J. Geophys. Res., 117, D06115,
https://doi.org/10.1029/2011JD017283, 2012.

Rypdal, K.: Global warming projections derived from an
observation-based minimal model, Earth Syst. Dynam., 7, 51–
70, https://doi.org/10.5194/esd-7-51-2016, 2016.

Sardeshmukh, P., Compo, G. P., and Penland, C.: Changes in proba-
bility assoicated with El Nino, J. Climate, 13, 4268–4286, 2000.

Sardeshmukh, P. D. and Sura, P.: Reconciling non-gaussian cli-
mate statistics with linear dynamics, J. Climate, 22, 1193–1207,
2009.

Schertzer, D., Larchevíque, M., Duan, J., Yanovsky, V. V., and
Lovejoy, S.: Fractional Fokker-Planck equation for nonlinear
stochastic differential equation driven by non-Gaussian Levy sta-
ble noises, J. Math. Phys., 42, 200–212, 2001.

Schiessel, H., Friedrich, C., and Blumen, A.: Applications to prob-
lems in polymer physics and rheology, in: Fractional Calcu-
lus in physics, edited by: Hilfer, R., World Scientific, 331–376,
ISBN: 9810234570, 2000.

Sellers, W. D.: A global climate model based on the energy balance
of the earth-atmosphere system, J. Appl. Meteorol., 8, 392–400,
1969.

Sierociuk, D., Dzielinski, A., Sarwas, G., Petras, I., Podlubny, I.,
and Skovranek, T.: Modelling heat transfer in heterogeneous
media using fractional calculus, Philos. T. R. Soc. A, 371,
20120146, https://doi.org/10.1098/rsta.2012.0146, 2013.

van Hateren, J. H.: A fractal climate response function can
simulate global average temperature trends of the mod-
ern era and the past millennium, Clim. Dynam., 40, 2651,
https://doi.org/10.1007/s00382-012-1375-3, 2013.

Vojta, T., Skinner, S., and Metzler, R.: Probability density of the
fractional Langevin equation with reflecting walls, Phys. Rev.
E, 100, 042142, https://doi.org/10.1103/PhysRevE.100.042142,
2019.

Watkins, N.: Fractional Stochastic Models for Heavy Tailed, and
Long-Range Dependent, Fluctuations in Physical Systems, in:
Nonlinear and Stochastic Climate Dynamics, edited by: Franzke,
C. and O’Kane, T., Cambridge University Press, 340–368,
ISBN: 9781316339251, 2017.

Watkins, N., Chapman, S., Klages, R., Chechkin, A., Ford, I., and
Stainforth, D.: Generalised Langevin Equations and the Cli-
mate Response Problem, Earth and Space Science Open Archive,
https://doi.org/10.1002/essoar.10501367.1, 2019.

Nonlin. Processes Geophys., 29, 93–121, 2022 https://doi.org/10.5194/npg-29-93-2022

https://doi.org/10.1007/978-3-319-58895-7_17
https://doi.org/10.5194/esd-6-637-2015
https://doi.org/10.1002/qj.4005
https://doi.org/10.1103/PhysRevE.64.051106
https://doi.org/10.1029/WR005i001p00260
https://doi.org/10.1175/JCLI-D-12-00590.1
https://doi.org/10.5194/esd-13-81-2022
https://doi.org/10.5194/esd-13-81-2022
https://doi.org/10.5194/esd-13-81-2022
https://doi.org/10.5194/esd-13-81-2022
https://doi.org/10.1029/2011JD017283
https://doi.org/10.5194/esd-7-51-2016
https://doi.org/10.1098/rsta.2012.0146
https://doi.org/10.1007/s00382-012-1375-3
https://doi.org/10.1103/PhysRevE.100.042142
https://doi.org/10.1002/essoar.10501367.1


S. Lovejoy: Fractional relaxation noises, motions and the fractional energy balance equation 121

Watkins, N. W., Chapman, S. C., Chechkin, A., Ford, I., Klages, R.,
and Stainforth, D. A.: On Generalized Langevin Dynamics and
the Modelling of Global Mean Temperature, arXiv [preprint],
arXiv:2007.06464v1, 4 December 2020.

West, B. J., Bologna, M., and Grigolini, P.: Physics of Fractal Op-
erators, Springer, 354 pp., ISBN: 0-387-95554-2, 2003.

Ziegler, E. and Rehfeld, K.: TransEBM v. 1.0: description, tuning,
and validation of a transient model of the Earth’s energy bal-
ance in two dimensions, Geosci. Model Dev., 14, 2843–2866,
https://doi.org/10.5194/gmd-14-2843-2021, 2021.

https://doi.org/10.5194/npg-29-93-2022 Nonlin. Processes Geophys., 29, 93–121, 2022

https://arxiv.org/abs/2007.06464v1
https://doi.org/10.5194/gmd-14-2843-2021

	Abstract
	Introduction
	The fractional relaxation equation
	fRn, fRm, fGn and fBm
	Green's functions
	The -order fractionally integrated fRn and fRm processes
	Statistics
	Finite-resolution processes

	Application to fBm, fGn, fRm, and fRn
	fBm and fGn
	fRm and fRn
	R,h(t)
	V,h(t)
	Asymptotic expansions

	Haar fluctuations
	Sample processes

	Prediction
	Conclusions
	Appendix A: The small- and large-scale fRn and fRm statistics
	Appendix A1: R,h(t) as a Laplace transform
	Appendix A2: Asymptotic expansions
	Appendix A3: Power series expansions about the origin
	Appendix A4: A convenient approximation

	Appendix B: The h=1/2 special case
	Code availability
	Data availability
	Competing interests
	Disclaimer
	Special issue statement
	Acknowledgements
	Review statement
	References

