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Abstract. Large-amplitude internal waves in the ocean
propagate in a dynamic, highly variable environment with
changes in background current, local depth, and stratifica-
tion. The Dubreil–Jacotin–Long, or DJL, theory of exact in-
ternal solitary waves can account for a background shear, do-
ing so at the cost of algebraic complexity and a lack of a
mathematical proof of algorithm convergence. Waves in the
presence of shear that is strong enough to preclude theoret-
ical calculations have been reported in observations. We re-
port on high-resolution simulations of stratified adjustment
in the presence of strong shear currents. We find instances of
large-amplitude solitary-like waves with recirculating cores
in parameter regimes for which DJL theory fails and of wave
types that are completely different in shape from classical in-
ternal solitary waves. Both are spontaneously generated from
general initial conditions. Some of the waves observed are as-
sociated with critical layers, but others exhibit a propagation
speed that is very near the background current maximum. As
such they are not freely propagating solitary waves, and a
DJL theory would not apply. We thus provide a partial rec-
onciliation between observations and theory.

1 Introduction

Large-amplitude internal waves, often referred to as inter-
nal solitary-like waves or ISWs, are a well-studied coherent,
nonlinear phenomenon accessible via field measurements,
laboratory experiments, and simulations of density stratified
fluids. Historically, ISWs were described by approximate
perturbation theories that lead to an equation of Korteweg–de
Vries (KdV) type for the temporal–horizontal portion of the
object (Talipova et al., 1999; Helfrich and Melville, 2006).
The vertical component is described by solving a linear or-

dinary differential eigenvalue problem. This is generally re-
ferred to as the weakly nonlinear description, or WNL. While
aspects of WNL continue to be actively developed in the re-
cent literature (e.g. Grimshaw et al., 1997; Talipova et al.,
1999; Caillol and Grimshaw, 2012), with an excellent survey
available in Ostrovsky and Stepanyants (2015), it has been
known for some time that WNL is lacking as a quantitative
descriptor of ISWs. The KdV theory itself predicts that wave
amplitude is bounded above by the onset of breaking, in con-
trast to observations of wave broadening and the formation
of waves with flat crests (i.e. tabletop waves; Lamb and Wan,
1998; Rusås and Grue, 2002). Exact ISWs are solutions of
the nonlinear elliptic eigenvalue problem referred to as the
Dubreil–Jacotin–Long (DJL) equation. This equation is for-
mally equivalent to the full stratified Euler equations (in a
frame moving with the wave), and thus this theory is referred
to as fully nonlinear or exact.

Comparisons of WNL with exact ISWs (Lamb and Yan,
1996; Lamb, 1998; Stastna and Peltier, 2005) typically yield
poor results for the vertical structure, especially for complex
stratifications. Higher-order WNL theory, with the Gardner
or mKdV equations as prominent examples, does a better job
of qualitatively matching the type of upper bound on wave
amplitude (Grimshaw et al., 1997), but there is a signifi-
cant gap between what is observed in simulations and what
WNL can describe (Stastna and Peltier, 2005). In the con-
text of ISWs with strong shear, this gap is well illustrated
by the study of Caillol and Grimshaw (2012), which devel-
ops a WNL theory for weakly stratified critical layers. The
theory is algebraically quite complex, with significant ties to
work on Rossby wave critical layers. However, the theory is
not compared to simulations or experiments, and thus it is
unclear to what extent it applies to a situation with a dynam-
ically evolving wave field. Interestingly, it is very similar in
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style to Maslowe and Redekopp (1980), which considered a
closely linked topic some 30 years earlier.

While field measurements are often taken in a dynamic,
complex environment with changes in the stratification struc-
ture and a non-trivial background current, much of the un-
derstanding of ISWs has been developed based on relatively
simple stratifications (typically quasi-two-layer or exponen-
tial stratification). The presence of a background shear cur-
rent complicates the algebra needed to derive theory, whether
WNL or the DJL equation. In the case of WNL, the numeri-
cal methods are unchanged, but for the DJL equation the it-
erative algorithm used to obtain solutions requires an ad hoc
modification (see Stastna and Lamb, 2002, and the Methods
section below). In practice, publicly available software for
the DJL equation (Dunphy et al., 2011) can handle many sit-
uations, but there is no a priori proof of convergence. It has
been shown that the presence of a background shear current
can modify the type of upper bound on wave amplitude and
can also change the polarity of exact ISWs (again see Stastna
and Lamb, 2002, for details). The detail-oriented reader is
cautioned that Fig. 3 in Stastna and Lamb (2002) is based
on ISWs of elevation which have an opposite sign of wave-
induced vorticity to ISWs of depression. For ISWs of depres-
sion a background current with positive vorticity tends to de-
crease the limiting wave amplitude. In his study of ISW en-
ergetics in the presence of a background shear current, Lamb
(2010) thus employed a negative background current.

The DJL equation has also been extended to model ISWs
past breaking or waves with trapped cores. Such waves are
known to form during shoaling (Lamb, 2002), and the ques-
tions of whether the core is completely trapped (Xu et al.,
2016), quiescent (Derzho and Grimshaw, 1997; Lamb and
Wilkie, 2004; Luzzatto-Fegiz and Helfrich, 2014), or found
to be immediately adjacent to the boundary or at depth (He
et al., 2019) have all been the subject of recent studies. Any
ISW can be described as a propagating baroclinic vortex, but
trapped cores provide a more complex wave–vortex coupling
that will be revisited below.

In the classical theory of hydrodynamic stability the gra-
dient Richardson number (Ri) is the standard necessary con-
dition; when Ri> 0.25 the flow is linearly stable. However,
Ri< 0.25 is not a sufficient condition for instability (Hazel,
1972). Large-amplitude ISWs, both with and without a back-
ground shear current, can induce strong shear currents near
the wave crest. This situation has drawn interest over sev-
eral decades (Bogucki and Garrett, 1993; Barad and Fringer,
2010; Lamb and Farmer, 2011; Xu et al., 2019), first as a
pure conjecture and then with two-dimensional and finally
three-dimensional situations. It has been found that shear in-
stability within ISWs is quite complex, with onset dependent
on the strength of upstream perturbations, the Reynolds num-
ber, and duration of time spent below Ri= 0.25 as a pertur-
bation passes through the wave. Three-dimensionalization, at
least on scales for which direct numerical simulation (DNS)
has been accessible, occurs preferentially at the rear of the

wave, and in some parameter regimes instability is episodic,
with bursts and quiescent periods.

Walter et al. (2016) measured large-amplitude ISWs in
northern Monterey Bay, California (USA), as part of a com-
plex interplay between a coastal upwelling front and lo-
cal wind forcing. These waves were large amplitude (up
to a 10 m maximum isopycnal displacement in water ap-
proximately 20 m deep) with strong background shear cur-
rents. Indeed, the background shear currents were so strong
that solutions of the DJL equation were impossible to com-
pute. Some analysis of large ISW-like waves in the presence
of strong background shear currents is provided in Stastna
and Walter (2014). These authors considered the resonant
generation of ISWs by flow of a background current with
shear over isolated topography. They found large-amplitude
wave trains as well as waves trapped behind the topogra-
phy with vortex-rich cores that were quasi-trapped near the
surface (i.e. both the upstream-propagating wave trains and
the trapped waves exhibited vortex-rich cores). However, the
connection between simulations and field measurements is
incomplete since it is unclear whether the waves observed in
Walter et al. (2016) were resonantly generated.

In recent work, Zhang et al. (2018) considered the effect
of a background current on mode-2 waves. The waves were
generated via stratified adjustment, similar to the methodol-
ogy we follow below. The stratification used was centred at
the mid-depth, so that in the absence of a shear current ini-
tial perturbations have the dominant part of their energy de-
posited into the mode-2 wave field. The authors document
the manner in which the adjustment process and the result-
ing leading mode-2 wave and trailing mode-1 tail are modi-
fied by the presence of shear. They also compare their results
to the observations of Shroyer et al. (2010), though the fact
that both the density profile and shear layer in Zhang et al.
(2018) are centred at the mid-depth makes a detailed com-
parison impossible.

The interaction of ISWs with background currents has also
been explicitly demonstrated in the context of frontal gen-
eration. Bourgault et al. (2016) discussed observations and
simulations of a case in the Saguenay fjord, Quebec, Canada.
The authors found that convergence near the front was impor-
tant in numerical generation experiments, though the param-
eter space they explored was fairly limited. In all cases dis-
cussed by the authors, rightward- and leftward-propagating
wave trains propagating away from the front differ in ampli-
tude, with larger waves observed in stronger shear.

In a related non-ISW context, Lamb and Dunphy (2018)
considered the generation of internal waves by tidal flow in
the presence of shear. They concentrated on characterizing
energy flux and found profound asymmetries between the
waves propagating with the shear and against the shear. In-
terestingly, whether the downstream or upstream side of the
ridge that generated the internal waves dominated the en-
ergy flux was found to depend on the slope of the flanks
of the ridge. It is difficult to ascertain implications of this
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study for the problem of ISWs with shear, since these authors
only considered a linear stratification. Nevertheless, the study
clearly suggests that shear can profoundly influence wave en-
ergetics.

In this paper, we report on high-resolution simulations of
stratified adjustment and the resulting internal wave field in
the presence of strong shear currents. The structure of the pa-
per is organized as follows. The Methods section presents the
governing equations, the DJL theory, and the design of and
parameter values for all numerical experiments we present.
The Results section presents the major findings, divided into
three parts: (i) waves modified by shear but without critical
layers, (ii) waves with critical layers, and (iii) situations in
which the stratification is in the opposite half of the water
column from the shear layer. The paper concludes with a Dis-
cussion section and a brief set of Conclusions.

2 Methods

We consider an incompressible fluid in the absence of rota-
tion that obeys the Boussinesq and rigid lid approximations.
The stratified Navier–Stokes equations in the absence of ro-
tation read

∂u

∂t
+u ·∇u =−

1
ρ0

∇P + ν∇2u−
ρg

ρ0
k̂, (1)

∇ ·u = 0, (2)
∂ρ

∂t
+u ·∇ρ = κ∇2ρ, (3)

where u is the velocity, P is the pressure, ρ is the density,
and ρ0 is some reference density of the fluid. The physical
parameters are the molecular kinematic viscosity ν (set to
equal 1× 10−6 ms−2) and scalar diffusivity κ (set to equal
2× 10−7 ms−2). The unit vector in the vertical direction is
denoted by k̂. The computational domain is rectangular, with
the x axis running left to right along the bottom of the do-
main, so that 0< x < Lx and 0< z < Lz.

Simulations were carried out with the pseudospectral
code SPINS (Subich et al., 2013). The code has been thor-
oughly validated in a number of different configurations
(e.g. shear instabilities, internal wave generation, internal
solitary wave propagation) and is available for download
through its online manual: https://wiki.math.uwaterloo.ca/
fluidswiki/index.php?title=SPINS_User_Guide (last access:
28 September 2021). All simulations reported employed reg-
ularly spaced grids. Approximately 30 exploratory simula-
tions were carried out prior to identifying a parameter space
of interest. Table 1 provides a list of cases discussed in this
paper along with their key physical and numerical parame-
ters. As a general comment, simulations were much higher
resolution than many comparable studies in the literature,
and the pseudospectral aspect of SPINS means that the model
has very little numerical dissipation. This proved vital for

some of the results reported below and is discussed further
in the Discussion section.

All simulations were initialized with a background shear
current

U(z)= Umax exp
[
(z−Lz)/dU

]
. (4)

The total depth was fixed as Lz = 20 m for all simulations,
but the horizontal extent of simulations was varied on a case-
by-case basis. The thickness of the shear layer was fixed at
dU = 3 m or 0.15 of the total depth. Umax was varied as de-
scribed in Table 1. The form of the background current is
such that, in the absence of stratification, it is linearly stable
(i.e. Fjortoft’s criterion is not satisfied).

The initial density field was specified as ρ(x,z)= ρ(z−η)
with

η = η0 exp
[
−(x− 0.5Lx)2/w2

d

]
. (5)

While other values were used in preliminary experiments, all
numerical experiments reported below set η0 =−5 m (0.25
of the total depth) and wd = 100 m.

The background density field was specified as

ρ(z)= 1−
1ρ

2
tanh

[
(z− z0)/d

]
. (6)

The dimensionless density difference was set as 1ρ = 0.001
for all simulations, while the pycnocline centre and thick-
ness, (z0,d), were varied as shown in Table 1.

Figure 1 shows a sample representation of the initial con-
ditions, while Fig. 2 shows the 1-D background profiles for
the various simulations discussed below. Figure 2a shows the
N2(z) profile, Fig. 2b shows the background shear current
U(z), and Fig. 2c shows the gradient Richardson number
(Ri).

Exact internal solitary waves are solutions of the DJL
equation. In the presence of a background shear current this
equation has a rather complex form:

∇
2η +

Uz(z− η)

[U(z− η)− c]

[
1−

(
η2
x + (1− ηz)

2
)]

+
N2(z− η)

[U(z− η)− c]2
η = 0. (7)

For no background current the DJL equation takes the more
familiar form

∇
2η+

N2(z− η)

c2 η = 0, (8)

with the strong non-linearity encapsulated in the evaluation
of the buoyancy frequency squared profile at its upstream
height (i.e. at z− η). While several different techniques for
the solution of the DJL equation without a background cur-
rent are described in the literature, the only publicly available
approach to the DJL equation with a background current that
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Table 1. Cases considered throughout the paper, including case label and their dimensional parameters.

Label Description Umax (z0,d) Domain size Grid size
(ms−1) (m) (m)

DJL Shear with DJL Theory 0.15 (15.0,3.0) (4000,20) (8192,512)
DJLB Shear with DJL Theory 2 0.15 (5.0,3.0) (4000,20) (8192,512)
NO DJL 1 Shear without DJL Theory 1 0.3 (15,3.0) (16000,20) (16384,512)
NO DJL 1B Shear without DJL Theory 1b 0.3 (5.0,3.0) (4000,20) (8192,512)
NO DJL 1BF Shear without DJL Theory 1b 0.3 (5.0,3.0) (4000,20) (8192,512)
NO DJL 2 Shear without DJL Theory 2 0.4 (15,0.6) (16000,20) (16384,512)
CL 1 Shear without DJL Theory 3 0.5 (15.0,3.0) (16000,20) (16384,512)
CL 1B Shear without DJL Theory 3 0.5 (15.0,3.0) (4000,20) (8192,512)
CL 2 Shear without DJL Theory 4 0.5 (15,0.6) (4000,20) (32768,512)

Figure 1. Typical initial conditions. Horizontal component of ve-
locity (ms−1) shaded (case NO DJL 1 shown as a representative
sample), five isopycnals in black.

the present authors are aware of employs an ad hoc extension
of the direct variational method of Turkington et al. (1991),
as described in Stastna and Lamb (2002). This consists of
an iterative algorithm, which while generally stable for weak
currents leads to “wandering” when shear is strong. The sim-
ulations reported below specifically concentrate on param-
eter regimes in which the DJL was found not to converge
(unless otherwise noted in the discussion).

2.1 Results

Sample initial conditions are shown in Fig. 1. The horizon-
tal component of velocity is shaded and five isopycnals are
superimposed in black. Only a portion of the computational
domain is shown. The velocity range is chosen to be sym-
metric in order to demonstrate that the background current is
always greater than or equal to zero. Simulations are reported
for combinations of background profiles shown in Fig. 2. In
all cases, the region of the highest shear occurs away from

Figure 2. Background profiles. (a) N2(z), (b) U(z), (c) Ri.

the peak in the buoyancy frequency. For cases NO DJL 2 and
CL 2 this is due to the thin pycnocline, and for cases with the
sub-label B this is due to the fact that the pycnocline centre
is below the mid-depth.

Numerical experiments were designed to compare three
qualitative categories of results:

1. those with wave trains that have a DJL description prop-
agating both with (rightward) and against (leftward) the
background shear current, cases DJL and DJLB;

2. those with wave trains that have a DJL description prop-
agating against the background shear current (leftward)
but no DJL description for wave trains propagating with
the background shear current (rightward), cases NO
DJL 1, NO DJL 1B, NO DJL 1BF, and NO DJL 2; and

3. cases with possible critical layers, cases CL 1, CL 1B,
and CL 2.

For cases DJL and DJLB, the background shear current
was not large enough to preclude DJL solutions for either
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Figure 3. Vertical component of the velocity shaded and saturated
at±0.01 ms−1 and eight density contours in black at t = 7200 s for
cases DJL and DJLB. (a) Case DJL leftward (against shear) prop-
agating wave train and (b) Case DJL rightward (with shear) propa-
gating wave train. (c) Case DJLB leftward (against shear) propagat-
ing wave train and (d) Case DJLB rightward (with shear) propagat-
ing wave train.

the rightward- or leftward-propagating wave trains. Figure 3
shows the leftward- and rightward-propagating wave trains
at t = 7200 s for cases DJL and DJL B.

In both cases a rank-ordered wave train is formed, with
the leading wave described by solutions of the DJL equa-
tion. When the pycnocline is in the upper half of the do-
main, waves of depression form, and the asymmetry between
steeper and taller leftward-propagating (against background
shear) waves and broader, shorter rightward-propagating
(with background shear) waves is clearly evident. When the
pycnocline is in the lower half of the domain, waves of eleva-
tion form, the left–right asymmetry is less pronounced, and
the fissioning of a rank-ordered wave train takes place more
slowly.

The asymmetry of waves that emerge from the initial con-
ditions is consistent with both the KdV and DJL theories
(Stastna and Lamb, 2002). In KdV theory the presence of
the background current changes the coefficients of nonlin-
earity and dispersion, while in DJL theory the properties of
the solitary waves (such as half width) can be computed from
the solution itself. In principle it would be possible to use the
inverse scattering theory for the KdV equation to predict the
number of solitary waves that emerge from the initial condi-
tions for the leftward and rightward wave trains, but at the
time of writing the authors are unaware of a practical imple-
mentation of this technique.

Figure 4. Sample wave trains at a late time (t = 21600 s) for Case
NO DJL 1. (a) Scaled density and (b) vertical component of veloc-
ity.

2.2 Solitary-like wave trains without DJL theory

We now turn to the more dynamically interesting cases for
which DJL theory proves incomplete. We first consider the
case labelled NO DJL 1. The stratification corresponds to the
black curve in Fig. 2a, while the background shear current
corresponds to the blue curve in Fig. 2b. This case yields
coherent wave trains propagating both with and against the
background shear current, but the iterative DJL solver is
not able to converge to steady solutions for the rightward-
propagating waves going with the background shear current.
This is almost certainly due to the low values of Ri in the
shear layer, as indicated by the blue curve in Fig. 2c.

Figure 4 shows the density field in panel (a) and the verti-
cal component of velocity, orw, in panel (b). The response of
the density field at this advanced time (t = 21600 s) is clear:
two wave trains form, with propagation distance altered by
the Doppler shift due to the vertical mean of the background
current. A large-amplitude wave train propagates against
the shear current (waves are leftward-propagating). Its con-
stituent waves are rank-ordered with no sign of instabil-
ity. The portion of the domain between 8km< x < 12 km
is dominated by the remnant of the adjustment process or
the portion of the initial disturbance that is deformed by the
background shear current to form an overturning region. The
wave train propagating with the shear current (waves are
rightward-propagating) can be seen for x > 14 km. Again,
the waves appear rank-ordered but are smaller in amplitude
and much wider than the waves that make up the leftward-
propagating wave train (moving against the shear current).

Figure 5 revisits the above comment on stability but at two
earlier points in the evolution of the wave trains, namely,
at t = 3600 and 7200 s. We show Ri using a symmetric
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Figure 5. Case NO DJL 1. Ri at (a) 3600 s and (b) t = 7200 s.
Colour range saturated over −0.25< Ri< 0.25.

colour range, whereby the blue regions denote static insta-
bility (N2 < 0). It can be seen that remnants of the initial ad-
justment yield a very large region of overturns, as the initial
density perturbation is strained by the background current.
Interestingly, even at early times, some overturning extends
to very near the front of the rightward (or with the back-
ground shear current) propagating wave train. The leading
rightward-propagating wave is evident at t = 3600 s, and at
t = 7200 s three rank-ordered waves have separated from the
region of instability. At 7200 s a Rayleigh–Taylor-type insta-
bility is observed at the bottom of the shear layer (17< z <
19 m) for 8.6< x < 9.1 km. All three rightward-propagating
waves exhibit overturns (blue regions) in their core, while the
adjustment remnants yield a region of Ri< 0.25 over a re-
gion spanning several kilometres near the upper boundary. In
contrast, the leftward-propagating (or against the background
shear current) wave train only yields regions with Ri< 0.25
very near to the upper boundary, with no overturns observed.

There are thus three different types of instability observed
in these cases: (i) Rayleigh–Taylor type instability that oc-
curs beneath the background shear current, (ii) a stratified
shear instability triggered by the stratified adjustment of the
rightward-propagating wave train, and (iii) the generation
of strong vortex cores in the leading ISW-like waves of the
rightward-propagating wave train.

The detailed evolution of the wave trains, as expressed
in the density field, is shown in Figs. 6 and 7. Three times
are shown (t = 7200, 14400, and 21600 s), with a domain
that extends 1 km in the horizontal but shifts locations as
the wave train propagates. If the reader was not told of its
presence in Fig. 6, they would have no reason to suspect
that a background shear current was present, as the leftward-
propagating (against the shear) waves take the form of clas-
sical “bell-shaped” solitary waves of both WNL and DJL

Table 2. Estimated wave speeds for select cases.

Label Estimated Umax cest/Umax
leading wave (ms−1)

speed, cest
(ms−1)

DJL 0.252 0.15 1.68
NO DJL 1 0.343 0.3 1.14
NO DJL 2 0.408 0.4 1.02
CL 1 0.48 0.5 0.96
CL 2 0.483 0.5 0.97

theories. This is in sharp contrast to rightward-propagating
(with the shear) waves in Fig. 7. Here the region near the
upper boundary is clearly active, with shortwave and “roll”
activity evident over a significant portion of the domain.
The leading waves take a very different form from classi-
cal solitary waves, with sharp crests more akin to Stokes
waves or cnoidal waves (Rubenstein, 1999). Figure 8 recon-
siders the near upper boundary region (top 2 m of the do-
main) for the wave train propagating rightward with the shear
current. Forty density isolines that range over ρmin < ρ <

ρmin+ 0.21ρ are shown. By concentrating the view on this
region, it can be seen just how active the near-boundary re-
gion is. Not only do the rightward-propagating waves exhibit
quasi-trapped, recirculating cores that remain active over a
long time period, but it can also be seen that a tumultuous
region of overturns and rolls initially nearly reaches the two
leading waves but gradually lags behind. This figure clearly
illustrates that the most important feature of internal solitary-
like waves is their ability to outrun localized regions of over-
turns and instability (which we labelled instability ii above)
before such regions drain significant energy from the wave.
However, because it takes some time for the solitary-like
waves to fission, there is ample time to trigger stratified shear
instabilities over a wide spatial region.

In Table 2, we show estimates of the propagation speed
of the leading rightward-propagating wave going with the
background current. It is immediately evident that all the
cases discussed above have propagation speeds (cest) that are
very near the background current maximum (Umax). More-
over, the scaled propagation speed (cest/Umax) tends toward
1 as Umax increases. The DJL theory assumes that stream-
lines (in a frame moving with the wave) connect to infinity
both upstream and downstream of the wave. This is not the
case for the NO DJL cases. We hypothesize that this is why
the DJL solvers fail to converge in this parameter range. Es-
sentially, the wave trains that form cannot be fully decoupled
from the adjustment region for a long enough time so that
vortex-dominated leading waves (or several waves) form.

To summarize, in all the “NO DJL” cases shown in Ta-
ble 1, rightward-propagating (with the background shear cur-
rent) waves with trapped cores and near-surface regions of
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Figure 6. Density fields for wave trains propagating against the shear current for Case NO DJL 1. (a) t = 7200 s, (b) t = 14400 s, and
(c) t = 21600 s.

Figure 7. Density fields for wave trains propagating with the shear current for Case NO DJL 1. (a) t = 7200 s, (b) t = 14400 s, and (c) t =
21 600 s.
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Figure 8. Detail of density fields in the core region for wave trains propagating with the shear current for Case NO DJL 1. Twenty-one
density isolines with values −5× 10−4 < ρ <−4× 10−4 shown. (a) t = 7200 s, (b) t = 14400 s, and (c) t = 21600 s.

overturns and local instabilities were consistently observed.
These waves cannot be described by presently available
solvers for the DJL equation. In all simulations they were
observed to be long-lived, with active core regions that could
transport mass over a considerable distance in the field.

2.3 Wave trains with critical layers

The waves described in the previous section (all “NO DJL”
cases) were found to have propagation speeds that were
greater, if only marginally, than the maximum background
shear current. When Umax > c > 0, a critical layer may form.
In order to get some sense of how robust the waves described
above are to the presence of a critical layer, we present the re-
sults of two cases with Umax = 0.5 ms−1. In Fig. 9 we show
the vertical velocity and density fields over the top 4 m for the
wave train propagating rightward with the background cur-
rent at three different times. The leading and second waves
are shown, with both exhibiting a prominent quasi-trapped,
recirculating core. Interestingly, while the quasi-trapped core
of the leading wave appears relatively quiescent, a region of
instability is observed ahead of it, near the top boundary.

The majority of the rightward-propagating wave trains de-
scribed above involved trapped cores. In contrast, the cases
with DJL theory yield non-breaking waves. In order to ex-
plore the effect of stratification in the high-shear region, we
performed a series of experiments with a narrower pycn-
ocline and report one representative example, case CL 2.

We found that the leading waves no longer matched the
bell-shaped internal solitary waves of DJL theory and that
the short length-scale behaviour in the high-shear region re-
quired a substantial increase in horizontal resolution (1x =
0.12 m for this case). In Fig. 10a we show the density field
for the rightward-propagating wave train. Note that the hori-
zontal length is reported in metres, as opposed to kilometres
for the previous figures. The leading wave can be seen to be
horizontally asymmetric, with isopycnals in the region down-
stream of the crest that do not return to their upstream height.
Figure 10b and c show the horizontal component of veloc-
ity saturated between ±0.005 ms−1. Figure 10b corresponds
to the region between thick black lines in panel (a), while
panel (c) corresponds to the region between thin dashed
black lines in panel (a). Figure 10b and c show only the upper
2 m of the water column. Figure 10c exhibits an inner region
of strong vertical currents and a broader region of weaker
currents. The outer region extends much further upstream
of the wave crest (faint blue) than downstream (faint red).
The leading wave is trailed by a long wave train. Figure 10b
shows that the vertical currents in the wave train exhibit sim-
ilar, short length-scale fluctuations near the upper boundary
(where the presumed critical layer is located).

The relationship between the rightward-propagating wave
train and the background current is better illustrated via
the relative vorticity field, ωrelative = uz−wx−U

′(z), where
U(z) is the background shear current. The relative vortic-
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Figure 9. Detail of vertical velocity (shaded and saturated at ±0.01 ms−1) and density fields in the core region for wave trains propagating
with the shear current critical layer case CL 1. Ten density isolines with −5× 10−4 < ρ <−4× 10−4 shown in black. (a) t = 7200 s,
(b) t = 9000 s, and (c) t = 10800 s.

Figure 10. (a) Detail of density fields for wave trains propagating with the shear current critical layer case CL 2 (the case with a narrow
density profile) t = 4500 s, (b) the vertical velocity component in the top 2 m of the domain in the region between the thick black lines in (a)
saturated at ±0.005 ms−1, and (c) the vertical velocity component in the top 2 m of the domain in the region between the thin dotted black
lines in (a), saturated at ±0.005 ms−1.
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Figure 11. The relative vorticity field saturated at 0.1 s−1 for the CL2 case with the density field overlain at t = 4500 s.

ity field is shown in Fig. 11. It can be seen that the leading
wave has a substantial vortex that is trapped near the upper
boundary. The wave train behind the leading wave is asso-
ciated with a train of vortices that gradually descends from
the upper boundary into the main water column. Thus, what
is referred to as “the leading wave” above is, to a substan-
tial degree, a deformation of the pycnocline by the leading
vortex.

2.4 Wave trains with unstratified shear layers

The results in Fig. 11 suggest that stratification in the shear
layer region has a profound influence on the type of wave that
forms via adjustment. In the absence of a shear layer, a pyc-
nocline located in the bottom half of the water column yields
ISWs of elevation. We thus performed a number of numeri-
cal experiments with a pycnocline located in the bottom half
of the water column to see whether wave trains of elevation
behave similarly to those reported above.

The results of our numerical experiments indicate that
waves propagating against the background current are far less
affected when the pycnocline is well removed from the shear
layer. In contrast, ISWs propagating with the shear are al-
most completely destroyed in all but the weakest currents
that were tried. Figure 12 shows the vertical component of
the velocity field shaded with a saturation with eight density
isolines superimposed. The strength of the background shear
current increases from top to bottom. In the weakest shear
current case (Fig. 12a) the trademark updraft–downdraft pat-
tern of a DJL ISW can be seen for both the rightward- and
leftward-propagating wave trains. At the time shown, the
wave train has not fully fissioned into rank-ordered ISWs.
The reason for selecting such an early time in the evolu-
tion, t = 5400 s, can be observed in the bottom two panels.
Figure. 12b and c show U0 = 0.3 ms−1 and U0 = 0.5 ms−1,
respectively. In both cases there is no trace of a coherent
rightward-propagating wave train, and the perturbation verti-
cal velocity field is dominated by relatively short length-scale
perturbations. In Fig. 12b an argument could be made for a
weak wave train, but unlike Fig. 7 there is no clear sepa-

ration between a leading wave form and the trailing waves.
In the highest velocity case the remnants of the rightward-
propagating wave train trail the disturbances near the surface
by at least 1000 m.

Since background shear has been found to possibly af-
fect the polarity of ISWs, we performed numerical experi-
ments with an initial condition with reversed polarity (a de-
pression). The results of polarity reversal are compared for
U0 = 0.3 ms−1 in Fig. 13. Figure 13a reproduces Fig. 12b,
while Fig. 13b shows the polarity-reversed case. It can be
seen that the leftward-propagating wave in Fig. 13b takes
the form of an undular bore, consistent with the predic-
tions of WNL theory. The undular bore is much slower than
all ISWs previously simulated. Interestingly, the rightward-
propagating wave train also yields an undular bore; however,
for later times (not shown) the undular bore largely fades
away to irrelevance, and the disturbances of the high-shear
region dominate the rightward-propagating response.

The cases described in this subsection are perhaps the
clearest demonstration of the difference between the weak-
shear regime discussed in Stastna and Lamb (2002) for which
ISWs are modulated in form by the background shear current
and the strong background shear regime.

3 Discussion

The numerical experiments reported above illustrate that
when a strong background shear current is present, the set
of possible wave–vortex phenomena is considerably larger
than the tidy ISWs described by the DJL equation. Indeed,
essentially none of the phenomena we have simulated could
be termed truly steady. The main coherent feature from our
simulations one could expect to see in the field, for a strong
background shear current, are ISWs with a strong vortex
core in the near-surface, high-shear region. Classical the-
ory of ISWs with cores generally considers nearly quiescent
cores (Derzho and Grimshaw, 1997; Luzzatto-Fegiz and Hel-
frich, 2014; Lamb and Wilkie, 2004), while recent theory and
simulations that include background shear currents yield so-
called “subsurface cores” (He et al., 2019). Neither of these

Nonlin. Processes Geophys., 28, 585–598, 2021 https://doi.org/10.5194/npg-28-585-2021



M. Stastna et al.: ISWs with strong shear 595

Figure 12. The vertical component of velocity (shaded) saturated at ±0.01 ms−1 with eight isolines of density superimposed at t = 5400 s.
(a) Case DJLB, (b) case NO DJL 1B, and (c) case CL 1B.

Figure 13. The vertical component of velocity (shaded) saturated at ±0.01 ms−1 with eight isolines of density superimposed at t = 5400 s.
(a) Case NO DJL 1B and (b) case NO DJL 1BF (polarity reversal).
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matches the strong wave–vortex coupling that was observed
above (e.g. Fig. 8). In cases in which a critical layer is pos-
sible, the vortex cores coexist with smaller disturbances that
extend ahead of the leading ISW.

The simulations we performed required resolution that
was much higher than that typically used in coastal ocean
simulations (i.e. multi-kilometre domains with a horizontal
resolution of less than a metre and a vertical resolution of
less than 5 cm). Even recent process studies on mode-2 waves
in the presence of shear using the finite-volume MITgcm
(Zhang et al., 2018) used a resolution of 5×0.5 m (which was
more than sufficient for the phenomena these authors set out
to model). Moreover, the pseudospectral model used has very
low inherent numerical dissipation, so that even phenomena
with relatively few grid points across them are only weakly
damped. The high resolution necessarily makes extension to
three dimensions a complicated task. However, 3-D simula-
tions initialized from a 2-D simulation, i.e. using the early
portion of the simulations described above, should be pos-
sible with present computational resources. It is likely that
performing a detailed energy analysis, as in Lamb (2010)
for ISWs propagating against the background shear current
(hence ones with a DJL theory), would require 3-D simula-
tions.

However, a more serious issue when interpreting the above
results is in the large gap between theory-inspired simula-
tions and those on the regional scale in coastal oceans. To
the authors’ knowledge there has been no systematic study
of ISW behaviour in marginally resolved situations, espe-
cially when parameterizations for mixed layers (e.g. the KPP
scheme) are employed. As noted above, the key feature of
ISWs is their ability to outrun local instabilities or mixing
events without a loss of coherence. A globally high value of
eddy viscosity cannot be “outrun”, and thus care should be
taken in extrapolating simulation results to particular field
measurements.

Even with the above caveats, the simulations we have con-
ducted pose a very clear question for the theorist: “In deep
water in which a pycnocline may be far removed from lo-
cal shear layers can an ISW be destabilized by a shear that
would be thought of as so far from the wave that it would be
irrelevant to its evolution?”

4 Conclusions

We have provided one possible explanation for why the mea-
surements in Walter et al. (2016) yielded large-amplitude
waves with no DJL-based description. That is, that for a por-
tion of parameter space, mode-1 ISWs generated via strati-
fied adjustment in the presence of a background shear cur-
rent are not free waves, since they have a propagation speed
very close to the maximum value of the background cur-
rent. When some stratification is observed near the surface,

these waves take the form of ISWs with strongly recirculat-
ing cores.

The simulations above were 2-D, while the observations of
Walter et al. (2016) were influenced by rotation and likely in-
cluded some large-scale 3-D structures (comments on small-
scale three-dimensionalization were made in the Discussion
above). Moreover, the observations take a different form
from the wave trains that are spontaneously generated in our
stratified adjustment simulations. This is not surprising, and
a set of initial conditions more closely tied to the field obser-
vations remains a clear goal for future work.

A different avenue for future work would be to more
closely link our results to the work of Zhang et al. (2018) on
mode-2 waves. Mode-2 waves lack a DJL theory due to the
possible presence of a trailing tail of mode-1 waves, and the
question of whether a particular shear current more strongly
affects the leading mode-2 wave or its mode-1 tail remains
largely open.

Finally, we provided well-resolved examples of stratified
adjustment with critical layers (cases labelled “CL”). When
a significant stratification was present near the surface, the
waves formed consisted of strong vortex cores, with some ev-
idence of fine-scale structure on the leading side of the wave.
In the absence of stratification near the surface, a train of vor-
tices spontaneously formed near the surface, and this led to
small-amplitude deformations of the underlying pycnocline.
Our simulations did not yield evidence of the common the-
oretical assumption that ISWs are the dominant object, with
critical layers providing a slow drain of energy (Caillol and
Grimshaw, 2012). This observation should be re-examined
on scales for which 3-D DNS is possible.
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