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Abstract. Hourly precipitation over a region is often simul-
taneously simulated by numerical models and observed by
multiple data sources. An accurate precipitation representa-
tion based on all available information is a valuable result for
numerous applications and a critical aspect of climate mon-
itoring. The inverse problem theory offers an ideal frame-
work for the combination of observations with a numerical
model background. In particular, we have considered a mod-
ified ensemble optimal interpolation scheme. The deviations
between background and observations are used to adjust for
deficiencies in the ensemble. A data transformation based on
Gaussian anamorphosis has been used to optimally exploit
the potential of the spatial analysis, given that precipitation is
approximated with a gamma distribution and the spatial anal-
ysis requires normally distributed variables. For each point,
the spatial analysis returns the shape and rate parameters of
its gamma distribution. The ensemble-based statistical inter-
polation scheme with Gaussian anamorphosis for precipita-
tion (EnSI-GAP) is implemented in a way that the covari-
ance matrices are locally stationary, and the background er-
ror covariance matrix undergoes a localization process. Con-
cepts and methods that are usually found in data assimilation
are here applied to spatial analysis, where they have been
adapted in an original way to represent precipitation at finer
spatial scales than those resolved by the background, at least
where the observational network is dense enough. The EnSI-
GAP setup requires the specification of a restricted number
of parameters, and specifically, the explicit values of the er-
ror variances are not needed, since they are inferred from the
available data. The examples of applications presented over
Norway provide a better understanding of EnSI-GAP. The
data sources considered are those typically used at national
meteorological services, such as local area models, weather

radars, and in situ observations. For this last data source,
measurements from both traditional and opportunistic sen-
sors have been considered.

1 Introduction

Precipitation amounts are measured or estimated simultane-
ously by multiple observing systems, such as networks of
automated weather stations and remote sensing instruments.
At the same time, sophisticated numerical models simulating
the evolution of the atmospheric state provide a realistic pre-
cipitation representation over regular grids with the spacing
of a few kilometers. An unprecedented amount of rainfall
data is available nowadays at very short sampling rates of
1 h or less. Nevertheless, it is a common experience within
national meteorological services that the exact amount of
precipitation, to some extent, eludes our knowledge. There
may be numerous reasons for this uncertainty. For example,
a thunderstorm triggering a landslide may have occurred in a
region of complex topography where in situ observations are
available but not exactly at the landslide spot; thus, weather
radars may cover the region in a patchy way because of ob-
stacles blocking the beam, and numerical weather prediction
forecasts are likely to misplace precipitation maxima. An-
other typical situation is when an intense and localized sum-
mer thunderstorm hits a city. In this case, several observation
systems are measuring the event and more than one numeri-
cal model may provide precipitation totals. From this plural-
ity of data, a detailed reconstruction of the event is possible,
provided that the data agree both in terms of the event inten-
sity and on its spatial features. This is not always the case,
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and sometimes meteorologists and hydrologists are left with
a number of slightly different but plausible scenarios.

The objective of our study is the precipitation reconstruc-
tion through a combination of numerical model output with
observations from multiple data sources. The aim is that the
combined fields will provide a more skillful representation
than any of the original data sources. As remarked above,
any improvement in the accuracy and precision of precipi-
tation can be of great help for monitoring the weather, but
it is not only that. Snow- and hydrological- modeling will
benefit from improvements in the quality of precipitation,
which is one of the atmospheric forcing variables (Magnus-
son et al., 2019; Huang et al., 2019). Climate applications
that make use of reanalysis (e.g., Hersbach et al., 2020; Jer-
mey and Renshaw, 2016) or observational gridded data sets
(e.g., Lussana et al., 2018), such as, for instance, the eval-
uation of a regional climate model (Kotlarski et al., 2017)
or the calculation of climate indices (Vicente-Serrano et al.,
2015), may also benefit from data sets combining model
output and observations, as shown by Fortin et al. (2018).
Besides, the intensity–duration–frequency curve (IDF curve)
derived from precipitation data sets are widely used in civil
engineering for determining design values, and the quality of
the reconstruction of extremes has a strong influence on IDF
curves (Dyrrdal et al., 2015).

The data sources considered in our study are precipitation
ensemble forecasts, observations from in situ measurement
stations, and estimates derived from weather radars. Numer-
ical model fields are available everywhere, and the quality
of their output is constantly increasing over the years. The
weather-dependent uncertainty is often delivered in the form
of an ensemble. At present, assessments using hydrologi-
cal models have shown that input from numerical models
“may be comparable or preferable compared to gauge ob-
servations to drive a hydrologic and/or snow model in com-
plex terrain”, as stated by Lundquist et al. (2019), based on
their review of recent research. One of the key messages by
Lundquist et al. (2019) is that numerical models represent
precipitation fields at ungauged sites in a realistic and con-
vincing way, as it is demonstrated by the accuracy of their
total annual rain and snowfall estimates, notwithstanding that
daily or subdaily aggregated precipitation fields may mis-
represents individual precipitation events, such as storms. In
the work by Crespi et al. (2019), it has been demonstrated
that the combination of numerical model outputs and in situ
observations improve the representation of monthly precip-
itation climatologies over Norway, if compared to similar
products based on in situ observations only. Lussana et al.
(2019b) have successfully used monthly precipitation clima-
tologies to improve the performances of statistical interpo-
lation methods in complex terrain over Norway. However,
because model fields represent areal averages, the charac-
teristics of simulated precipitation depend significantly on
the model resolution, as remarked for global and regional
reanalyses over the Alps by Isotta et al. (2019). In particu-

lar, Jermey and Renshaw (2016) demonstrates that increas-
ing resolution via downscaling improves precipitation rep-
resentation, though they also point out that assimilating ob-
servations at a high resolution in numerical models is im-
portant for reconstructing high-threshold/small-scale events.
The sources of model errors and their treatments in data as-
similation (DA) schemes have been studied extensively. For
instance, in the introduction of the paper by Raanes et al.
(2015), a list of model errors is reported, together with sev-
eral references to other studies addressing them. Regarding
precipitation forecasts, model errors often encountered in ap-
plications are (Müller et al., 2017) systematic under- or over-
estimations of amounts, spatial errors in the placement of
events, and underestimations of uncertainty. With reference
to spatial analysis, we consider observed precipitation data
to be more accurate than model estimates. In fact, model
outputs are evaluated in terms of their ability to reconstruct
observed values. The most important disadvantage of obser-
vational networks is that often they do not cover the region
under consideration; moreover, observations may be irregu-
larly distributed in space and present missing data over time.
Each observational data source has its own characteristics
that have been extensively studied in the literature that we
will address here only superficially, since our objective is
the combination of information. For example, rain gauges are
possibly the most accurate precipitation measurement avail-
able at present (CIMO, 2014), apart from when the observa-
tions are affected by gross measurement errors, as defined by
Gandin (1988). There are multiple sources of uncertainty for
gauge measurements (Zahumensky, 2004), such as catching
and counting (Pollock et al., 2014). The undercatch of solid
precipitation due to wind (Wolff et al., 2015) is a signifi-
cant problem in cold climates. Radar-derived estimates are
affected by several issues such as blocking and nonuniform
attenuation of the radar beam due to obstacles along the path,
especially in a complex terrain. A statement in the introduc-
tion of the book by Germann and Joss (2004) is illuminating
in this sense. “To put a weather radar in a mountainous re-
gion is like pitching a tent in a snowstorm: the practical use
is obvious and large – but so are the problems” (Germann and
Joss, 2004). In addition, weather radars do not directly mea-
sure precipitation; instead, they measure reflectivity, which is
then transformed into a precipitation rate. The transformation
itself contributes to increasing the uncertainty of the final es-
timates. Another important aspect of observational data that
will be treated only marginally here is data quality control.
In this work we will consider only quality-controlled obser-
vations. To sum up, in situ data are the more accurate ob-
servations of precipitation that we will consider. Thus, radar
estimates, which are calibrated using gauges as references,
are less accurate than in situ data. They are spatially corre-
lated with the actual precipitation, and they are affected by
less uncertainty than the simulations carried out by numeri-
cal models. Numerical model output is the basic information
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available everywhere and the one we consider more uncer-
tain.

Inverse problem theory (Tarantola, 2005) provides the
ideal framework for the combination of observations with a
numerical model background. The marginal distribution of
the precipitation analysis is assumed to be a gamma distribu-
tion, and we aim at estimating its shape and rate parameters
for each grid point. The gamma distribution is appropriate
for representing precipitation data, as reported, for example,
by Wilks (2019). The formulation of the statistical interpo-
lation method presented is similar to the analysis step of the
ensemble Kalman filter (Evensen, 2006) or the ensemble op-
timal interpolation (EnOI; Evensen, 2003), with the impor-
tant difference that EnOI uses a time-lagged ensemble, while
the ensemble considered in our method is made of members
of a single numerical weather prediction (NWP) model run.
The hourly precipitation over the grid is regarded as the re-
alization of a transformed Gaussian random field (Frei and
Isotta, 2019). The Gaussian anamorphosis (Bertino et al.,
2003) transforms data such that precipitation better complies
with the assumptions of normality that are required by the
analysis procedure. The nonstationary covariance matrices
are approximated with locally stationary matrices, as in the
paper by Kuusela and Stein (2018). In addition, the back-
ground error covariance matrix includes a static (i.e., not
flow-dependent) scale matrix that accounts for deficiencies
in the background ensemble, as in hybrid ensemble optimal
interpolation (Carrassi et al., 2018). The term scale matrix
has been used by Bocquet et al. (2015). In the following,
the ensemble-based statistical interpolation with Gaussian
anamorphosis for the spatial analysis of precipitation is re-
ferred to as EnSI-GAP. From the point of view of geostatis-
tics, EnSI-GAP can be thought of as performing a kriging
(Wackernagel, 2003) of the Gaussian-transformed ensemble
mean and then retrieving the probability distribution of pre-
cipitation at every location using a predefined gamma distri-
bution.

The innovative part of the presented approach to statisti-
cal interpolation is in the application to spatial analysis of
concepts that are usually encountered in DA. The formu-
lation of the problem is adapted to our aim, which is im-
proving precipitation representation instead of providing ini-
tial conditions for a physical model, as it is for DA. In the
literature, there are a number of articles describing similar
approaches applied to precipitation analysis, such as Mah-
fouf et al. (2007); Soci et al. (2016); Lespinas et al. (2015).
However, our statistical interpolation is the first one, to our
knowledge, in which the background error covariance matrix
is derived from numerical model ensemble and where Gaus-
sian anamorphosis is applied directly to precipitation data.
An additionally innovative part of the method is that EnSI-
GAP does not require the explicit specification of error vari-
ances for the background or observations, as in the case of
most of the other methods (Soci et al., 2016). In fact, those
error variances are often difficult to estimate in a way that is

general enough to cover a wide range of cases. Our approach
is to specify the reliability of the background, with respect
to observations, in such a way that error variances can vary
both in time and space. An additionally innovative part of
our research is that we consider opportunistic sensing net-
works of the type described by de Vos et al. (2020) within
the examples of the applications proposed. Citizen weather
stations are rapidly increasing in prevalence and are becom-
ing an emerging source of weather information, as described
by Nipen et al. (2020). Thanks to those networks, for some
regions we can rely on an extremely dense spatial distribu-
tion of in situ observations.

The remainder of the paper is organized as follows.
Section 2 describes the EnSI-GAP method in a general
way, without references to specific data sources. Section 3
presents the results of EnSI-GAP applied to three different
problems, namely an idealized experiment and then two ex-
amples in which the method is applied to real data.

2 Methods: ensemble-based statistical interpolation
with Gaussian anamorphosis for precipitation
(EnSI-GAP)

We assume that the marginal probability density function
(PDF) for the hourly precipitation at a point in time follows
a gamma distribution (Wilks, 2019). This marginal PDF is
characterized through the estimation of the gamma shape and
rate for each point and hour.

Precipitation fields are regarded as realizations of locally
stationary and transformed Gaussian random fields, where
each hour is considered independently from the others. The
time sequence of EnSI-GAP simulated precipitation fields
shows temporal continuity because this is present in both
observations and background fields. Transformed Gaussian
random fields are used for the production of observational
precipitation gridded data sets by Frei and Isotta (2019). A
random field is said to be stationary if the covariance be-
tween a pair of points depends only on how far apart they are
located from each other. Precipitation totals are nonstation-
ary random fields because of the nonstationarity of weather
phenomena or, simply, the influence of topography. In our
method, precipitation is locally modeled as a stationary ran-
dom field. The covariance parameter estimation and spatial
analysis are carried out in a moving window fashion around
each grid point. A similar approach is described by Kuusela
and Stein (2018), and the elaboration over the grid can be
carried out in parallel for several grid points simultaneously.

An implementation of EnSI-GAP is reported in Algo-
rithm 1. The mathematical notation and the symbols used are
described in two tables, namely Table 1, for global variables,
and Table 2, for local variables, which are those variables
that vary from point to point. As in the paper by Sakov and
Bertino (2011), upper accents have been used to denote local

variables; so, for example,
i

X is the local version of matrix
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X. If X is a matrix, Xi is its ith column (column vector),
and Xi,: is its ith row (row vector). The Bayesian statistical
method used in our spatial analysis is optimal for Gaussian
random fields. Then, a data transformation is applied as a
preprocessing step before the spatial analysis. The introduc-
tion of a data transformation compels us to inverse transform
the predictions of the spatial analysis into the original space
of precipitation values.

The data transformation chosen is a Gaussian anamorpho-
sis (Bertino et al., 2003) that transforms a random variable,
following a gamma distribution, into a standard Gaussian. In
the implementation presented, constant values of the gamma
parameters’ shape and rate are used in the data transforma-
tion over the whole domain. The same values are used for the

inverse transformation as well. The constant (in space) val-
ues are reestimated every hour. It is worth remarking that the
gamma parameters used in the data transformations must not
be confused with those that define the gamma distribution of
the hourly precipitation at each grid point and that are the
objective of our spatial analysis. The analysis procedure re-
turns a different Gaussian PDF for each grid point, which is
transformed into a gamma distribution by means of the con-
stant shape and rate estimated for the data transformation.
However, since the inverse transformation at each grid point
is applied to a Gaussian PDF that differs from those of the
surrounding points, the gamma distribution of hourly precip-
itation will also vary from one grid point to the other. The
gamma shape and rate parameters used in the data transfor-
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Table 1. Overview of variables and notation for global variables. All the vectors are column vectors unless otherwise specified. If X is a
matrix, Xi is its ith column (column vector), and Xi,: is its ith row (row vector). Note: PDF – probability density function.

Symbol Description Space Dimension

m Number of grid points – Scalar
p Number of observations – Scalar
k Number of forecast ensemble members – Scalar
X̃f Forecast ensemble Original m× k matrix
Xf Forecast ensemble Transformed m× k matrix
xf Forecast ensemble mean Transformed p vector
Af Forecast perturbations Transformed m× k matrix
Pf Forecast covariance matrix Transformed m×m matrix
ỹo Observations Original p vector
yo Observations Transformed p vector
x̃t Truth Original m vector
xt Truth Transformed m vector
x̃a Analysis Original m vector
xa Analysis Transformed m vector
ηa Analysis error Transformed m vector
Pa Analysis error covariance matrix Transformed m×m matrix
σ a Analysis error standard deviation,

√
diag(Pa) Transformed m vector

xb Background Transformed m vector
ηb Background error Transformed m vector
Pb Background error covariance matrix Transformed m×m matrix
εo Observation error Transformed p vector
H Observation operator Transformed p×m matrix
L Reference length scales for localization Transformed m vector
D Reference length scales of the scale matrix Transformed m vector
ε2 Relative quality of the background with regards to observations Transformed Scalar
ν Inflation factor Transformed Scalar
ξ Small constant Original Scalar
αD Shape of the gamma PDF used in the data transformation Original Scalar
βD Rate of the gamma PDF used in the data transformation Original Scalar
αa Shape of the analysis gamma PDF Original m vector
βa Rate of the analysis gamma PDF Original m vector

mation are denoted as the scalar values αD and βD , respec-
tively, while the spatially dependent gamma analysis param-
eters are denoted with the m column vectors αa and βa.

Algorithm 1 can be divided into the following three parts
that are described in the next sections: the data transforma-
tion in Sect. 2.1, the Bayesian spatial analysis in Sect. 2.2,
and the inverse transformation in Sect. 2.3.

2.1 Data transformation via Gaussian anamorphosis

The Gaussian anamorphosis maps a gamma distribution into
a standard Gaussian. Bertino et al. (2003) introduced the con-
cept of Gaussian anamorphosis from geostatistics to data as-
similation. A general reference on Gaussian anamorphosis
in geostatistics is the book by Chiles and Delfiner (2012),
chap. 6. This preprocessing strategy has been used in several
studies in the past (e.g., Amezcua and Leeuwen, 2014; Lien
et al., 2013). A visual representation of the transformation

process can be found in Fig. 1 of the paper by Lien et al.
(2013) and in this article in Sect. 3.2.2.

The hourly precipitation background and observations, X̃f

and ỹo, respectively, are transformed into those used in the
spatial analysis by means of the Gaussian anamorphosis g()
as follows:

Xf
= g(X̃f) (1)

yo
= g(ỹo). (2)

As indicated in Table 1, the Gaussian variables are Xf and
yo, while the variables with the original hourly precipitation
values, X̃f and ỹo, follow a gamma distribution. The gamma
shape and rate, αD and βD , respectively, of this gamma distri-
bution are derived from the background precipitation values
by a fitting procedure based on maximum likelihood.

In this paragraph, the procedure used in Sect. 3 is de-
scribed. For an arbitrary hour, two different solutions are
adopted, depending on the weather conditions. We are in the
presence of dry weather conditions when at least one of the
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Table 2. Overview of variables and notation for local variables. All variables are specified in the transformed space. All the vectors are
column vectors unless otherwise specified. If X is a matrix, Xi is its ith column (column vector), and Xi,: is its ith row (row vector).

Symbol Description Dimension

pi Number of observations in the surroundings of the ith grid point Scalar
i
H Observation operator pi ×m matrix
i
R Observation error covariance matrix pi ×pi matrix
i

0o Observation error correlation matrix pi ×pi matrix
i
yb Background at observation locations pi vector
i
Pb Background error covariance matrix m×m matrix
i
0 Localization matrix m×m matrix
i
V Localization between grid points and observation locations m×pi matrix
i
Z Localization between observation locations pi ×pi matrix
i

0u Scale correlation matrix m×m matrix
i
Gb Background error covariances between grid points and observation locations m×pi matrix
i
Sb Background error covariances between observation locations pi ×pi matrix
i
Gf Forecast error covariances between grid points and observation locations m×pi matrix
i
Sf Forecast error covariances between observation locations pi ×pi matrix
i
σ 2
o Observation error variance Scalar
i
σ 2
b

Average background error variance Scalar
i
σ 2
b′

Empirical estimate of
i
σ 2
b

Scalar
i
σ 2
f

Average forecast error variance Scalar
i
σ 2
u Error variance for the scale matrix Scalar
i
σ 2
ob

Sum of error variances (Eq. 11) Scalar

ensemble members reports precipitation in less than 10 % of
the grid points; otherwise, we have wet weather. In the case
of wet conditions, ensemble members are considered sepa-
rately, and for each of them, we derive a single value of shape
and a single value of rate – both are kept as constants over
the whole domain. The values of shape and rate are the maxi-
mum likelihood estimators calculated iteratively by means of
the Newton–Raphson method as described by Wilks (2019),
Sect. 4.6.2. Then, αD and βD are the averages of all the val-
ues of shape (one value for each ensemble member) and rate
(one value for each ensemble member). In the case of dry
weather, αD and βD are set to typical values obtained as the
averages of all the available cases.

In Gaussian anamorphosis, zero precipitation values must
be treated as special cases, as explained by Lien et al. (2013).
The solution we adopted is to first add a very small amount to
zero precipitation values, ξ = 0.0001mm, and then to apply
the transformation g() to all values. The same small amount
is then subtracted after the inverse transformation. This is a
simple but effective solution for spatial analysis, as shown

in the example of Sect. 3.1. In principle, the statistical inter-
polation is sensitive to the small amount ξ chosen, such that
using 0.01 mm instead of 0.0001 mm will return slightly dif-
ferent analysis values in the transition between precipitation
and no precipitation. In practice, we have tested it, and we
found negligible differences when values smaller than, for
example, 0.05 mm (half of the precision of a standard rain
gauge measurement) have been used.

The transformation function g(x), applied to the generic
scalar value x, used in Eqs. (1) and (2) is as follows:

g(x)=QNorm (Gamma(x+ ξ ;αD,βD)) , (3)

where Gamma(x+ ξ ;αD,βD) is the gamma cumulative dis-
tribution function when the shape is equal to αD and the rate
is equal to βD . QNorm is the quantile function (or inverse
cumulative distribution function) for the standard Gaussian
distribution. An example of an application of the procedure
described above is given in Sect. 3.2.2.

For the presented implementation of EnSI-GAP, the Gaus-
sian anamorphosis is based on the constant parameters of αD
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and βD over the whole domain. This assumption might be
too restrictive for very large domains, such as for all of Eu-
rope, for instance. In this case, different solutions may be
explored, such as slowly varying the gamma parameters in
space or time, based on the climatology.

2.2 Spatial analysis

The spatial analysis in Algorithm 1 has been divided into
three parts. In Sect. 2.2.1, global variables have been defined.
Then, as stated in the introduction of Sect. 2, the analysis
procedure is performed on a grid point by grid point basis. In
Sects. 2.2.2 and 2.2.3, the procedure applied at the generic ith
grid point is described. In Sect. 2.2.2, the specification of the
local error covariance matrices is described. In Sect. 2.2.3,
the standard analysis procedure is presented together with the
treatment of a special case.

2.2.1 Definitions

In Bayesian statistics, according to Savage (1972), a state is
“a description of the world, which is the object with which
we are concerned, leaving no relevant aspect undescribed”,
and “the true state is the state that does in fact obtain”, i.e.,
the true description of the world. The mathematical notation
used is reported in Tables 1 and 2, and it is similar to that
suggested by Ide et al. (1997). The object of our study is the
hourly precipitation field, x(), that is the hourly total precip-
itation amount over a continuous surface covering a spatial
domain in terrain-following coordinates, r . Our state is the
discretization over a regular grid of this continuous field. The
true state (our truth; xt) at the ith grid point is the areal aver-
age as follows:

xt
i =

∫
Vi

x (r)dr, (4)

where Vi is a region surrounding the ith grid point. The size
of Vi determines the effective resolution of xt at the ith grid
point. Our aim is to represent the truth with the smallest pos-
sible Vi . The effective resolution of the truth will inevitably
vary across the domain. In observation-void regions, the ef-
fective resolution will be the same as that of the numeri-
cal model used as the background, which is approximately
o(10–100km2) for high-resolution local area models (Müller
et al., 2017). In observation-dense regions, the effective reso-
lution should be comparable to the average distance between
observation locations, with the model resolution as the upper
bound.

The analysis is the best estimate of the truth, in the sense
that it is the linear, unbiased estimator with the minimum er-
ror variance. The analysis is defined as xa

= xt
+ ηa, where

the column vector of the analysis error at grid points is a
random variable following a multivariate normal distribution
ηa
∼N (0,Pa). The marginal distribution of the analysis at

the ith grid point is a normal random variable, and our sta-
tistical interpolation scheme returns its mean value xa

i and its
standard deviation σ a

i =
√

Pa
ii .

As for linear filtering theory (Jazwinski, 2007), the anal-
ysis is obtained as a linear combination of the background
(a priori information) and the observations. The background
is written as xb

= xt
+ ηb, where the background error is a

random variable ηb
∼N

(
0,Pb). The background PDF is de-

termined mostly, but not exclusively, by the forecast ensem-
ble, as described in Sect. 2.2.1. The forecast ensemble mean
is xf
= k−1Xf1, where 1 is the m vector, with all elements

equal to 1. The background expected value is set to the fore-
cast ensemble mean, xb

= xf. The forecast perturbations are
Af, where the ith perturbation is Af

i = Xf
i − x

f. The covari-
ance matrix is as follows:

Pf
= (k− 1)−1Af(Af)T , (5)

and plays a role in the determination of Pb, as defined in
Sect. 2.2.2.

The p observations are written as yo
=Hxt

+ εo, where
the observation error εo

∼N (0,R) is the observation opera-
tor that we consider as a linear function that maps Rm onto
Rp.

2.2.2 Specification of the observation and background
error covariance matrices

Our definitions of the error covariance matrices follow from a
few general principles that we have formulated. For P1 (i.e.,
general principle 1; hereinafter the same definition applies
for other references to P), background and observation uncer-
tainties are weather and location dependent. For P2, the back-
ground is more uncertain, where either the forecast is more
uncertain or observations and forecasts disagree the most.
For P3, observations are a more accurate estimate of the true
state than the background. We want to specify how much
more we trust the observations than the background in a sim-
ple way, such as, for example, “we trust the observations
twice as much as the background”. For P4, the local obser-
vation density must be used optimally to ensure a higher ef-
fective resolution, as it has been defined in Sect. 2.2.1 where
more observations are available. For P5, the spatial analysis
at a particular hour does not require the explicit knowledge of
observations and forecasts at any other hour. However, con-
stants in the covariance matrices can be set, depending on the
history of deviations between observations and forecasts. P5
makes the procedure more robust and easier to implement in
real-time operational applications.

P1 and P4 led to our choice of implementing Algorithm 1
by means of a loop over grid points. P2 will lead us to the
identification of the regions in which the uncertainty on the
input data is greatest. P3 will be used to define the observa-
tional uncertainty with respect to that of the background.

A distinctive feature of our spatial analysis method is that

the background error covariance matrix
i

Pb is specified as the
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sum of two parts, namely a dynamical component and a static
component. This choice is consistent with P1 and P2. The
dynamical part introduces nonstationarity, while the static
part describes covariance stationary random variables. This
choice follows from P1, and it has been inspired by hybrid
data assimilation methods (Carrassi et al., 2018). The dynam-
ical component of the background error covariance matrix is
obtained from the forecast ensemble. Because the ensemble
has a limited size, and often the number of members is quite
small (order of tens of members), a straightforward calcula-
tion of the background covariance matrix will include spu-
rious correlations between distant points. Localization is a
technique applied in DA to fix this issue (Greybush et al.,
2011). The static component has also been introduced to
remedy the shortcomings of using numerical weather predic-
tion as the background. There are deviations between obser-
vations and forecasts that cannot be explained by the fore-
cast ensemble. A typical example is when all the ensemble
members predict no precipitation but rainfall is observed.
In those cases, we trust observations, as stated through P3.
Then, the static component adds noise to the model-derived
background error, as in the paper by Raanes et al. (2015). In
Bocquet et al. (2015), the static component is referred to as
a scale matrix, since it is used to scale the noise component
of the model error, and we adopt the same term here. In scale
matrix, the term scale is not associated with the concept of
spatial scales; instead, it refers to a scaling (amplification or
reduction) of the uncertainty. We will also refer to this ma-
trix, and its related quantities, with the letter u to emphasize
that this component of the background error is unexplained
by the forecast.

i

Pb is written as follows:
i

Pb
=

i

0 ◦Pf
+

i
σ 2
u

i

0u. (6)

The first component on the right-hand side of Eq. (6) is the

dynamical part. Pf is the forecast uncertainty of Eq. (5),
i

0 is
the localization matrix, and ◦ is the Schur product symbol.
The localization technique we apply is a combination of lo-
cal analysis and covariance localization, as defined by Sakov
and Bertino (2011). In the local analysis, only the closest
observations are used, and we have implemented it by con-
sidering only observations within a predefined spatial win-
dow surrounding each grid point, up to a preset maximum
number of pmx. The covariance localization is implemented

through the element-wise multiplication of Pf by
i

0, which
has the form of a correlation matrix that depends on dis-
tances and is used to suppress long-range correlations. The
second component on the right-hand side of Eq. (6) is the
static part. The scale matrix is expressed through a constant

variance
i
σ 2
u, which modulates the noise, and the correlation

matrix
i

0u, which defines the spatial structure of that noise.
In the examples of applications presented in Sect. 3, both

i

0 and
i

0u are obtained as analytical functions of the spatial

coordinates. In Algorithm 1,
i

0 and
i

0u have been specified
through Gaussian functions; other possibilities for correla-
tion functions have been described, for instance, by Gaspari
and Cohn (1999). We have chosen not to inflate or deflate
Pf directly and to modulate the amplitude of background co-
variances only through the terms of Eq. (6). In this way, we
reduce the number of parameters that need to be specified.
As a matter of fact, for the combination of observations and
background in the analysis procedure, the m by m covari-
ance matrices are never directly used. Instead, the matrices
used are the covariances between grid points and observa-

tion locations,
i

Gb
=

i

Pb
i

HT (specifically only the ith row of
this matrix is used), and the covariances between observation

locations
i

Sb
=

i

H
i

Pb
i

HT .
i

H is the local observation operator,
which is a linear function, i.e., Rm→ Rpi .

The local observation error covariance matrix
i

R is written
as the constant observation error variance

i
σ 2
o multiplying the

correlation matrix
i

0o as follows:

i

R=
i
σ 2
o

i

0o. (7)

i

0o is often the identity, but other choices are possible. For
instance, if some observations are known to be more accu-
rate than the average of the others, then the corresponding

diagonal elements of
i

0o can be set to values smaller than 1.
The observation uncertainty can vary in time and space, ac-
cordingly to P1; however, its spatial structure is fixed and de-

pends on the analytical function chosen for
i

0o. Note that the
observation error is not only determined by the instrumental
error, but it also includes the representativeness error (Lus-
sana et al., 2010; Lorenc, 1986), which is often the largest
component of the observation error. The representative error
is a consequence of the mismatch between the spatial sup-
ports of the areal averages reconstructed by the background
and the almost point-like observations.

The spatial structures of the error covariance matrices are
determined through the matrices in Eqs. (6) and (7). At this

point, we need to set
i
σ 2
u and

i
σ 2
o to scale the magnitude of the

covariances. In the process described below, we will see that
the two variances are completely determined by two scalars,
ε2 and ν, also defined below, that we assume to be known
before running the spatial analysis. This prior knowledge de-
fines the constraints that the solution has to satisfy and allows
us to choose one particular solution among all the possibil-

ities.
i
σ 2
u and

i
σ 2
o characterize the region around the ith grid

point as a whole, without distinguishing between the individ-

ual observations. We introduce two relationships linking
i
σ 2
u

and
i
σ 2
o through two additional variances, both expressing the

Nonlin. Processes Geophys., 28, 61–91, 2021 https://doi.org/10.5194/npg-28-61-2021



C. Lussana et al.: Spatial analysis of precipitation 69

uncertainty of a quantity over the same region around the ith

grid point.
i
σ 2
b is the average background error variance, and

i
σ 2
f is the average forecast error variance. The two relation-

ships are as follows:

ε2
=

i
σ 2
o/

i
σ 2
b (8)

i
σ 2
b =

i
σ 2
f +

i
σ 2
u. (9)

ε2 is a global variable, and it is the relative precision of the
observations with respect to the background. Equation (8)
implements P3, and ε2 should be set to a value smaller than
1. For example, ε2

= 0.1 means that we believe the obser-
vations to be 10 times more precise an estimate of the true
value than the background. Equation (9) is an adaptation
from Eq. (6). The next two relationships we introduce have

the objective of estimating
i
σ 2
f and the empirical (i.e., based

on data, not on theories) estimate of
i
σ 2
ob, which is the sum

of
i
σ 2
o plus

i
σ 2
b, taken directly from the forecasts and the ob-

served values.
i
σ 2
ob is used to obtain a reference value to judge

if the ensemble spread is adequate. The equations are (the
averaging operator 〈. . .〉 is defined as in Algorithm 1) as fol-
lows:

i
σ 2
f = ν

〈
diag

(
i

Sf
)〉

(10)

i
σ 2
ob = ν

〈(
i
yo
−

i
yb
)2
〉
. (11)

ν is an inflation factor that can be used to obtain better re-
sults (e.g., via the optimization of cross-validation scores or
other verification metrics). In addition, ν is introduced be-
cause Eq. (11) is sensitive to misbehavior in the data when it
is applied using data from one single time step. Proper esti-

mates of
i
σ 2
f and

i
σ 2
ob would require more than just one case,

and the ideal situation would be to consider numerous situ-
ations characterized by similar weather conditions. Instead,

we prefer to stick to P5. The estimation of
i
σ 2
ob is not resis-

tant in the sense defined by Lanzante (1996). A few outliers

in Eq. (11) may have a significant impact on
i
σ 2
ob. The intro-

duction of ν makes the estimation procedure more resilient
in the presence of outliers and other nonstandard behavior.
Equation (11) is used for diagnostics in data assimilation
(Desroziers et al., 2005), and it is consistent with P2. The
combination of Eqs. (8) and (11) returns a rough empirical

estimate of
i
σ 2
b that is as follows:

i
σ 2
b′ = ν

〈(
i
yo
−

i
yb
)2
〉

1+ ε2 . (12)

As a final step, to set
i
σ 2
u and

i
σ 2
o, we distinguish between

three situations. The first situation is when the ensemble
spread is likely to underestimate the actual uncertainty be-
cause the background is missing an event or the spread is

too narrow. The test condition is
i
σ 2
f <

i
σ 2
b′. We will refer to

this situation as the ensemble being overconfident or under-

dispersive. This is the case when a positive
i
σ 2
u is needed in

Eq. (6), and we set its value such that
i
σ 2
b in Eq. (9) is equal

to
i
σ 2
b′ in Eq. (12) in the following:

i
σ 2
u =

i
σ 2
b′−

i
σ 2
f

= ν

[〈
(
i
yo
−

i
yb)2

〉
/(1+ ε2)−

〈
diag(

i

Sf)

〉]
(13)

i
σ 2
b = ν

〈
(
i
yo
−

i
yb)2

〉
/(1+ ε2) (14)

i
σ 2
o = ε2ν

〈
(
i
yo
−

i
yb)2

〉
/(1+ ε2). (15)

The second situation is when the ensemble spread is con-

sistent with the empirical estimate of
i
σ 2
b. The test condition

is
i
σ 2
f ≥

i
σ 2
b′ and

i
σ 2
f > 0. We will refer to this situation as the

ensemble spread being adequate. In this case, the background
information is given by the ensemble, without adjustments,
and is as follows:

i
σ 2
u = 0 (16)

i
σ 2
b =

i
σ 2
f = ν

〈
diag(

i

Sf)

〉
(17)

i
σ 2
o = ε2 iσ 2

f = ε
2ν

〈
diag(

i

Sf)

〉
. (18)

Equations (13)–(18) have been written with many details,
in a somewhat pedantic way, to emphasize the differences
between those two situations. When the ensemble is under-
dispersive, the sum

i
σ 2
o+

i
σ 2
b is bounded by the upper limit

i
σ 2
ob. This is not the case when the ensemble is adequate.

It is worth remarking that the test conditions are indepen-
dent of ν. In fact, for instance, the test condition for the first

situation can be equivalently written as

〈(
i
yo
−

i
yb
)2
〉
>[

(1+ ε2)

〈
diag(

i

Sf)

〉]
.

The third situation is the special case in which the back-
ground is deemed as perfect; that is, when all the observed
values and all the forecasts, at all observation locations, have
the same value. In practice, this occurs in the case of no pre-

cipitation. In this case,
i
σ 2
f = 0 and

i
σ 2
b′ = 0. Errors are not

Gaussian in this case, so then Eqs. (6) and (7) are not needed
anymore, as discussed in the next section (Sect. 2.2.3).
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With reference to the working assumptions stated at the
beginning of this section, they can now be reformulated in
more precise mathematical terms by referring to the above
definitions and equations. P1 led us to Eqs. (6) and (7) and
supported our choice of a grid point by grid point implemen-
tation of the algorithm. P2 led us to Eq. (11) and subsequent

equations, including the term
i
σ 2
ob. P3 led us to the introduc-

tion of ε2 in Eq. (8). P4 is also a key reason for having an al-
gorithm that can be optimized as a function of the grid point
under consideration. Other than that, P4 has not been used
explicitly in this section, since it will, in general, affect the

specification of
i

0u in Eq. (6). In this section, we do not pos-

tulate any formulation of
i

0u as being preferable to another;
this depends on the application. P4 led us to the specification

of
i

0u in Algorithm 1 as a location-dependent matrix through
Di , which is the length scale determining the decrease rate
of the background error unexplained by the forecasts. This
length scale is set in both Algorithm 1 and Sect. 3 as a func-
tion of the observational network density in the surrounding
of the ith grid point. In this sense, Di is dependent on the
characteristics of precipitation as they can be observed by
our network. This point is discussed further in Sect. 3.1.6.
As far as we know, and as stated in the introduction, this is
an innovative part of our interpolation scheme since most of
the other schemes do postulate that a single analytical cor-
relation function or semi-variogram is valid for the whole
spatial domain considered. P5 led us to the introduction of ν
in Eqs. (10) and (11).

2.2.3 Analysis procedure

The expressions for the analysis and its error variance are di-
rect results of the linear filter theory (Jazwinski, 2007), and
they are derived in several books based on different formu-
lations (e.g., Tarantola, 2005; Kalnay, 2003; Carrassi et al.,
2018). The analysis at the ith grid point is equal to the back-

ground plus a weighted average of the
i
p innovations, while

the analysis error variance is derived from the error covari-
ance matrices as follows:

xa
i = xb

i +
i

Gb
i,:

(
i

Sb
+

i

R
)−1(

i
yo
−

i
yb
)

(19)

(σ 2)ai =
i

Pb
ii −

i

Gb
i,:

(
i

Sb
+

i

R
)−1( i

Gb
i,:

)T
. (20)

Equations (19) and (20) are also typical of optimal interpo-
lation, and the formulation used is similar to the one adopted
by Uboldi et al. (2008), which follows from Ide et al. (1997).
It is worth remarking that the background used in Eq. (19)
is the ensemble mean, since we have assumed xb

= xf in
Sect. 2.2.1. The ensemble members are used to determine the
background error covariance matrices. The method is a mod-
ified version of EnOI (Evensen, 2003), where an ensemble

of synchronous realizations is considered instead of a time-
lagged ensemble approach. As an additional difference be-
tween EnSI-GAP and other methods, it should be noted that
the grid point by grid point implementation makes it possi-
ble to modify the interpolation settings to adapt them to the
different regions in the domain, as discussed in Sect. 3.1.6.

The special case of a perfect background, as introduced in
Sect. 2.2.2, leads to a perfect analysis of xa

i = x
b
i . Because

all the information available shows an exceptional level of
agreement, we have chosen to set the analysis error vari-
ance to zero (i.e., background is the truth), such that for those
points the analysis probability distribution functions (PDFs)
are Dirac’s delta functions, and this has consequences for the
inverse transformation, as discussed in Sect. 2.3.

2.3 Data inverse transformation

The inverse transformation g−1 of g, described in Sect. 2.1
and reported in Eq. (3) for a scalar value of x, is the follow-
ing:

g−1(x)=QGamma (Norm(x);αD,βD)− ξ, (21)

where Norm(x) is the Gaussian cumulative distribution func-
tion. QGamma(. . .;αD,βD) is the quantile function for the
gamma distribution with shape αD and rate βD , which are
obtained as described in Sect. 2.1. ξ is a constant. If x is a
vector instead of a scalar value, then we apply Eq. (21) to its
components.

The inverse transformation at the ith grid point is written
as follows:

x̃ai = g
−1(xa

i ). (22)

However, we need to back-transform a Gaussian PDF and
not a scalar value. Equation (22) returns the median of the
gamma distribution associated to the ith grid point. Our goal
is to obtain the m vectors of the gamma shape and rate,
namely αa and βa, respectively. To achieve that, the inverse
transformation g−1 is applied to 400 quantiles of the (uni-
variate) Gaussian PDF defined by x̃a

i and (σ 2)ai ; a similar
approach is used by Erdin et al. (2012). Then, a least mean
square optimization procedure is used to obtain the optimal
shape and rate that better fits the back-transformed quantiles.
In the special case of a perfect analysis, the analysis PDF in
the original space of hourly precipitation values is a Dirac’s
delta function, and the analysis is the scalar obtained as in
Eq. (21) when x = xa

i .
Given αa and βa, it is possible to obtain the statistics

that better represent the distribution for a specific applica-
tion (e.g., median, 99th percentile, and so on). In Sect. 3, the
analysis value chosen is often the mean as it is the value that
minimizes the spread of the variance. However, other choices
may be more convenient, depending on the applications, as
discussed by Fletcher and Zupanski (2006), where, for in-
stance, the mode was chosen as the best estimate. In Sect. 3,
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we will also consider selected quantiles of the gamma distri-
bution to represent analysis uncertainty.

3 Results

The aim of this section is to provide guidance on the imple-
mentation of EnSI-GAP for some applications that we con-
sider important or useful for understanding how it works.

In Sect. 3.1, EnSI-GAP is applied over a one-dimensional
grid and in a controlled environment, using synthetic data
specifically generated for testing EnSI-GAP on precipitation.

In Sect. 3.2, a second, more realistic, example of applica-
tion for EnSI-GAP is reported, where the spatial analysis is
performed for a case study of convective precipitation over
South Norway. The case study cannot be strictly considered
an evaluation of the method since all the available observa-
tions are used in the spatial analysis, and it is not possible to
validate the predictions where no observations are available.
It is an example intended to show the potential of EnSI-GAP
for (automatic) weather forecasting or civil protection pur-
poses.

Section 3.3 describes the results of cross-validation ex-
periments over South Norway. EnSI-GAP performances are
evaluated for a period of 5 months centered over summer
2019, i.e., from May to September. The verification scores
considered are commonly used in forecast verification and
described by several books, such as, for example, Jolliffe
and Stephenson (2012). A further useful reference for the
scores is the website of the World Meteorological Orga-
nization, available at https://www.wmo.int/pages/prog/arep/
wwrp/new/jwgfvr.html (last access: 13 May 2020).

3.1 One-dimensional simulations

The aim of this section is to show how EnSI-GAP works and
to assess its performances with different configurations under
idealized conditions. The impacts of Gaussian anamorpho-
sis and different specifications of background error covari-
ances are also investigated. The functioning of the algorithm
is shown with the example application to a single simulation.
The conclusions on the EnSI-GAP pros and cons are based
on the statistics collected over 100 simulations.

3.1.1 Simulation setup

A one-dimensional grid with 400 points and a spacing of
1 spatial unit, or 1 u, is considered. The domain covers the
region from 0.5 to 400.5 u, and the generic ith grid point
is placed at the coordinate i u. A simulation begins with the
creation of a true state, and then observations and ensemble
background are derived from it.

The simulation presented here is shown in Fig. 1a. For
each grid point, the true value (black line) is generated by
a random extraction from the gamma distribution, with the
shape and rate set to 0.2 and 0.1, respectively. To ensure

spatial continuity of the truth, an anamorphosis is used to
link a 400-dimensional multivariate normal (MVN) vector
with the gamma distribution. The samples from the MVN
distribution, with a prescribed continuous spatial structure,
are obtained from the descriptions by Wilks (2019) in chap.
12.4. The MVN mean is a vector with 400 components all
set to zero, and the covariance matrix is determined using
a Gaussian covariance function with 10 u as the reference
length used for scaling distances. The effective resolution
(Sect. 2.2.1) of the truth is then 10 u.

The ensemble background (gray lines in Fig. 1a) on the
grid, with 10 members, is obtained by perturbing the truth.
The background values at the observation locations are ob-
tained from the members using nearest-neighbor interpola-
tions. For each member, the truth is perturbed by shifting it
along the grid by a random number between−10 and+10 u,
thus simulating the misplacement of precipitation events.
Then, the effective resolution of the member is set to be
coarser than that of the truth. The true values are multiplied
by coefficients derived from a uniform distribution, with val-
ues between 0.05 and 2 and a spatial structure function given
by a MVN with a Gaussian covariance function, with a ref-
erence length extracted from a Gaussian distribution with a
mean of 50 u and a standard deviation of 5 u. Two special
regions are considered, and they are shown with the bright
shading in Fig. 1. In region R1, between 50 and 150 u, each
background member follows an alternative truth (i.e., it is lit-
erally being derived from a different truth) that is everywhere
different from 0 mm. In R1, the background is neither accu-
rate nor precise, and this leads to the occurrence of misses
and false alarms. In region R2, between 200 and 300 u, none
of the ensemble members simulate precipitation while the
true state reports precipitation. In this region, the background
is precise but not accurate since the ensemble is missing, or
poorly representing, an event which is otherwise well cov-
ered by observations. Because we had to ensure the continu-
ity of the background, we have enforced smooth transitions
between the two regions and their surroundings. For exam-
ple, R2 is actually beginning a bit after 200 u and ending a
bit before 300 u.

The number of observations (blue dots in Fig. 1a) is set to
40. The observed value at a location is obtained as the true
value of the nearest grid point, plus a random noise that is de-
termined as a random number between −0.02 and 0.02 that
multiplies the true value. The procedure is consistent with
the fact that observation precipitation errors should follow a
multiplicative model (Tian et al., 2013). The observation lo-
cations are randomly chosen. There are five between 1 and
100 u, 30 between 101 and 300 u, and five between the 301
and 400 u. The distribution is denser in the central part of the
domain and sparser closer to the borders.

The effect of the Gaussian anamorphosis is shown in
Fig. 1b. The transformed precipitation varies within a smaller
range than the original precipitation, thus effectively short-
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Figure 1. One-dimensional simulation. (a) Precipitation (in millimeters) – truth (black line), observations (blue dots), and background (gray
lines). (b) Transformed values. (c) Reference length scale for the scale matrix Di (units u, as defined in Sect. 3.1). Di is bounded within 3
and 20 u. (d) Integral data influence (IDI) based on Di from (c). The two regions, R1 and R2, have been highlighted with different shading
in the background of each panel.

ening the tail of the distribution, reducing its skewness, and
making it more similar to a Gaussian distribution.

An example application of EnSI-GAP is presented in Al-
gorithm 1. The choices that are kept fixed and that will not
vary for the whole Sect. 3.1.1 are described in this para-

graph. The localization matrix
i

0 of Eq. (6) is specified using
Gaussian functions, taking the form of those used in Algo-

rithm 1 for
i

Z and
i

V, with Li = 25u for all the grid points.
The sensitivity of the results to variations in the specifica-
tion of the scale matrix will be investigated in Sect. 3.1.3;
nonetheless, the strategy for determining Di will always be
the same whether we choose to use a Gaussian function, as
in Algorithm 1, or an exponential function. Di is determined
adaptively at each grid point, as shown in Fig. 1c, as the dis-
tance between the ith grid point and its third-closest obser-
vation location. In addition, Di has been constrained to vary
between 5 and 20 u. The tool used to quantify the impact of
the spatial distribution of the observations on the analysis is
the integral data influence (IDI; Uboldi et al., 2008); this is a
parameter that stays close to 1 for observation-dense regions,
while it is exactly equal to 0 in observation-void regions. In
practice, the IDI at the ith grid point is computed here as the
analysis in Eq. (19), when all the observations are set to 1
and the background is set to 0. IDI has been adapted to EnSI-
GAP in the sense that only the scale matrix is considered in

the calculation of
i

Pb in Eq. (6) because the part of
i

Pb, tak-
ing into account the atmospheric dynamics, does not depend
on the observational network. Where the IDI is close to zero,
the analysis is as good as the background. Figure 1d shows
the IDI when Di is set as the distance between the ith grid
point and its third-closest observation location. EnSI-GAP is
very sensitive to the tuning ofDi , and its estimation is further
discussed in Sect. 3.1.6.

3.1.2 Evaluation scores

The evaluation of analysis versus truth at grid points are eval-
uated using two scores that are applied over precipitation
values. The mean squared error skill score (MSESS) quan-
tifies the agreement between the analysis expected value and
the truth. The continuous ranked probability score (CRPS)
is a much used measure of performance for probabilistic
forecasts. The definitions of both scores can be found, for
example, in Wilks (2019). The MSESS has been used for
studies on precipitation by, for example, Isotta et al. (2019),
while applications of CRPS to precipitation can be found, for
example, in the paper by Hersbach (2000). The definitions
adapted to our case are reported here, in the following:

MSESS= 1−
1
m

∑m
i=1(x̃

a
i − x̃

t
i)

2

1
m

∑m
i=1(x̃

t
i − c)

2
;c =

1
m

m∑
i=1

x̃t
i . (23)
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CRPS=
1
m

m∑
i=1

∞∫
0

[Fa(α
a
i ,β

a
i ;y)−Ft(x̃

t
i;y)]

2dy. (24)

CRPS is the CRPS averaged over all the grid points. The
squared difference is between the continuous cumulative dis-
tribution functions (CDFs), namely Fa(α

a
i ,β

a
i ;y), which is

the gamma analysis CDF at point i, with the indicated shape
and rate parameters, evaluated at the value y; Ft(x

t
i;y) is

the Heaviside function, which is equal to 0 when y < xt
i and

equal to 1 when y ≥ xt
i .

3.1.3 Sensitivity analysis on the scaling parameters

A sensitivity analysis on variations in the scaling parameters

ν, ε2, and in the correlation function defining
i

0u is presented.
At the same time, the operation of EnSI-GAP is shown step
by step.

The sensitivity study considers three situations which are
also used in Figs. 2–6. A reference setup is defined with
ν = 0.5 and ε2

= 0.5. Then, we consider a perturbed situa-
tion in which ε2

= 0.1 and the observations are assumed to
be 10 times more precise than the background. Finally, a sit-
uation is considered with ν = 0.1, where only a small part of

the ensemble spread determines
i
σ 2
b. In addition, two differ-

ent functions are used for the specification of the scale matrix
i

0u, namely a Gaussian function and an exponential function.
In the scientific literature, both functions have been used to
specify correlations for spatial analysis of precipitation. For
instance, the Gaussian function is used by (Lussana et al.,
2009; Erdin, 2009) and the exponential function by Mahfouf
et al. (2007); Lespinas et al. (2015); Soci et al. (2016).

The scaling of the covariances, which in turn determines

the weights used in the analysis, is determined by
i
σ 2
o (Eq. 7)

and
i
σ 2
u (Eq. 6), which are related to

i
σ 2
b and

i
σ 2
f . In Fig. 2, the

variances are shown, and their values do not depend on the
correlation functions; they depend only on ν and ε2. In the
reference situation, Fig. 2a, the ensemble spread is adequate

(
i
σ 2
u = 0) for 58 % of the grid points, and it is overconfident

between points 160 and 300u; most of these points are in R2.
i
σ 2
b and

i
σ 2
o are larger in R1 and R2 than outside those two

special regions, as expected, and in R2
i
σ 2
b is almost equal to

i
σ 2
u because the ensemble is missing the precipitation event.

On average,
i
σ 2
b = 0.15 and

i
σ 2
o = 0.07. In the case of ε2

=

0.1 in Fig. 2b, the percentage of points in which the spread
is adequate decreases to 27 %, such that the scale matrix is
used more than in the reference situation. The mean values
become

i
σ 2
b = 0.19 and

i
σ 2
o = 0.02. In the case of ν = 0.1 in

Fig. 2c, the reduction in
i
σ 2
b is evident and, on average,

i
σ 2
b =

Figure 2. One-dimensional simulation. Error variances (dimension-
less quantities) for different configurations of the scaling parame-

ters. The variances shown are
i
σ 2
u (thick gray line),

i
σ 2
b

(dashed gray

line), and
i
σ 2
o(= ε

2 iσ 2
b
) (blue line).

i
σ 2
f

is the difference between
i
σ 2
b

and
i
σ 2
u. For all panels, L= 25u in

i
0 and the error variances do

not depend on choices on
i
0 or

i

0u. (a) ε2
= 0.5 and ν = 0.5. (b)

ε2
= 0.1 and ν = 0.5. (c) ε2

= 0.5 and ν = 0.1. The two regions, R1
and R2, have been highlighted with different shading in the back-
ground of each panel.

0.03 and
i
σ 2
o = 0.015. The percentage of points for which the

spread is adequate is determined by ε2, then, in Fig. 2c, it is
the same as in the reference situation.

The transformed precipitation analysis is shown in Fig. 3,
and the analysis in the original precipitation space, after the
inverse transformation, is shown in Fig. 4. The layout of the
figures is organized such that each row corresponds to the
same row in Fig. 2. In the left column a Gaussian function
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Figure 3. One-dimensional simulation in the transformed precipitation space. Analyses at grid points with different EnSI-GAP configura-

tions. For all panels, L= 25u. The values of ν and ε2 are reported in the panels. Specification of the scale matrix
i

0u – (a), (c), and (e) have
been obtained with a Gaussian function, while (b), (d), and (f) have been obtained with an exponential function. For each panel, the red line
is the analysis (expected value), the pink shading shows the interval between the 90th and the 10th percentiles, and the blue dots are the
observations as in Fig. 1b. The two regions, R1 and R2, have been highlighted with different shading in the background of each panel.

has been used in
i

0u, and in the right column an exponential
function has been used.

By comparing Figs. 3 and 4 with Fig. 2, it is possible
to study the impact of different choices on the analysis in
the transformed space. By increasing (decreasing) the er-
ror variances, the analysis spread increases (decreases) too.
The comparison between Gaussian versus exponential corre-
lation function shows that, given the same values of ν and ε2,
the exponential function shows a larger analysis spread. The
analysis expected value does not vary significantly among
panels that are on the same row, thus indicating that the ex-
pected value is not that sensitive to the correlation function
chosen. For instance, the MSESS for Fig. 4c is 0.78, while
for Fig. 4d it is 0.77. The CRPS for Fig. 4c is 0.43, while for

Fig. 4d it is 0.44. For the other panels of Fig. 4, the MSESS
and CRPS have lower values. The comparison to the refer-
ence situations of Fig. 4a and b show that the analysis ex-
pected values in Fig. 4c and d fit the observations better, and
the analysis spread is more likely to include the true values.
The situation is the opposite in Fig. 4e and f, where the ref-
erence setup performs better.

The analysis of over 100 simulations confirms the consid-
erations we have made above on the basis of a single simula-
tion. If we consider 100 simulations, the results are shown in
Table 3 in the EnSI-GAP column. The configuration leading
to the best results, in terms of both MSESS and CRPS, is the
one shown in Fig. 4c. The worst results were obtained when
ν = 0.1.
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Figure 4. One-dimensional simulation in the original precipitation space (in millimeters). Analyses at grid points with different EnSI-GAP
configurations. The layout is the same as in Fig. 3.

Table 3. Summary statistics on the evaluation of the 100 one-dimensional simulations. Results are presented for three modes, namely EnSI-
GAP, no transformation, which is EnSI-GAP without applying the Gaussian anamorphosis, and no ensemble, which is EnSI-GAP where the
background is the ensemble mean, and the background error covariance matrix is determined solely by the scale matrix. The configurations
listed are the same as those that have been used in Figs. 3–6, and the abbreviations have the same meanings (e.g., with reference to Fig. 3, the
first row corresponds to (a), the second to (b), and so on). The mean squared error skill score (MSESS; Eq. 23) is positively oriented, with a
perfect score being one. The continuous ranked probability score (CRPS; Eq. 24) is negatively oriented, with a perfect score being zero. For
each configuration and score, the best values are marked in bold. Note: exp – exponential function.

Mode EnSI-GAP No transformation No ensemble

Configuration MSESS CRPS MSESS CRPS MSESS CRPS
ε2
= 0.5, ν = 0.5; Gauss 0.66 0.80 0.66 0.91 0.63 0.95

ε2
= 0.5, ν = 0.5; exp 0.65 0.78 0.68 0.85 0.65 0.81

ε2
= 0.1, ν = 0.5; Gauss 0.70 0.79 0.68 0.95 0.65 1.01

ε2
= 0.1, ν = 0.5; exp 0.71 0.72 0.71 0.80 0.73 0.71

ε2
= 0.5, ν = 0.1; Gauss 0.66 0.92 0.67 1.04 0.61 1.33

ε2
= 0.5, ν = 0.1; exp 0.63 0.92 0.68 0.98 0.61 1.14
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3.1.4 Considerations on the data transformation

In Fig. 5, the EnSI-GAP results are shown for the same set-
tings used in Sect. 3.1.3, without applying data transforma-
tions and just interpolating the original precipitation values.
The layout of Fig. 5 is the same as in Fig. 4. The best re-
sults are found in the configurations of Fig. 5c and d, as in
Fig. 4. The agreement between analysis expected values and
true values is similar to those shown in Fig. 4 in that the dif-
ferences are small. For instance, the MSESS of Fig. 5c is
0.76. The most evident difference is in the spike in analysis
spread between 50 and 100u, which is present in Fig. 5 and
absent in Fig. 4. This may indicate that, without data trans-
formation, it is more likely for one to obtain unrealistically
large analysis spread.

The comparison of the analysis spread between Figs. 5 and
4 shows also that, without data transformation, it is more
likely that the true values fall outside the analysis spread
shown in the figure. For example, in Fig. 4d the analysis
spread includes the true values for 75 % of the grid points
when precipitation is higher than 1 mm; with respect to
Fig. 5d, that percentage is 53 %. The CRPS for Fig. 5c is
0.59, while for Fig. 5d is 0.56.

If we consider 100 simulations, the results are reported in
the column “no transformation” of Table 3. The MSESS is
often comparable or even slightly higher than using EnSI-
GAP, which confirms that the analysis expected value pro-
vides a good fit of the truth – even without data transforma-
tion. The benefits of the data transformation are in the better
representation of the analysis PDF, as can be seen by com-
paring the CRPS, because the analysis with the data transfor-
mation performs better for all configurations.

3.1.5 Considerations on the use of an ensemble

In Fig. 6, the results are shown when the ensemble back-
ground is not considered; instead, a single member or the

ensemble mean are considered. In this case, in Eq. (6),
i

Pf

is not considered, and
i

Pb is determined only by
i

0u. Note
that, in R2, the differences between Figs. 6 and 4 are very

small, since in R2
i

Pb is almost equal to
i

0u anyway. In the

figure,
i

0u is specified only through an exponential function,
which shows better results than the Gaussian function as
in the previous two sections. In the left column, the results
are shown when the best ensemble member is chosen as the
background. The best member is defined as the one that fits
the observations better in terms of minimizing the squared
deviations between the background and observed values. In
the right column, the ensemble mean is chosen as the back-
ground.

When comparing the three different configurations, the
general considerations are the same as in Sects. 3.1.3 and
3.1.4. The best results have been obtained with ε2

= 0.1 and

ν = 0.5, in Fig. 6c and d. In particular, the analyses based on
the ensemble mean perform better than with the best mem-
ber, which may sometimes deviate significantly from the
truth as it happens between 50 and 100 u. The scores support
this conclusion. For Fig. 6c, MSESS= 0.64 and CRPS=
0.54. For Fig. 6d, MSESS= 0.72 and CRPS= 0.50.

If we consider 100 simulations, the results are reported in
the column labeled no ensemble in Table 3, and this is only
for the case when the ensemble mean is considered as the
background. EnSI-GAP performs better than in the case of a
deterministic background for almost all configurations. Only

in the cases of ε2
= 0.1, ν = 0.5, and

i

0u defined through an
exponential function, does the analysis performs better with-
out considering the ensemble. In fact, the MSESS and CRPS
mark this configuration as the one returning the best results
among all configurations.

3.1.6 Discussion

If we consider the 100 simulations on the one-dimensional
grid, the comparison of results in Table 3 between the dif-
ferent implementation modes (EnSI-GAP, no transformation,
and no ensemble) brings us to the following conclusions on
the benefits of EnSI-GAP. The use of Gaussian anamorpho-
sis ensures a more accurate probabilistic analysis than with-
out any data transformation, as demonstrated by the fact that
EnSI-GAP shows the best CRPS for almost all the configu-

rations. The use of an ensemble in the definition of
i

Pb allows
the analysis to be more resistant to misbehavior in the back-
ground, as shown by the better scores obtained by EnSI-GAP
for most of the configurations.

The comparison between exponential and Gaussian corre-

lation functions in
i

0u favors the exponential function. From
geostatistics, we know that a Gaussian variogram model is
infinitely differentiable at the origin (Wackernagel, 2003).
This imposes unrealistic smoothness constraints on the anal-
ysis and, as a side effect, causes an overconfidence in the
analysis, leading to an underestimation of the analysis uncer-
tainty and a tendency to produce high and low values outside
the range of observations. Those effects are more evident in
places where the observational network is sparse and the spa-
tial analysis scheme is less constrained by the observations.
The risks related to the use of a Gaussian covariance are de-
scribed by Diamond and Armstrong (1984).

The EnSI-GAP implementation in Algorithm 1 requires
the specification of four parameters, namely D, L, ν, and
ε2. In the previous sections, the last two parameters are con-
sidered in the sensitivity study. In the last paragraph of this
section, some general considerations on the setup of D and
L are presented. The optimization of Di is an important part
of EnSI-GAP, as remarked in Sect. 3.1.1. There are classi-
cal methods for estimating the statistical structure of back-
ground errors as a function of observation location sepa-
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Figure 5. One-dimensional simulation in the original precipitation space (in millimeters). Analyses at grid points with different EnSI-GAP
configurations, without applying the data transformation. The layout is the same as in Fig. 3.

ration (Lönnberg and Hollingsworth, 1986), based on min-
imizing the deviations between theoretical structure func-
tions and empirical estimates from data. When the variation
is bounded, the covariance function is equivalent to a vari-
ogram, which is used in geostatistics (Wackernagel, 2003).
Often, one single value of Di is considered valid for the
whole domain, as, for instance, by Uboldi et al. (2008). In
accordance with P4 of Sect. 2.2.2, we want Di to be depen-
dent on the spatial location. The blending of different vari-
ograms, using regional weights, has been done for tempera-
ture by Frei (2014); Hiebl and Frei (2016). For precipitation,
the method described by Hiebl and Frei (2018) adapts the es-
timation of variograms for daily precipitation anomaly fields
to the density of the observational network. In this document,
we follow a simple procedure in which each time step is con-
sidered independently from the others (P5; Sect. 2.2.2), and
we take advantage of the choice to implement the algorithm
based on a grid point by grid point elaboration. The observa-

tions and background are combined into the analysis because
we want some observations, not just one observation, to have
an impact on the analysis in the surrounding of a point. In
Sect. 3.1.1, the IDI has been introduced, and it is shown in
Fig. 1d. We have configured the simulation such that the IDI
is almost always larger than 0.8, which can be roughly in-
terpreted as having at least one observation, or possibly a
few, significantly influencing the analysis everywhere over
the domain. The procedure we suggest for setting Di is the
following: have the objective of your investigation clear in
your mind; choose a functional form of the scale matrix that
suits your objective; test different strategies for the determi-
nation of Di , based on an inspection of the IDI, showing the
regions of the domain that would be more influenced by the
observations; select the range of values for Di that may lead
to acceptable results in the spatial analysis; and refine the op-
timization of Di by evaluating EnSI-GAP performances on
the basis of skill scores that serve your goals.
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Figure 6. One-dimensional simulation in the original precipitation space (in millimeters). Analyses at grid points with different EnSI-GAP

configurations, without considering the whole ensemble. Specification of the scale matrix
i

0u through an exponential function.
i

0f is not
used. The layout is similar to Fig. 3, except that here (a), (c), and (e) show the results obtained when considering the background as the best
member of the ensemble, while for (b), (d), and (f) the background is the ensemble mean.

Li depends on the characteristics of the background used,
and it should reflect the size of typical precipitation events
occurring in a region. If we assume that it is reasonable to use
the observational network to refine the effective resolution of
the background, then we can imagine that Li should be set to
values larger than Di .

3.2 Intense precipitation case over South Norway

The data used in this section are those used in the oper-
ational daily routine at the Norwegian Meteorological In-
stitute (MET Norway). The forecasts are from the Met-
CoOp Ensemble Prediction System (MEPS; Frogner et al.,
2019). MEPS has been running operationally four times a
day (00:00, 06:00, 12:00, and 18:00 universal coordinated

time – UTC) since November 2016, and its ensemble con-
sists of 10 members. The hourly precipitation fields are avail-
able over a regular grid of 2.5 km. In the articles by Frogner
et al. (2019) and Müller et al. (2017), the performances of
MEPS in simulating precipitation fields are discussed in de-
tail. MEPS adds more value over deterministic forecasts for
summer precipitation events than for winter. The smaller
spatial scales (e.g., smaller then ≈ 50 km) have some pre-
dictability for up to a 6 h forecast lead time. One of the main
findings of the study by Frogner et al. (2019) was that, “with
limited predictability of small scales, post-processing should
be an integrated part of any system”. The observational data
set of hourly precipitation is composed of the following two
data sources: precipitation estimates derived from the com-
posite of MET Norway’s weather radar and meteorological
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weather stations equipped with ombrometers, such as rain
gauges or other devices. The hourly precipitation in situ ob-
servations have been retrieved from MET Norway’s climate
database at https://frost.met.no/ (last access: 13 May 2020).
In addition to MET Norway’s official weather stations, the
database includes data collected by several Norwegian public
institutions such as, for example, universities (e.g., the Nor-
wegian Institute of Bioeconomy Research – Nibio), the Nor-
wegian Water Resources and Energy Directorate (NVE), the
Norwegian Public Roads Administration (Statens vegvesen).
As described in the recent paper by Nipen et al. (2020), MET
Norway is successfully integrating amateur weather stations
temperature data into its operational routine. The method
applied is described by Lussana et al. (2019a). Integrating
citizen observations into operational systems comes with a
number of challenges. The operational systems must be ro-
bust and, therefore, rely on strict quality control procedures,
such as those described by Båserud et al. (2020). In this
study, hourly precipitation observations from the same net-
work of opportunistic sensors are considered and used both
in Sect. 3.2 and in Sect. 3.3. The majority of data measured
by stations managed by citizens have been collected thanks
to the collaboration between MET Norway and Netatmo, a
manufacturer of private weather stations. The observations
used in Sect. 3.2 and in Sect. 3.3 have been quality controlled
by MET Norway; therefore, they are considered as being cor-
rect data.

A mass of moist air from the ocean, moving towards the
Norwegian mountains, originated from several intense show-
ers over western Norway on 30 July 2019. South Norway, the
domain considered, is shown in Fig. 7; it measures 373 km in
the meridional and 500 km in the zonal directions. The mea-
surements from MET Norway’s weather stations show val-
ues with more than 20 mmh−1, which is extremely intense
given the climatology of the region. In addition, thousands of
lightning strikes have been recorded (not shown here), thus
confirming the convective nature of the precipitation. Intense
events have been observed in the afternoon along the coast
and over the nearby mountains, especially in Sogn og Fjor-
dane. This region is shown as the black box in Fig. 7; it
extends for 80 km in both meridional and zonal directions.
Point A is well covered by observations, and it corresponds
to the center of a grid box where a maximum of precipita-
tion has been observed. Point B is the center of a grid box
that is not covered by observations and where a maximum
of precipitation has been reconstructed by the analysis. The
distance between points A and B is 14 km, and their eleva-
tions above mean sea level (a.m.s.l.) are 198 m and 911 m at
A and B, respectively. In Sogn og Fjordane, damages have
been reported (Agersten et al., 2019); they were caused by
the heavy rain that also triggered a series of landslides. One
of them caused a fatality when a driver was caught in the
debris flow.

The two domains of South Norway and Sogn og Fjor-
dane have been chosen to showcase two typical situations

Figure 7. South Norway domain used in the simulations of
Sects. 3.2 and 3.3. The red triangles mark station locations used for
cross-validation in Sect. 3.3. The gray shading indicates the altitude
(from lighter gray at 0 m to darker gray at approximately 2400 m
above mean sea level – a.m.s.l.). The blue shading indicates the
sea. The black box delimits the Sogn og Fjordane domain shown
in Figs. 11 and 12; the crosses mark the two points, A and B, re-
ferred to in the following.

that can be found in an operations center. In both domains,
the focus is on the representation of hourly precipitation pat-
terns at the mesoscale, as defined by Thunis and Bornstein
(1996); Stull (1988), though we will focus on different parts
of the mesoscale over different domains. South Norway is
used to show that the variability in the fields represented by
the forecast ensemble members mostly involves the meso-β
part of the mesoscale (i.e., spatial scales from 20 to 200 km).
Weather forecasters are used to making decisions on the basis
of information at such scales. Sogn og Fjordane is a domain
where high-resolution information is needed to support fine-
scale analysis by, for example, civil protection authorities. In
this case, we will study precipitation patterns at the meso-γ
scale (i.e., from 2 to 20 km).

3.2.1 EnSI-GAP setup

Algorithm 1 has been used over a grid with 2.5 km of spac-
ing, which is the resolution of the MEPS grid (see Sect. 3).
The parameters are ε2

= 0.1, ν = 0.1, pmx = 200, and Li =

50km constant. A Gaussian function has been used in
i

0u.Di
is estimated adaptively on the grid as the distance between
the grid point and the 10th closest observation location with
upper and lower bounds of 3 and 10 km, respectively. The
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settings are such that the analyses would stay much closer
to the observations than to the forecasts, where observations
are available. The analysis uncertainty will reflect, locally,
both the forecast ensemble spread and the averaged innova-
tion. The two parameters of pmx and Di are used to limit the
number of observations that can influence the analysis at a
grid point. The localization parameter, Li , is set to a rather
large value, such that the dynamics of the forecasts ensemble
are evident in the results. The observation error covariance

matrix of Eq. (7) is defined with a diagonal
i

0o, which is a
situation where radar-derived and in situ observations are as-
sumed to have the same precision; moreover, we are ignor-
ing the spatial correlation of radar-derived observation errors.
An investigation of spatially correlated radar-derived obser-
vation errors is outside the scope of this study. Note that those
settings are useful for the illustration of the method, while for
operational applications other settings may be more appro-
priate, such as a smaller value of Li or a more sophisticated
characterization of the observation errors, for example.

3.2.2 Data transformation

As an example of application, the Gaussian anamorphosis
described in Sect. 2.1 is applied here to the transformation of
hourly precipitation over Sogn og Fjordane on 30 July 2019
at 15:00 UTC. The procedure is sketched in Fig. 8. In Fig. 8a,
the distribution of values for an arbitrary ensemble member
is shown. In Fig. 8b, the empirical CDFs of the 10 ensemble
members are shown as gray dots, and the pink lines repre-
sent the gamma CDFs that better approximate each empirical
CDF. The values of the gamma shape and rate are then aver-
aged to obtain αD and βD , which are reported in the figure.
Figure 8c displays the CDF for the standard normal, which is
the target CDF in our transformation scheme. Finally, Fig. 8d
shows the distribution of the transformed values for the back-
ground ensemble mean, which is used as the background for
the analysis in Eq. (19). In Fig. 8a and d, the distribution of
values for the observations is also shown, though the values
are not used for the estimation of the gamma parameters. The
effects of the Gaussian anamorphosis in adjusting the distri-
bution of values into a bell-shaped distribution are clearly
evident.

The four different steps of the data transformation for an
arbitrary value, at approximately 2 mmh−1, are also high-
lighted with circles to guide the reader in the order of the
application of each step.

3.2.3 South Norway

Figure 9 shows the hourly precipitation data for 30 July 2019
at 15:00 UTC over South Norway. The observational data
are shown in Fig. 9a. For each grid box, the average of the
radar-derived precipitation and in situ measurements within
that box is shown. Note that the box-averaged observations
are used only for illustration because the analysis is using

each observation. Grid points that are not covered by obser-
vations are marked in gray. In Fig. 9b, the background en-
semble mean derived from a 10-member ensemble forecast is
shown, while six of the 10 ensemble members are shown in
Fig. 10. The 10-member ensemble shows realistic precipita-
tion fields; moreover, they are rather similar, at least in terms
of the weather situation at the meso-β scale. Weather fore-
casters can be quite confident in stating that heavy precipi-
tation is likely to occur over western and southern Norway,
while is less likely over eastern Norway. The forecast un-
certainty is large enough that it is difficult to predict exactly
which subregion will be affected by the most intense show-
ers. The observations confirm that showers occur along the
coast of western Norway, and that the most intense precipi-
tation event is located in Sogn og Fjordane (the black box in
Fig. 7; note that approximately half of the box is not covered
by observations). Figure 9c shows the analysis, specifically
the analysis mean at each grid point. In this case, the spa-
tial analysis acts almost as a gap filling procedure to fill in
empty spaces in between observations with the most likely
precipitation values. The analysis of precipitation is consis-
tent with the impacts of the intense weather event described
in the report by Agersten et al. (2019). As prescribed by our
EnSI-GAP settings, the analyses over observation-dense re-
gions are not that different from the observed values.

3.2.4 Sogn og Fjordane

One of the main innovations of EnSI-GAP, compared to tra-
ditional spatial analysis methods (Hofstra et al., 2008), is the
specification of anisotropic background error covariances be-
tween grid points through nonstationary covariance matrices.
Two visual representations of the correlations associated with
those covariances are shown in Fig. 11 for points A and B.

With reference to
i

Pb, the background error correlations be-
tween the generic ith grid point and the other grid points,
evaluated at the ith grid point, are the ith row (or column) of

the correlation matrix
i

0b, which is obtained as follows:

i

0b
i,: =

i

Pb
i,:√

i

Pb
i,i

√
diag

(
i

Pb
)
.

(25)

The correlations are shown instead of the covariances be-
cause we are interested in the shape of the covariance pat-
terns, and correlation is a quantity which is then more cor-
rect to compare between the two points. For visualization
purposes, in Fig. 11 the correlations have been downscaled
over a finer-resolution grid to highlight asymmetries. The
closest 200 observations are shown with different symbols,
depending on rain occurrence. The two maps in Fig. 11 are
rather different. For point A, the correlation extends more
to the west than to the east. The point is located in a valley
floor, which is rather sheltered from the main atmospheric
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Figure 8. Data transformation procedure. Example for 30 July 2019, 15:00 UTC, hourly precipitation totals over Sogn og Fjordane (see
Fig. 7). (a) The histograms with the frequencies of occurrence for one member of the ensemble forecast and the observed values. The
numbers in parentheses indicate the values of the truncated bins. (b) The cumulative distribution functions (CDFs) for the 10 forecast
ensemble members – the empirical CDFs are shown as gray dots, and the best-fitting Gamma CDFs are shown as pink lines. The final
Gamma CDF used in the Gaussian anamorphosis is shown with the red line, and the parameters are reported. The inset at the bottom right
shows a magnified section of the main graph. (c) The standard Gaussian CDF. (d) The distributions of transformed values for the background
ensemble mean and the observations. The four different steps of the data transformation for an arbitrary value of precipitation (approximately
2 mmh−1) are indicated by circles and arrows.

flow, and this seems to be represented in its correlation pat-
tern which rapidly decays as we move upwards. The area
where the correlation is higher than 0.6 is confined within
approximately 5 km in any direction from point A. At point
B, the situation is different, and the correlation extends more
to the east than to the west. The point is located on a plateau
at 911 m and the correlation pattern follows the main atmo-
spheric flow from west to east. The no precipitation obser-
vations 20 km northeast of point B have correlations that are
comparable to those of observations at 10 km west of B.

The evolution in time of the hourly precipitation fields is
shown in Fig. 12 for observations, background, and anal-
ysis at three different times, namely 14:00, 15:00, and
17:00 UTC. It is worth noticing that the example used to
illustrate the data transformation process in Fig. 8 refers
to the Sogn og Fjordane domain at 15:00 UTC. The back-
ground is smoother than the observed field and shows scat-
tered showers for 14:00 and 15:00 UTC; then, a wider pre-
cipitation cell over point B is shown at 17:00 UTC. The ob-
served fields show a large variability over short distances, and
the difference between two adjacent points can be as large as
30 mmh−1. According to P4 of Sect. 2.2.2, in data-dense ar-
eas we would like the analysis to stay closer to the observed

value than in data-sparse areas. Point A is in a densely ob-
served area, while point B is almost in the middle of the
observation-void region, and the closest observations are lo-
cated at a distance of approximately 10 km. Di at point A is
closer to 3 km, while at point B it is closer to 10 km. This
ensures a higher effective resolution at point A than at point
B. At 14:00 UTC, the observed value at point A (from radar-
derived estimates) is over 30 mmh−1, and a sharp gradient
from southwest to northeast is evident. The gradient is so in-
tense that the nearby points southwest of point A, only 3 km
apart, show almost no precipitation. The background indi-
cates that a maximum of the field can occur between point
A and B. The analysis matches the observations, smoothing
out their spatial variability, such that at point A the analysis
value is less than 10 mmh−1. A precipitation maximum of
more than 30 mmh−1 has been reconstructed in the analysis
between points A and B, which is consistent with the gra-
dient in the observations and the pattern in the background.
At 15:00 UTC, the radar-estimated precipitation at point A
is again over 30 mmh−1, but there are several points in its
surroundings with similar values, such that the local gradi-
ent of the field is less steep, and it shows a decrease in pre-
cipitation east of point A. The background also shows that
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Figure 9. Hourly precipitation totals for 30 July 2019, 15:00 UTC (mmh−1), over South Norway (see Fig. 7). Observations are shown in (a)
over the same grid as the analysis. For each grid cell, the average of the observed values within the cell is shown. Grid points that are not
covered by observations are marked in gray in (a), and the dashed gray lines in (b) and (c) delineate the boundary of the gray area shown in
(a). The background ensemble mean is shown in (b). The analysis expected value is shown in (c). The color scale is the same for all panels.
The Sogn og Fjordane domain of Fig. 7 is shown as the dashed box.

Figure 10. Hourly precipitation totals for 30 July 2019, 15:00 UTC (mmh−1), over South Norway (see Fig. 7) for six of the 10 background
ensemble members. The color scale is the same as in Fig. 9. The Sogn og Fjordane domain of Fig. 7 is shown as the dashed box.
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Figure 11. Background error correlations for 30 July 2019, 15:00 UTC,
i
0b
i,: of Eq. (25) used for spatial analysis of hourly precipitation

totals over Sogn og Fjordane (see Fig. 7). The blue–red shading shows the background error correlations. With reference to Fig. 7, (a) shows
the background error correlations between point A and the grid points. For point B, the correlations are shown in (b). The symbols show
the closest 200 observations, and the triangles are observations of precipitation, while the crosses are observations of no precipitation. The
concentric circles have their common center at either point A or B, and they are distance isolines at 10, 20, 30, 40, and 50 km. The thick dark
gray lines delimit the fjords. The dashed lines are the contour lines for elevation; the thickest mark the 500 m isoline, and the others have a
gradually smaller thickness for 600, 700, 900, 1000, 1100, 1200, 1300, 1400, and 1500 m.

it is more likely to find intense precipitation immediately to
the west of point A than to the east. A second precipitation
maximum is found in the background, north of point B. The
analysis ignores this second precipitation maximum, since it
is not supported by observations. The analysis around point
A closely matches both the observed values and the gradi-
ent, such that the field in the observational-void area does
not show significant local extremes. The shape of the area
with precipitation rate higher than 30 mmh−1 around point
A is similar to the pattern of point A correlations higher than
0.6 in Fig. 11. At 17:00 UTC, all the observations report val-
ues smaller than 20 mmh−1, and the analysis reconstruct a
maximum of over 30 mmh−1 at point B. In this case, the ob-
servations and background precipitation yes/no patterns are
similar, and they both show a southeast to northwest gradient.
The analysis estimates a narrow band of precipitation around
point B, where values of more than 20 and up to 30 mmh−1

are extrapolated. The extrapolated values are consistent with
the effects of the extreme event reported by MET Norway
(Agersten et al., 2019).

The time series of hourly precipitation at points A and B
are shown in Fig. 13. At point A, the graphs show the time
series of the (aggregated) observation, background, and anal-
ysis, together with the estimated uncertainties. Note that the
observation is used in the analysis at point A. At point B,
observations are not available. For the background, the per-
centiles are derived from the 10-member forecast ensemble
through a linear interpolation of the empirical cumulative
distribution function. For the analysis, the percentiles are de-
rived from the estimated parameters of the gamma distribu-
tion representing the marginal probability density function

(PDF) of the analysis at the points. In general, EnSI-GAP
forces the analysis to follow the observations more closely
than the background, and the analysis uncertainty is smaller
than that of the background. As a consequence, the timing of
the precipitation onset is also better represented in the anal-
ysis. At point A, the PDF of the precipitation analysis, be-
tween 10:00 and 13:00 UTC, indicates with certainty that it
is not raining. From 14:00 UTC onward, the analysis PDF
is a gamma. From 14:00 to 23:00 UTC, the observed values
are within the analysis envelopes shown in Fig. 13 for 50 %
of the hours, which is a consistent improvement compared to
the background. For the other 50 % of the hours, the observed
values lie outside the envelopes, and 14:00 and 19:00 UTC
are the 2 h for which the deviations between observations
and analyses are the most evident. For those 2 h, the local
variability in the precipitation field is extremely large, as
shown in Fig. 12 for 14:00 UTC, and the observed values
at point A are outliers, if compared to their neighbors. With
respect to the precipitation yes/no distinction, from 14:00 to
23:00 UTC, the analysis clearly shows that precipitation is
occurring at the point, while the background is more uncer-
tain. At point B, the analysis uncertainties between 10:00 and
12:00 UTC are so small that the analysis is exactly 0 mmh−1,
despite there are no observations exactly located at that point.
From 13:00 UTC onward, the analysis follows a gamma PDF
and the spread is wider at point B than at point A. The in-
creased analysis spread reflects the increase in the uncer-
tainty in predicting the tails of the PDF where no observa-
tions are available. It is perhaps remarkable that, even for ob-
servationally dense regions such as at point A, the analysis
spread remains quite large.
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Figure 12. Hourly precipitation totals (in mmh−1) over Sogn og Fjordane (see Fig. 7) for 30 July 2019 at 14:00 UTC (a–c), 15:00 UTC
(d–f), and 17:00 UTC (g–i). The panels labeled with Ob (a, d, and g) show the aggregated observed values, as in Fig. 9. The panels with Ba
(b, e, and h) show the background ensemble mean. The panels with An (c, f, and i) show the analysis expected value. The crosses mark the
A and B points of Fig. 7, which are also shown in (b). The dark orange lines in the panels for Ba and An delineate the boundary of the gray
area shown in the panels for Ob. The color scale is the same for all panels. The thick lines and the dashed lines have the same meaning as in
Fig. 11.

3.2.5 Discussion

EnSI-GAP can support weather forecasters and civil protec-
tion by filling in the empty spaces in the observational net-
works. The analysis seamlessly merges the high-resolution
NWP models with observations, and it remains closer to
the observed values where they are available. The predicted
fields are easy to interpret by experienced staff that are aware
of the spatial distribution of the observations and the charac-
teristics of the NWP considered. The analysis is more pre-
cise and accurate than the background where observations
are available, as at point A in Sect. 3.2.4, and also for the
onset of precipitation. Uncertainty on the estimate at a point
increases as the number of nearby observations decreases.
The analysis procedure also modifies the field where obser-
vations are not available in a credible way, as at point B in
Sect. 3.2.4. The uncertainty estimates can be used to have an
idea of the extreme values that may occur in a region, which

is useful information both for the nowcasting of an event and
in the subsequent reporting phase.

In Sect. 3.2.4, the observed values show strong gradients
over small distances. The spatial analysis finds the best esti-
mates of true values, which are areal averages, as discussed
in Sect. 2.2.1 and defined in Eq. (4), with spatial supports
determined by the EnSI-GAP settings. In Fig. 13, at 14:00
and 19:00 UTC, the representativeness errors of the observa-
tions at point A are particularly large with respect to the spa-
tial supports of the true values, such that the corresponding
observations are filtered out as outliers by the analysis, and
their values are unlikely to occur according to the analysis
PDF. If the ensemble is overconfident, according to the defi-
nition of Sect. 2.2.2, it is, in principle, possible to modify the
analysis PDF by reducing Di such that the analysis spread
would become larger, which in this case would correspond
to a reduction in the spatial support for the true values, and
the analysis envelope would be more likely to include the ob-
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Figure 13. Time series of hourly precipitation totals for the period 30 July 2019, 10:00 to 23:00 UTC, at points A (a, b) and B (c, d) in Fig. 7.
Panels (a) and (c) show the background (blue). Panels (b) and (d) show the analysis (red). The blue (red) line shows the background (analysis)
mean, the region with densely shaded lines is the difference between the 90th and the 10th percentiles, and the region with sparsely shaded
lines is the difference between the 99th and the first percentiles. For point A, the closest observation, which is a radar-derived estimate, is
shown (black line). Point B is in a region for which observations are not available.

servations. However, when a single observation is an outlier
with respect the neighboring observations, as in Fig. 13 at
14:00 and 19:00 UTC, the tuning of Di to include the obser-
vation in the analysis PDF may lead to unrealistic discontinu-
ous patterns in the analysis due to the sudden jump in the spa-
tial supports used in the definition of true values. In general,
a very dense observational network, with observations that
are closer than the effective resolution of the background,
has the following two effects on the analysis where precip-
itation varies significantly over small distances: (i) it forces
the analysis expected value to stay close to the areal average
of the observations, and (ii) it increases the observations and
background error variances because of the increased value of

the term

〈(
i
yo
−

i
yb
)2
〉

in Eqs. (11)–(18); this will, in turn,

increase the analysis uncertainty in Eq. (20). The trade-off
between the accuracy and precision of the analysis at a point
ultimately depends on the objective of an application.

3.3 Validation over South Norway through
cross-validation experiments

The cross-validation experiments have been conducted over
the South Norway domain shown in Fig. 7. The data sources
and grid settings of the experiments are the same as for
the case study of the intense precipitation in Sect. 3.2. The

time period considered is from the 1 May to 30 September
2019. The observations from MET Norway’s stations have
not been used in the spatial analysis. Instead, because of
the expected better quality of those measurements, they have
been reserved as independent observations for verification.
This cross-validation strategy is widely used in atmospheric
sciences (Wilks, 2019). The locations of the 57 weather sta-
tions directly managed by MET Norway are shown in Fig. 7
as red triangles. They are distributed all over the domain,
and the station network density is higher along the coast and
sparser on the mountains because of the inherent difficulties
in operating weather stations there.

3.3.1 EnSI-GAP setup

The EnSI-GAP Algorithm 1 has been used. The spatial anal-
ysis predicts values at those station locations used for cross-
validation. The fixed parameters in this implementation are
pmx = 200 and Li = 50km. A Gaussian function has been

used in
i

0u.Di is estimated adaptively at each location as the
distance between that point and the 10th closest observation
location, with upper and lower bounds of 3 and 10 km, re-
spectively.

The parameters that are allowed to vary and that are the
objective of the sensitivity analysis that follows are ε2 and ν.
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There is an important difference here with respect to
Sect. 3.2; in this example, the radar-derived estimates are
assumed to be less precise than the in situ observations but
more precise than the background. The in situ observations
are assumed to be 10 times more precise than the back-
ground; thus, ε2 is set to 0.1, as in Sect. 3.2. However, the
radar-derived observations are assumed to be only two times
more precise than the background, or, in other words they are
five times less precise than the in situ observations, and the

elements of the diagonal matrix
i

0o corresponding to radar
observations are set to five, instead of one as for the in situ
observations. The background ensemble and analysis PDF
values considered are those extracted at the locations of sta-
tions used for the cross-validation.

3.3.2 Cross-validation statistics

Figure 14 shows the distribution of values for selected per-
centiles of the background ensemble and analysis PDF as a
function of the independent observations. The distribution of
the observed values has been divided into intervals; they are
(units of mmh−1) 0–0.1, 0.1–0.5, 0.5–1, 1–2, 2–3, 3–5, 5–
10, and 10–35. The number of samples within each interval
is shown in Fig. 14a. Note the logarithmic scale on the y
axis. Most of the observations are smaller than 1 mmh−1;
nonetheless, there are still more than 1000 values that are
greater than 1 mmh−1. Considering an arbitrary observation
interval for each probabilistic prediction, either for back-
ground or analysis, we have computed the following per-
centiles: 10th, 25th, 50th, 75th, and 90th. The black line in
Fig. 14 shows the average median within each interval, while
the regions between the 90th and the 10th percentiles and
the 75th and the 25th percentiles are shown with gray shad-
ing. The diagonal (1 : 1) ideal line is shown as a dashed line.
The background is shown in Fig. 14a. The background en-
velope deviates significantly from the diagonal, especially
for values greater than 2–3 mmh−1. The analysis PDFs are
shown in the other panels for different EnSI-GAP configura-
tions that are clearly indicated within each panel. The angular
coefficients of the regression lines that better fit the analysis
medians are reported in Fig. 14b–d. In all cases, the medi-
ans are closer to the diagonal for the analyses than for the
background. The analysis biases that are conditional to the
observations are always smaller than that of the background.
As expected, by giving more weight to the observations, with
ν = 1 and ε2

= 0.1, the analysis bias conditional to the obser-
vations decreases. If we compare different analysis configu-
rations, the medians vary less than the other percentiles, and
this indicates that variations in the EnSI-GAP configuration
impact on the spread of the analysis PDF (i.e., analysis un-
certainty) more than on its central moment. Figure 14b and
c show the two extreme situations, while Fig. 14d displays
an intermediate situation. The uncertainty is more sensitive
to variations over ν than over ε2. In the case of ν = 0.1 and

ε2
= 0.1, the angular coefficient of the regression line ap-

proximating the analysis median reaches its the best value;
however, the analysis spread is small, and the independent
observations fall above the 90th percentile. In the case of
ν = 0.1 and ε2

= 0.1, the angular coefficient of the regres-
sion line has the best value. For the two cases with ν = 1, the
independent observations fall into or around the 90th per-
centile of the analysis. Once again, it is the specific applica-
tion that would determine the best combination of parameters
to use.

Figure 15 shows the equitable threat score (ETS) for the
background and analysis means. A total of four different
analysis configurations are shown. The independent obser-
vations are used to judge if events have occurred. The condi-
tion defining the “yes” event for either observation or predic-
tion is that the corresponding value must be higher than the
precipitation threshold specified on the x axis. For all pre-
dictions, it is more likely that a predicted “yes” event corre-
sponds to an observed “yes” event for smaller thresholds than
for the higher ones. The added value of the analysis over the
background is evident for all configurations. The two con-
figurations with ν = 1 present similar ETS curves, though
the one with ε2

= 0.1 performs better. The same holds true
when ν = 0.1, though, in this case, the ETS is more sensitive
to variations in ε2, and the analysis performance decreases
faster with the increase in ε2.

4 Conclusions

The ensemble-based statistical interpolation with Gaussian
anamorphosis (EnSI-GAP) applies the inverse problem the-
ory to the spatial analysis of hourly precipitation. Numeri-
cal model output provides the prior information, and specifi-
cally, we have considered ensemble forecasts that have been
combined with radar-derived estimates and in situ observa-
tions. EnSI-GAP has been applied on data sets that are typ-
ically available within national meteorological services. In
addition, opportunistic sensing networks based on citizen ob-
servations have been considered. The precipitation represen-
tation is a synthesis of all the data available. Thanks to the
diffusion of open data policies, the same data sets are nowa-
days also available in real time to the general public. For
instance, MET Norway provides free access to the weather
forecasts and the radar data used in this article via https:
//thredds.met.no/ (last access: 12 January 2021), while in situ
observations, except for the citizen observations, are avail-
able via https://frost.met.no/ (last access: 12 January 2021).

EnSI-GAP assumes the precipitation fields to be locally
stationary and transformed Gaussian random fields. The
marginal distribution of precipitation at a point is a gamma
distribution, which is different for each point. Gaussian
anamorphosis is used to preprocess data in order to bet-
ter comply with the requirements of linear filtering. A spe-
cial case is considered where uncertainties are so small that
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Figure 14. Summer 2019 hourly precipitation statistics for the cross-validation experiments. (a) Background versus observations. (b) Anal-
ysis ε2

= 1 ν = 1 versus observations. (c) Analysis ε2
= 0.1 ν = 0.1 versus observations. (d) Analysis ε2

= 1.0 ν = 0.1 versus observations.
The independent observations have been divided into classes, and the number of samples within each class is shown in the inset of (a). Within
each class and for each probabilistic prediction, several percentiles have been computed. The regions between the average of the 90th and
the 10th percentiles are shown with the light gray shading. The regions between the average of the 75th and the 25th percentiles are shown
by the dark gray shading. The thick black line indicates the average of the medians. The dashed black line is the diagonal (1 : 1) line. The
angular coefficients of the best-fitting lines passing through the origins and better approximations of the averages of the medians are shown;
for the background in (a), it is 0.26 (not shown in the panel).

the returned analysis values have delta functions as their
marginal distributions.

EnSI-GAP considers each hour independently, and it re-
quires the specification of four parameters that can vary
across the domain. The implementation is designed to run
in parallel on a grid point by grid point basis. Despite the
small number of parameters to optimize, the spatial analysis
scheme is flexible enough that it can also be applied when the
background ensemble is not representing the truth satisfacto-
rily. An important case is when, in a region, all the ensem-
ble members show no precipitation, while the observations
report precipitation. By adding a scale matrix to the flow-
dependent background error covariance matrix, the analysis
can predict precipitation – even where the background is sure
that it is not occurring.

The examples of the applications presented allow for a
better understanding of the characteristics of EnSI-GAP, and
they show how the statistical interpolation can be adapted to
meet specific requirements. It can be used to fill in the gaps
between observation-rich regions to obtain a continuous pre-
cipitation field. The analysis expected value is available ev-

erywhere, as it is the background, and in observation-dense
regions it can be as accurate as the observations. Thanks to
the data transformation, the spread of the analysis PDF is less
likely to become unrealistically large either because of large
model errors or large variability in observed small-scale pre-
cipitation. Within certain limits determined by the spatial dis-
tribution of the observational network, the analysis envelope
at a point can be tuned such that it is representative of the dis-
tribution of precipitation values determined by atmospheric
processes occurring at smaller spatial scales than those re-
solved by the background. For instance, in an observation-
void region, the EnSI-GAP analysis PDF at a point provides
a better estimate than the background for the probability of
precipitation exceeding a threshold by an observation hypo-
thetically placed at that point. This is an important result,
especially when high-impact weather is involved.

Data availability. Some of the data sets used in Sects. 3.2 and
3.3 are freely available online. MET Norway provides free access
to the weather forecasts at https://thredds.met.no/thredds/catalog/
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Figure 15. Equitable threat score (ETS) for summer 2019 hourly
precipitation, as obtained through the cross-validation experiments.
The black lines are the ETS curves for the analysis mean values, as
indicated in the legend. The ETS curve for the background is the
gray line. The precipitation thresholds defining the “yes” events are
reported on the x axis.

meps25epsarchive/catalog.html (Norwegian Meteorological Insti-
tute, 2021a); the hourly precipitation derived from the Norwe-
gian composite of weather radars can be found at https://thredds.
met.no/thredds/catalog/remotesensingradaraccr/catalog.html (Nor-
wegian Meteorological Institute, 2021b); and the archive of Norwe-
gian historical weather and climate in situ observations is available
at https://frost.met.no/ (MET Norway, 2019). Due to distribution
restrictions imposed by some of the providers, opportunistic sens-
ing networks, such as citizen observations, are not freely available
online.
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