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Abstract. A column model of the Arctic atmosphere is de-
veloped including the nonlinear positive feedback responses
of surface albedo and water vapour to temperature. The atmo-
sphere is treated as a grey gas and the flux of longwave radia-
tion is governed by the two-stream Schwarzschild equations.
Water vapour concentration is determined by the Clausius–
Clapeyron equation. Representative concentration pathways
(RCPs) are used to model carbon dioxide concentrations into
the future. The resulting 9D two-point boundary value prob-
lem is solved under various RCPs and the solutions analysed.
The model predicts that under the highest carbon pathway,
the Arctic climate will undergo an irreversible bifurcation
to a warm steady state, which would correspond to annually
ice-free conditions. Under the lowest carbon pathway, corre-
sponding to very aggressive carbon emission reductions, the
model exhibits only a mild increase in Arctic temperatures.
Under the two intermediate carbon pathways, temperatures
increase more substantially, and the system enters a region of
bistability where external perturbations could possibly cause
an irreversible switch to a warm, ice-free state.

1 Introduction

Climate change is causing rapid temperature increases in the
polar regions. A fundamental question is whether these tem-
perature increases are reversible. If humanity fails to prevent
a substantial warming of the planet in the next few decades,
which is appearing to be more and more likely, will it be pos-
sible in the future to reverse our effects on climate enough to
restore lower temperatures, or will we have passed a tipping

point beyond which return to the present state is impossible?
We address this question in particular for the Arctic, where
the observed climate change is the most dramatic.

The Earth’s climate is an extremely complex system. Mod-
elling efforts range from simple models attempting to iso-
late the most pertinent features to very complicated numeri-
cal models trying to capture as many details as possible. The
model presented here is close to the simple end of this spec-
trum, although not as simple as some, in that it is a 9D non-
linear two-point boundary value problem. The advantage of
relatively simple models is that they allow more direct anal-
ysis of cause and effect, which is often obscured in highly
complicated models.

The term “tipping point” is used by different researchers
in various ways; see Russill (2015) and Lenton et al. (2008)
for some definitions and discussion of the term. In all cases,
however, tipping points are associated with large qualitative
changes in a system due to relatively small changes in the
parameters or “forcings” that drive the system. In the present
paper, tipping points arise as a result of saddle-node and cusp
bifurcations in the mathematical model. The mathematical
theory of bifurcations is well-developed (Kuznetsov, 2004)
and employed here. Figure 1 illustrates the typical behaviour
associated with these bifurcations. In Fig. 1a there are two
saddle-node bifurcations resulting in a parameter interval of
bistability; that is, two stable states coexist for an interval of
µ values. If the system is on the lower branch of stable states,
then, as µ increases through a critical value µcrit, there is
an abrupt jump to the upper branch of stable states. In con-
trast, as µ decreases, the jump back to the lower state does
not occur until a much smaller critical value of µ. This phe-
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nomenon is called hysteresis. If present in the Earth’s cli-
mate system, it implies that once the upward jump occurs, it
may be very difficult to achieve the reverse jump back to the
original climate state. Figure 1b illustrates the situation of a
cusp bifurcation, where the two saddle-node bifurcations in
Fig. 1a have coalesced, for example, as another parameter
of the system is varied. In this situation a small change in
µ will also cause a large change in the system F , although
it will be smooth and reversible. In Fig. 1c, even though the
saddle-node bifurcations may be outside the parameter in-
terval of interest, abrupt large transitions in the system can
result from a small noise- or perturbation-induced change to
the system even when the parameter value remains constant.
It is the presence of saddle-node bifurcations in a mathemat-
ical model, even if not occurring precisely at the system’s
current parameter value, that is the root cause of all of the
behaviours shown in Fig. 1.

For a tipping point to be present, the underlying mathemat-
ical model will be characterized by nonlinearity, generally in
the form of a positive feedback that accelerates change once
change has begun. For the Arctic, one of the primary positive
feedbacks is the surface albedo. When the Arctic Ocean is
frozen, the surface reflects a significant portion of the insola-
tion back into space, but open water absorbs much more heat
from the Sun. Timing of the melt in the spring has significant
impact (Zheng et al., 2021). An earlier melt means consid-
erably more heat is absorbed by open water, raising the wa-
ter temperature and delaying freeze-up in the autumn. The
freeze-up date for the Beaufort, Chukchi, Laptev, and Kara
seas, for example, has been getting later by 6–11 d per decade
since 1979 (Stroeve et al., 2014). September sea ice extent
has been decreasing at an accelerating rate. The linear trend
from 1979 to 2001 is −7 % per decade, but including data
up to 2013, the linear trend is −14 % per decade (Stroeve et
al., 2014). Thus the observational evidence indicates that the
processes behind this phenomenon are not linear at all but
nonlinear.

Past studies on general circulation models (GCMs) have
given mixed results regarding the presence of multiple sta-
ble states for ice conditions in the Arctic. Some indicate that
there appears to be a continuous transition from perennial
ice cover to annually ice-free that is reversible (Schröder and
Connolley, 2007; Tietsche et al., 2011; Armour et al., 2011).
Other studies have shown evidence for nonlinear behaviour
in sea ice loss, especially in the transition from seasonally
ice-free to annually ice-free (Winton, 2006, 2008; Ridley et
al., 2008). On the other hand, smaller conceptual models
generally show bistability and abrupt transitions in sea ice
cover (Thorndike, 1992; Müller-Stoffels and Wackerbauer,
2011; Eisenman and Wettlaufer, 2009; Björk and Söderkvist,
2002; Abbot et al., 2011; Merryfield et al., 2008; Flato and
Brown, 1996). The most common result from all these mod-
els seems to be that sea ice will likely transition from peren-
nial to seasonally ice-free in a continuous, reversible man-
ner, but significant warming beyond that point will likely

cause an abrupt change to annually ice-free (Bathiany et al.,
2016). See the introduction in Eisenman (2012). The model
we present here is an annually averaged model with no sea-
sonal component. It is not a model of sea ice in particular but
rather a column model of the atmosphere that incorporates a
nonlinear albedo response to surface temperature. Bistability
in our model with both warm and cold solutions corresponds
to annually averaged ice-covered or ice-free situations.

The Arctic climate model presented here is motivated by
three observations. First is the observation that the climate
changes taking place on the Earth today are most dramatic
in the high Arctic. Therefore, it is prudent to put a special
focus on understanding Arctic climate change. Second, irre-
versible change is inevitably the result of nonlinear geophys-
ical processes. So, while this model is kept very simple, it
does include significant nonlinear phenomena that can lead
to tipping points. Third, the 3D spherical shell of the atmo-
sphere of the Earth is rotationally symmetric about the polar
axis if annually and zonally averaged. Due to the rotation of
the Earth, Hadley, Ferrel and polar cells form in the global
circulation. If perfect rotational symmetry is assumed, the
polar axis becomes flow-invariant, and this remains approx-
imately true for the real Earth. Thus, a 1D model restricted
to the polar axis can be expected to give useful information
about climate in a neighbourhood of the pole. The study of
a rotationally symmetric spherical shell model by Lewis and
Langford (2008) gives support to this hypothesis. A vertical
column of atmosphere at other points on Earth would have
a horizontal component of velocity, invalidating the type of
analysis used here. Globally averaged climate models do re-
duce to one (vertical) dimension, but they give little informa-
tion specific to the Arctic.

The present model builds on the simple energy balance
slab model of Dortmans et al. (2019), which was applied
to paleoclimate transitions, and the model of Kypke et al.
(2020), which was applied to anthropogenic climate change.
The primary improvement of the present model is a more
physically accurate description of the atmosphere. Instead of
using a slab to represent a uniform atmosphere with absorp-
tion properties similar to the real atmosphere, here we use the
Schwarzschild two-stream equations to model absorption in
the atmosphere explicitly as a function of altitude (Pierre-
humbert, 2010, p. 191).

A bifurcation analysis is performed on the model, track-
ing the steady-state solutions as carbon dioxide levels in-
crease. The question of reversibility is a question of whether
the current cold state simply warms but persists. The disap-
pearance of this cold state through a saddle-node bifurca-
tion would result in an abrupt change in climate that may
be practically irreversible. The simpler model of Kypke et al.
(2020) showed this behaviour under certain CO2 representa-
tive concentration pathway scenarios. We seek here to deter-
mine whether the present, more accurate model also displays
this behaviour.
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Figure 1. (a) Hysteresis arising from two saddle-node bifurcations. (b) A cusp bifurcation. (c) A bistable system. Solid curves indicate stable
states, and dashed curves are unstable states. In panels (a) and (b) a small change δµ in the control parameter near the bifurcation value µcrit
causes a large change1F in the system. In panel (a) the return bifurcation happens at a different value of µ. In panel (c) a small perturbation
δF in the system causes a large change 1F .

Section 2 and Appendix A provide a detailed derivation
of the model. The model parameter values and calibration of
some of them to empirical data are presented in Appendix B.
Although much of the detail is relegated to the Appendices,
the authors feel this detail constitutes an essential part of the
contribution of the paper, providing clarity, justification of
choices, and the information necessary for replication. Hence
we consider them essential reading. Section 3 presents the
results, and the conclusions are in Sect. 4.

2 Model

The model is developed from first principles and has the fol-
lowing features.

– The atmosphere is a 1D column at the North Pole with
physical properties that vary with altitude, from the sur-
face to the tropopause.

– The incoming solar radiation is annually averaged and
undergoes reflection and absorption in the atmosphere
as well as at the Earth’s surface.

– The surface albedo is a nonlinear function of the surface
temperature.

– A well-mixed surface boundary layer is included.

– The Earth emits longwave radiation as a black body.

– The atmosphere is considered to be a grey gas.

– The Schwarzschild two-stream equations govern the ab-
sorption and emission of both upward- and downward-
directed longwave radiation in the atmosphere.

– The atmospheric absorption of longwave radiation is
due to three factors: water vapour, CO2 concentration,
and clouds.

– Water vapour concentration is governed by the nonlin-
ear Clausius–Clapeyron equation.

– Transfer of latent and sensible heat from the surface to
the atmosphere is modelled.

– Both ocean and atmospheric meridional heat transports
to the Arctic are dictated by empirical values.

– In the Arctic, there is a slow downward movement of
air in the column corresponding to the polar circulation
cell near the pole (Lewis and Langford, 2008; Langford
and Lewis, 2009; Lutgens and Tarbuck, 2019). This is
achieved via mass transport of air into the column in its
upper portion and out of the column near the bottom.

– The radiation absorption coefficients are calibrated by
fitting the model to global average data.

– The functional forms of the mass transport and atmo-
spheric heat transport are used to calibrate the model to
an empirical Arctic temperature profile.

The annually and zonally averaged Earth atmosphere is ro-
tationally symmetric around the polar axis, which is invari-
ant under the flow. Therefore, if one considers a column of
the atmosphere near the North Pole, it is reasonably approx-
imated by a 1D model with altitude-varying quantities. This
approximation becomes exact in the limit as the diameter of
the column shrinks to zero. Alternatively, one can view the
model as a meridional and zonal average over a cylinder cen-
tred at the North Pole. Further, although the Arctic Ocean is
not zonally symmetric, in the above view, the contribution of
ocean heat transport can be reasonably captured as a scalar
quantity. Thus our model is more precisely a model of the
North Pole rather than the Arctic. Nonetheless, we do use
some empirical data for the region north of 70◦ to calibrate
the model for two reasons: (1) data further north are not read-
ily available, and (2) the data we use are not likely to alter too
much if they were measured closer to the pole. The values for
atmospheric heat transport and ocean heat transport are two
that may change significantly as one moves north from 70◦,
and we therefore analyse the behaviour of the model over a
wide range for these parameter values.
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Figure 2. Schematic illustration of the model. Symbols as described
in the text.

The model domain is a vertical cylinder of cross-sectional
areaA (m2) and circumferenceCb (m). The atmosphere is as-
sumed to be uniform in the cross-sectional direction, so that
the model’s dependent variables can be interpreted as cross-
sectional averages that vary with the 1D vertical coordinate
z ∈ [0,zT], where zT (m) is the height of the tropopause. This
domain is divided into a surface boundary layer with height
zB (m), zB� zT, and the troposphere proper, z ∈ [zB,zT].
The model consists of a set of initial value problems (IVPs),
with an independent spatial variable z on [0,zB], which can
be solved analytically, and a two-point boundary value prob-
lem (BVP) on [zB,zT] that depends on the solutions to the
IVPs. The model has equations governing the vertical wind
speed, w (ms−1), the air density, ρ (kgm−3), the upward
and downward longwave radiation, I+ and I− (Wm−2), the
downward shortwave radiation, IS (Wm−2), the latent and
sensible heat transport, FC (Wm−2), and the temperature T
(K). Any reflection of shortwave radiation from either the
surface or the atmosphere is ignored and is simply considered
to have left the system. The model is depicted in Fig. 2 and is
derived and explained in detail in the following subsections.
Many of the details of the model, including its nondimen-
sionalization, the vanishing conduction limit, and modelling
choices used for various functional forms, are in Appendix A.
Calibration of the model parameters to empirical data is de-
scribed in detail in Appendix B, and the reader is referred
to Tables B1 and B2 of that appendix for the values of the
parameters.

2.1 Mass, momentum, and energy balance

The model equations in the troposphere are developed from
the fundamental transport theorem in one spatial dimension:

∂tf + ∂zχ = S, (1)

where f is the density of some “property”, χ is the flux of
that property, and S is a source/sink term. The time-derivative
term will be taken as zero since only the steady-state solu-
tion is considered. The properties subject to this equation are
mass, momentum, and energy. To model the Arctic, the cylin-
der is centred at the North Pole, and, since the atmospheric
polar cell has slow downward movement near the pole, it is
assumed that w < 0.

2.1.1 Mass

If the property f in Eq. (1) is the mass density, ρ (kgm−3),
then the flux is χ = ρw. There is mass flux across the vertical
boundary of the cylinder, Mb(z) (kgm−2 s−1), which is as-
sumed to be immediately spread out evenly across the layer,
and hence the mass flux across the vertical boundary in the
model is really a mass source term in the interior giving

S =
mass entering into cylinder layer of width 1z

volume of layer

=
Mb(z)Cb1z

A1z
=
Cb

A
Mb(z).

Thus, at steady state the mass balance equation is

d(ρw)
dz
=
Cb

A
Mb(z).

The mass flux through the vertical boundary into the column
is written as

Mb(z)=
A

Cb(zT− zB)
Mtotφ

(
z− zB

zT− zB

)
,

whereMtot (kgm−2 s−1) is a nonnegative constant and φ(x) :
[0,1] 7−→ R is a dimensionless function that represents the
portion of inward mass flux across the vertical boundary of
the column at the given altitude. Positive φ indicates inward
flow. The ratio of the cross-sectional area of the column to the
area of its side,A/(Cb(zT−zB)), in the definition ofMb(z) is
included as a useful simplifying convenience. The (positive
inward) mass fluxes across the bottom and top boundaries of
the column are given by Mtot8B and Mtot8T, respectively,
where8B and8T are dimensionless constants in the interval
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[−1,1]. These quantities must satisfy

1∫
0

φ(x)dx+8B+8T = 0 and

1∫
0

max(φ(x),0)dx+max(8B,0)+max(8T,0)= 1. (2)

The first of these conditions dictates that there is no net mass
entering the system, and the second is a normalization con-
dition so that Mtot represents both the total mass entering
the column per unit cross-sectional area and the magnitude
of the total mass leaving the column per unit cross-sectional
area. In order to obtain downward vertical flow throughout
the cylinder, it shall be assumed that 8B < 0, 8T > 0, φ ≤ 0
in the lower part of the cylinder and φ ≥ 0 in the upper part.
With these definitions, the mass balance equation becomes

d(ρw)
dz
=

Mtot

zT− zB
φ

(
z− zB

zT− zB

)
. (3)

2.1.2 Momentum

Now take the property f in Eq. (1) to be the momentum den-
sity, ρw. The vertical flux is χ = ρw2, and the source term S

has two components, one due to contact forces (stress) (van
Groesen and Molenaar, 2017, p. 56) and one due to internal
body forces (gravity):

S =−
dP
dz
− ρg,

where P (Nm−2) is the pressure and g (ms−2) is the grav-
itational acceleration. It is assumed that mass entering the
cylinder from the vertical boundary has no vertical momen-
tum. Thus the momentum balance equation at steady state
is

d(ρw2)

dz
=−

dP
dz
− ρg. (4)

(In the case of no flow (w = 0), the above would read
dP/dz=−ρg, which is the hydrostatic equation.)

2.1.3 Energy

Finally, consider the case where the property in Eq. (1) is the
total energy density given by

e =
1
2
ρw2
+ ρgz+ cvρT ,

which corresponds to the sum of kinetic energy, gravitational
potential energy, and internal heat energy densities. Here, cv
(Jkg−1 K−1) is the specific heat capacity of the air. The flux
has two components, one due to advection and one due to
conduction:

χ = ew− k
dT
dz
,

where k (Wm−1 K−1) is the thermal conductivity. The
source/sink S has eight terms, one due to work done by con-
tact forces, two due to mass entering or leaving across the
vertical boundary (one of these accounts for gravitational po-
tential energy and the other internal heat energy; there is no
addition to kinetic energy since the mass appearing has no
velocity), three due to radiation (shortwave downward and
longwave upward and downward), one due to latent and sen-
sible heat transport, and one due to atmospheric heat trans-
port. It is important to distinguish the difference between the
mass transport across the boundary and the atmospheric heat
transport. It is assumed that the mass moving across the verti-
cal boundary is at the same temperature as the mass inside at
each altitude. Since mass transfer across the vertical bound-
ary is inward in the upper portion, where the temperature is
cooler, and outward in the bottom portion, mass transport re-
sults in a net transport of heat out through the vertical bound-
ary, but this will be small since the mass flux,Mb(z), is small.
The reason Mb(z) is small is that it generates the average
slow movement of air downward near the North Pole (about
1 mms−1), due to the circulation of the polar cell. This slow
averaged circulation of air does not account for the atmo-
spheric heat transport. The main transport of heat in the at-
mosphere is via turbulent mixing captured in our model by a
source term, FA(z) (Wm−3), whose functional form is dis-
cussed in Sect. A3. Thus, S is given by

S = −
d(Pw)

dz
+

Mtot

zT− zB
φ

(
z− zB

zT− zB

)
gz

+
Mtot

zT− zB
φ

(
z− zB

zT− zB

)
cvT

−
dI+
dz
+

dI−
dz
+

dIS

dz
−

dFC

dz
+FA(z).

The governing equations for the longwave radiation intensi-
ties are the two-stream Schwarzschild equations and for the
shortwave radiation a standard absorption equation:

dI+
dz
=−κ

(
I+− σT

4), (5)

dI−
dz
= κ

(
I−− σT

4), (6)

dIS

dz
= kSρIS, (7)

where kS (m2 kg−1) is the shortwave absorption coefficient,
σ (Wm−2 K−4) is the Stefan–Boltzmann constant, and κ

(m−1) is the longwave absorption coefficient with terms cor-
responding to absorption by clouds, carbon dioxide, and wa-
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ter vapour:

κ(ρ,T )= kCl+ kC
MCO2

MA

(
µ

106

)
ρ

+ kWδ

(
z− zB

zT− zB

)
P sat(T ). (8)

Here, kCl (m−1), kC (m2 kg−1), and kW (s2 kg−1) are ab-
sorption coefficients that will be calibrated, µ (ppm) is the
CO2 concentration expressed as the ratio of moles of CO2
to moles of dry air, MCO2 and MA (kgmol−1) are the molar
masses of CO2 and dry air, respectively, δ((z−zB)/(zT−zB))

is the relative humidity at altitude z, and P sat(T ) (N m−1) is
the saturated water vapour partial pressure at temperature T .
The dependence of this last quantity on T is given by the
Clausius–Clapeyron equation

P sat(T )= P sat(TR)exp
(

Lv

RWTR

T − TR

T

)
, (9)

where P sat(TR) is the pressure at a reference temperature TR
(which we take to be 273.15 K), Lv (m2 s−2) is the latent heat
of vaporization for water, and RW = R/MW (JK−1 kg−1) is
the gas constant for water, R (JK−1 mol−1) is the universal
gas constant, andMW (kgmol−1) is the molar mass of water.
The corresponding density is ρsat

W (T )= P sat(T )/(RWT ) by
the ideal gas law. The vertical heat transport (latent and sen-
sible heat) is assumed to be governed by a simple exponential
decay:

dFC

dz
=−bFC, (10)

where b (m−1) is a suitable decay constant. Substituting
these expressions for the total energy density and its flux
and sources into Eq. (1) and combining the expressions from
Eqs. (5) to (10), the energy balance equation at steady state
for z ∈ [zB,zT] is given by

d
dz

(
1
2
ρw3
+ ρgzw+ cvρTw

)
− k

d2T

dz2 =−
d(Pw)

dz

+
Mtot

zT− zB
φ

(
z− zB

zT− zB

)
(gz+ cvT )

+ κ(ρ,T )
(
I++ I−− 2σT 4)

+ kSρIS+ bFC+FA(z). (11)

The nonlinear effects of both water vapour and carbon diox-
ide concentration on longwave radiation absorption in the at-
mosphere are contained within the factor κ(ρ,T ), defined
by Eq. (8). In earlier work (Dortmans et al., 2019; Kypke et
al., 2020), these two effects were studied separately before
combining them. It was shown there that, if the atmosphere
becomes warmer, then the concentration of water vapour in-
creases due to the Clausius–Clapeyron relation, and this ac-
celerates the greenhouse warming of the atmosphere well be-
yond that due to carbon dioxide alone. This is an important
positive feedback in the model.

In order to complete the system, a constitutive relation be-
tween the density ρ and the pressure P is needed, for which
we use the ideal gas law,

P = RAρT , (12)

where RA = R/MA (Jkg−1 K−1) is the gas constant for air.
The mass, momentum, and energy balance equations,

Eqs. (3), (4), and (11), along with the Schwarzschild equa-
tions (Eqs. 5 and 6) and the equations governing short-
wave absorption (Eq. 7) and sensible and latent heat trans-
port (Eq. 10) are the differential equations for the BVP for
z ∈ [zB,zT], with dependent variables w, ρ, I+, I−, IS, FC,
T , and dT/dz. Equations (8), (9), and (12) define certain
quantities in these differential equations in terms of these de-
pendent variables. The forms of the functions FA(z) and φ(z)
are prescribed; the process of choosing these functions is de-
scribed in detail in Appendix A3.2 and A3.3, respectively.
Before discussing the boundary conditions for the BVP, it is
necessary to consider the surface boundary layer.

2.2 Surface boundary layer

The model includes a boundary layer extending from z= 0 to
z= zB. It is assumed that this layer is well-mixed so that tem-
perature TB = T (zB), density ρB = ρ(zB), and relative hu-
midity δB = δ(zB) in this layer are constant. The temperature
of the surface, TS, can in general be larger or smaller than TB.

The primary reason for including a boundary layer is a
numerical one. As shown in Appendix A2, the model is nu-
merically stiff due to the thermal conductivity of air being
very small. To remove the stiffness, a limit to vanishing con-
duction is taken, and this results in an algebraic expression
for the temperature gradient that includes the vertical wind
speed as a factor in the denominator. As the vertical wind
speed must be zero at the Earth’s surface, there is a singular-
ity in the temperature gradient there. The introduction of the
surface boundary layer avoids this singularity.

The total mass crossing from the atmosphere into the
boundary layer per unit time is Mtot8BA. This quantity is
negative, since8B < 0, indicating flow out of the atmosphere
and into the boundary layer. This mass exits through the ver-
tical boundary of the layer with an assumed constant mass
flux K , at each z, and conservation of mass dictates
zB∫

0

KCbdz=Mtot8BA H⇒ K =
Mtot8BA

CbzB
.

(K < 0 indicates the flux is outward.) This exiting mass car-
ries gravitational potential energy. The change in potential
energy in a slab of height 1z at height z in the boundary
layer is Cb1zKgz, so that the total change in potential en-
ergy over the boundary layer is

1PE =

zB∫
0

CbKgzdz=
1
2
Mtot8BAgzB. (13)
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Consistent with the modelling assumption that mass flux
across the vertical boundary conveys no momentum or ki-
netic energy to the system, the loss of mass out of the verti-
cal boundary of the boundary layer also has no effect on the
momentum or kinetic energy. Further, since the temperature
in the boundary layer, TB, is assumed to be equal to the tem-
perature of the atmosphere at z= zB, it follows that there is
also no net energy change in the boundary layer due to ad-
vection of internal energy – the internal energy entering via
advection at the top of the layer is equal to the internal energy
leaving the layer through the vertical boundary.

Consider now the energy balance at the Earth’s surface.
There is energy transport from the surface to the boundary
layer in the form of sensible and latent heat, which is mod-
elled, as per Pierrehumbert (2010, p. 396–398), as

FC0(ρB,TB,TS) = FC(0)= Fsensible+Flatent

= cvCDUρB(TS− TB)

+
Lv

RWTB
CDU

(
P sat(TS)− δ(0)P sat(TB)

)
, (14)

where CD is a dimensionless drag coefficient, U (ms−1) is
the horizontal wind speed, and P sat(T ) is given by Eq. (9).
Along with this there is energy input to the surface from the
Sun, IS(0), some of which is reflected by the surface albedo,
longwave radiation both inward, I−(0), and outward, I+(0),
and ocean heat transport, FO (Wm−2). Therefore, the energy
balance at the surface is

FO− I+(0)+ I−(0)+ IS(0)(1−α(TS))−FC(0)= 0, (15)

where

α(TS)=
1
2

[
(αw+αc)+ (αw−αc) tanh

(
TS− TR

TRω

)]
(16)

is the surface albedo, here modelled as a sigmoid function
increasing from αc at cold temperatures to αw at warm tem-
peratures, with the midway point being at the reference tem-
perature TR (freezing point) and with a steepness of transition
determined by the dimensionless constant ω.

Now consider the energy balance for the combined surface
and boundary layer (one could alternatively consider just the
boundary layer without the surface, but the chosen formu-
lation results in a slightly smaller equation). Input energy
to this combined surface and boundary layer includes ocean
heat transport and shortwave and longwave radiation enter-
ing at zB. Output energy includes upward longwave radiation
at zB, the shortwave radiation reflected from the surface, and
the latent and sensible heat FC at zB. Further, there are kinetic
and gravitational potential energy fluxes and heat conduction
in/out of the layer through its top at zB, and there is gravi-
tational potential energy loss through the vertical boundary
given by Eq. (13). Therefore, the energy density balance for

the combined surface and boundary layer is

FO + IS(zB)+ I−(zB)− I+(zB)− IS(0)α(TS)

−FC(zB)−
1
2
ρBw(zB)

3
− ρBgzBw(zB)

+ k
dT
dz
(zB)+

1
2
gMtot8BzB = 0. (17)

Since temperature, pressure, and relative humidity are con-
stant in the boundary layer, the radiation equations may be
solved analytically inside the layer in order to relate the radi-
ation terms at z= 0 to those at z= zB. The simple ordinary
differential equation (ODE) for FC is also easily solved in
the boundary layer. The initial (independent spatial variable
z= 0) condition for the upward longwave radiation, I+(0),
is that it is equal to the black body radiation of the surface,
σT 4

S . The initial condition for that latent heat, FC(0), is given
by Eq. (14). Initial conditions for I− and IS are not necessary
since only a relation between the values of these functions at
0 in terms of their value at zB is required. The IVPs for I+
and FC and the ODEs for I− and IS in the boundary layer are

dI+
dz
=−κ(ρB,TB)

(
I+− σT

4
B
)
, I+(0)= σT 4

S ,

dFC

dz
=−bFC, FC(0)= FC0(ρB,TB,TS),

dI−
dz
= κ(ρB,TB)

(
I−− σT

4
B
)
,

dIS

dz
= kSρBIS,

and their solutions, via standard means, give

I+(zB)=
(
σT 4

S − σT
4

B
)
e−κ(ρB,TB)zB + σT 4

B , (18)

FC(zB)= FC0(ρB,TB,TS)e
−bzB , (19)

I−(0)=
(
I−(zB)− σT

4
B
)
e−κ(ρB,TB)zB + σT 4

B , (20)

IS(0)= IS(zB)e
−kSρBzB . (21)

Equations (18) and (19) provide two boundary conditions
for the BVP on the troposphere. The energy balance equa-
tions (Eqs. 15 and 17) along with Eqs. (16), (20), and (21)
provide two further boundary conditions.

2.3 Boundary conditions for the BVP

There are eight unknown dependent variables: w, ρ, I+, I−,
IS, FC, T , and dT/dz; in addition, the surface temperature,
TS, is an unknown constant (independent of z) that is de-
termined through Eq. (14), while the pressure, P , can be
written in terms of the others via Eq. (12). The boundary
conditions for the system on the interval [zB,zT] are wind
speed at zB given by the requirement that the advected mass
Aw(zB)ρB equals the mass flux Mtot8BA, pressure at the
surface equal to the standard pressure, P0, upward longwave
radiation at zB given by Eq. (18), vertical heat transport at
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zB given by Eq. (19), the energy balance equations (Eqs. 15
and 17) with expressions from Eqs. (20) and (21) substituted
in, no downward longwave radiation at zT, shortwave radia-
tion at zT equal to the insolation, Q, less what is reflected by
the clouds, QR, and a local critical point for T at zT, which,
respectively, correspond to the following equations:

ρ(zB)w(zB)=Mtot8B, (22)
RAρ(zB)T (zB)= P0, (23)

I+(zB)=
(
σT 4

S − σT (zB)
4)e−κ(ρ(zB),T (zB))zB

+ σT (zB)
4, (24)

FC(zB)= FC0(ρ(zB),T (zB),TS)e
−bzB , (25)

0= FO− σT
4
S

+
(
I−(zB)− σT (zB)

4)e−κ(ρ(zB),T (zB))zB

+ σT (zB)
4

+ IS(zB)e
−kSρ(zB)zB(1−α(TS))

−FC0(ρ(zB),T (zB),TS), (26)
0= FO− I+(zB)+ I+(zB)+ IS(zB)

− IS(zB)e
−kSρ(zB)zBα(TS)−FC(zB)

+ k
dT
dz
(zB)−

1
2
ρ(zB)w(zB)

3

− ρ(zB)gzBw(zB)+
1
2
gMtot8BzB, (27)

I−(zT)= 0, (28)
IS(zT)=Q−QR, (29)

dT
dz
(zT)= 0, (30)

where FC0 is given by Eq. (14). The last three terms of
Eq. (27) may be simplified using Eq. (22) so that they read

−
Mtot8Bw(zB)

2

2
−
Mtot8BgzB

2
.

There are nine boundary conditions, but there are only eight
dependent variables for which we have differential equations.
The discrepancy is explained by the presence of TS, which is
an additional scalar unknown. The nine boundary conditions
determine eight conditions for the differential equations as
well as the value for TS. One way of treating this is simply
to extend the system of differential equations to include the
equation

dTS

dz
= 0. (31)

In addition, as described in Appendix A, to avoid numerical
stiffness, we take the limit as the heat conduction of air, k,
tends to zero. This effectively reduces the size of the model
by one dimension.

The model is nondimensionalized and put in standard form
as detailed in Appendix A. The parameter values and their
calibration to empirical data are provided in Appendix B.

3 Results

For the Arctic parameter values given in Appendix B
and for a given CO2 concentration, µ, the model can be
solved numerically. We used MATLAB’s built-in BVP solver
“bvp5c” to solve individual instances of the (nondimension-
alized) model and AUTO for continuation calculations. The
results of the model for µ= 390 ppm are shown in Fig. 3.
The altitude dependence of the mass flux φ and the atmo-
spheric meridional heat transport, FA, were calibrated to an
empirical Arctic temperature profile from Cronin and Jansen
(2016) as detailed in Appendix B. From this figure we see
that the model fits the temperature profile very well, with
some discrepancy near the surface. The overall atmospheric
heat transport, Fig. 3c, indicates that, for our model, the up-
per half of the troposphere receives the most input of heat,
while the bottom fifth actually has a net outward heat trans-
port. This removal of heat near the bottom is likely the cause
of the discrepancy between our model values and the Cronin
and Jansen data. The negative values of FA near the surface
are due to our modelling choice for FA. It is possible that al-
ternative modelling formulations for FA could yield a better
fit to the Cronin and Jansen data; however, the forms that we
tried (including the ones reported in Appendix B and a few
others) did not improve upon the one used here. Nonethe-
less, given the relative simplicity of our model, we feel the
fact that it can fit the data as well as it does is remarkable.

For µ= 390, the surface temperature from the solved
model is −19.7 ◦C. Starting from this solution, we numeri-
cally continued the solution to other values of µ, resulting
in the S-shaped curve in Fig. 4a. Between approximately
µ= 464 and µ= 859, there are three solutions. The lower
and upper solutions are stable cold and warm solutions, while
the middle branch is unstable. Currently the Arctic is on the
cold branch of this curve. The model predicts that, as CO2
levels rise, the equilibrium surface temperature in the Arc-
tic will increase gradually at first. However, when µ exceeds
859 ppm, the model displays a saddle-node bifurcation where
the stable cold solution is annihilated together with the unsta-
ble solution. At this point the climate would rapidly approach
the warm stable solution where surface temperatures are sig-
nificantly higher. The temperatures on the warm branch may
seem unreasonably high. Although our model includes spe-
cific details of some of the natural phenomena governing the
Arctic climate behaviour and is calibrated with real data, it is
primarily a qualitative rather than quantitative model. It is the
fact that the model predicts the qualitative feature of a saddle-
node bifurcation that is the important result, not the precise
temperature of the model’s warm solution. Part of the rea-
son the model has relatively high temperatures on the warm
branch is because it has constant values for FO and F tot

A . It
is likely that, should the Arctic’s annually averaged tempera-
ture rise dramatically, both FO and F tot

A would be affected in
a downward direction, which would reduce the warm equilib-
rium temperatures to some degree. Another important emer-
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Figure 3. Results of the fully calibrated Arctic model at µ=
390 ppm. The vertical axis in all the plots is the pressure. (a) En-
ergy transport via radiative terms, and latent and sensible heat. (b)
Temperature of the atmosphere. The red circles are the data from
Cronin and Jansen (2016). The red asterisk is the surface temper-
ature, TS. (c) Atmospheric heat transport, FA. (d) Vertical wind
speed. (e) Density.

gent feature of the model is that there is bistability for µ in
the range [464,859]. Thus, even though the Arctic may in
the future be on the cold branch in this range, it is possible
that a strong enough climate disturbance could push the cli-
mate out of the basin of attraction of the cold solution and
into the basin of attraction of the warm solution. The neces-
sary strength of such a disturbance decreases as one moves
closer to the upper end of this range. Our model does not in-
corporate the seasonal variation of solar input to the Arctic
but rather uses an annually averaged value. Thus the equilib-
ria in our model are annual averages. The seasonal variation
of insolation would effectively result in oscillations around
the annual average. These oscillations themselves may make

a significant contribution to the “disturbance” needed to push
the system out of the basin of attraction of the cold branch.

The International Panel on Climate Change (IPCC) has
published various CO2 emission scenarios for the future
based on possible levels of global action to suppress such
emissions (Intergovernmental Panel on Climate Change,
2013, Box TS.6; van Vuuren et al., 2011). These scenarios
are called Representative Concentration Pathways (RCPs)
and are numbered based on the radiative forcing in the
year 2100 due to anthropogenic emissions compared to the
year 1750. The original four published RCPs are RCP2.6,
RCP4.5, RCP6.0, and RCP8.5, representing strong mitiga-
tion (2.6) through “ignore the problem” (8.5) responses by
world governments. Each RCP indicates likely CO2 concen-
tration levels in the atmosphere out to the year 2100. From
2100 to 2200, the scenarios assume a “constant composition
commitment”, which essentially freezes emission levels and
eventually leads to a constant CO2 level in the atmosphere
for all but RCP8.5. These RCPs are plotted in Fig. 4b. The
CO2 levels for the four different pathways at the year 2200
are continued as dashed lines into Fig. 4a. It is clear from
the figure that RCP8.5 leads to CO2 concentrations that far
surpass the saddle-node bifurcation, whereas the other three
RCPs do not. This result is in agreement with our simpler
model (Kypke et al., 2020). Both RCP6.0 and RCP4.5 end at
levels within the bistable range, and indeed all the RCPs ex-
cept RCP2.6 are within that range from about the year 2050
onward. The black dashed-dotted line extending from the bi-
furcation in the upper panel to RCP8.5 in the lower panel
illustrates that RCP8.5 reaches the bifurcation near the year
2092.

The curve of equilibria in Fig. 4a displays hysteresis: CO2
levels rising past 859 ppm will cause a jump from the cold
equilibrium state to the warm state, but a return to the cold
state will not happen until CO2 levels are brought below
464 ppm, where the saddle-node bifurcation of the warm
equilibrium is located (left bend of the S curve). If CO2
levels follow a trajectory similar to RCP8.5, Arctic climate
may change drastically in less than 100 years, but a return
to the current cold state may be essentially impossible for
thousands of years afterward, assuming humankind can de-
velop and implement the required technology to reduce at-
mospheric carbon levels sufficiently.

Total atmospheric heat transport, F tot
A , and ocean heat

transport, FO, are inputs to the model that are empirically
based and that are not altered by the state of the model it-
self. We investigated the persistence of the saddle-node bi-
furcation and hysteresis in the presence of the uncertainty
of these two values. Figure 5 shows two 2D bifurcation dia-
grams plotting the locations of the saddle-node bifurcations
in the model (the left and right bends of the S curve in Fig. 4).
Figure 5a shows the bifurcations as both F tot

A andµ vary. Fig-
ure 5b shows a similar diagram where FO replaces F tot

A . The
right curve in each of the panels is a curve of saddle-node
bifurcations corresponding to the right bend in the S curve in
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Figure 4. (a) Model surface temperature as a function of CO2 concentration, µ. (b) CO2 concentration levels for RCPs 2.6, 4.5, 6.0, and 8.5
(left to right). The dashed lines in panel (a) correspond to the CO2 concentration levels for the four RCPs in the year 2200. The dashed-dotted
line extends from the bifurcation point in panel (a) to RCP8.5 in the lower panel, indicating the bifurcation occurs in approximately the year
2100 for this scenario. The inset shows the predicted surface temperature as a function of the year for the four RCPs.

Fig. 4; they are transitions from a cold state to a warm state.
Similarly, the left curve in each of the panels is a curve of
saddle-node bifurcations that correspond to the left bend in
the S curve and are the transitions from a warm state to a
cold state. The shaded area between the two curves is the re-
gion of bistability. The curves meet in a cusp bifurcation, but
it is important to note that this only occurs when CO2 lev-
els are mathematically negative. Thus the two saddle-node
bifurcations and the hysteresis phenomenon will be present
for all physically possible CO2 levels and for all reasonable
values of F tot

A and FO. These bifurcation curves also make
it evident that a transition from a cold state to a warm state
occurs if either F tot

A or FO are increased, even if CO2 levels
are constant. If F tot

A and FO increase along with carbon diox-
ide levels in the near future, which seems reasonably likely,
then the saddle-node bifurcation will occur at lower levels
of CO2. For example, a 10 % increase in F tot

A to 110 Wm−2

from 100 would cause the saddle-node bifurcation to occur
at about µ= 754 ppm, which would mean that both RCP8.5
and RCP6.0 would pass through the saddle-node bifurcation.

4 Conclusions

Although the model presented here is clearly a simplifica-
tion of the climate, made possible by the near invariance of
the vertical flow on the polar axis, we believe it captures
some of the most important aspects relevant for Arctic cli-

mate change. The model predicts that if humanity keeps car-
bon emission levels close to RCP6.0 or lower, then the Arctic
will not likely undergo a sudden dramatic rise in annual av-
erage temperature. However, if carbon emissions are much
worse than RCP6.0, such a change is likely, and the cause
is a saddle-node bifurcation of the stable cold equilibrium.
Such a change would clearly have catastrophic effects on the
Arctic environment, leading to massive global effects. These
results are in agreement with those of Årthun et al. (2021),
who, from a study of various CMIP6 models of Arctic cli-
mate, predict that under a low emissions scenario sea ice
loss will be seasonal but that for a high emissions scenario
it will be year-round for all areas of the Arctic. Further, the
hysteresis displayed by the model indicates that a change of
this nature may be practically irreversible. Although some
comfort may be taken that only the worst of the four carbon
pathway scenarios ends in such a catastrophic change, the
model shows that both RCP6.0 and RCP4.5 lie in the region
of bistability from the year 2070 onward. In a bistable situ-
ation, external disturbances could cause the system to jump
into the basin of attraction of the warm equilibrium, effec-
tively bringing about the catastrophic change prior to the bi-
furcation. The model is too simple to allow for any reason-
able measure of the likelihood of such an occurrence, but the
important thing is that the model exhibits bistability in the
parameter region where the system is likely to reside within
50 years’ time. This bistability has been shown to persist re-
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Figure 5. (a) Bifurcation diagram showing locations of saddle-node
bifurcations as F tot

A and µ are varied. The dashed line indicates the
value of F tot

A used in the model. The shaded area between the curves
is the region of bistability. Abrupt transition from a cold state to a
warm state occurs on the right curve, while abrupt transition from a
warm state to a cold state occurs on the left curve. (b) Same except
FO is the varying parameter on the vertical axis rather than F tot

A .

gardless of the values of the two biggest uncertainties in the
model, the atmospheric and ocean heat transport to the Arctic
from the mid-latitudes.

Our model addresses the equilibrium state only and rep-
resents the Arctic temperature as an annual average. The
real Arctic climate undergoes massive seasonal changes,
which effectively means that the system is actually oscillat-
ing around the equilibrium temperatures of our model. Such
temperature oscillations may be sufficient to effectively push
a system located on a cold solution in the bistable regime to
“above” the unstable solution and so into the basin of attrac-
tion of the warm solution.

Seasonal variations in Arctic temperatures and sea ice are
studied in many works, including Eisenman and Wettlaufer
(2009), who argue that a tipping point to a year-round ice-
free Arctic is not likely to occur while the Arctic is ice-
covered for a significant portion of the year, but once the Arc-
tic is seasonally ice-free for a sufficient number of months in

a year, such a tipping point becomes more likely. A possible
enhancement to our model would be to include seasonal so-
lar variation and an ice model as in Eisenman and Wettlaufer
(2009).

Appendix A: Model derivation details

This Appendix provides details regarding the model. The
model is written in a nondimensional form in Sect. A1, defin-
ing nondimensional variables and parameters. This system
is then transformed in Sect. A2 to a standard form of nine
first-order ordinary differential equations and corresponding
boundary conditions. This standard form makes it evident
that the system is numerically stiff due to the fact that the
thermal conductivity, k, of air is very small. To remove this
stiffness, the limit as k→ 0 is applied, which reduces the sys-
tem by one dimension. Section A3 discusses our choice of
the functional forms for the dependence of relative humidity
δ(z), atmospheric meridional heat transport FA(z), and mass
flux Mb(z) on altitude.

A1 Nondimensionalization

Define the nondimensional variables

ẑ=
z− zB

zT− zB
, y1 =

wcvρ0TR

σT 4
R

, y2 =
ρ

ρ0
,

y3 =
I+

σT 4
R
, y4 =

I−

σT 4
R
, y5 =

IS

σT 4
R
,

y6 =
FC

σT 4
R
, y7 =

T

TR
,

y8 =

(
zT− zB

TR

)
dT
dz
, y9 =

TS

TR
, (A1)

where P0 (Nm−2) is the standard atmospheric pressure, TR
is the freezing point of water in Kelvin, ρ0 = P0/(RATR) is
the density at standard pressure and freezing temperature,
and σT 4

R/(cvρ0TR) represents the vertical velocity required
to move a parcel of air with standard density at freezing tem-
perature so that the power transferred is equal to the radiative
power for a black body at the same temperature. This comes
to about 1 mms−1.
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Applying the change in variables to the troposphere BVP,
Eqs. (3)–(7), (10), (11), and (31), we get

d
dẑ
(y1y2)= Dφ(ẑ), (A2)

H
d
dẑ

(
y2

1y2
)
= − J

d
dẑ
(y2y7)−Ey2, (A3)

dy3

dẑ
= − κ̂(y2,y7)

(
y3− y

4
7
)
, (A4)

dy4

dẑ
= κ̂(y2,y7)

(
y4− y

4
7
)
, (A5)

dy5

dẑ
= GSy2y5, (A6)

dy6

dẑ
= −B1y6, (A7)

dy7

dẑ
= y8, (A8)

ε
dy8

dẑ
=

d
dẑ

(
H

2
y3

1y2+Ey1y2ẑ+ y1y2y7

)
+ J

d
dẑ
(y1y2y7)−DEẑφ(ẑ)−Dφ(ẑ)y7

− κ̂(y2,y7)
(
y3+ y4− 2y4

7
)
−GSy2y5

−B1y6− F̂A(ẑ), (A9)
dy9

dẑ
= 0, (A10)

for ẑ ∈ [0,1]. The boundary conditions, Eqs. (22)–(30), be-
come

y1(0)y2(0)= D8B, (A11)
y2(0)y7(0)= 1, (A12)

y3(0)=
(
y9(0)4− y7(0)4

)
e−κ̂(y2(0),y7(0))ζ

+ y7(0)4, (A13)

y6(0)= F̂C0(y2(0),y7(0),y9(0))e−B1ζ , (A14)

0= F − y9(0)4+
(
y4(0)− y7(0)4

)
e−κ̂(y2(0),y7(0))ζ

+ y7(0)4+ y5(0)e−GSy2(0)ζ (1− α̂(y9(0)))

− F̂C0(y2(0),y7(0),y9(0)), (A15)
0= F − y3(0)+ y4(0)+ y5(0)

− y5(0)e−GSy2(0)ζ α̂(y9(0))− y6(0)+ εy8(0)

−
1
2
HD8By1(0)2−

1
2
DE8Bζ, (A16)

y4(1)= 0, (A17)
y5(1)= KS, (A18)
y8(1)= 0, (A19)

where

F̂C0(y2,y7,y9)= B2y2(y9− y7)

+
B3

y7

[
exp

(
GW1

(
1−

1
y9

))
− δ(0)exp

(
GW1

(
1−

1
y7

))]
, (A20)

κ̂(y2,y7)= κ(y2ρ0,y7TR)(zT− zB)

= GCl+GCµ̂y2

+
GW2δ(ẑ)

y7
exp

(
GW1

(
1−

1
y7

))
, (A21)

F̂A(ẑ)=
(zT− zB)FA(ẑ(zT− zB)+ zB)

σT 4
R

, (A22)

α̂(y9)=
1
2

[
(αw+αc)

+ (αw−αc) tanh
(
y9− 1
ω

)]
, (A23)

are nondimensionalized functions describing the sensible/la-
tent heat flux from the surface, the absorption of longwave ra-
diation due to greenhouse gases, the atmospheric heat trans-
port, and the surface albedo, and αw, αc, ω, 8B, and

B1 = b(zT− zB), B2 =
cvρ0CDU

σT 3
R

,

B3 =
ρsat

W (TR)CDULv

σT 4
R

, D =
Mtotcv

σT 3
R
,

E =
g(zT− zB)

cvTR
, F =

FO

σT 4
R
,

GCl = kCl(zT− zB), GC = kC
MCO2

MA
ρ0(zT− zB),

GW1 =
Lv

RWTR
, GW2 = kWρ

sat
W (TR)(zT− zB),

GS = kSρ0(zT− zB), H =
σ 2T 5

R

c3
vρ

2
0
,

J =
RA

cv
, KS =

Q−QR

σT 4
R

,

ε =
k

(zT− zB)σT
3

R
, µ̂=

µ

106 ,

ζ =
zB

zT− zB
, (A24)

are nondimensional constants. Values of the physical param-
eters are given in the tables in Appendix B. It turns out that
all of the above nondimensional constants are close to order
1 (range 0.04 to 26) except ζ = 5.6×10−3, which is the rela-
tive boundary layer thickness, ε = 2.35× 10−6, which is the
nondimensional conductance, and H = 7.96× 10−12, which
is a factor in the kinetic energy term. As shown in the next
section, the fact that ε is small causes system stiffness.
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A2 Standard form and vanishing conduction limit

The BVP given by Eqs. (A2)–(A19) contains derivatives of
products of some of the variables. It can be put in standard
ODE form via algebraic manipulations. First we expand the
derivative on the left-hand side of Eq. (A3) and use Eq. (A2)
to simplify it:

d
dẑ

(
y2

1y2
)
= y1

d
dẑ
(y1y2)+ (y1y2)

dy1

dẑ

= y1Dφ(ẑ)+ y1y2
dy1

dẑ
.

Thus, Eq. (A3) may be replaced with

Hy1y2
dy1

dẑ
+Jy7

dy2

dẑ
=−Jy2y8−HDy1φ(ẑ)−Ey2, (A25)

where we have used Eq. (A8) to replace the derivative of
y7. We can also expand the derivative in Eq. (A2) to get the
equivalent equation

y2
dy1

dẑ
+ y1

dy2

dẑ
=Dφ(ẑ). (A26)

Equations (A25) and (A26) are a linear system in dy1/dẑ and
dy2/dẑ, namely[
Hy1y2 Jy7
y2 y1

][ dy1
dẑ

dy2
dẑ

]
=

[
−Jy2y8−HDy1φ(ẑ)−Ey2

Dφ(ẑ)

]
.

Solving this yields

dy1

dẑ
=

(
Jy7+Hy

2
1
)
Dφ(ẑ)+ y1y2(E+ Jy8)

y2
(
Jy7−Hy

2
1
) , (A27)

dy2

dẑ
=−

2Hy1Dφ(ẑ)+ y2(E+ Jy8)

Jy7−Hy
2
1

. (A28)

Now expanding the derivatives on the right-hand side of
Eq. (A7) and simplifying, we obtain

ε
dy8

dẑ
=

[
H
y2

1
2
+
J 2y2

7 +H
2y4

1

Jy7−Hy
2
1

]
Dφ(ẑ)+ (J + 1)y1y2y8

+ Jy1y2
Ey7+Hy

2
1y8

Jy7−Hy
2
1

− κ̂(y2,y7)y2
(
y3+ y4− 2y4

7
)
−GSy2y5

−B1y6− F̂A(ẑ). (A29)

In summary, the BVP for the troposphere in standard form
is given by

dy1

dẑ
=

(
Jy7+Hy

2
1
)
Dφ(ẑ)+ y1y2(E+ Jy8)

y2
(
Jy7−Hy

2
1
) , (A30)

dy2

dẑ
= −

2Hy1Dφ(ẑ)+ y2(E+ Jy8)

Jy7−Hy
2
1

(A31)

dy3

dẑ
= − κ̂(y2,y7)

(
y3− y

4
7
)
, (A32)

dy4

dẑ
= κ̂(y2,y7)

(
y4− y

4
7
)
, (A33)

dy5

dẑ
= GSy2y5, (A34)

dy6

dẑ
= −B1y6, (A35)

dy7

dẑ
= y8, (A36)

ε
dy8

dẑ
=

[
H
y2

1
2
+
J 2y2

7 +H
2y4

1

Jy7−Hy
2
1

]
Dφ(ẑ)+ (J + 1)y1y2y8

+ Jy1y2
Ey7+Hy

2
1y8

Jy7−Hy
2
1
− κ̂(y2,y7)

(
y3+ y4− 2y4

7
)

−GSy2y5−B1y6− F̂A(ẑ), (A37)
dy9

dẑ
= 0, (A38)

with boundary conditions

y1(0)y2(0)= D8B, (A39)
y2(0)y7(0)= 1, (A40)

y3(0)=
(
y9(0)4− y7(0)4

)
e−κ̂(y2(0),y7(0))ζ

+ y7(0)4, (A41)

y6(0)= F̂C0(y2(0),y7(0),y9(0))e−B1ζ , (A42)

0= F − y9(0)4+
(
y4(0)− y7(0)4

)
e−κ̂(y2(0),y7(0))ζ

+ y7(0)4+ y5(0)e−GSy2(0)ζ (1− α̂(y9(0)))

− F̂C0(y2(0),y7(0),y9(0)), (A43)
0= F − y3(0)+ y4(0)+ y5(0)

− y5(0)e−GSy2(0)ζ α̂(y9(0))− y6(0)+ εy8(0)

−
1
2
HD8By1(0)2−

1
2
DE8Bζ, (A44)

y4(1)= 0, (A45)
y5(1)= KS, (A46)
y8(1)= 0. (A47)

As mentioned above, of the nondimensional constants, all
are close to order 1 except ζ = 5.6×10−3,H = 7.96×10−12,
and ε = 2.3× 10−6 (with zT = 9000). The constant ζ only
appears in the boundary conditions. The constant H occurs
in the system only in summations with other non-derivative
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terms; hence the fact that it is small only means that those
terms contribute little. It does not cause stiffness. The rel-
atively small value of the constant ε, however, does cause
stiffness in Eq. (A37) of the system. Because ε is small, the
variable y8, which is the dimensionless rate of vertical tem-
perature change dT/dz, will approach the y8-nullcline very
rapidly (which means at a very short z distance from either
boundary). To simplify numerical computation, we take the
limit as ε goes to zero, which is equivalent to saying that con-
duction is negligible. In this limit, Eq. (A37) is an algebraic
expression from which we can isolate y8:

y8(ẑ)= −

[(
H
y2

1
2
+
J 2y2

7 +H
2y4

1

Jy7−Hy
2
1

)
Dφ(ẑ)

+
EJy1y2y7

Jy7−Hy
2
1
−GSy2y5

− κ̂(y2,y7)
(
y3+ y4− 2y4

7
)
−By6

− F̂A(ẑ)

][
(J + 1)y1y2+

JHy3
1y2

Jy7−Hy
2
1

]−1

. (A48)

With this expression for y8, the system is reduced by elim-
inating Eq. (A37) and boundary condition Eq. (A47). Since
y1, the dimensionless vertical velocity, is a factor in the de-
nominator, it is necessary that y1 be nonzero throughout the
atmosphere in order not to introduce a singularity. For this
reason we select 8T > 0, 8B < 0, and φ such that it is non-
negative in the upper atmosphere and non-positive in the
lower atmosphere.

A3 Modelling choices for functional forms

In this section we describe the various functional forms that
we used for relative humidity, atmospheric heat transport,
and mass flux. For the latter two, several different forms were
tried, and these are detailed below. Calibration to empirical
data, described in Appendix B, was used to select specific
functional forms for the heat transport and mass flux.

A3.1 Relative humidity

The relative humidity is modelled as a linear function de-
creasing with altitude from a higher surface value, δB, to a
lower value at the tropopause, δT. Specifically,

δ(ẑ)= δB(1− ẑ)+ δTẑ. (A49)

A3.2 Atmospheric heat transport

Atmospheric heat transport is primarily due to large-scale
turbulent mixing of the column with its environment. This
mixing is not modelled explicitly, but, instead, it is incor-
porated into the model via the function FA(z), which repre-
sents the thermal energy supplied to the column by turbulent
mixing. The integral of FA(z) over the atmosphere thickness

represents the total atmospheric heat transport in/out of the
system. So, given a set amount of such energy, F tot

A , we have

F tot
A =

zT∫
zB

FA(z)dz= σT 4
R

1∫
0

F̂A(ẑ)dẑ. (A50)

This provides one restriction on the function FA(z), but its
precise form is a modelling choice. However, the exact form
must be chosen with care, because with certain choices of
FA(z), the boundary conditions can only be satisfied with
unrealistic solutions. In particular, if the values of FA(z) near
the tropopause (z near zT, that is, ẑ near 1) are too small, then
the temperature drops precipitously toward absolute zero; if
they are too big, the temperature turns around and climbs
rapidly. Thus, in order to automate an appropriate choice of
FA(z), we have proceeded as follows.

1. Choose F̂A(1) such that the temperature gradient at the
tropopause is zero, that is, re-impose boundary condi-
tion Eq. (A47). Thus use Eq. (A48) with y8(1)= 0 to
solve for F̂A(1). Let F̂A1 denote this value of F̂A(1), and
let FA1 denote the corresponding dimensional value of
FA(zT), that is, FA1 = F̂A1σT

4
R/(zT− zB).

2. Assume that FA(z) is of the form

FA(z)= FAb(z)+
F tot

A
zT− zB

ψ

(
z− zB

zT− zB

)
, (A51)

where the base function FAb(z) is a linear function pass-
ing through zero at the midpoint of the atmosphere and
equal to FA1 at zT, that is,

FAb(z)= FA1
2z− (zT+ zB)

zT− zB
,

⇐⇒ F̂Ab(ẑ)= F̂A1(2ẑ− 1).

This base portion of FA contributes no net heat to the
column; it is simply a factor that essentially moves heat
around in the column in order to ensure the temperature
gradient at the top is zero.

The remaining portion of FA is the actual atmospheric
heat transport entering the column from outside. We as-
sume that ψ(ẑ) satisfies

ψ(1)= 0 and

1∫
0

ψ(x)dx = 1,

so that the value of FA is not altered at the tropopause
and so that F tot

A (Wm−2) represents the total energy
flux of atmospheric heat transport entering the column.
Thus, the nondimensional function is

F̂A(ẑ)= F̂A1(2ẑ− 1)+ F̂ tot
A ψ(ẑ),
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where

F̂ tot
A =

F tot
A

σT 4
R
.

3. As a numerical issue, since the boundary condition
value F̂A1 is needed in the computation of the vec-
tor field and since the MATLAB solver we are using
does not have a way of making boundary condition
information available to the vector field computation
function, we circumvented this issue by adding another
variable to the problem y10, with differential equation
dy10/dẑ= 0 and boundary condition y10(1)= F̂A1.

4. The choice of the functional form of ψ(ẑ) is somewhat
open, and we tested the following two forms:

ψ(ẑ)= g1(1− ẑ,Lψ ), (A52)
ψ(ẑ)= g2(1− ẑ,Lψ ), (A53)

where the functions g1 and g2 are defined as

g1(x,L)=
Lπ

1− cos(Lπ)
sin(Lπx),

g2(x,L)=
2Lπ

2Lπ − sin(2Lπ)
(1− cos(2Lπx)), (A54)

and where L is a parameter in (0,1] free to be cho-
sen. (The functions g1 and g2 will also be utilized in
the modelling of φ(ẑ).) The primary difference between
these two forms is that the first has a non-zero slope at
x = 0, while the latter has a zero slope there.

A3.3 Mass flux

The function φ dictates the mass flux across the vertical
boundary (negative outward), and, along with the fluxes 8B
and 8T across the bottom and top of the column, drives the
vertical air movement in the column. The only general re-
strictions on these fluxes are given by Eq. (2). To model the
situation in the Arctic, we want a downward flow of air with
a vertical wind speed, w, of the order of 1 mms−1 in the col-
umn. A reasonable assumption at the tropopause would be to
set w = 0; however, since our model has a singularity when
w = 0, we impose a small wind speed at the tropopause by
ensuring 8T is positive. At the surface boundary layer we
impose 8B ≤ 0. Further, to simplify matters and to ensure a
downward flow throughout the column, we assume that

φ(ẑ)≤ 0, if ẑ ∈ [0,zc),

φ(ẑ)≥ 0, if ẑ ∈ [zc,1],

where zc is some point in [0,1]. The following forms were
tested for φ(ẑ):

piecewise constant,

φ(ẑ)=


−1−8B
zc

if ẑ ∈ [0,zc),
1−8T
1−zc

if ẑ ∈ [zc,1],
(A55)

piecewise linear,

φ(ẑ)=


2(−1−8B)

z2
c

(
zc− ẑ

)
, if ẑ ∈ [0,zc),

2(1−8T)
(1−zc)2

(ẑ− zc), if ẑ ∈ [zc,1],
(A56)

piecewise sine,

φ(ẑ)=


−1−8B
zc

g1

(
1− ẑ

zc
,LφB

)
, if ẑ ∈ [0,zc),

1−8T
1−zc

g1

(
ẑ−zc
1−zc

,LφT

)
, if ẑ ∈ [zc,1],

(A57)

piecewise cosine,

φ(ẑ)=


−1−8B
zc

g2

(
1− ẑ

zc
,LφB

)
, if ẑ ∈ [0,zc),

1−8T
1−zc

g2

(
ẑ−zc
1−zc

,LφT

)
, if ẑ ∈ [zc,1],

(A58)

where g1 and g2 are defined by Eq. (A54). (In the case that
zc = 0 or zc = 1, it is understood that only the non-empty
interval for φ in the above definitions is used and that it is
closed at both ends.)

Appendix B: Model parameters and calibration

This Appendix lists the parameter values used in the model
and discusses how some of them were calibrated to empirical
data. Section B2 gives the calculation of the average annual
insolation for the Earth north of 70◦ N.

B1 Parameter values and calibration

Values of the model parameters are given in Tables B1
and B2. The parameters in Table B1 are physical constants.
The parameters in Table B2 are those that have been assigned
from empirical data and knowledge or whose values have re-
sulted from fitting the model to empirical data. The model
was applied to the globally averaged situation for the pur-
poses of calibration of some parameters (see below) and then
also applied to the Arctic.

Here we provide justification and explanation of our
choice of parameter values in Table B2. The height of the
boundary layer was set to zB = 50 m. The model is not very
sensitive to this parameter. The height of the tropopause is
about 9 km at the poles and 17 km at the Equator, so we used
the lower value for the Arctic and a middle value of 14 km
for the global average. The globally averaged insolation, the
atmospheric solar reflection, and the average surface albedo
are all obtained from Wild et al. (2013). For the Arctic, the
insolation is the annual average for the region north of 70◦ N,
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Table B1. Physical constants used in the model.

Parameter Symbol Value Unit

Reference temperature TR 273.15 K
Stefan–Boltzmann constant σ 5.67037× 10−8 Wm−2 K−4

Latent heat of vaporization for water Lv 2.2558× 106 m2 s−2

Specific heat capacity of dry air at TR cv 716.4 JK−1 kg−1

Saturated vapour density at TR ρsat
w (TR) 4.849× 10−3 kgm−3

Universal gas constant R 8.31446 Jmol−1 K−1

Molecular weight of CO2 MCO2 4.4009× 10−2 kgmol−1

Molecular weight of dry air MA 2.89644× 10−2 kgmol−1

Molecular weight of water MW 1.80153× 10−2 kgmol−1

Gas constant for air RA = R/MA 287.058 m2 s−2 K−1

Specific gas constant of water vapour RW = R/MW 461.4 m2 s−2 K−1

Pressure at the surface P0 101 325 Pa
Standard dry density at TR ρ0 = P0/(RATR) 1.29225 kgm−3

Conductivity of air k 24.35× 10−3 Wm−1 K−1

Gravitational acceleration g 9.8 ms−2

the calculation of which is shown in Sect. B2. For the aver-
age global situation, there is no ocean or atmospheric heat
transport; the corresponding values for the Arctic come from
Mayer et al. (2019) and Serreze et al. (2007). The Arctic at-
mospheric reflection and surface albedo come from Kalnay et
al. (1996), National Centers for Environmental Protection/-
National Weather Service/NOAA/U.S. Department of Com-
merce (2021), and Mayer et al. (2019). Relative humidity is
low at the top of the troposphere, so in both the global and
Arctic cases it was set to 10 %. The surface relative humidity
was set to 75 % for the global average and 70 % for the Arc-
tic. The surface horizontal wind speed, U , which is a factor
in the sensible and latent heat transport from the surface, was
set to 10 ms−1. The exact value is not too important since U
always appears multiplied by the drag coefficient factor CD,
which we calibrate to data below. For the global model it is
appropriate to assume that the average vertical wind speed
is zero, but since the model requires a nonzero wind speed,
we set Mtot = 2.0× 10−6 kgm−2 s−1, and we set 8B =−1
and 8T = 0.2 and assumed φ(ẑ) is given by Eq. (A57), with
zc = 0 and LφT = 1. (LφB is irrelevant since zc = 0.) These
settings make the wind speed relatively constant and of the
order of 10−3 mm s−1, which is far enough away from the
singularity to avoid convergence issues but small enough
so all of the convection-related terms in the model become
negligible. Mass flux for the Arctic situation was set with
trial and error to 8.0× 10−4 kgm−2 s−1, which gave vertical
wind speeds in the column of the order of 0.5 mms−1. Since
F tot

A = 0 for the global case, the form of ψ and therefore also
the parameter Lψ are not relevant.

Calibration of the other model parameters was done in
two steps. First, the absorption coefficients, kS, kC, kW, and
kCl, the decay for sensible and latent heat transport, b, and
the drag coefficient, CD (which is a multiplicative factor of

both B2 and B3), were calibrated using global average en-
ergy fluxes obtained from Wild et al. (2013). In addition, this
calibration attempted to match estimates from Schmidt et al.
(2010), indicating that 25 % of absorption is due to carbon
dioxide, 25 % due to clouds, and 50 % due to water vapour.
These fractions are determined from the model via

Tot=

1∫
0

κ̂(y2,y7)y4dẑ,

Ccontrib =
1

Tot

1∫
0

GCµy2y4dẑ,

Clcontrib =
1

Tot

1∫
0

GCly4dẑ,

Wcontrib =
1

Tot

1∫
0

GW2δ

y7
eGW1(1−1/y7)y4dẑ.

The relevant data are given in Table B3.
Using these parameter settings, we minimized the sum of

squares of the differences between the data from Table B3
(after nondimensionalization) with the model outputs allow-
ing the parameters kS, kC, kW, kCl, b, and CD to vary. In the
minimization calculation, the terms associated with the con-
tribution values (last three columns of Table B3) were given
a heuristic weight of 0.01, since these values are less reliable
than the other data. The resulting calibrated values for these
parameters are given in Table B2; the results of the fitting
are given in Table B3 and Fig. B1. As can be seen in Ta-
ble B3, the minimization achieved very good agreement with
the globally averaged data.
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Table B2. Other model parameters. Some parameters are geographically dependent and have different values for the global and Arctic
situations. An empty value in the “Arctic” column indicates the global value is used in both cases. Values that were fitted by the calibration
steps described in the text are indicated in bold.

Parameter Symbol Global value Arctic value Unit Equation(s)

Height of boundary layer zB 50 m (3), (8), (11), (17)–(27), (A1),
(A21), (A22), (A24), (A50), (A51)

Top of troposphere zT 14 000 9000 m (3), (8), (11), (28)–(30), (A1),
(A21), (A22), (A24), (A50), (A51)

Insolation Q 340 185 Wm−2 (29)

Atmospheric solar reflection QR 76 20 Wm−2 (29), (A24)

Ocean heat transport FO 0 15 Wm−2 (15), (17), (26), (27), (A24)

Total atmospheric heat transport F tot
A 0 100 Wm−2 (A22), (A50), (A51)

Relative humidity at tropopause δT 0.1 – (A49)

Relative humidity at bottom δB 0.75 0.7 – (A49)

Surface horizontal wind speed U 10 ms−1 (14), (A24)

Drag coefficient CD 3.180× 10−3 – (14), (A24)

Shortwave absorption kS 4.035× 10−5 m2 kg−1 (7), (11), (21), (26), (27), (A24)

Longwave CO2 absorption kC 0.1552 m2 kg−1 (8), (A24)

Longwave H2O absorption kW 0.04969 s2 kg−1 (8), (A24)

Longwave cloud absorption kCl 7.020× 10−5 m−1 (8), (A24)

Latent and sensible heat decay b 4.153× 10−4 m−1 (10), (11), (19), (25), (A24)

Mass flux Mtot 2.0× 10−6 8.0× 10−4 kgm−2 s−1 (3), (11), (17), (27)

Relative mass flux through top 8T 0.2 0.05 – (2), (A55)–(A58)

Relative mass flux through bottom 8B −1 −0.4287 – (2), (17), (22), (27), (A11), (A16),
(A39), (A44), (A55)–(A58)

Relative zero location of φ zc 0 0.2708 – (A55)–(A58)

φ length scale bottom LφB – 1.000 – (A57), (A58)

φ length scale top LφT 1 0.5727 – (A57), (A58)

ψ length scale Lψ – 0.7744 – (A52), (A53)

CO2 level µ 390a 390a molar ppm (8), (A24)

Cold surface albedo αc
b 24/185 0.667 – (15), (16), (17), (26), (27), (A23)

Warm surface albedo αw
b 24/185 0.1 – (15), (16), (17), (26), (27), (A23)

Albedo transition steepness ω – 0.01942 – (15), (16), (17), (26), (27), (A23)

a Values used for calibration only. b For the purposes of calibrating the model to global data, both αc and αw were set to the empirical value of 24/185. When calibrating the
model’s mass flux and atmospheric heat transport parameters to Arctic data, both αc and αw were set to the empirical value of 2/3.

Using the calibrated values for kS, kC, kW, kCl, b, and CD
obtained from the first step, the second calibration step was
to select the parameters for the functions φ(ẑ) andψ(ẑ) to at-
tempt to match the annual temperature profile for the Arctic
from Cronin and Jansen (2016, Fig. 1). Data from that figure

of their paper are reproduced in Table B4. The Arctic va-
lues of the geographic-dependent parameters from Table B2
were used. Using each of the four forms for φ, given by
Eqs. (A55)–(A58), and each of the two forms for FA, given
by Eqs. (A52) and (A53), the sum of the square of the diffe-
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Table B3. Global average energy fluxes (Wm−2) from Wild et al. (2013) and contribution fractions for absorption from Schmidt et al. (2010).

I+(zT) I+(0) I−(0) IS(0) FC(0) Ccontrib Clcontrib Wcontrib

Data 239 397 342 185 105 0.25 0.25 0.50
Model 239.7 397.4 341.7 184.9 105.2 0.2332 0.2130 0.5538

Figure B1. Model calibrated to global average values. The vertical
axis in all the plots is the pressure. (a) Energy transport via radiative
terms, and latent and sensible heat. (b) Atmospheric temperature.
The red asterisk marks the surface temperature, TS. (c) Atmospheric
heat transport, FA. (d) Vertical wind speed. (e) Density.

rences between the model and the data in Table B4 was mini-
mized by allowing the parameters zc,8B, LφT, LφB, and Lψ
to vary. The fit quality is shown in Fig. B2. From this figure
it is evident that the first two forms for φ, namely Eqs. (A55)
and (A56), do not give adequate fits. The other two forms for
φ are similar, and both forms of ψ only give small changes.
The best fit is the third form for φ and the second form for ψ ,
that is, Eqs. (A57) and (A53), and so these forms were cho-
sen for the model. The calibrated parameters for these forms

Figure B2. Temperature profiles for best fits for each of the forms
of φ and ψ . Panels (a) and (b) correspond to Eq. (A55) for φ and
panels (c) and (d) to Eq. (A56), and similarly, panels (e–h) corre-
spond to Eqs. (A57) and (A58), respectively. Panels (a), (c), (e), and
(g) correspond to Eq. (A52) for ψ , while panels (b), (d), (f), and (h)
correspond to Eq. (A53). The data from Cronin and Jansen (2016)
are the red circles. The numbers in the bottom left are the residuals
for the fits.

of φ and ψ are given in Table B2, and the corresponding
functions φ and ψ are shown in Fig. B3.

For the above calibrations, the albedo values αc and αw in
Eq. (A23) were set to the same constant value (24/185 for
calibration to global data, 2/3 for calibration to Arctic data)
in order to ensure the empirical albedo value was matched re-
gardless of the surface temperature. Now that the calibrations
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Table B4. Annual Arctic temperature data from Fig. 1 of Cronin and Jansen (2016).

Pressure (kPa) 100 95 90 85 80 75 70 65 60 55
Temperature (K) 260.1 261.8 262.1 261.3 260.1 258.1 255.7 252.7 249.5 245.4

Pressure (kPa) 50 45 40 35 30 25 20 15 10
Temperature (K) 241.4 236.3 231.4 225.7 221.3 220.1 221.8 222.5 221.5

Figure B3. Calibrated functions: (a) φ and (b) ψ .

are complete, we wish to apply the model to the Arctic using
different values of the carbon dioxide level. As such, we must
choose values of αc, αw, and ω that allow for the albedo to
change appropriately with surface temperature. The empiri-
cal albedo of 2/3, which was used in the Arctic calibration,
resulted in a surface temperature of TS = 253.4 K. Since this
temperature is well below freezing, the albedo at this temper-
ature should be near the maximum albedo, so αc was set to
0.667. Second, αw was set to 0.1, corresponding to the fact
that, north of 70◦ latitude, the Earth is mostly ocean-covered
(albedo 0.06 for open water) and partly land (albedo 0.1–
0.4). The value of ω was then calculated from Eq. (16) so
that α(253.4)= 2/3. This resulted in ω = 0.01942.

B2 Insolation

This section presents the calculation of the insolation used in
the Arctic model, where, in particular, the insolation is taken
as an annual average over the region north of 70◦ N.

Select a Cartesian coordinate system (x,y,z) for the so-
lar system with the Sun at the origin, with the z axis per-
pendicular to the Earth’s orbital plane and with the positive
x axis defined by the direction in the orbital plane from the
Sun to the centre of the Earth when the Earth’s North Pole
is furthest from the Sun (Northern Hemisphere winter sol-
stice). Let (r,θ) be the usual polar coordinates for the cen-
tre of the Earth on the orbital plane. Approximate the in-
coming solar radiation to the Earth as parallel rays travel-
ling from the direction q =−[cosθ,sinθ,0]T with energy
flux S0 = 1366 Wm−2 (the solar constant). Let φ and ψ be
the latitude and “longitude” of a location on the Earth’s sur-
face, where we assume that ψ = 0 is aligned with the pos-

itive x axis of the solar coordinate system, not with some
fixed location on the Earth’s surface. If the Earth’s axis of ro-
tation was parallel to the z axis (no tilt), then the unit outward
normal to the Earth’s surface in the solar coordinate system
would becosφ cosψ

cosφ sinψ
sinφ

 , −
π

2
≤ φ ≤

π

2
, −π < ψ ≤ π.

However, the Earth’s axis is actually tilted by an angle β =
(23.5/180)π in the negative sense in the (x,z) plane. Apply-
ing this tilt gives the unit outward normal as

n=

 cosβ 0 sinβ
0 1 0

−sinβ 0 cosβ

cosφ cosψ
cosφ sinψ

sinφ


=

 cosβ cosφ cosψ + sinβ sinφ
cosφ sinψ

−sinβ cosφ cosψ + cosβ sinφ

 .
The insolation striking the Earth’s surface at (φ,ψ) is then
S0max(q · n,0), where the maximum is due to the fact that
the dot product is negative for points on the dark side of the
Earth, away from the Sun, and hence the insolation there is
zero.

Let S be the region of the Earth between latitudes φ1 and
φ2. The area element is dS = R2 cosφdψdφ, where R is the
radius of the Earth. Therefore the average annual (θ runs 0 to
2π ) insolation in a region, S, of the Earth is

Q=

∫ 2π
0

∫
S
S0max(q · n,0)dSdθ∫

S
dS

=
S0

2π (sinφ2− sinφ1)

×

2π∫
0

φ2∫
φ1

π∫
−π

max(q · n,0)cosφdψdφdθ.

Numerical integration of the above formula yields Q=
341 Wm−2 for the entire globe, which agrees well with
Wild’s value of 340 (the difference is likely due to some
ambiguity in the precise value of S0), and yields Q=

185 Wm−2 for the Arctic region north of 70◦ latitude. If one
considers the limit as the region of interest shrinks to size
zero around the North Pole, the value of the insolation ap-
proaches the limit 173.85 Wm−2.

https://doi.org/10.5194/npg-29-219-2022 Nonlin. Processes Geophys., 29, 219–239, 2022



238 K. L. Kypke et al.: Climate bifurcations in a Schwarzschild model of the Arctic atmosphere

Code availability. Analysis code is available from the authors on
request.

Data availability. All of the data used in this paper are publicly
available from the references listed.

Author contributions. The research project was conceptualized by
WFL. Funding acquisition was by WFL, GML, and ARW. The
methodology was developed by KLK, GML, and ARW. KLK did
the formal analysis, investigation and validation. Software was pri-
marily written by KLK with support from GML and ARW. Figure
visualization was done by KLK and ARW. ARW wrote the original
draft; all the authors were involved in reviewing and editing.

Competing interests. The contact author has declared that neither
they nor their co-authors have any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. We were supported by the Natural Sciences
and Engineering Research Council of Canada (NSERC). Kolja L.
Kypke thanks the Ontario Ministry of Colleges and Universities and
the University of Guelph for a Queen Elizabeth II Graduate Schol-
arship in Science and Technology.

Financial support. This research has been supported by the Natural
Sciences and Engineering Research Council of Canada (grant nos.
400450 and 006257).

Review statement. This paper was edited by Vicente Perez-
Munuzuri and reviewed by Marek Stastna and one anonymous
referee.

References

Abbot, D. S., Silber, M., and Pierrehumbert, R. T.: Bifurcations
leading to summer Arctic sea ice loss, J. Geophys. Res.-Atmos.,
116, https://doi.org/10.1029/2011JD015653, 2011.

Armour, K. C., Eisenman, I., Blanchard-Wrigglesworth, E., Mc-
Cusker, K. E., and Bitz, C. M.: The reversibility of sea ice
loss in a state-of-the-art climate model, Geophys. Res. Lett., 38,
L16705, https://doi.org/10.1029/2011GL048739, 2011.

Årthun, M., Onarheim, I. H., Dörr, J., and Eldevik,
T.: The Seasonal and Regional Transition to an Ice-
Free Arctic, Geophys. Res. Lett., 48, e2020GL090825,
https://doi.org/10.1029/2020GL090825, 2021.

Bathiany, S., Notz, D., Mauritsen, T., Raedel, G., and Brovkin,
V.: On the Potential for Abrupt Arctic Winter Sea Ice Loss,

J. Climate, 29, 2703–2719, https://doi.org/10.1175/JCLI-D-15-
0466.1, 2016.

Björk, G. and Söderkvist, J.: Dependence of the Arctic Ocean
ice thickness distribution on the poleward energy flux in
the atmosphere, J. Geophys. Res.-Oceans, 107, 37-1–37-17,
https://doi.org/10.1029/2000JC000723, 2002.

Cronin, T. W. and Jansen, M. F.: Analytic Radiative-Advective
Equilibrium as a Model for High-Latitude Climate, Geophys.
Res. Lett., 43, 449–457, https://doi.org/10.1002/2015GL067172,
2016.

Dortmans, B., Langford, W. F., and Willms, A. R.: An energy bal-
ance model for paleoclimate transitions, Clim. Past, 15, 493–520,
https://doi.org/10.5194/cp-15-493-2019, 2019.

Eisenman, I.: Factors Controlling the Bifurcation Struc-
ture of Sea Ice Retreat, J. Geophys. Res., 117, D01111,
https://doi.org/10.1029/2011JD016164, 2012.

Eisenman, I. and Wettlaufer, J. S.: Nonlinear Threshold Behavior
During the Loss of Arctic Sea Ice, P. Natl. Acad. Sci. USA, 106,
28–32, https://doi.org/10.1073/pnas.0806887106, 2009.

Flato, G. M. and Brown, R. D.: Variability and climate sensitivity
of landfast Arctic sea ice, J. Geophys. Res.-Oceans, 101, 25767–
25777, https://doi.org/10.1029/96JC02431, 1996.

Intergovernmental Panel on Climate Change: Climate Change
2013: The Physical Science Basis, in: Contribution of Work-
ing Group I to the Fifth Assessment Report of the Intergov-
ernmental Panel on Climate Change, edited by: Stocker, T. F.,
Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung,
J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cam-
bridge Univ. Press, Cambridge, UK and New York, NY, USA,
https://doi.org/10.1017/CBO9781107415324, 2013.

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Dea-
van, D., Gandin, L., Iredell, M., Saha, S., White, G.,
Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Hig-
gins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang,
J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph,
D.: The NCEP/NCAR 40-Year Reanalysis Project, B. Am.
Meteorol. Soc., 77, 437–471, https://doi.org/10.1175/1520-
0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.

Kuznetsov, Y.: Elements of Applied Bifurcation Theory, 3rd edn.,
Springer-Verlag, New York, ISBN: 978-0387219066, 2004.

Kypke, K. L., Langford, W. F., and Willms, A. R.: Anthropocene
climate bifurcation, Nonlin. Processes Geophys., 27, 391–409,
https://doi.org/10.5194/npg-27-391-2020, 2020.

Langford, W. F. and Lewis, G. M.: Poleward expansion of Hadley
cells, Can. Appl. Math. Quart., 17, 105–119, 2009.

Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahm-
storf, S., and Schellnhuber, H. J.: Tipping Elements in the Earth’s
Climate System, P. Natl. Acad. Sci. USA, 105, 1786–1793,
https://doi.org/10.1073/pnas.0705414105, 2008.

Lewis, G. M. and Langford, W. F.: Hysteresis in a rotating differen-
tially heated spherical shell of Boussinesq fluid, SIAM J. Appl.
Dyn. Syst., 7, 1421–1444, https://doi.org/10.1137/070697306,
2008.

Lutgens, F. K. and Tarbuck, E. J.: The Atmosphere: An Introduction
to Meteorology, 14th edn., Pearson Education Inc., Boston, USA,
ISBN: 9780134758589, 2019.

Mayer, M., Tietsche, S., Haimberger, L., Tsubouchi, T., Mayer,
J., and Zuo, H.: An Improved Estimate of the Cou-

Nonlin. Processes Geophys., 29, 219–239, 2022 https://doi.org/10.5194/npg-29-219-2022

https://doi.org/10.1029/2011JD015653
https://doi.org/10.1029/2011GL048739
https://doi.org/10.1029/2020GL090825
https://doi.org/10.1175/JCLI-D-15-0466.1
https://doi.org/10.1175/JCLI-D-15-0466.1
https://doi.org/10.1029/2000JC000723
https://doi.org/10.1002/2015GL067172
https://doi.org/10.5194/cp-15-493-2019
https://doi.org/10.1029/2011JD016164
https://doi.org/10.1073/pnas.0806887106
https://doi.org/10.1029/96JC02431
https://doi.org/10.1017/CBO9781107415324
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
https://doi.org/10.5194/npg-27-391-2020
https://doi.org/10.1073/pnas.0705414105
https://doi.org/10.1137/070697306


K. L. Kypke et al.: Climate bifurcations in a Schwarzschild model of the Arctic atmosphere 239

pled Arctic Energy Budget, J. Climate, 32, 7915–7934,
https://doi.org/10.1175/JCLI-D-19-0233.1, 2019.

Merryfield, W. J., Holland, M. M., and Monahan, A. H.: Multi-
ple Equilibria and Abrupt Transitions in Arctic Summer Sea
Ice Extent, American Geophysical Union (AGU), 151–174,
https://doi.org/10.1029/180GM11, 2008.

Müller-Stoffels, M. and Wackerbauer, R.: Regular network model
for the sea ice-albedo feedback in the Arctic, Chaos, 21, 013111,
https://doi.org/10.1063/1.3555835, 2011.

National Centers for Environmental Protection/National Weather
Service/NOAA/U.S. Department of Commerce: NCEP/NCAR
Global Reanalysis Products, 1948–continuing, updated monthly,
Research Data Archive [data set], https://psl.noaa.gov/data/
gridded/data.ncep.reanalysis.html (last access: November 2021),
1994.

Pierrehumbert, R. T.: Principles of Planetary Climate, Cambridge
University Press, Cambridge, UK, ISBN: 978-0-521-86556-2,
2010.

Ridley, J., Lowe, J., and Simonin, D.: The demise of Arctic sea
ice during stabilisation at high greenhouse gas concentrations,
Clim. Dynam., 30, 333–341, https://doi.org/10.1007/s00382-
007-0291-4, 2008.

Russill, C.: Climate Change Tipping Points: Origins, Pre-
cursors, and Debates, WIREs Clim. Change, 6, 427–434,
https://doi.org/10.1002/wcc.344, 2015.

Schmidt, G. A., Ruedy, R. A., Miller, R. L., and Lacis, A. A.: At-
tribution of the present-day total greenhouse effect, J. Geophys.
Res., 115, D20106, https://doi.org/10.1029/2010JD014287,
2010.

Schröder, D. and Connolley, W. M.: Impact of instantaneous sea ice
removal in a coupled general circulation model, Geophys. Res.
Lett., 34, L14502, https://doi.org/10.1029/2007GL030253, 2007.

Serreze, M. C., Barrett, A. P., Slater, A. G., Steele, M.,
Zhang, J., and Trenberth, K. E.: The large-scale energy
budget of the Arctic, J. Geophys. Res., 112, D11122,
https://doi.org/10.1029/2006JD008230, 2007.

Stroeve, J. C., Markus, T., Boisvert, L., Miller, J., and Bar-
rett, A.: Changes in Arctic melt season and implications
for sea ice loss, Geophys. Res. Lett., 41, 1216–1225,
https://doi.org/10.1002/2013GL058951, 2014.

Thorndike, A. S.: A toy model linking atmospheric thermal radi-
ation and sea ice growth, J. Geophys. Res.-Oceans, 97, 9401–
9410, https://doi.org/10.1029/92JC00695, 1992.

Tietsche, S., Notz, D., Jungclaus, J. H., and Marotzke, J.: Recovery
mechanisms of Arctic summer sea ice, Geophys. Res. Lett., 38,
L02707, https://doi.org/10.1029/2010GL045698, 2011.

van Groesen, E. and Molenaar, J.: Continuum Modeling in the Phys-
ical Sciences, SIAM, Philadelphia, USA, ISBN: 978-0-898716-
25-2 2017.

van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thom-
son, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V.,
Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic,
N., Smith, S. J., and Rose, S. K.: The Representative Con-
centration Pathways: An Overview, Clim. Change, 109, 5–31,
https://doi.org/10.1007/s10584-011-0148-z , 2011.

Wild, M., Folini, D., Schär, C., Loeb, N., Dutton, E. G.,
and König-Langlo, G.: The global energy balance from
a surface perspective, Clim. Dynam., 40, 3107–3134,
https://doi.org/10.1007/s00382-012-1569-8, 2013.

Winton, M.: Does the Arctic sea ice have a tipping point?, Geophys.
Res. Lett., 33, L23504, https://doi.org/10.1029/2006GL028017,
2006.

Winton, M.: Sea Ice–Albedo Feedback and Nonlinear Arctic Cli-
mate Change, American Geophysical Union (AGU), 111–131,
https://doi.org/10.1029/180GM09, 2008.

Zheng, L., Cheng, X., Chen, Z., and Liang, Q.: Delay in Arc-
tic Sea Ice Freeze-Up Linked to Early Summer Sea Ice Loss:
Evidence from Satellite Observations, Remote Sens., 13, 2162,
https://doi.org/10.3390/rs13112162, 2021.

https://doi.org/10.5194/npg-29-219-2022 Nonlin. Processes Geophys., 29, 219–239, 2022

https://doi.org/10.1175/JCLI-D-19-0233.1
https://doi.org/10.1029/180GM11
https://doi.org/10.1063/1.3555835
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
https://doi.org/10.1007/s00382-007-0291-4
https://doi.org/10.1007/s00382-007-0291-4
https://doi.org/10.1002/wcc.344
https://doi.org/10.1029/2010JD014287
https://doi.org/10.1029/2007GL030253
https://doi.org/10.1029/2006JD008230
https://doi.org/10.1002/2013GL058951
https://doi.org/10.1029/92JC00695
https://doi.org/10.1029/2010GL045698
https://doi.org/10.1007/s10584-011-0148-z 
https://doi.org/10.1007/s00382-012-1569-8
https://doi.org/10.1029/2006GL028017
https://doi.org/10.1029/180GM09
https://doi.org/10.3390/rs13112162

	Abstract
	Introduction
	Model
	Mass, momentum, and energy balance
	Mass
	Momentum
	Energy

	Surface boundary layer
	Boundary conditions for the BVP

	Results
	Conclusions
	Appendix A: Model derivation details
	Appendix A1: Nondimensionalization
	Appendix A2: Standard form and vanishing conduction limit
	Appendix A3: Modelling choices for functional forms
	Appendix A3.1: Relative humidity
	Appendix A3.2: Atmospheric heat transport
	Appendix A3.3: Mass flux


	Appendix B: Model parameters and calibration
	Appendix B1: Parameter values and calibration
	Appendix B2: Insolation

	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

