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Abstract. This paper presents the results of the en-
semble Riemannian data assimilation for relatively high-
dimensional nonlinear dynamical systems, focusing on the
chaotic Lorenz-96 model and a two-layer quasi-geostrophic
(QG) model of atmospheric circulation. The analysis state
in this approach is inferred from a joint distribution that op-
timally couples the background probability distribution and
the likelihood function, enabling formal treatment of system-
atic biases without any Gaussian assumptions. Despite the
risk of the curse of dimensionality in the computation of the
coupling distribution, comparisons with the classic imple-
mentation of the particle filter and the stochastic ensemble
Kalman filter demonstrate that, with the same ensemble size,
the presented methodology could improve the predictability
of dynamical systems. In particular, under systematic errors,
the root mean squared error of the analysis state can be re-
duced by 20 % (30 %) in the Lorenz-96 (QG) model.

1 Introduction

The science of data assimilation (DA) aims to optimally es-
timate the probability distribution of a state variable of in-
terest in an Earth system model (ESM) given the informa-
tion content of observations and previous time forecasts to
improve their predictive abilities (Kalnay, 2003; Carrassi
et al., 2018). Current DA methodologies, either variational
(Lorenc, 1986; Zupanski, 1993; Courtier et al., 1994; Rabier

et al., 2000; Poterjoy and Zhang, 2014) or filtering (Kalman,
1960; Bishop et al., 2001; Anderson, 2001; Tippett et al.,
2003; Janjić et al., 2011; Carrassi and Vannitsem, 2011; An-
derson and Lei, 2013; Lei et al., 2018), largely rely on penal-
ization of second-order statistics of errors over the Euclidean
space without explicitly accounting for systematic model bi-
ases. For example, in the three-dimensional variational (3D-
Var) DA (Lorenc, 1986; Courtier et al., 1998; Lorenc et al.,
2000; Li et al., 2013), a least-squares cost function compris-
ing weighted Euclidean distances of the state from the previ-
ous model forecasts (background state) and the observations
is formulated. Solution of this cost function leads to an anal-
ysis state which is a weighted average of the forecasts and
observations across multiple dimensions of the problem with
the weights dictated by prescribed background and observa-
tion error covariance matrices. The variants of the Kalman
filtering DA methods (Evensen, 1994; Reichle et al., 2002;
Evensen, 2003; Nerger et al., 2012b; Houtekamer and Zhang,
2016) also follow the same principle, but in these methods,
the background covariance contains information from past
observations and model evolution.

Apart from the Euclidean distance, other measures and
distance metrics, including the quadratic mutual information
(Kapur, 1994), Kullback–Leibler (KL) divergence (Kullback
and Leibler, 1951), Hellinger distance (Hellinger, 1909), and
Wasserstein distance (Villani, 2003) have also been utilized
in DA frameworks. Among others, Tagade and Ravela (2014)
introduced a nonlinear filter, where the analysis is obtained
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through maximization of the quadratic mutual information.
Maclean et al. (2017) utilized the Hellinger distance to mea-
sure the difference between the predicted and observed spa-
tial patterns in oceanic flows. Chianese et al. (2018) intro-
duced a variational DA method in which minimization of
the KL divergence led to an approximation of the bias terms
and model parameters. Similarly, Li et al. (2019) employed
the KL divergence in an optimization framework to incor-
porate inequality constraints into the ensemble Kalman filter
(EnKF, Evensen, 1994). Recently, Pulido and van Leeuwen
(2019) developed a mapping particle filter in which particles
are pushed towards the posterior density by minimizing the
KL divergence between the posterior and a series of interme-
diate probability densities.

In filtering class of DA methodologies, coupling tech-
niques have been proposed as an alternative to the classic
Bayesian inference (El Moselhy and Marzouk, 2012; Span-
tini et al., 2019). El Moselhy and Marzouk (2012) presented
a new approach to find an optimal transport map that pushes
forward the background to the posterior distribution. The
approach was extended for generalization of the EnKF by
deriving nonlinear coupling between the forecast and pos-
terior distributions (Spantini et al., 2019). In recent years,
the Wasserstein or Earth mover’s distance, originating from
the theory of optimal mass transport (OMT, Monge, 1781;
Kantorovich, 1942; Villani, 2003; Kolouri et al., 2017; Chen
et al., 2017; Y. Chen et al., 2018; B. Chen et al., 2019),
has also been gaining attention in the DA community. Reich
(2013) introduced a new resampling approach in particle fil-
ters, using the OMT, to maximize the correlation between the
prior and posterior ensemble members. Ning et al. (2014) fur-
ther utilized the Wasserstein distance to treat position errors
arising from uncertain model parameters. Following on this
work, Feyeux et al. (2018) proposed to replace the weighted
Euclidean distance with the Wasserstein distance in varia-
tional DA frameworks to treat position error. Tamang et al.
(2020) proposed to use the Wasserstein distance to regular-
ize a variational DA framework for treating systematic errors
arising from the model forecast in chaotic systems.

However, DA frameworks utilizing the Wasserstein dis-
tance are computationally expensive as they require a joint
distribution to be obtained that couples two marginal distri-
butions. Finding this joint distribution often relies on interior-
point optimization methods (Altman and Gondzio, 1999) or
Orlin’s algorithm (Orlin, 1993) that have super-cubic run
time – making the Wasserstein DA computationally chal-
lenging even for relatively low-dimensional problems. More
recently, to reduce the computational cost, Tamang et al.
(2021) used entropic regularization of the OMT formulation
(Cuturi, 2013) through a new framework, called ensemble
Riemannian data assimilation (EnRDA), to cope with sys-
tematic errors and tested it on a three-dimensional Lorenz-63
model (Lorenz, 1963).

Unlike Euclidean DA with a known connection with the
family of Gaussian distributions through Bayes’ theorem, the

EnRDA does not rely on any parametric assumptions about
the input probability distributions. Therefore, it does not
guarantee an analysis state with a minimum mean squared
error. However, it enables us to optimally (i) interpolate
between the forecast distribution and the normalized like-
lihood function without any parametric assumptions about
their shapes and (ii) formally penalize systematic translations
between them arising due to potential geophysical biases.

However, the computational complexity of finding an op-
timal joint coupling between two m-dimensional probability
distributions supported on d points in each dimension using
the entropic regularization is O(d2m). This might impose a
significant limitation on the direct use of EnRDA for high-
dimensional geophysical problems, where the problem di-
mension easily exceeds millions. As will be discussed later,
the joint distribution in EnRDA is sampled at N2 support
points, with N number of ensembles, reducing the compu-
tational complexity to O(N2) at the expense of losing ac-
curacy in optimal estimation of the joint distribution. There-
fore, beyond implementation in a low-dimensional dynami-
cal system, such as the three-dimensional Lorenz-63, the key
questions that we aim to answer are as follows. Does the ef-
fectiveness of the EnRDA implementation still remain valid
in high-dimensional DA problems where the ensemble size is
smaller than the problem dimension? How does EnRDA per-
form, under systematic errors, in comparison to classic en-
semble DA techniques with a comparable ensemble size? To
answer the above questions, we implement EnRDA in the rel-
atively high-dimensional chaotic Lorenz-96 system (Lorenz,
1995) and a two-layer quasi-geostrophic (QG) model of at-
mospheric circulation (Pedlosky, 1987). The results demon-
strate that EnRDA can potentially enhance predictability of
high-dimensional dynamical systems, when the state vari-
ables are not necessarily Gaussian and are corrupted with
systematic errors. Nevertheless, extensive future research is
necessary to test the applicability of the EnRDA for large-
scale Earth system models in which the problem dimension
is significantly larger than the examined dynamical systems.

The outline of the paper is as follows. Section 2 provides a
brief background on optimal mass transport and Wasserstein
distance. A brief review of the EnRDA methodology is pre-
sented in Sect. 3. Section 4 presents different test cases of
implementation on the Lorenz-96 and QG models and docu-
ments the performance of the presented approach in compar-
ison with the classic implementation of the standard particle
filter with resampling and the stochastic ensemble Kalman
filter (SEnKF). A summary and concluding remarks are pre-
sented in Sect. 5. The details of the entropic regularization
for the EnRDA and covariance inflation and localization pro-
cedures for the SEnKF are provided in Appendix A.
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2 Background on OMT and the Wasserstein
barycenter

We provide a brief background on the theory of optimal mass
transport (OMT) and Wasserstein barycenters. The OMT the-
ory, first put forward by Monge (1781), aims to find the
minimum cost of transporting distributed masses of mate-
rials from known source points to target points. The the-
ory was later expanded as a new tool to compare proba-
bility distributions (Brenier, 1987; Villani, 2003) and since
then has found its applications in the field of data assimila-
tion (Ning et al., 2014; Feyeux et al., 2018; Li et al., 2018;
Tamang et al., 2020), subsurface geophysical inverse prob-
lems (J. Chen et al., 2018; Yang et al., 2018; Yang and En-
gquist, 2018; Yong et al., 2019) and comparisons of climate
model simulations (Vissio et al., 2020).

Let us consider a discrete source probability distribu-
tion p(x)=

∑M
i=1pxi δxi and a target distribution p(y)=∑N

j=1pyj δyj with their respective probability masses {px ∈
RM+ :

∑
ipxi = 1} and {py ∈ RN+ :

∑
jpyj = 1} supported on

m- and n-element column vectors xi ∈ Rm and yj ∈ Rn,
respectively. The notation px ∈ RM+ represents probability
masses px containing non-negative real numbers supported
on M points, whereas δx is the Dirac function at x. In the
Monge formulation, the goal is to seek an optimal surjective
transportation map T a# p(x)= p(y) that “pushes forward”
the source distribution p(x) towards the target distribution
p(y), with a minimum transportation cost as follows:

T a = argmin
T

∑M

i=1
c(xi,T (xi)) s.t. T a# p(x)= p(y) , (1)

where c(·, ·) ∈ R+ represents the cost of transporting a unit
mass from one support point in x to another one in y.

The problem formulation by Monge as expressed in
Eq. (1), however, is non-convex, and the existence of an op-
timal transportation map is not guaranteed (Y. Chen et al.,
2019), especially when the number of support points for
the target distribution exceeds that of the source distribution
(N >M) (Peyré and Cuturi, 2019). This limitation was over-
come by Kantorovich (1942), who introduced a probabilistic
formulation of OMT – allowing splitting of probability mass
from a single source point to multiple target points. The Kan-
torovich formalism recasts the OMT problem in a linear pro-
gramming framework that finds an optimal joint distribution
or coupling Ua ∈ RM×N+ that couples the marginal source
and target distributions with the following optimality crite-
rion:

Ua = argmin
U

tr
(
CTU

)
s.t.


U ∈ RM×N+

U1N = px ,
UT1M = py

(2)

where tr(·) is the trace of a matrix, (·)T is the trans-
position operator and 1M represents an M-element col-
umn vector of ones. In the above formulation, the known

{
C ∈ RM×N+ : cij = ‖xi − yj‖

2
2

}
denotes the so-called trans-

portation cost matrix which is defined based on the `2 norm
‖ · ‖2 or the Euclidean distance between the support points
of the source and target distributions. Here, the (i,j)th el-
ement uaij of optimal joint distribution Ua represents the
respective amount of mass transported from support point
xi to yj . Then, the 2-Wasserstein distance or metric be-
tween the marginal probability distributions is defined as the
square root of the optimal transportation cost dW (px,py)=(
tr(CTUa)

) 1
2 (Dobrushin, 1970; Villani, 2008). It should be

noted that due to the linear equality and non-negativity con-
straints in Eq. (2), the family of joint distributions that satisfy
these constraints forms a bounded convex polytope (Cuturi
and Peyré, 2018) and, consequently, the optimal joint distri-
bution Ua is located on one of the extreme points of such a
polytope (Peyré and Cuturi, 2019).

Recall that, over the Euclidean space, the barycenter of a
group of points is equivalent to their (weighted) mean value.
The Wasserstein metric offers a Riemannian generalization
of this problem and allows us to define the barycenter of a
family of probability distributions (Rabin et al., 2011; Bigot
and Klein, 2018; Srivastava et al., 2018). In particular, for a
group of K probability mass functions p1, . . .,pK , a Wasser-
stein barycenter pη is defined as their Fréchet mean (Fréchet,
1948) as follows (Agueh and Carlier, 2011):

pη = argmin
p

K∑
k=1

ηkd
2
W (p,pk) , (3)

where
{
(η1, . . .,ηK)

T
∈ RK+ :

∑
k ηk = 1

}
represent the

weights associated with the respective distributions. In spe-
cial cases where the group of K distributions is Gaus-
sian {N (µ1,61), . . .,N (µK ,6K)} with mean µ1, . . .,µK
and positive definite covariance 61, . . .,6K , the Wasser-
stein barycenter is also a Gaussian density N (µη,6η) with
µη =

∑
k

ηkµk and 6η is the unique positive definite root of

the matrix equation6 =
∑
k

ηk
(
6

1
26k6

1
2
) 1

2 (Agueh and Car-

lier, 2011).

3 EnRDA

In this section, to be self content, we provide a brief summary
of the EnRDA methodology, while more details can be found
in Tamang et al. (2021). Let us assume that the evolution of
the ith ensemble member xi ∈ Rm of ESM simulations can
be presented as the following stochastic dynamical system:

xti =M(xt−1
i )+ωti i = 1, . . .,M, (4)

where M : Rm→ Rm is the deterministic nonlinear model
operator, evolving the model state in time with a stochas-
tic error term ωti ∈ R

m. This dynamical system is observed
at time t through an observation equation yt =H(xt )+υ t ,
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where H : Rm→ Rn maps the state to the observation space
and υ t ∈ Rn represents an additive observation error. Note
that the error terms are not necessarily drawn from Gaussian
distributions but need to have finite second-order moments.

Hereafter, we drop the time superscript for brevity and
represent the model (or background) probability distribu-
tion as p(x)=

∑M
i=1pxi δxi with its probability mass vector

{px ∈ RM+ :
∑
ipxi = 1}. Furthermore, the normalized like-

lihood function is represented as p̃(y|x) centered at the given
observation y with its probability mass vector {̃py|x ∈ RN+ :∑
j p̃y|xj = 1}. The probability distribution of the analysis

state, p(xa), is then defined as the Wasserstein barycenter
between forecast distribution and the normalized likelihood
function:

p(xa)= argmin
p(z)

{
ηd2

W
[
p(x),p(z)

]
+ (1− η)d2

W

[
p̃(y|x), p(z)

]}
, (5)

where η ∈ [0,1] is a displacement parameter that controls the
relative weight of the background and observation. The dis-
placement parameter η is a hyperparameter that captures the
relative weights of the histogram of the background state and
likelihood function in characterization of the analysis state
distribution as a Wasserstein barycenter. The optimal value of
η needs to be determined offline using reference data through
cross-validation studies. It is important to note that the above
formalism requires all dimensions to be observable, and thus
those dimensions with no observations cannot be updated,
which is a limitation of the current formalism compared to
the Euclidean DA. This limitation is further discussed later
on in Sect. 5.

To solve the above DA problem, we need to character-
ize the background distribution and the normalized likeli-
hood function. Similar to the approach used in the particle
filter (Gordon et al., 1993; van Leeuwen, 2010), we suggest
approximating them through ensemble realizations. To con-
struct the histogram of the normalized likelihood function,
we can draw N samples at each assimilation cycle by per-
turbing the available observation y with the observation error
N (0,R).

To obtain the Wasserstein barycenter p(xa) in Eq. (5), we
use the McCann formalism (McCann, 1997; Peyré and Cu-
turi, 2019):

p(xa)=

M∑
i=1

N∑
j=1

uaij δzij , (6)

where zij = ηxi + (1−η)yj represent the support points of
the analysis distribution and uaij are the elements of the joint

distribution
{

Ua ∈ RM×N+ :
∑
i

∑
juij = 1

}
. It is important

to note that the analysis state histogram, at each assimila-
tion cycle, is supported on at most M +N − 1 points, which

is the maximum number of non-zero entries in the optimal
joint coupling (Peyré and Cuturi, 2019). To keep the num-
ber of ensemble members constant throughout, M ensemble
members are resampled from p(xa) using the multinomial
resampling scheme (Li et al., 2015).

Computation of the joint distribution in Eq. (2) is compu-
tationally expensive as explained previously and can be pro-
hibitive for high-dimensional geophysical problems. As sug-
gested by Cuturi (2013), to reduce the computational cost,
we regularize the cost function in the optimal transportation
plan formulation of EnRDA by a Gibbs–Boltzmann entropy
function:

Ua = argmin
U

tr(CTU)− γ tr
(
UT [log(U−1M1T

N )
])

s.t.


U ∈ RM×N+

U1N = px ,
UT1M = p̃y|x

(7)

where γ ∈ R+ is a regularization parameter. The entropic
regularization transforms the original OMT formulation to a
strictly convex problem, which can then be efficiently solved
using Sinkhorn’s algorithm (Sinkhorn, 1967). The details of
Sinkhorn’s algorithm for solving regularized optimal trans-
portation problems are presented in Appendix A1. The regu-
larization parameter γ balances the solution between the op-
timal joint distribution and the one that maximizes the rela-
tive entropy. It is evident from Eq. (7) that at the limit γ → 0,
the solution of Eq. (7) converges to the analysis joint distri-
bution with a minimum morphing cost. However, as the value
of γ increases, the convexity of the problem also increases,
enabling the deployment of more efficient optimization algo-
rithms than classic solvers of linear programming problems
(Dantzig et al., 1955; Orlin, 1993). At the same time, the
number of non-zero entries of the joint coupling increases
fromM+N−1 toMN points as γ →∞, which results in a
maximum entropy solution that converges to Ua→ px p̃T

y|x .
For a more comprehensive explanation of EnRDA, one can
refer to Tamang et al. (2021). It should be noted that En-
RDA formulation allows the number of ensemble members
to be different from the number of perturbed observations,
i.e.,M 6=N . The values ofM andN need to be chosen to ad-
just the trade-off between accuracy and computational cost.

As an example, we examine here the solution of
Eq. (5) between a banana-shaped distribution denoted by
F(ξ1,ξ2,ξ3,b)∝ exp

(
− ξ1(4− bx1− x

2
2)− ξ2(x

2
1 − ξ3x

2
2)
)

and a bivariate Gaussian distribution as a function of the
displacement parameter η ∈ [0,1] – resembling the back-
ground distribution p(x) and the normalized likelihood func-
tion p̃(y|x), respectively, with regularization parameter γ =
1000. As seen from Fig. 1, for lower values of η, the analysis
state distribution is closer to the observation, and its shape re-
sembles the Gaussian distribution. However, as the value of
η increases, the analysis state distribution moves closer to the
background distribution and starts morphing into a banana-
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shaped distribution. Therefore, the analysis state distribution
is defined as the one that is sufficiently close to the back-
ground distribution and the normalized likelihood function
not only based on their shape, but also their central location
– depending on the displacement parameter. Thus, unlike the
Euclidean barycenter, this approach does not guarantee that
the mean or mode of the analysis state probability distribu-
tion is a minimum mean-squared error estimate of the initial
condition.

It is important to note that in the original OMT formula-
tion, the number of support points required for the optimal
joint coupling U scales with the problem dimension (dm),
making it potentially restrictive for the high-dimensional
problems, where d represents the number of support points
in each dimension and m is the number of dimensions. The
presented EnRDA setting bypasses this problem by sampling
the joint distribution using onlyN ensemble members. How-
ever, such approximation might lead to errors in optimal es-
timation of the joint coupling that are translated into the
analysis state. In the next section, we present results from
systems of well-known dynamics to investigate whether En-
RDA can lead to a proper approximation of the analysis state
under systematic errors in relatively high-dimensional non-
linear problems when compared to classic ensemble DA ap-
proaches with comparable ensemble size.

4 Numerical experiments and results

4.1 Lorenz-96

The Lorenz model (Lorenz-96, Lorenz, 1995), which is
widely adopted as a test bed for numerous DA experi-
ments (Trevisan and Palatella, 2011; Tang et al., 2014; Shen
and Tang, 2015; Lguensat et al., 2017; Tian et al., 2018),
offers a simplified representation of the extra-tropical dy-
namics in the Earth’s atmosphere. The model coordinates{
x = (x1, . . .,xK)

T
∈ RK

}
at K dimensions represent the

state of an arbitrary atmospheric quantity measured along the
Earth’s latitudes atK equally spaced longitudinal slices. The
model is designed to mimic the continuous-time variation in
atmospheric quantities due to interactions between three ma-
jor components, namely, advection, internal dissipation, and
external forcing. The model dynamics is represented as fol-
lows:

dxk
dt
= (xk+1− xk−2)xk−1− xk +F , k = 1, . . .,K, (8)

where F ∈ R+ is a constant external forcing independent of
the model state. The Lorenz-96 model has cyclic boundaries
with x−1 = xK−1, x0 = xK , and xK+1 = x1. It is known that
for small values of F < 8/9, the system approaches a steady-
state condition with each coordinate value converging to the
external forcing xk→ F , ∀k, whereas for F > 8/9, chaos de-
velops (Lorenz and Emanuel, 1998). For a standard model
setup with F = 8, the system is known to exhibit highly

chaotic behavior with the largest Lyapunov exponent of 1.67
(Brajard et al., 2020).

Experimental setup, results, and discussion

We focus on the 40-dimensional Lorenz-96 system (i.e.,
K = 40) and compare EnRDA results with the classic im-
plementation of the PF (Gordon et al., 1993; Van Leeuwen,
2009; van Leeuwen, 2010; Poterjoy and Anderson, 2016) and
the SEnKF (Evensen, 1994; Houtekamer and Mitchell, 1998;
Burgers et al., 1998; Janjić et al., 2011; Anderson, 2016;
Van Leeuwen, 2020). Similarly to the experimental setting
suggested in Lorenz and Emanuel (1998) and Nerger et al.
(2012a), we initialize the model by choosing x20 = 8.008 and
xk = 8 for all other model coordinates. In order to avoid any
initial transient effect, the model in Eq. (8) is integrated for
1000 time steps using the fourth-order Runge–Kutta approx-
imation (Runge, 1895; Kutta, 1901) with a non-dimensional
time step of1t = 0.01, and the endpoint of the run is utilized
as the initial condition for DA experimentation.

Similar to the suggested experimental setting in van
Leeuwen (2010), we obtain the ground truth by integrating
Eq. (8) with a time step of 1t over a time period of T = 0–
20 in the absence of any model error. The observations are
assumed to be available at each assimilation time interval
of 101t and deviated from the ground truth by a Gaussian
error υ t ∼N (0,σ 2

obs6ρ), with σ 2
obs = 1 and the correlation

matrix 6ρ ∈ R40×40
+ with 1 on the diagonals, 0.5 on the first

sub- and super-diagonals, and 0 everywhere else. The obser-
vation time step of 101t is equivalent to 12 h in global ESMs
(Lorenz, 1995).

To characterize the distribution of the background state for
each DA methodology, 50 (5000) ensemble members (parti-
cles) for the SEnKF and EnRDA (PF) are generated using
model errors ωt ∼N (0,σ 2

t I40) with σ 2
t = 0.25 for t > 0 and

σ 2
0 = 4, where throughout Im represents an m×m identity

matrix. To alleviate the known degeneracy problem in the
PF, a higher number of particles was used. Furthermore, to
introduce additional systematic background error, we utilize
an erroneous external forcing of Fm = 6 instead of the “true”
forcing value F = 8. To have a robust inference, the aver-
age values of the error metrics are reported for 50 experi-
ments using different random realizations. As will be elab-
orated later on, we set the EnRDA displacement parameter
η = 0.44, determined through a cross-validation study based
on a minimum mean-squared error criterion. This tuning is
similar to tuning inflation and localization parameters in a
typical EnKF or tuning length scales in 3D- or 4D-Var. Note
that we already introduced some systematic error because the
truth has zero model error, while the prior does have model
errors. In a fully unbiased setup the truth and the prior are
drawn from the same distribution.

The results of EnRDA are shown in Fig. 2. In Fig. 2a, the
temporal evolution of the ground truth and EnRDA analy-
sis state is shown over all dimensions of Lorenz-96, while a
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Figure 1. The analysis distribution obtained as a Wasserstein barycenter for different values of the displacement parameter η ∈ [0,1] between
a background distribution represented by a banana-shaped distribution p(x) : F(ξ1,ξ2,ξ3,b) with ξ1 = 0.02, ξ2 = 0.06, ξ3 = 1.6, and b = 8

and the normalized likelihood function represented by a bivariate Gaussian p̃(y|x) :N (µ1,61), where µ1 =

[
−35

0

]
and 61 =

[
3 0
0 2

]
.

snapshot at time 10 (t) is presented in Fig. 2b. The analysis
state obtained from EnRDA follows the ground truth reason-
ably well during all time steps, with a root mean squared
error (RMSE) of 0.85. The comparison of EnRDA with the
classic implementations of the SEnKF and PF are shown in
Fig. 3. It can be seen that the RMSE of the PF increases
sharply over time, suggesting that the problem of filter de-
generacy still exists despite the higher number of particles.
This problem is exacerbated due to the presence of bias caus-
ing a rapid collapse of the ensemble variance over time as
more particles fall outside of the support set of the likelihood
function. The root mean squared error of both the SEnKF
and EnRDA is stabilized over time and is smaller by ∼ 20 %
(80 %) in EnRDA compared to the SEnKF (PF). It is impor-
tant to note that the presence of systematic bias due to er-
roneous choice of the external forcing inherently favors En-
RDA over SEnKF since the latter is a minimum variance un-
biased estimator at the limit M→∞, where M represents
the number of ensemble members.

As previously noted, the displacement parameter η plays
an important role in EnRDA as it controls the shape and po-
sition of the analysis state distribution relative to the back-
ground distribution and the normalized likelihood function.
Currently, there exists no known closed-form solution for
optimal approximation of this parameter. Therefore, in this
paper, we focus on determining its optimal value through
heuristic cross-validation by an offline bias-variance trade-
off analysis. Specifically, we quantify the RMSE of the En-
RDA analysis state for different values of η for 50 indepen-
dent simulations.

The bias and RMSE, together with their respective 5th–
95th percentile bounds, as functions of the displacement pa-
rameter η are shown in Fig. 4a. As explained earlier, when η
increases, the analysis distribution moves towards the back-
ground distribution. Since the background state is systemat-

ically biased due to the erroneous external forcing, the anal-
ysis bias increases monotonically with η, while the RMSE
shows a minimum point. Therefore, there exists a form of
bias-variance trade-off in the analysis error which leads to
an approximation of an optimal value of η based on a mini-
mum RMSE criterion. It is important to note that the back-
ground uncertainty and thus the optimal value of η vary in
response to the ensemble size as shown in Fig. 4b. The rea-
son is that a larger number of ensemble members reduces
the uncertainty in the characterization of the background, but
the bias is not affected. To compensate, a larger optimal value
for η is needed. This optimal value approaches an asymptotic
value as the ensemble sample size increases and will achieve
the highest value at the limit M→∞, when the sample mo-
ments converge to the biased forecast moments.

One may argue that such a tuning favors EnRDA since
it explicitly accounts for the effects of bias, either in back-
ground or observations, while there is no bias-correction
mechanism in the implementation of the SEnKF and the PF.
To make a fairer comparison, we investigate an alternative
approach to approximate the displacement parameter solely
based on the known error covariance matrices at each assim-
ilation cycle. Recall that in classic DA, the analysis state
is essentially the Euclidean barycenter, where the relative
weights of the background state and observations are op-
timally characterized based on the error covariances under
zero bias assumptions. However, over the Wasserstein space,
the displacement parameter determines the weight between
the entire distribution of the background and the normalized
likelihood function. Theoretically, knowing the Wasserstein
distances from ground truth to both likelihood function and
forecast probability distribution enables us to obtain an opti-
mal value for η. Even though such distances are not known in
reality, the total Wasserstein distance between the normalized
likelihood function and the forecast distribution is known at
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Figure 2. (a) Temporal evolution of the ground truth xtr and analysis state xa by ensemble Riemannian data assimilation (EnRDA) for
K = 40 dimensions of Lorenz-96 over T = 0–20 (t) and (b) their snapshots at T = 10 (t) together with the available observations y.

Figure 3. Temporal evolution of the root mean squared error (RMSE) for the (a) particle filter (PF) with 5000 particles, (b) stochastic
ensemble Kalman filter (SEnKF), and (c) EnRDA, each with 50 ensemble members in a 40-dimensional Lorenz-96 system. The results
report the mean values of 50 independent simulations.

each assimilation cycle. Therefore, an estimate of the dis-
tance between the ground truth and the normalized likelihood
function or the forecast distribution leads to an approxima-
tion of η.

It is known that the square of the Wasserstein distance be-
tween two equal-mean Gaussian distributions N (µ,61) and

N (µ,62) is d2
W = tr

(
61+62− 2

(
6

1
2
1626

1
2
1
) 1

2
)

(Y. Chen
et al., 2019). Therefore, under the assumption that only the
background state is biased, the square of the Wasserstein dis-
tance between the true state xtr, as a Dirac delta function, and
the normalized likelihood function reduces to tr(R). At the
same time, the square of the Wasserstein distance between
the normalized likelihood function and forecast distribution
is tr(CTUa). Therefore, we can approximate the interpola-
tion parameter as ηa = tr(R)

(
tr(CTUa)+ tr(R)

)−1 without
any explicit a priori knowledge of bias.

Comparisons of the RMSE values for the studied DA
methodologies as a function of ensemble size are shown in
Fig. 5. For EnRDA, the displacement parameter is obtained
from the bias-aware cross-validation (η = 0.44, EnRDA-I)
and from the known error covariances as explained above
(EnRDA-II). The SEnKF and EnRDA result in smaller er-
ror metrics with a much smaller ensemble size than the PF.
As seen, EnRDA can perform well even for smaller ensem-
ble sizes as low as 20. Its results quickly stabilize with more

than 40 ensemble members and exhibit a marginal improve-
ment over the SEnKF (12 %–24 %) in the presence of bias.
The RMSE of the SEnKF also stabilizes quickly but remains
above the standard deviation of the observation error, indicat-
ing that in the presence of bias, the lowest possible variance,
known as the Cramer–Rao lower bound (Cramér, 1999; Rao
et al., 1973), cannot be met.

It is also important to note that the higher RMSE of the
PF compared to the SEnKF and EnRDA is due to the prob-
lem of filter degeneracy, which is further exacerbated by the
presence of systematic errors in model forecasts (Poterjoy
and Anderson, 2016). To alleviate this problem, one may in-
vestigate the use of methodologies suggested in recent years,
including the auxiliary particle filter where the weights of the
particles at each assimilation cycle are defined based on the
likelihood function from the next cycle using a pre-model run
(Pitt and Shephard, 1999), the backtracking particle filter in
which the analysis state is backtracked to identify the time
step when the filter became degenerate (Spiller et al., 2008)
as well as sampling from a transition density to pull back
particles towards observations (van Leeuwen, 2010).

To further test the efficiency of EnRDA, another config-
uration of the Lorenz-96 is implemented using a Laplace-
distributed observation error at each assimilation interval of
101t with variance σ 2

obs = 2 (Lei and Bickel, 2011; Spantini
et al., 2019). Similar to the setting of earlier implementations
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Figure 4. (a) Bias and RMSE for a range of displacement parameter η ∈ [0.1,0.6] in EnRDA with 50 ensemble members, obtained across
40 dimensions of the Lorenz-96 system. The shaded regions indicate the 5th–95th percentile bound for the respective error metrics obtained
from 50 independent simulations. (b) Variation of RMSE as a function of the number of ensemble members and η.

Figure 5. The RMSE for the different number of ensemble members/particles in the PF, SEnKF, and EnRDA when the displacement param-
eter is obtained from bias-aware cross-validation (ENRDA-I) and a dynamic approach without a priori knowledge of bias (EnRDA-II) for
the Lorenz-96 system. The dashed line is the standard deviation of the observation error.

using Gaussian observation error, 50 (5000) ensemble mem-
bers (particles) for the SEnKF and EnRDA (PF) are gener-
ated. On average, the EnRDA reduces the RMSE by 26 %
(47 %) compared to the SEnKF (PF) using 50 random real-
izations.

4.2 Quasi-geostrophic model

The multilayered QG (Pedlosky, 1987) model is known as
one of the simplest circulation models capable of providing
a reasonable representation of the mesoscale variability in
geophysical flows. In its simplified form, the QG model de-
scribes the conservation of potential vorticity {ζk}Kk=1 in K
vertically mixed vertical layers:(
∂

∂t
+ uk

∂

∂λ
+ vk

∂

∂φ

)
ζk = 0 , k = 1, . . .,K, (9)

where uk =−
∂9k
∂φ

and vk =
∂9k
∂λ

represent the zonal and
meridional components of the velocity field, obtained from

the geostrophic approximation, {9k}Kk=1 is the streamfunc-
tion in K layers, and λ and φ are the zonal and meridional
coordinates, respectively.

For a two-layer QG model (K = 2), the potential vortic-
ity at any time step is the sum of the relative vorticity, the
planetary vorticity and the stretching term, given by

ζk =∇
29k + f + (1− 2δ2k)

f 2
0

g′hk
(92−91) ,

k = 1, . . .,2, (10)

where ∇2(·)= ∂2(·)
∂λ2 +

∂2(·)
∂φ2 is the Laplace operator, f = f0+

β(φ−φ0) is the Coriolis parameter linearly varying with the
meridional coordinate φ (β-plane approximation), f0 is the
Coriolis parameter at mid-basin where φ = φ0, g′ = g(ρ2−ρ1)

ρ2
is the reduced value of the gravitational acceleration g, and
ρk and hk are the density and thickness of the kth layer, re-
spectively. The QG model has been the subject of numer-
ous experiments to test the performance of DA techniques
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(Evensen, 1994; Evensen and Van Leeuwen, 1996; Fisher
and Gürol, 2017; Penny et al., 2019; Cotter et al., 2020).

Experimental setup, results and discussion

Due to the high dimensionality of the QG model and the
well-known problem of filter degeneracy in the PF, we
chose to omit its application to the QG model. Similarly
to the study conducted in Evensen (1992, 1994), the
streamfunction is chosen as the state variable for the DA
experiments. The streamfunction field, at each vertical
layer, is discretized over a uniform grid of dimension
mλ×mφ with a spacing of 1λ=1φ = 100 km, where
mλ = 65 and mφ = 33. The model domain is assumed to
have periodic boundaries along the zonal direction and
free-slip conditions, that is, vk = 0,∀k holds on the northern
and southern boundaries. The standard model parameter
values of f0 = 7.28× 10−5 s−1, β = 2× 10−11 m−1 s−1,
and g = 9.81 m s−2 are used. The total depth of the
atmospheric column is set to 10 km with depths and
densities of the top and bottom layers as h1 = h2 = 5 km
and ρ1 = 1 and ρ2 = 1.05 kg m−3, respectively. We first
initialize the streamfunction in the two layers as a func-
tion of the zonal and meridional coordinates by setting
91(λ,φ)=−12.5× 106tan−1

(
20(φ/1φ−mφ/2)m−1

φ

)
−

1.25× 106 sin
(

2π(λ/1λ− 1)m−1
λ

)
sin2(2π(φ/1φ−

1)(mφ − 1)−1)m2 s−1 and 92(λ,φ)= 0.391(λ,φ).
From the initial value of the streamfunction field in

each layer, potential vorticity is obtained using a nine-point
second-order finite difference scheme to compute the Lapla-
cian in Eq. (10). The model in Eq. (9) is then integrated with
a time step of1t = 0.5 h using the fourth-order Runge–Kutta
approximation to advect and obtain potential vorticity at in-
ternal grid points for the next time step. The streamfunction
at the next time step is then calculated from this potential
vorticity by solving the set of Helmholtz equations (Eq. 10).
To avoid any form of initial transient behavior and to create
vortex structures in the streamfunction, the QG model is in-
tegrated first for 720 time steps, and then the endpoint of the
run is used as the initial condition for subsequent DA exper-
imentation.

The ground truth of the streamfunction is obtained by in-
tegrating the QG model with a time step of 1t over a time
period of T = 0–15 d in the absence of any model error. Ob-
servations are assumed to be available at an assimilation time
interval of 241t or 12 h. To construct observations, repre-
sentative, random and systematic errors are applied to the
ground truth. The representative error is applied by lower-
ing the resolution of the ground truth through box averaging
over a window of size nλ× nφ , where nλ = 5 and nφ = 3.
Then a heteroscedastic Gaussian observation noise with bias
0.6×106 m2 s−1 and a standard deviation of 10 % of the mean
magnitude of the ground truth is applied.

To characterize the distribution of the background state,
50 ensemble members for both SEnKF and EnRDA are gen-
erated using model errors ωt ∼N (0,ασ 2

t Imλ×mφ ) for each
layer with σ 2

0 = 108 m4 s−2 and σ 2
t = 5×106 m4 s−2 for t >

0, where the factor α ∈ [0,1] grows linearly from 0 at the
northern and southern boundaries to 1 at mid-basin. To in-
troduce systematic errors in the forecast, we utilize a mul-
tiplicative error of 0.015 % in the QG model by multiplying
the potential vorticity obtained from Eq. (10) at every1t by a
factor of 1.00015. At each assimilation cycle, N = 500 sam-
ples of the observations are obtained by perturbing the obser-
vations with the heteroscedastic Gaussian observation noise
with standard deviation 10 % of the mean magnitude of the
ground truth.

In the SEnKF, to alleviate the well-known problem of
undersampling (Anderson, 2012) and improve its perfor-
mance, we utilize covariance inflation (Anderson and Ander-
son, 1999) and localization (Houtekamer and Mitchell, 2001;
Hamill, 2001) as discussed in Appendix A2. For EnRDA,
similar to the Lorenz-96 setup (Sect. 4.1), the displacement
parameter is set to η = 0.4 through a cross-validation study
based on a minimum RMSE criterion as shown in Table 1.
To increase the robustness of the inference about the results,
the quality metrics are averaged using 10 simulations with
different random realizations.

The true state, background state, and observations of the
bottom layer streamfunction at the first assimilation cycle
T = 12 h are shown in Fig. 6. It can be seen that both the
background state and the observations show possible system-
atic biases as the position and the values of their global ex-
trema are significantly different from the ground truth.

The results of the DA experiments using the SEnKF and
EnRDA at the first assimilation cycle for the bottom layer
are also shown in Fig. 7. It can be seen that, in the SEnKF,
the streamfunction values are slightly overestimated, signal-
ing the persistence of bias in the analysis state (Fig. 7a).
This is further evident as the analysis error field is coher-
ent and structured (Fig. 7b). On the other hand, it appears
that EnRDA (Fig. 7d) results in a more incoherent error field
with a reduced bias (Fig. 7e). The RMSE for the EnRDA
(0.28× 106 m2 s−1) is lower than the one by the SEnKF
(0.46× 106 m2 s−1). However, the difference between the
two methods shrinks over T = 0–15 d, and the mean anal-
ysis RMSE over both layers by the EnRDA (SEnKF) reaches
0.21× 106 (0.25× 106) m2 s−1. Furthermore, in the SEnKF,
due to the presence of systematic error, the zonal mean of the
absolute error is consistently higher than that of the EnRDA
(see Fig. 7c and f). To test the effects of non-Gaussian errors
on the performance of EnRDA, analogous to the experiments
conducted for Lorenz-96, we examined a Laplace noise with
the same variance used for the Gaussian errors. The results
show that EnRDA performance does not change appreciably
and that the improvement remains on the same order of mag-
nitude as reported for the Gaussian observation errors.
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Figure 6. (a) The true state xtr, (b) background state xb, and (c) observations y for the bottom layer field of the streamfunction in the
quasi-geostrophic model at the first assimilation cycle T = 12 h. The black plus (grey cross) signs show the location of the global extrema
for the true state (background and observation).

Figure 7. The streamfunction analysis state xa by (a) SEnKF and (d) EnRDA as well as (b, e) their respective absolute error fields and
(c, f) zonal mean of the error for the bottom layer of the quasi-geostrophic model at the first assimilation cycle T = 12 h. The RMSE values
(×106 m2 s−1) for the entire fields are also reported in (a) and (d).

We further examined the performance of the EnRDA and
the SEnKF on the QG model with a ±50 % change in the
assimilation interval of 12 h as shown in Fig. 8. To make
the comparison fair between different assimilation intervals
which have a different number of assimilation cycles and to
eliminate the impact of transient behavior, we only report the
statistics for the last 15 assimilation steps. With the increase
in assimilation interval, the systematic error grows in the
forecast largely due to the multiplicative error being added
to the forecast at every time step. Therefore, as is expected,
with the increase in assimilation interval, the RMSE grows
monotonically and the performance of the DA methodologies
degrades. However, the EnRDA demonstrates consistent im-
provement over a bias-blind implementation of the SEnKF
(20 %–33 %) across the range of assimilation intervals. On
average, using a cluster with 24 cores and a clock rate of

2.5 GHz, it took around 3.5 h to complete one independent
simulation on the QG model for EnRDA compared to 2.5 h
for EnKF, each with 50 ensemble members.

5 Summary and concluding remarks

In this study, we demonstrated that data assimilation (DA)
over the Wasserstein space through the EnRDA (Tamang
et al., 2021) can be properly scaled and result in improved
predictability of non-Gaussian geophysical dynamics at rel-
atively high dimensions, under systematic errors. In partic-
ular, we applied the EnRDA to the 40-dimensional chaotic
Lorenz-96 system and a two-layer quasi-geostrophic repre-
sentation of atmospheric circulation and compared its results
with the stochastic ensemble Kalman filter and the parti-
cle filter with comparable ensemble size. Under the made
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Table 1. Average root mean squared error (RMSE) values as a function of the displacement parameter η ∈ [0.25,0.6] for ensemble Rieman-
nian data assimilation (EnRDA) from 10 independent simulations of the two-layer quasi-geostrophic model.

RMSE (×106 m2 s−1)

η 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

Top layer 0.283 0.260 0.255 0.242 0.250 0.258 0.309 0.369
Bottom layer 0.211 0.198 0.194 0.189 0.206 0.222 0.294 0.368
Average 0.247 0.229 0.224 0.215 0.228 0.240 0.301 0.369

Figure 8. The average RMSE values as a function of assimilation
intervals 6, 12 and 18 h in the SEnKF and EnRDA for the two-layer
quasi-geostrophic model.

assumptions and experimental settings, EnRDA improved
the root mean squared error by almost 20 % (30 %) for the
Lorenz-96 (QG) model when compared to the classic Eu-
clidean DA techniques. We need to emphasize that in the
absence of systematic errors, Euclidean DA methodologies
definitely demonstrate improved performance over EnRDA
in terms of the root mean squared error. Despite the reported
improvements, further comprehensive comparisons with the
Euclidean DA methodologies equipped with bias-correction
methodologies, such as the cumulative distribution function
(CDF) matching (Reichle et al., 2004), are required to fully
characterize the pros and cons of DA over the Wasserstein
space.

One of the major weaknesses of the presented methodol-
ogy in its current form is that all dimensions of the prob-
lem are assumed to be observable. This is an important issue
when it comes to the assimilation of sparse data. Future re-
search is needed to address partial observability in DA over
the Wasserstein space. A possible direction is through multi-
marginal optimal mass transport (Pass, 2015), which could
enable us to couple different dimensions of the problem and
propagate the information content of sparse observations to
unobserved dimensions. Moreover, currently, the displace-

ment parameter is constant across multiple dimensions of the
problem. Future research is needed to understand how the
displacement parameter can be estimated differently depend-
ing on the error structure across different dimensions of the
state space. Another option is to perform the EnRDA only
in that part of the state space that is directly observed and
use the ensemble covariance to update the unobserved part
of state space, similar to a SEnKF. We anticipate that ex-
panding the application of the presented methodology for as-
similating satellite data into land–atmosphere models could
be another promising future direction of research given the
fact that these models are often markedly biased (Dee and
Da Silva, 1998; Chepurin et al., 2005; De Lannoy et al.,
2007; Lin et al., 2017).

It should be noted that the experimental settings presented
here only deal with the univariate state variable. The use of
a scalar regularization parameter in the EnRDA penalizes
the transportation cost matrix elements uniformly even when
the physical variables of interest are different by orders of
magnitude. A possible future solution to this problem can be
obtained by rather utilizing Mahalanobis or a weighted Eu-
clidean distance (Olver et al., 2006) in lieu of the Euclidean
distance to obtain a modified ground transportation cost ma-
trix.

Although EnRDA demonstrated a reasonable performance
on the presented dynamical systems without significant com-
putational burden, the computational complexity might be a
limiting factor for its large-scale implementation. In Earth
system models, where the dimension easily exceeds hundred
of millions, dimensionality reduction might be necessary.
One might hypothesize that the optimal transportation plan
remains unaltered for the change in the basis. Thus, future
research can be devoted to examining the optimal transporta-
tion plan for the principal components (Olver et al., 2006)
of the geophysical state variables of interest to significantly
lower its computational cost.

Appendix A

A1 Sinkhorn’s algorithm for optimal mass transport

To solve the regularized optimal mass transport problem in
Eq. (7), we utilize Sinkhorn’s algorithm (Sinkhorn, 1967).
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To that end, first, the Lagrangian form of Eq. (7) using two
Lagrange multipliers a ∈ RM and b ∈ RN is obtained as fol-
lows:

L(U,a,b)= tr
(
CTU

)
− γ tr

(
UT[ log(U−1M1T

N )
])

− aT (U1N −px)− bT (UT1M − p̃y|x
)
. (A1)

Now, we set the first-order derivative of the Lagrangian
form in Eq. (A1) with respect to the (i,j)th element of the
joint distribution (uij ) to zero:

∂L(U,a,b)
∂ uij

= cij + γ log(uij )− ai − bj = 0 ∀i,j , (A2)

which ultimately leads to uij = exp
(
ai
γ

)
exp

(
−
cij
γ

)
exp

(
bj
γ

)
. This can be rewritten in matrix form as Ua =

diag(s)Vdiag(t), where
{

V ∈ RM×N+ : vij = exp
(
−
cij
γ

)}
is

Gibb’s kernel of the cost matrix C and s ∈ RM and t ∈ RN
are the unknown scaling vectors. The notation diag(x) ∈
RM×M represents a diagonal matrix with its diagonal entries
provided by x ∈ RM .

By setting the derivatives of the Lagrangian with respect
to the Lagrange multipliers to zero, we recover the two con-
ditions, which we can write as px = diag(s)Vdiag(t)1N and
p̃y|x = diag(t)VTdiag(s)1M , leading to

s = px � (V t) and t = p̃y|x � (VT s) , (A3)

where the notation x� y represents a Hadamard element-
wise division of equal-length vectors. The form presented in
Eq. (A3) is known as the matrix scaling problem (Borobia
and Cantó, 1998) and can be efficiently solved iteratively:

s(i) = px�
(

Vt (i−1)
)

and t (i) = p̃y|x�
(

VT s(i)
)
, (A4)

where i is the iteration count and the algorithm is initialized
with a positive vector t (0) = 1N . In our implementation, we
set the iteration termination criterion as ‖s

(i)
−s(i−1)

‖2
‖s(i−1)‖2

≤ 10−4

or i > 300. After the convergence of the solution for s and
t , the optimal joint distribution can be obtained as Ua =
diag(s)Vdiag(t).

A2 Covariance inflation and localization in the
ensemble Kalman filter

The ensemble size in the SEnKF, if much smaller than the
state dimension, such as in the presented case of the quasi-
geostrophic model, leads to underestimation of the forecast
error covariance matrix and subsequently filter divergence
problems. To alleviate this problem, a covariance inflation
procedure can be implemented by multiplying the forecast

error covariance matrix by an inflation factor τ > 1 (Ander-
son and Anderson, 1999) where its optimal value depends on
the ensemble size (Hamill et al., 2001) and other characteris-
tics of the problem at hand.

The covariance localization procedure in the SEnKF fur-
ther attempts to improve its performance by ignoring the spu-
rious long-range dependence in the ensemble background co-
variance by applying a prespecified cutoff threshold to the
correlation structure of the field. An SEnKF equipped with a
tuned localization procedure can be efficiently used in high-
dimensional atmospheric and ocean models even with fewer
than 100 ensemble members (Anderson, 2012). The covari-
ance localization in an SEnKF is accomplished by modifying
the Kalman gain matrix K ∈ Rm×m through implementation
of a Hadamard element-wise product of the forecast error co-
variance matrix B ∈ Rm×m with a distance-based correlation
matrix ρ ∈ Rm×m:

K= (ρ�B)HT(H(ρ�B)HT
+R

)−1
, (A5)

where X�Y represent the Hadamard element-wise product
between equal size matrices X and Y.

Following the work of Gaspari and Cohn (1999), we uti-
lized the fifth-order piece-wise rational function that de-
pends on a single length scale parameter d and a Euclidean
distance matrix

{
L ∈ Rm×m : lij = ‖xi − xj‖2

}
for obtaining

the (i,j)th element of the localizing correlation matrix ρ:

ρij =
−

1
4 r

5
+

1
2 r

4
+

5
8 r

3
−

5
3 r

2
+ 1, 0≤ r ≤ 1 ,

1
12
r5
−

1
2
r4
+

5
8
r3
+

5
3
r2
− 5r + 4−

2
3
r−1 , 1< r ≤ 2 ,

0 , r > 2 ,

(A6)

where r = lij
d

, and d is the length scale.
In our implementation of the SEnKF in the QG model,

the inflation factor and length scale were chosen between
τ = 1.01–1.08 and d = 400–1800 (km), respectively, de-
pending on the experimental setup through trial and error
analysis to minimize the root mean squared error.

Code availability. A demo code for EnRDA in the MAT-
LAB programming language can be downloaded at https://
github.com/tamangsk/EnRDA (last access: 15 January 2022;
https://doi.org/10.5281/zenodo.5047392; tamangsk, 2021).
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