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Abstract. Localization is an essential technique for
ensemble-based data assimilations (DAs) to reduce sam-
pling errors due to limited ensembles. Unlike tradi-
tional distance-dependent localization, the correlation cutoff
method (Yoshida and Kalnay, 2018; Yoshida, 2019) tends to
localize the observation impacts based on their background
error correlations. This method was initially proposed as a
variable localization strategy for coupled systems, but it can
also can be utilized extensively as a spatial localization. This
study introduced and examined the feasibility of the correla-
tion cutoff method as an alternative spatial localization with
the local ensemble transform Kalman filter (LETKF) prelim-
inary on the Lorenz (1996) model. We compared the accu-
racy of the distance-dependent and correlation-dependent lo-
calizations and extensively explored the potential of the hy-
brid localization strategies. Our results suggest that the cor-
relation cutoff method can deliver comparable analysis to
the traditional localization more efficiently and with a faster
DA spin-up. These benefits would become even more pro-
nounced under a more complicated model, especially when
the ensemble and observation sizes are reduced.

1 Introduction

The ensemble Kalman filter (EnKF) is widely employed
in modern numerical weather prediction (NWP) for refin-
ing the initial conditions of models and improving forecasts
(Evensen, 2003). One of the notable features of EnKF is its
flow-dependent background error covariance derived from
the background ensembles (e.g., forecasts initialized at the
last analysis time), which involves the time-evolving error
statistics for the model state. The implied background error
covariance together with the observation error covariance de-
termine how much observation information should be used to

generate a new analysis. Therefore, the accuracy of the back-
ground error covariance estimates is one of the most critical
keys toward an optimal analysis for EnKF.

Houtekamer and Mitchell (1998) noticed that the back-
ground error covariance estimated by too few ensembles
would introduce spurious error correlations in the assimila-
tion. Incorrect error correlations are harmful to the analysis
and could lead to a filter divergence. Hamill et al. (2001)
performed conceptual experiments demonstrating how ex-
isting noises in the background error covariance influence
the EnKF analysis. Their results showed that the relative er-
ror, also known as the noise-to-signal ratio, significantly in-
creases when the ensemble size is reduced, and a large rela-
tive error would consequently degrade the analysis accuracy.
These early studies concluded that a sufficient ensemble size
is essential for EnKF to obtain reliable background error es-
timates and generate an accurate analysis. However, having
large ensembles is computationally expensive, especially for
high-resolution models. Hence, finding a balance between
accuracy and computational cost becomes an inevitable chal-
lenge for modern EnKF applications. Recent EnKF studies
usually limit their ensemble size to about 100 members, and
the ensemble size employed in operational NWPs is even
less due to the consideration of computational efficiency
(Houtekamer and Zhang, 2016; Kondo and Miyoshi, 2016).

In order to reduce the sampling errors induced by lim-
ited ensembles, covariance localization has become an es-
sential technique for EnKF applications. Traditionally, local-
ization tends to limit the effects from distant observations
(Houtekamer and Mitchell, 1998; Hamill et al., 2001), and
a straightforward way to implement that is to apply a Schur
product, where each element in the ensemble-based error co-
variance is multiplied by an element from a prescribed corre-
lation function (Houtekamer and Mitchell, 2001). The most
widely used prescribed correlation function is the Gaussian-
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like, distance-dependent function proposed by Gaspari and
Cohn (1999; hereafter GC99). The GC99 function generally
assumes that the observations farther from the analysis grid
are less correlated (and even uncorrelated beyond a finite
distance). As a result, the impact from distant observations
would be suppressed on the analysis during assimilation.

However, the employment of distance-dependent localiza-
tion also brings several issues and concerns, such as los-
ing distant information and producing unbalanced analysis
(Miyoshi et al., 2014; Mitchell et al., 2002; Lorenc, 2003;
Kepert, 2009). By utilizing a 10240-member EnKF to in-
vestigate the true error correlations of atmospheric vari-
ables, Miyoshi et al. (2014) found that continental-scale,
even planetary-scale, error correlations certainly exist in at-
mospheric variables. Thus, the use of distance-dependent lo-
calization would artificially remove the real long-range sig-
nals from the analysis increments. Another follow-up experi-
ment with the 10240-member EnKF showed that the removal
of localization could significantly improve the analysis and
its subsequent 7 d forecasts, and the key component for these
improvements is the long-range correlation between distant
locations (Kondo and Miyoshi, 2016).

The imbalance analysis is another noteworthy issue for lo-
calization (Cohn et al., 1998; Lorenc, 2003; Kepert, 2009).
An excellent paper from Greybush et al. (2011) summarized
the unbalanced problem induced by localization. They ar-
gued that the imbalance analysis could happen for either B
or R localizations, and the EnKF analysis accuracy could
be affected by the manually defined localization length in
GC99. The B and R localizations indicate whether the local-
ization function is applied on the background error covari-
ance B or the observation error covariance R. Furthermore,
they found that the B localization has a longer optimal local-
ization length with respect to the analysis accuracy. In con-
trast, the R localization is more balanced than the B localiza-
tion underlying the same localization length, and the balance
of the analysis is enhanced when the localization length in-
creases. A similar conclusion is mentioned in Lorenc (2003),
namely that the unbalance induced by localization would re-
lax with longer localization length and significantly mini-
mized when the length is larger than 3000 km.

In addition to defining the localization by distance, the
empirical localization method (Anderson, 2007; Anderson
and Lei, 2013; hereafter AL13) derives a static and flow-
dependent localization from posterior ensembles. The core
concept of AL13 is to find a localization weight that performs
minimum analysis error, where a cost function is solved
iteratively with subset ensembles and observations under
Observation System Simulation Experiments (OSSEs). This
method shows comparable analysis accuracy to the optimally
tuned traditional localization (GC99) on the 40-variable
Lorenz model.

This study introduces a novel non-adaptive, correlation-
dependent localization scheme evolved from the correlation
cutoff method (Yoshida and Kalnay, 2018; hereafter, YK18).

The key idea is to “localize” the information from obser-
vation to analysis according to their square background er-
ror correlations estimated from a preceding offline run. Al-
though YK18 was proposed initially as a variable localiza-
tion strategy for coupled systems, it can be further utilized as
a spatial localization through appropriate employment of the
cutoff function (Yoshida, 2019). Similar to AL13, YK18 pro-
vides a static and flow-dependent localization function from
posterior ensembles. However, YK18 does not need a truth
value for OSSEs. It also does not need to be run iteratively
like AL13. However an additional cutoff function described
in Sect. 2.3 is required to filter out small perturbations in the
error correlations.

This paper investigates the feasibility of the correlation-
dependent localization YK18 and compares it with the well-
explored traditional distance-dependent localization GC99
using the local ensemble transform Kalman filter (LETKF,
Hunt et al., 2007). Furthermore, we explored the potential of
the hybrid use of GC99 and YK18 under different config-
urations, aiming to gain insights into integrative localization
applications. Note that this study primarily focuses on the im-
pact of non-adaptive localization, so the discussion of adap-
tive localization (such as ECO-RAP; Bishop and Hodyss,
2009) is beyond the scope of this paper.

This paper is organized as follows: Sect. 2 briefly intro-
duces data assimilation (DA) and localization methods. Sec-
tion 3 describes the model and experiment configurations
employed in this study. The results of these experiments are
presented in Sect. 4. Finally, Sect. 5 concludes our findings
and future applications.

2 Methodology

2.1 The local ensemble transform Kalman filter
(LETKF)

The LETKF (Hunt et al., 2007) is one of the most popular
ensemble-based DA schemes. Its analysis is derived indepen-
dently at each model grid by combining the local informa-
tion from the ensemble backgrounds and the observations.
At each analysis time, the analysis equations are expressed
as

xa = xb+XbP̃a(HXb)
TR−1 [yo−Hxb

]
, (1)

Xa = Xb
[
(k− 1) P̃a

] 1
2 , (2)

P̃a =
[
(k− 1)Ik×k + (HXb)

TR−1(HXb)
]−1

, (3)

where subscript letters a and b denote the analysis and back-
ground, respectively. The X(.) represents the matrix of en-
semble perturbations where each column is the vector of the
deviations from the mean state x(.), namely X(.) = {(xi(.)−
x(.) ) |. . .| (x

k
(.)− x(.) ) } and xi(.) is the state vector of the ith

ensemble with an ensemble size k. The observation opera-

Nonlin. Processes Geophys., 29, 317–327, 2022 https://doi.org/10.5194/npg-29-317-2022



C.-C. Chang and E. Kalnay: Applying prior correlations for ensemble-based spatial localization 319

tor is H that converts information from model space to ob-
servation space, yo denotes the local observations, and R is
the corresponding observation error covariance. The P̃a de-
notes the analysis error covariance in a k-dimensional en-
semble space spanned by the local ensembles. This attribute
avoids the direct calculation of the error covariance in theM-
dimensional model space (given that usuallyM � k in NWP
applications), and thus, the analysis can be obtained in a very
efficient manner.

Since the background error covariance Pb in LETKF is de-
rived in a spanned ensemble space, it is impossible to imple-
ment the localization function directly on the background er-
ror covariance through the Schur product in a physical space
like Hamill et al. (2001). Instead, Hunt et al. (2007) proposed
another brilliant way to implement localization for LETKF
by simply multiplying the elements of R by an appropri-
ate localization weight range from zero to one. This feature,
where the localization function works at the R matrix, is also
known as the R localization. The characteristics of R local-
ization and its differences to B localization were discussed
in Greybush et al. (2011).

2.2 Distance-dependent localization

Following Hunt et al. (2007), we use the positive exponential
function as the localization function:

ρij = exp

[
d(i,j)2

2L2

]
, (4)

where ρij is the localization weight and d(i,j) is the dis-
tance between the ith analysis grid and the j th observation.
The L is the localization length which is usually manually
defined. Equation (4) is a smooth and static Gaussian-like
function that offers the same localization effect as the GC99
when applied to LETKF. Since the observation errors are
assumed to be uncorrelated in our experiments (R is diag-
onal), the localization weight would be independently as-
signed for the assimilated observation j and analysis grid i.
Accordingly, when the distance (d(i,j) in Eq. 4) increases,
a larger value of ρij would be multiplied to R, inflating ob-
servation error for the j th observation. That would lead to
a smaller value in the corresponding rows of the Kalman
gain (Xb

[
(k− 1)I+ (HXb)

TR−1 (HXb)
]−1

(HXb)
TR−1) of

LETKF, down-weighting the observation on updating the
background. Thus, the impact of distant observations would
be suppressed on the analysis. When the compact support is
presented with the localization function, the observations lo-
cated beyond a certain distance (in this study it is 3.65×L)
from the analysis grid would be discarded by assuming ρij =
0.

2.3 The correlation cutoff method

The correlation cutoff method (Yoshida and Kalnay, 2018;
Yoshida, 2019), a pioneering localization approach for cou-

pled systems, localizes the information from observation to
analysis according to their square background error correla-
tions. This method is carried out in two steps:

Step 1: obtaining the square error correlation from an of-
fline run. The prior square error correlations are collected
from a preceding offline run. At each analysis time t , an
instantaneous background ensemble correlation between the
ith analysis grid and the j th observation is computed as

corrij (t)=
K∑
k=1

[
xki (t)− xi(t)

]
[hj (xk (t))−hj (xk (t))]√

K∑
k=1

[
xki (t)− xi(t)

]2
√

K∑
k=1

[
hj (xk (t))−hj (xk (t))

]2 , (5)

where xki (t) is the state vector of the kth ensemble at the ith
analysis grid at time t . The hj (xk (t)) is the linear interpola-
tion to the background state xk (t) from the analysis grid to
the j th observation location. The symbol ( ) denotes the en-
semble mean of a given vector and K is the total ensemble
size.

Then, the temporal mean of the squared correlation is com-
puted by

〈corr2
ij 〉 =

1
T

∑T
t=1

corr2
ij (t) , (6)

where T is the total analysis cycles in the offline run. In the
original YK18, this prior squared error correlation is used as
a criterion for variable localization in the coupled DA, by
which only those highly correlated observations would be
assimilated. For the spatial localization approach, the value
〈corr2

ij 〉 will serve as the prior error correlation to estimate
the localization function as described in Step 2.

Step 2: converting the prior error correlation into the lo-
calization weighting. The localization function is derived by
substituting the prior error correlation obtained in Step 1 to
a chosen cutoff function. Here, we followed Yoshida (2019)
using the quadratic function as our choice of the cutoff func-
tion. The localization weight ρij assigned for the j th obser-
vation at the ith analysis grid can be written as:

ρij =


0 (x ≤ c) ,

1−
(

1−x
1−c

)2
(c < x ≤ 1)

1 (x > 1)

, (7)

where x = 〈corr2
ij 〉 and c is a tunable parameter that defines

the slope for the function. We set c equal to 0.05 and 0.01 for
the classic and the variant L96 experiments, respectively. The
primary purpose of using the cutoff function is to generally
smooth out small perturbations and ensure the weight range
is between 0 and 1.

An additional threshold is applied to exclude observations
with a square error correlation smaller than 1/(K − 1). This
threshold is chosen because the squared sample correlation

https://doi.org/10.5194/npg-29-317-2022 Nonlin. Processes Geophys., 29, 317–327, 2022



320 C.-C. Chang and E. Kalnay: Applying prior correlations for ensemble-based spatial localization

estimated by K random samples extracted from an uncor-
related distribution would converge to 1/(K − 1) (Pitman,
1937). Therefore, any value not much larger than 1/(K − 1)
is assumed to be unreliable (Yoshida, 2019).

3 Experimental design

We carried out a series of experiments with LETKF on the
classic and variant Lorenz (1996) models to investigate the
fundamental characteristics of the two types of localizations
and explore the feasibility of the hybrid use of YK18 and
GC99 localizations.

3.1 The classic and variant Lorenz models

The classic Lorenz model (hereafter L96 model; Lorenz,
1996; Lorenz and Emanuel, 1998) is a one-dimensional, uni-
variate simplified atmospheric model that consists of a non-
linear term (e.g., representing advection), a linear term (e.g.,
representing mechanical or thermal dissipation), and an ex-
ternal forcing. The governing equations are:

dXi
dt
= (Xi+1−Xi−2)Xi−1−Xi +F (+fi) , (8)

where the model variable is denoted by Xi , i = 1, . . .,M ,
and M = 40. The constant external forcing F is set to be 8
here. The variables form a cyclic chain, where X−1 =XM−1
and X0 =XM . The varying forcing term fi is neglected for
the L96 model. The model is integrated with the fourth-order
Runge–Kutta scheme with a time step of 0.0125 units (4
steps correspond to 6 h). The model was initialized by adding
a single random perturbation onto the rest state and integrat-
ing for 90 d to remove the model spin-up.

A variant L96 model with a spatially varying forcing fi
appending to the L96 model is used to mimic a more so-
phisticated model dynamic. We constrained the total exter-
nal forcing (F + fi) with a value range of 6 to 10, ensuring
that the model dynamic remains chaotic and has a wavenum-
ber of 8. This additional forcing characterizes a land–ocean
pattern (Fig. 1a), where the land region has an irregular and
larger forcing (e.g., source), and the ocean region has a uni-
form and smaller forcing (e.g., sink). As discussed in Lorenz
and Emanuel (1998), the primary influence of the changes
in F is on its error growth rate. They found that increasing
F only has a small effect on the qualitative appearance of the
wave curves, while the error doubling time has an observable
decrease.

To understand the fundamental properties of the variant
L96 model, we examined the bred vectors (BVs; Toth and
Kalnay, 1993, 1997; Kalnay et al., 2002) of the two mod-
els. The BV is a nonlinear generalization of the leading
Lyapunov vectors (see Toth and Kalnay, 1993, 1997 for a
more detailed exposition). Their growth rate is calculated
as 1

n1t
ln(
∥∥δxf ∥∥/∥∥δx0

∥∥), where δxf and δx0 are the final

and initial perturbations within the breeding window, respec-
tively. The window size is n and 1t is the integration step.
The growth rate can be seen as a measure of the local insta-
bility of the flow. Figure 1b shows the temporal mean growth
rate of BVs for the classic and variant L96 models. The vari-
ant L96 model has an overall higher growth rate than the L96
model (Fig. 1b), which agrees with the statement of Lorenz
and Emanuel (1998). Moreover, the perturbations tend to
grow on the land–ocean interface (Fig. 1c) and propagate
eastward with the group velocity (Fig. 1d). In summary, we
expect the variant L96 model to offer more complicated dy-
namics than the L96 model, and its more rapid error growth
would let the corrections from DA be lost more quickly.

3.2 Localization methods

In this study, we investigated four types of localization strate-
gies:

– GDL: distance-dependent localization introduced in
Sect. 2.2. The localization length used for each exper-
iment is experimentally tuned for a minimum tempo-
ral mean analysis RMSE. The cutoff radius is set to be
3.65 times the localization length.

– YK18: correlation-dependent localization, in which the
weighting function is derived from the correlation cut-
off method (Yoshida and Kalnay, 2018) introduced in
Sect. 2.3.

– Hybrid: a hybrid application of GDL and YK18, in
which the localization weighting is equal to αGDL+
(1−α)YK18. The combination ratio α is 0.5 for our
experiment. This method was tested for the L96 model
experiment.

– Hybrid II: combination use of GDL and YK18. In this
method, YK18 is employed for the first 80 DA cycles
for shortening the DA spin-up, and GDL is subsequently
applied for the rest of the DA cycles. This method is
only used for the variant L96 model experiment.

For YK18, an independent offline run with sequential DA
cycling was conducted to acquire the prior error correlation
before running the DA experiments. The running period for
the offline run is 3 years with a 6 h analysis window. The
first 4 months are assumed to be the DA spin-up period and
were removed. We used 10 ensembles for the offline run with
configurations the same as the GDL experiments in Sect. 4.2
and 4.3. Offline runs were performed respectively for the L96
and variant L96 models.

Theoretically, the best localization length for GDL is di-
rectly proportional to the ensemble size, and an optimal
combination of the localization length and the inflation fac-
tor (Hamill et al., 2001) must exist. This study applied the
multiplicative covariance inflation (Anderson, 2001), and its
best combination with localizations is experimentally defined
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Figure 1. (a) The external forcing (F + fi ) used in the variant L96 model, the temporal mean of (b) the growth rate and (c) absolute bred
vectors, and (d) the time evolution of the absolute bred vectors for the variant L96 models. The breeding rescale cycle is 4 steps (n= 4,
1t = 0.0125), which equals our DA window length. The breeding rescale amplitude is 1.0.

based on the minimum averaged analysis error for each ex-
periment. The parameters used in the experiments for the L96
and variant L96 models are listed in Tables 1 and 3.

3.3 Truth and observations

The truth was obtained from the model free-run, and the ob-
servations were generated by adding random Gaussian errors
with a variance of 1.0 onto the truth state every 6 h. The ini-
tial ensembles are obtained from the perturbed model states
and integrated for 75 d until the ensemble trajectories con-
verge to the model attractor. The total experiment period is 1
year.

The analysis result is evaluated by the RMSE with the truth
state. For each variable, the RMSE can be represented as

RMSE=

√√√√ 1
M

M∑
i=1

(
xai − x

e
i

)2
, (9)

where M is the number of model grids, which equals 40 for
the L96 model. The xai and xei are the analysis ensemble
mean and the verified state, respectively.

4 Results

4.1 The characteristics of the YK18 function

The squared error correlation estimated from the indepen-
dent background ensembles is the core of the YK18 localiza-

tion function. Here, we discussed (1) how different factors
(ensemble and observation) in the offline run impact the cor-
responding error correlation estimation (Eq. 6) and (2) what
the main differences in the localization functions (e.g., GDL
and YK18) are.

First, we examined the temporal mean squared correla-
tion (Eq. 6) estimated by different observations and ensemble
sizes of the offline runs. Trials with observation sizes of 40,
20, and 13 (representing uniform coverages of 100 %, 50 %,
and 30 %, respectively) are carried out on the L96 model with
40 ensembles. We found that the squared correlation esti-
mation (Eq. 6) is not very sensitive to the observation size
changes (Fig. 2a) as long as the analysis of the offline run is
well constrained. Moreover, the minor differences in the es-
timated squared error correlation (Fig. 2a) would ultimately
be smoothed out by the cutoff function (Eq. 7) in practice.
Therefore, the final localization weights derived from the
offline runs with different observation sizes will be almost
identical. In other words, this characteristic provides clear
evidence to use past data to estimate the error correlations
for newly added observations, which is a significant advan-
tage for the applicability of YK18 in modern DA.

Figure 2b shows how the offline run period (i.e., number of
samples) would affect the prior error correlation estimation
(Eq. 6). The mean square error (MSE) was verified with the
result estimated by large ensembles (ens= 100) and a long
period (3 years). It is noticeable that the required number
of samples (i.e., length of offline run period) for the esti-
mated error correlation to converge to climatology is asso-
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ciated with the ensemble size and model complexity. A more
extended period of offline run or past data might be required
when using fewer ensembles or a more complicated model.

The localization functions of GDL and YK18 applied for
our DA experiments are shown in Fig. 3. The optimal lo-
calization length for GDL is associated with multiple factors
like ensemble size, observation distributions, and model dy-
namics. For example, when the ensemble size shrinks, the
optimal localization length would correspondingly decrease
so that a stronger suppression effect can be performed on
those spurious correlations in the distant regions (Ying et al.,
2018). In contrast, the YK18 localization function, once it is
defined, is independent of the ensemble size changes. Unlike
GDL, which provides a fixed function for every observation,
YK18 offers customized localization functions for each ob-
servation based on their prior error correlations; for example,
the different asymmetric features of the YK18 function (red
line) in Fig. 3b and c.

4.2 Scenario I: classic L96 model

In this section, the classic L96 model was utilized to inves-
tigate the impacts of GDL, YK18, and Hybrid. The total ex-
periment period is 1 year (after the first 60 cycles of spin-up)
with a DA window of 6 h. The tested ensemble sizes are 8
and 10. Observations are uniformly distributed with a total
number of 20 and 40. The parameters for the localization and
inflation for the experiments are shown in Table 1.

Figure 4 shows the analysis RMSE of GDL, YK18, and
Hybrid. The YK18 presented the lowest RMSEs among all
the methods during the DA spin-up period (Fig. 4), particu-
larly when the ensemble size and observations were reduced
(Fig. 4d). This result shows that YK18 can shorten the DA
spin-up and perform an analysis comparable to GDL. The
DA spin-up means the required period for the ensemble-
based DA system to build a reliable background error co-
variance, and the analysis error reaches convergence. The
phrase “spin-up” used in the following sections refers to the
DA spin-up.

The capability of YK18 in accelerating the spin-up mainly
comes from its more precise interpretation of the error cor-
relations derived from the independent (or past) ensembles.
Figure 5 shows the localized background error covariance
(ρXbXT

b ) of GDL (blue line) and YK18 (red line) at the first
(Fig. 5a) and the second (Fig. 5b) DA cycles. The true covari-
ance (black line) was obtained by perturbing the truth state
and evolving through the corresponding DA window (6 h)
with a large ensemble size of 5000, which can be seen as
an optimal estimation without sampling errors. At the first
DA cycle, where GDL and YK18 were initialized with the
same ensembles, it is apparent that the localized error covari-
ance of YK18 is significantly closer to the true covariance,
showing less spurious than GDL, especially for distant co-
variances (Fig. 5a). With a better estimate of the background
error covariance, YK18 performed a superior analysis at the

initial cycle and subsequently improved the background er-
ror estimation for the next cycle (Fig. 5b). Thus, with prior
knowledge of the error correlations, YK18 can optimize the
use of observations, inducing more “on-point” corrections
for the analysis and reducing the required number of cycles
for the DA system’s spin-up. This advantage of YK18 is also
present in the variant L96 model (Fig. 5c, d).

Table 2 shows the 1 year mean analysis RMSE without the
spin-up period (first 100 cycles). Generally, the long-term av-
eraged performance of the three localizations is very similar
(Table 2), while Hybrid is slightly better than the other two.
The best localization length for Hybrid is longer than pure
GDL, which allows it to gain more observation information
after the DA convergence. Note that it is unlikely for GDL
to apply such a long localization length at the beginning be-
cause it needs a relatively shorter localization length to con-
strain the spurious error covariances during the spin-up. In
our experiments, the GDL went through filter divergence at
the early stage when using localization lengths larger than
7. In contrast, by averaging with the tighter function from
YK18, the Hybrid was able to get through the spin-up with
a longer localization length. However, on the other hand, it
requires a significantly longer spin-up period than the other
two methods due to its weaker constrain in the early stage.

4.3 Scenario II: the variant L96 model

Considering that the L96 model is favorable for GDL due to
its simple model dynamics (Table 2), the variant L96 model
that offers a more complicated model dynamic was employed
here. We used 10 ensembles and tested with different obser-
vation sizes of 40, 30, and 20. The 20 and 40 observations
are distributed uniformly. The 30 observations are distributed
densely on the land (20 observations) and coarsely in the
ocean area (10 observations). Here, three localization meth-
ods were tested: GDL, YK18, and Hybrid II. Hybrid II uses
YK18 for the first 80 DA cycles for accelerating the spin-up,
then GDL for the rest of the cycles. Since the parameters are
respectively tuned for each method, the localization length
used in GDL and Hybrid II may differ. The parameters used
for this section are listed in Table 3.

Figure 6 shows the analysis RMSE of the three methods
on the variant L96 model. Note that Hybrid II is identical
to YK18 for the initial 100 DA cycles, so the green over-
laps with the red line in Fig. 6. As expected, GDL requires a
significantly longer spin-up for the more complex model, es-
pecially when fewer observations were assimilated (Fig. 6b
and c). The YK18, again, showed impressive efficiency in ac-
celerating the spin-up, particularly with fewer observations,
and generated a better analysis than GDL at the early stage
(Fig. 6). Nevertheless, this advantage of YK18 became more
pronounced with a more complicated model and fewer ob-
servations.

Table 4 is the 1-year average of the analysis RMSE after
the first 100 spin-up cycles. After the system’s spin-up, the
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Figure 2. (a) The temporal mean squared error correlations estimated from different observation amounts. The yellow star represents the
correlated observation location. (b) The MSE of Eq. (6) estimated by the past data with 10 ensembles (black) and by the ideal offline runs
with the L96 model (red) and the L96 variant model (blue).

Figure 3. The localization functions of GDL (blue) and YK18 (red) for (a) the L96 model and (b, c) the variant L96 model but for the
different observation sites. The yellow stars represent the corresponding observation sites. The results presented here are for the case of 10
ensembles and 40 observations.

averaged analysis RMSEs of all methods are similar, while
Hybrid II is slightly better than the other two methods (Ta-
ble 4). We found that the mixed use of YK18 and GDL Hy-
brid II is superior to solely using YK18 or GDL. Hybrid II
inherits the benefit of YK18 of accelerating spin-up and out-
performs GDL after the system convergence, presenting the
best performance among all methods. This is possibly due
to the fact that Hybrid II has a longer optimal localization
length than GDL, allowing it to acquire more observation in-
formation during the assimilation and provide a more accu-
rate analysis. Moreover, Hybrid II has a significantly shorter
spin-up than Hybrid I, making it a better hybrid strategy for
the case that requires DA spin-ups.

Finally, it is important to highlight that YK18 is an excep-
tionally efficient localization method. In practice, using GDL
requires multiple preceding trials to find an optimal length
for the experiments of interest, which may consume consid-
erable computational resources and time. Moreover, when

the ensemble size or observation amount changes, the op-
timal localization length may vary accordingly, so additional
tuning for the localization length might be needed for GDL.
In contrast, YK18 only needs one offline run to determine the
error correlations, whereas it performs an analysis compara-
ble to GDL, even with a faster spin-up. Although an initial
tuning for the parameter c in Eq. (7) is necessary at the be-
ginning, once it is tuned, it can adapt to future ensemble or
observation size changes since it is not sensitive to the varia-
tion of those factors. This feature, on the other hand, allows
YK18 to avoid further trial-and-error tunings and be more
efficient than GDL.

5 Summary and discussion

This study explored the feasibility of using the correlation
cutoff method (YK18, Yoshida and Kalnay, 2018; Yoshida,
2019) as a spatial localization and compared the accuracy of
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Table 1. The parameters used in the L96 model experiments given in Eqs. (4) and (7). The symbol α represents the multiplicative inflation
parameter.

GDL YK18 Hybrid

ens= 10 obs= 40 L= 5, α= 1.04 c= 0.05, α= 1.03 L= 7, α= 1.03
obs= 20 L= 4, α= 1.03 c= 0.05, α= 1.03 L= 6, α= 1.03

ens= 8 obs= 40 L= 3, α= 1.04 c= 0.05, α= 1.04 L= 7, α= 1.06
obs= 20 L= 3, α= 1.07 c= 0.05, α= 1.04 L= 7, α= 1.06

Figure 4. The time series of the analysis RMSE for GDL (blue line), YK18 (red line), and Hybrid (green line) for the cases of 10 ensembles
with (a) 40 and (b) 20 observations; and cases of 8 ensembles with (c) 40 and (d) 20 observations.

Table 2. The long-term mean analysis RMSE for the L96 model.

Observation= 40 Observation= 20

Ensemble Ensemble Ensemble Ensemble
= 8 = 10 = 8 = 10

GDL 0.178 0.175 0.292 0.245
YK18 0.192 0.185 0.302 0.280
Hybrid 0.176 0.163 0.271 0.253

the two types of localization, correlation-dependent (YK18)
and distance-dependent (GDL), preliminarily on the L96
model with the LETKF. We also proposed and explored the
potential of the two types of hybrid localization applications
(Hybrid and Hybrid II). Our results showed that YK18 per-
forms an analysis similar to GDL but with a significantly
shorter spin-up, especially when fewer ensembles and obser-
vations are presented. The YK18 can accelerate the spin-up
by optimizing the use of observations with its prior knowl-
edge of the actual error correlations, effectively reducing the

required number of cycles toward the analysis convergence.
In our experiments with the variant L96 model, we demon-
strated that these advantages of YK18 would become even
more pronounced under a more complicated dynamic.

It is worth highlighting that YK18 is more efficient and
economical than GDL. Traditionally, the use of GDL re-
quires multiple trial-and-error tunings to define the optimal
localization length for the experiments of interest. In con-
trast, YK18 only needs one offline run to obtain the prior
error correlations, whereas it provides an analysis compara-
ble to GDL even with a faster spin-up. For operational or
research centers that have plentiful archives of historical en-
semble datasets, it is possible to directly obtain the required
prior error correlation for YK18 from the past data (i.e., his-
torical ensemble forecasts) without executing additional of-
fline runs.

We found that the hybrid methods, the combination uses
of YK18 and GDL, generated a more accurate analysis than
those solely using GDL or YK18. Hybrid II has the same ad-
vantages as YK18 in accelerating the spin-up and a larger op-
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Figure 5. The true (black) and localized background error covariances (ρXbXT
b ) of GDL (blue) and YK18 (red) for the L96 model at (a) the

first and (b) the second DA cycles, and for the variant L96 model at (c) the first and (d) the second DA cycles. The localization functions and
configurations are the same as in Fig. 3.

Table 3. The parameters used in the variant L96 model experiments given in Eqs. (4) and (7). The symbol α represents the multiplicative
inflation parameter.

GDL YK18 Hybrid II

Ens= 10 Obs= 40 L= 5, α = 1.06 c = 0.01, α = 1.03 L= 5, α = 1.03
Obs= 30 L= 4, α = 1.06 c = 0.01, α = 1.04 L= 5, α = 1.04
Obs= 20 L= 3, α = 1.03 c = 0.01, α = 1.05 L= 5, α = 1.06

Table 4. The long-term mean analysis RMSE for the variant L96
model (10 ensembles).

Obs= 40 Obs= 30 Obs= 20

GDL 0.185 0.254 0.317
YK18 0.210 0.255 0.319
Hybrid II 0.178 0.234 0.312

timal localization length than GDL. These features allow Hy-
brid II to spin up quicker, obtain more observation informa-
tion after the system convergence, and generate a slightly bet-
ter analysis than GDL and YK18. Since the imbalanced anal-
ysis would be relaxed by a larger localization length (Lorenc,
2003; Greybush et al., 2011), we expect that the hybrid meth-
ods would deliver a more balanced analysis than GDL with
a multivariate model. Further investigation of this advantage
will be part of our future works.

We would like to emphasize that the L96 model used in
this study is highly advantageous to GDL because of its uni-
variate and simple dynamic without teleconnection features.

As a result, the two known problems in GDL, imbalanced
analysis and losing long-range signals, would not appear to
degrade its performance here. Despite that, this model is still
an excellent test bed for preliminary DA studies because
it offers a simple and ideal environment for first exploring
the fundamental characteristics of new methods. With that
in mind, it is encouraging that YK18 performed an analysis
comparable to GDL (even with a shorter spin-up) under such
an environment that is particularly advantageous to GDL. We
believe YK18 has great potential to generate a relatively ac-
curate and balanced analysis in a more sophisticated, mul-
tivariate model than GDL. More studies with a multivariate
and more realistic model would be required and will be con-
ducted as our future works.

Another future work will be extending the use of YK18
to location-varying observations. One potential solution is
to use neural networks to estimate corresponding error cor-
relations for YK18 applications (Yoshida, 2019). The ex-
periments of Yoshida (2019) proved that neural networks
could estimate the background error correlations for obser-
vation at arbitrary locations. Although high computational
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Figure 6. The analysis RMSE of the GDL (blue), YK18(red), and Hybrid II (green) with observations of (a) 40, (b) 30, and (c) 20 for the
variant L96 model experiment.

costs and numerous samples are inevitable for training neu-
ral networks, once the network is developed, it can provide
significant advantages in estimating the error correlations for
location-varying observations such as satellite data.

Code and data availability. The codes for the methods can be pro-
vided by the corresponding authors upon request. All the data used
in this paper are simulated and can be easily generated by the users.
We have well explained how we generate those data and provided
related references in the article (Sects. 2 and 3).
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