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Abstract. The multiple equilibria are an outstanding char-
acteristic of the Atlantic meridional overturning circulation
(AMOC) that has important impacts on the Earth climate
system appearing as regime transitions. The AMOC can be
simulated in different models, but the behavior deviates from
the real world due to the existence of model errors. Here,
we first combine a general AMOC model with an ensemble
Kalman filter to form an ensemble coupled model data assim-
ilation and parameter estimation (CDAPE) system and de-
rive the general methodology to capture the observed AMOC
regime transitions through utilization of observational infor-
mation. Then we apply this methodology designed within
a “twin” experiment framework with a simple conceptual
model that simulates the transition phenomenon of AMOC
multiple equilibria as well as a more physics-based MOC
box model to reconstruct the “observed” AMOC multiple
equilibria. The results show that the coupled model param-
eter estimation with observations can significantly mitigate
the model deviations, thus capturing regime transitions of the
AMOC. This simple model study serves as a guideline when
a coupled general circulation model is used to incorporate
observations to reconstruct the AMOC historical states and
make multi-decadal climate predictions.

1 Introduction

The Atlantic meridional overturning circulation (AMOC),
the core of the thermohaline circulation, is an essential com-
ponent of the World Ocean circulations (e.g., Delworth and
Greatbatch, 2000). One of its important characteristics is the
existence of multiple equilibria (Mu et al., 2004). The re-
search addressing this characteristic originates from Stom-
mel (1961), who used two boxes with uniform temperature
and salinity to simulate the equatorial ocean and the polar
ocean, respectively. This box model simulates multiple equi-
libria of thermohaline circulation, including three steady so-
lutions: a stable thermal mode, an unstable thermal mode
(mainly driven by heat), and a stable haline mode (mainly
controlled by salinity). Using an idealized box model has
since become one of the most efficient approaches in the
studies of AMOC simulations.

The idealized box model, although of limited applicabil-
ity in simulating the entire Atlantic circulation or even the
global circulation, provides the most basic explanation for
some of the important characteristics of the AMOC (Scott
et al., 1999). Besides Stommel’s box model, which places
two boxes side by side, Welander (1982) placed one box
on top of the other to simulate the vertical structure of the
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real ocean. Then, the two-box model is extended to three
boxes, and different three-box hemispheric models result in
multiple equilibrium solutions (Birchfield, 1989; Guan and
Huang, 2008; Shen et al., 2011). Also based on Stommel’s
box model, in some studies an additional box is added to
simulate interhemispheric flows, constructing an idealized
double-hemisphere model consisting of two high-latitude
boxes and a low-latitude box. Multiple equilibria appear
in such box models, and the transition between multiple
equilibrium states is related to salt flux or freshwater flux
(Rooth, 1982; Rahmstorf, 1996; Scott et al., 1999). Extend-
ing Rooth’s box model, with the equatorial box and the po-
lar box connected at depth, results in nine equilibrium solu-
tions, four of which are stable (Welander, 1986). The double-
hemisphere model is closer to the real AMOC than the hemi-
spheric model regarding the cross-equatorial flow in the At-
lantic and upwelling flows in the Southern Ocean.

The multiple equilibrium states of the AMOC have been
confirmed not only in simple idealized box models, but also
in comprehensive ocean general circulation models (Fürst
and Levermann, 2012). In addition to the four different equi-
librium states obtained in ocean circulation models with two
basins representing the idealized Atlantic and Pacific oceans
(Marotzke and Willebrand, 1991), it is even more encourag-
ing that multiple equilibria are first simulated in a complex
ocean general circulation model (Bryan, 1986), followed by
two steady states in a global model of the coupled ocean–
atmosphere system (Manabe and Stouffer, 1988). While such
a phenomenon of AMOC multiple equilibria as a reverse ha-
line mode cannot be directly simulated in general circulation
models (e.g., Stouffer et al., 2006; Weijer et al., 2019), it is
instead replaced by a weak positive circulation or a collapsed
AMOC state (e.g., Liu et al., 2013), generally referring to
regime transitions.

Constrained by the limited measurement technique and
time length, the direct observation of the AMOC is in gen-
eral scarce in terms of its nature of rich spectrum espe-
cially addressing low frequency (e.g., Delworth et al., 1993).
The direct observation of the AMOC is mainly from the
RAPID-MOC/MOCHA (Meridional Overturning Circula-
tion and Heatflux Array) mooring array, which has been con-
ducted at 26◦ N since 2004 (Cunningham et al., 2007; Smeed
et al., 2014). The scope of direct observation has difficult
in covering the entire Atlantic Ocean, and it is difficult to
achieve long-term continuous direct observation. Ocean tem-
perature data could be used to derive a proxy index for the
variability of the AMOC, so both observations from satel-
lites and ocean temperature measurements from the ARGO
program could be used to monitor the AMOC, and historical
variations of the AMOC could be reconstructed from histor-
ical sea surface temperature (Zhang, 2008). Indicators repre-
senting the AMOC can be established based on the physical
relationship between the AMOC and atmospheric indices or
oceanic variables (e.g., Delworth et al., 2016; Caesar et al.,
2018). Previous studies have compared and evaluated some

of these indicators with direct observations of the AMOC,
and the results indicate that this approach is feasible for
AMOC reconstruction (Sun et al., 2020). However, the direct
observations from RAPID or the ocean temperature measure-
ments from the ARGO program are only available for about
the last 2 decades, and the lack of multi-decadal observations
makes it impossible to evaluate the multi-decadal AMOC
variation. Besides, paleoclimate records from marine sedi-
ments or ice cores are often used to investigate AMOC vari-
ations (e.g., Rühlemann et al., 2004; Lynch-Stieglitz, 2017).
Paleoclimate data can be used as observations of the AMOC
on centurial and millennial timescales. Analyses of paleocli-
mate data reveal that the strength and pattern of the AMOC
changed between the glacial and interglacial periods (e.g.,
Bryan, 1986). The two equilibrium solutions in the work of
Birchfield (1989) correspond to the modern ocean and the
warm saline Cretaceous ocean, respectively. In summary, di-
rect observations of the AMOC are so scarce as to be un-
representative in studies of multi-equilibria of the AMOC at
long timescales, and paleoclimate data have considerable un-
certainty, so numerical simulations using ocean circulation
models and coupled climate models are the main method to
study the multiple equilibria of the AMOC at present.

The transition between different equilibrium states is re-
lated to many factors, one of which is freshwater, the most
commonly considered, starting with Stommel’s box model
that illustrates the effect of freshwater input on thermoha-
line circulation (Lambert et al., 2016). Changes in freshwater
over a range of parameters may trigger shifts between dif-
ferent equilibrium states (e.g., Bryan, 1986; Marotzke and
Willebrand, 1991; Nilsson and Walin, 2001; Stouffer et al.,
2006; Nilsson and Walin, 2010). In addition to freshwater
fluxes, the multiple equilibria may also be influenced by a
wind-driven gyre. The multiple equilibrium solutions in both
Stommel’s box model and Rooth’s box model will be elim-
inated by a strong enough wind-driven ocean gyre (Long-
worth et al., 2005), and the same result can be obtained by
replacing the buoyancy constraint with an energy constraint
(Guan and Huang, 2008). AMOC transitions can occur due
to external forcing or internal feedback (Klockmann et al.,
2020). The external forcing applied in systems may include
freshwater forcing (e.g., Cessi, 1994; Castellana et al., 2019),
wind forcing (e.g., Ashkenazy and Tziperman, 2007; Klep-
pin et al., 2015), ice sheet forcing (e.g., Zhang et al., 2014;
Mitsui and Crucifix, 2017), and CO2 forcing (e.g., Zhang et
al., 2017). The physical processes in the model are changed
by external forcing, resulting in the transition between dif-
ferent states of the AMOC. For the AMOC model with-
out external forcing, the transition is triggered by complex
internal interactions within the model, such as salt oscil-
lations (Peltier and Vettoretti, 2014), internal oceanic pro-
cesses (Sévellec and Fedorov, 2014), thermohaline oscilla-
tions (Brown and Galbraith, 2016), and intermittencies in the
sea-ice cover (Gottwald, 2021). Regardless of whether it is
due to external forcing or internal feedback, AMOC transi-
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tions could be influenced by complex physical processes in
models, and the parameters involved in these physical pro-
cesses are usually fixed. However, due to an incomplete un-
derstanding of the physical processes and the error of the
default parameter values, the numerical model is problem-
atic in simulating AMOC multiple equilibria. This study ad-
dresses the problem that for long-timescale AMOC reanal-
ysis data, the AMOC multiple equilibrium states simulated
by different models are different and do not fully represent
the “real” AMOC multi-equilibrium transition path. How to
simulate the regime transition of AMOC with a model where
influencing factors such as freshwater and wind-driven gyre
change over time. Then the next key is how to make the sim-
ulation results closer to “reality” on the feature of regime
transitions by constraining the parameter values with ob-
servation. Observation-constrained model parameters are no
longer kept at fixed values but are constantly varying over
time. The purpose of this paper is to explore whether the
variations of observation-constrained parameters that allow
the physical processes of the model to evolve over time can
bring the simulation results closer to the “observed” feature
of regime transitions. The models in this paper are obtained
by coupling the AMOC box model with Lorenz’s model,
similarly to the work by Roebber (1995) or Gottwald (2021),
where the variation of the AMOC is driven by the chaotic
dynamical system. The thermal mode and the reverse ha-
line mode correspond to different equilibrium states of the
AMOC. For simplicity, we will refer to these different states
as the stronger AMOC (on-state) and weaker AMOC (off-
state) in simple conceptual models (e.g., Weijer et al., 2019).

Data assimilation that combines a model with observed
data is a feasible approach to study the multi-equilibria of
the AMOC given the situation described above. A popu-
lar data assimilation scheme is the Kalman filter (Kalman,
1960; Kalman and Bucy, 1961). The main idea is to adjust
the model predictions according to the observational data to
obtain an optimal estimation of model states. Combining the
Kalman filter with the idea of ensemble prediction, the en-
semble Kalman filter (EnKF) uses ensemble samples of sys-
tem states to estimate the background error covariance (e.g.,
Evensen, 1994). As a variant of EnKF, the ensemble adjust-
ment Kalman filter (EAKF) derives a linear operator from the
product of the observational distribution and the prior distri-
bution of the model state to update the model ensemble (An-
derson, 2001). EAKF has been applied to climate models to
have developed fully coupled data assimilation systems (e.g.,
Zhang et al., 2007; Liu et al., 2014b). Tardif et al. (2014) im-
plement data assimilation with EnKF to recover the AMOC
with observations in a low-order coupled atmosphere–ocean
climate model. They mainly explore the value of data as-
similation for the initialization of the AMOC, while the ef-
fect of parameter errors in AMOC simulations needs further
discussion. As another class of ensemble-based assimilation
methods, particle filters, unlike the EnKF, are applicable to
non-Gaussian probability distributions (e.g., Gordon et al.,

1993; van Leeuwen, 2009). A mixture-based implicit parti-
cle method is presented and could detect transitions in an
example with multiple attracting states (Weir et al., 2013a).
However, the particle filter is plagued by the curse of dimen-
sionality as the system dimension increases (Snyder et al.,
2008; Carrassi et al., 2018).

The method of parameter estimation is based on the the-
ory of data assimilation, i.e., information estimation theory or
filtering theory (e.g., Jazwinski, 1970). Research on the use
of observations to estimate model parameters has attracted
extensive attention and has produced encouraging results in
the literature (Annan et al., 2005; Aksoy et al., 2006a, b;
Hansen and Penland, 2007; Kondrashov et al., 2008; Hu et
al., 2010). Based on EAKF, a data assimilation scheme for
enhanced parameter correction is designed to improve pa-
rameter estimation using observations (Zhang et al., 2012).
Zhao et al. (2019) perform this scheme in a simple AMOC
box model, and the model parameters are successfully opti-
mized when the model errors are caused by only erroneously
set parameters. Although the AMOC regime transition is not
addressed in their study, their exploration of model sensitiv-
ities regarding parameters serves as a guideline for our re-
search. Many efforts have been made to advance the appli-
cation of data assimilation and parameter estimation in non-
linear systems with multiple equilibrium states (e.g., Miller
et al., 1994, 1999; Khalil et al., 2009; Weir et al., 2013b;
Bisaillon et al., 2015). Although numerical simulations of
the AMOC eventually exhibit multiple equilibria, the AMOC
is not an explicit model variable; rather, it is derived from
model variables such as atmospheric wind, ocean tempera-
ture and salinity. Instead of adjusting AMOC directly, the
model states are adjusted through data assimilation. When
constraining model parameters by observational information,
the parameters that constantly vary with observations may
provide more diversity in the physical processes involved
with AMOC regime transition, so that the model can sim-
ulate more AMOC transition paths.

Here we present a method for improving the modeling
of AMOC multi-equilibria. The new method is shown to
simulate the AMOC transition between different equilibrium
states accurately in two simple coupled models, the first com-
bining a three-box overturning simulation model with a five-
variable simple climate model and the second with clearer
physical meaning. Then, we apply EAKF to both AMOC
models to establish an ensemble coupled model data assim-
ilation and parameter estimation (CDAPE) system, respec-
tively. Within a “twin” experiment framework, the “observa-
tion” information, which is from the assimilation model sim-
ulation, is used to adjust the parameters of the model, thereby
constraining the paths of transition between different AMOC
equilibrium states, so that the path simulated by the model is
close to the “real” path.

This paper is organized as follows. After the introduction,
the methodology is described in Sect. 2, including a gen-
eral proposition of optimizing the multi-equilibrium transi-
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tion path of the AMOC, the EAKF algorithm, and the de-
sign of twin experiments used throughout this study. Sec-
tion 3 begins with a description of the three-box and five-
variable models and their combination to simulate regime
transitions of the AMOC and then describes the optimiza-
tion of the trajectory for the multi-equilibrium transition by
CDAPE. In Sect. 4, the method of capturing regime transi-
tions by CDAPE is applied to a similar simple model with
a more explicit physical meaning. Finally, the summary and
discussions are given in Sect. 5.

2 Methodology

2.1 Simulation and optimization of AMOC regime
transitions

The AMOC, as part of the thermohaline circulation, consists
mainly of warmer and saltier water flowing from low to high
latitudes in the upper ocean of the Atlantic, colder North At-
lantic Deep Water (NADW) flowing southward in the deep
ocean, and the corresponding upwelling and downwelling
currents (Fig. 1a). Multiple equilibria exist in the system,
for example, including the thermal mode (active AMOC or
on-state) and the reverse haline mode (weak AMOC or off-
state). The regime transitions of the AMOC are simulated
in simple idealized box models and complex ocean general
circulation models. There are many influencing factors in-
volved in the model, such as wind-driven gyre and freshwater
flux, and their variations will result in different states for the
AMOC. Their specific values and parameterization schemes
are often designed with respect to the model states x.

Generally, an ocean–atmosphere coupled model which
contains complex physical processes can be generally ex-
pressed as ∂x

∂t
= F(x,β), where the model states (vector x)

include the atmospheric and oceanic states. The model con-
tains a set of fixed standard parameters β, and the values
of β might be subject to errors, limited by incomplete un-
derstanding of physical processes and inadequate modeling
experience and measurements, etc. The state of the AMOC
can be derived from the model state as MOC= f (x). Fixed-
value parameters in a single model may result in simulations
that do not cover multiple equilibria in the real system. On
the other hand, errors in the model parameters can result in
an inconsistent AMOC regime transition between the model
simulation and reality. Focusing on these issues, our study
explores whether it is possible to project observational infor-
mation onto model states and parameters so that model sim-
ulation behavior fits to realistic multiple equilibrium states
and capture regime transitions by data assimilation and pa-
rameter estimation.

As shown in Fig. 1b, the blue line is the time series
of MOC, representing the AMOC from the model con-
trol simulation, computed from the model states x by the
relation f , and the dashed red line represents the “real”

multi-equilibrium transition path. The dashed black line is
a division line between two equilibrium states. The multi-
equilibrium transition path (blue line) from the simulation
control model with fixed parameters β is restricted to one
equilibrium state, while the “real” transition path is more
flexible in transforming between two states. For shorter
timescales (at most multi-decadal timescales), limited by the
scarcity of direct observations of the AMOC, information
on the AMOC variations can only be obtained indirectly,
through direct observations y in the real Earth system, such
as atmospheric wind, ocean temperature and salinity. For
longer timescales (centurial and millennial timescales), the
observations of the AMOC can be derived from the pale-
oclimate records y. The red “+” signs in Fig. 1b, derived
from the direct observations y, represent the indirect “ob-
servations” of the AMOC sampled from reality. The observa-
tions y are projected onto the model parameters β by CDAPE
(the red arrow in Fig. 1b) so that β evolves over time with
observation-dependent trend. Since the varying parameters
allow the physical process of the model to be more flexible
and the parameters β constrained by observation y gradu-
ally approach their true values, the model CDAPE simulation
(purple line) results in more realistic AMOC multi-equilibria
(the blue arrow). To explore how likely this idea is to be
realized, we attempt to capture AMOC regime transitions
in a conceptual model reflecting the characteristic of multi-
equilibria and a more complex model with simple physi-
cal processes and even planned in a more complex ocean–
atmosphere coupled model representing the real Earth sys-
tem.

2.2 CDAPE

The ensemble adjustment Kalman filter (Anderson, 2001) is
used for data assimilation and parameter estimation in this
study. The basic process of the two-step EAKF (Anderson,
2003; Zhang and Anderson, 2003; Zhang et al., 2007) is to
project the observational increment onto model states (rele-
vant parameters) by calculating the error covariance between
the prior ensemble of the model variable (parameter) and the
model-estimated ensemble. The core of the two-step EAKF
is to calculate the increment of each state variable by a local
least squares fit (linear regression), and the calculation of the
observational increment is related to the scalar application of
the equations of EAKF (Anderson, 2003). All observations
at time t have the observation value yo (in Nobs dimensions).
For a single observation yo

k at the kth observation location
(k = 1∼Nobs), the standard deviation of observational error
is σ o (assumed to be Gaussian). The model states are mapped
onto the observational space by applying a linear interpola-
tion, and then the prior (model-estimated) ensemble of the
kth observation yp

k (inNens dimensions) can be obtained. yp
k,i

is the ith prior ensemble member of the kth observation. The
ensemble mean and standard deviation are yp

k and σ p
k , respec-

tively.
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Figure 1. A schematic illustration of capturing AMOC regime transitions by projecting observational information to model states and
parameters, by (a) the illustration of the AMOC consisting mainly of upper warmer and saltier northward flow (red) and deep cold southward
flow (blue), and (b) the time series of the “observations” (“+” signs) of the ocean, the values of model control simulation (blue line)
and observation-constrained simulation by coupled data assimilation and parameter estimation (CDAPE). The red arrow denotes that the
“observations” sampled from the truth (dashed red line) are projected onto the model states x and parameters β at nearly step 30. The
purple line represents the model simulation results after CDAPE. The blue arrow represents the process of capturing regime transitions. The
backgrounds with color of light gray correspond to the “observed” multi-equilibrium transition path. The dashed black line is a division line
between different equilibrium states of the AMOC.

The first step is to compute the observational increment of
the kth observation (k = 1∼Nobs). The observational incre-
ment 1yo

k,i for the ith ensemble member (i = 1∼Nens) is
formulated by

1yo
k,i = y

u
k +1y

′

k,i − y
p
k,i, (1)

where yuk is the posterior ensemble mean of the kth observa-
tion, representing the shift of the ensemble mean induced by
this observation, and1y′k,i is the updated ensemble spread of
the kth observation, representing the reshaping of the model
ensemble. They are, respectively, computed by

yuk =
(σ o)2

(σ o)2+
(
σ

p
k

)2 yp
k +

(
σ

p
k

)2
(σ o)2+

(
σ

p
k

)2 yo
k

and

1y′k,i =

√√√√ (σ o)2

(σ o)2+
(
σ

p
k

)2 (yp
k,i − y

p
k

)
, (2)

where the first equation shows whether the ensemble mean
shifts closer to the prior model ensemble mean yp

k or the ob-
servation value yo

k , and whether it is yp
k or yo

k depends on
which has the smaller variance. The second equation denotes
that the prior probability density function is squashed by a
new observation.

The second step is to distribute the observational incre-
ments 1yo

k,i onto the related model states x (a matrix of size
Nens×Nstate), and this assimilation process can be expressed
as

1xj,i =
cov

(
xj ,y

p
k

)(
σ

p
k

)2 1yo
k,i, (3)

where 1xj,i is the contribution of the kth observation to
the ith ensemble member of the j th model variable xj,i
(j = 1∼Nstate). cov

(
xj ,y

p
k

)
is the error covariance between

the prior ensemble of the j th model variable xj (in Nens di-
mensions) and the prior (model-estimated) ensemble of the
kth observation yp

k (in Nens dimensions) and is calculated as

cov
(
xj ,y

p
k

)
=

Nens∑
i=1
(xj,i−xj )

(
y

p
k,i−y

p
k

)
Nens

, where xj is the ensem-
ble mean of the j th model variable.

The model parameters are fixed when parameter estima-
tion is not performed. The parameters vary with observa-
tional information by parameter estimation. The core of the
parameter estimation is to obtain the increment of the esti-
mated parameter by a linear regression that is based on the er-
ror covariance between the prior parameter ensemble and the
state ensemble (Anderson, 2001, 2003). The error covariance
used in regression is flow dependent and temporally vary-
ing (Zhang and Anderson, 2003). Therefore, for the model
parameter estimation, the observational increments are dis-
tributed onto a relevant parameter and the equation is

1βj,i =
cov

(
βj ,y

p
k

)(
σ

p
k

)2 1yo
k,i, (4)

where 1βj,i is the contribution of the kth observation to the
ith ensemble member of the j th parameter being estimated,
called βj,i (j = 1∼Npara). cov

(
βj ,y

p
k

)
is the error covari-

ance between the prior ensemble of the j th model parameter
βj (in Nens dimensions) and the prior (model-estimated) en-
semble of the kth observation yp

k (in Nens dimensions) and is

calculated as cov
(
βj ,y

p
k

)
=

Nens∑
i=1

(
βj,i−βj

)(
y

p
k,i−y

p
k

)
Nens

, where βj
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is the ensemble mean of the j th model parameter being opti-
mized.

Since the model parameters do not have dynamically sup-
ported internal variability, the ensemble spread of an es-
timated parameter will decrease rapidly after several time
steps of parameter estimation. In other words, the model
parameters are not dynamical variables, which leads to a
progressively decreasing ensemble variance of a parameter
being estimated. The parameter ensemble will not be ad-
justed by new observations if the ensemble spread is too
small, so the inflation scheme of the prior parameter en-
semble is necessary for the parameter estimation. A typi-
cal inflation scheme is the “conditional covariance inflation”
method (Aksoy et al., 2006a). A predefined standard devi-
ation is first chosen empirically as a critical value in this
scheme. Then the parameter spread is adjusted back to it
when the standard deviation of the parameter ensemble is
smaller than this critical value. To further improve the signal-
to-noise ratio of parameter estimation, Zhang (2011a) intro-
duced an inflation scheme based on model sensitivity with
respect to the parameter being estimated. In this inflation
scheme, the inflation amplitude of a parameter ensemble is
inversely proportional to the sensitivity. It is formulated as
β̃j,i = βj+max

(
1, α0σ0

σjσt

)(
βj,i −βj

)
, where β̃j,i denotes the

inflated version of the ith ensemble member of the j th pa-
rameter being estimated, σ0 and σt are the prior ensemble
spreads of this parameter at the initial time and time t , α0 is a
constant tuned by a trial-and-error procedure (e.g., Wu et al.,
2016), and σj is the sensitivity of the model state with regard
to the j th parameter. This indicates that if the prior ensemble
spread of the j th parameter is smaller than α0

σj
times the ini-

tial spread, it will be enlarged to this amount (e.g., Wu et al.,
2012; Han et al., 2014; Zhao et al., 2019). In this study, con-
sidering that the inflated parameter ensemble will influence
state variables, for the simplicity and convenience of compu-
tation and comparison, no inflation is applied to the model
state ensemble, as in Han et al. (2014), Yu et al. (2017) and
Zhao et al. (2019). The inflation scheme is only used for pa-
rameter estimation.

2.3 Experimental design

To show the contribution of data assimilation and parameter
estimation to capturing AMOC regime transitions, a twin ex-
periment containing a truth model and assimilation models
is designed. Since this study focuses on the effect of param-
eters on multiple equilibria, it is assumed that the model bias
originates only from the incorrectly set parameter. The pa-
rameter in the truth model is set to the truth value β0, and
the simulation results represent the real state of the AMOC
in reality. Similarly to the observation process in reality, the
observations y are obtained by superimposing white noise on
the real state and sampling at a certain frequency. The assim-
ilation models differ from the truth model only in the param-

eter values, with the same initial conditions and other aspects
such as the differencing scheme. The parameter in the ith as-
similation model is assumed to be incorrectly guessed as βi ,
and all βi in the assimilation models have the mean of βm
(βm 6= β0) and the variance of βv . The role of data assimila-
tion is shown by the model states constrained by the observa-
tions y, and furthermore, the role of parameter estimation is
shown by the model states obtained after the parameters are
constrained by the observations y.

3 Capturing regime transitions by
observation-constrained model parameters in a
conceptual MOC model

3.1 The MOC3B-5V model

3.1.1 A three-box MOC model

In the classic two-box model of Stommel (1961), a buoy-
ancy constraint on the thermohaline circulation was present.
Following the energy-constraint approach, the thermohaline
circulation is driven and maintained by mechanical energy so
that a buoyancy constraint is replaced by an energy constraint
(Guan and Huang, 2008). On this basis, considering the ef-
fect of a wind-driven gyre, a three-box model is formulated
(Shen et al., 2011).

The three-box model used in this study has an upper box
representing the mid- and low-latitude surface ocean, a pole
box representing the high-latitude ocean, and a lower box
representing the mid- and low-latitude deep ocean, as illus-
trated in Fig. 2. The three-box model is designed with two
different modes, which are the thermal mode (driven by tem-
perature) and the haline mode (driven by salinity). In the ther-
mal mode, water flows from the pole box, passing the lower
box, then flowing into the upper box by upwelling, and fi-
nally returning to the pole box (solid arrows in the boxes),
while the circulation is reversed in the haline mode (dotted
arrows). The horizontal and vertical water flow are repre-
sented by the terms u and v, respectively (more details are
given in Shen et al., 2011).

The heat balance equations and the salinity balance equa-
tions in each box are established firstly. By introducing the
nondimensional variables, after derivation, the simple non-
dimensional ordinary differential equations are finally ob-
tained as follows:

Ṫ1 = vtT3− utT1+ T
∗

0 − T1+ω(T2− T1),

Ṫ2 = utT1− vtT2−
1

a+ 1
T2+ω(T1− T2),

aṪ3 = vt(T2− T3),

Ṡ1 = vtS3− utS1+ω(S2− S1),

Ṡ2 = utS1− vtS2+ω(S1− S2),

aṠ3 = vt
[
(a+ 2)S∗0 − (a+ 1)S3− S1

]
, (5)
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Figure 2. Schematic illustration of a three-box model for the ther-
mohaline circulation. The volume of the upper box is the same as
the volume of the pole box, and their volumes are both a multipli-
cation of a−1 and the volume of the lower box. L and H are the
width and depth of the upper box, and Ti and Si represent the tem-
perature and salinity in box i. The upper boundary conditions are
a temperature relaxation toward the specified reference temperature
T ∗1 = T

∗
0 , T ∗2 = 0 and a freshwater flux p. ω represents the wind-

driven gyre between the upper box and pole box. u is the horizontal
water flow and v is the overturning rate. The red terms represent
the main influencing factors of v and multiple equilibria and which
variables in the five-variable model they will be combined with. The
solid (dotted) arrows in the three boxes indicate the thermal (haline)
mode, with circulation flowing clockwise (counterclockwise).

where Ti and Si represent the temperature and salinity in
box i, an overdot denotes time tendency, T ∗0 and S∗0 are the
mean temperature and mean salinity of the box model ocean,
the subscript t stands for the thermal mode, ω represents the
wind-driven gyre, and p represents the freshwater flux. The
non-dimensional continuity equation is

ut = vt−p. (6)

Under the energy constraint, the scale of the overturning rate
in the three-box model satisfies

vt =
e

ρ0α(T1− T2)− ρ0β(S1− S2)
, (7)

where e represents the strength of the external source of me-
chanical energy sustaining mixing, ρ0 is the mean density of
the model ocean, α is the thermal expansion coefficient, and
β is the saline expansion coefficient.

In the haline mode, the influence of a wind-driven gyre is
the same as it is in the thermal mode, but the circulation in
three boxes is reversed. The governing equations for the ha-
line mode also follow the study of Shen et al. (2011). They
did not show those equations but only described them briefly.

In this paper, to describe the construction of MOC3B-5V
more clearly later, those equations are shown here. Accord-
ingly, the non-dimensional equations in each box are

Ṫ1 = usT2− vsT1+ T
∗

0 − T1+ω(T2− T1) ,

Ṫ2 = vsT3− usT2−
1

a+ 1
T2+ω(T1− T2) ,

aṪ3 = vs (T1− T3) ,

Ṡ1 = usS2− vsS1+ω(S2− S1) ,

Ṡ2 = vsS3− usS2+ω(S1− S2) ,

aṠ3 = vs
[
(a+ 2)S∗0 − (a+ 1)S3− S2

]
, (8)

where the subscript s stands for the haline mode. The non-
dimensional continuity equation is

us = vs+p. (9)

The overturning rate’s vs is formulated by

vs =
e

ρ0β(S1− S2)− ρ0α(T1− T2)
. (10)

Equations (5)–(7) are governing equations for the thermal
mode, and Eqs. (8)–(10) are governing equations for the ha-
line mode of the thermohaline circulation in a hemisphere
three-box model. The time tendencies in Eqs. (5) and (8)
are set to be 0, and then the governing equations for the
thermal mode or the haline mode are solved, respectively.
Equations (5)–(7) have one stable solution, and Eqs. (8)–(10)
have one stable solution and one unstable solution. Hence,
the three-box model has a total of three mathematical solu-
tions. This result obtained by solving the equations could be
found in Shen et al. (2011). Similar equations for the thermal
and haline modes could be found in Guan and Huang (2008)
for Eq. (1) (thermal mode) and Eq. (2) (haline mode) and in
Shen and Guan (2015) for Eqs. (1)–(6) (thermal mode) and
Eqs. (7)–(9) (haline mode). The overturning rate (v) and mul-
tiple equilibria are affected by the energy constraint e, fresh-
water flux p, and wind-driven gyre ω. The haline mode will
switch to the thermal mode when e or ω is increased or p is
decreased beyond the critical value (Shen and Guan, 2015).

3.1.2 A five-variable conceptual climate model

Lorenz (1963) proposed a simple model with only three vari-
ables to simulate the chaotic characteristics of the atmo-
sphere, where x1 is proportional to the intensity of the con-
vective motion, x2 is proportional to the temperature differ-
ence between the ascending and descending currents, and x3
is proportional to the distortion of the vertical temperature
profile from linearity. However, its three variables only re-
flect the process of atmospheric convection, and they cannot
represent the interaction of the atmosphere and ocean as well
as the low-frequency nature of climate evolution. On this ba-
sis, two ocean variables that represent the slab ocean vari-
able and the deep ocean pycnocline anomaly are added and
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coupled with the chaotic “atmosphere” to simulate the inter-
actions between the atmosphere and the ocean (Zhang et al.,
2012) as well as the upper and deep oceans (Zhang, 2011a,
b). The model equations are

ẋ1 =−σx1+ σx2,

ẋ2 =−x1x3+ (1+ c1w)κx1− x2,

ẋ3 = x1x2− bx3,

Omẇ = c2x2+ c3η+ c4wη−Odw+ Sm,

+ Ss cos
(
2πt/Spd

)
,

0η̇ = c5w+ c6wη−Odη, (11)

where x1, x2, and x3 are the high-frequency variables that
represent the atmosphere; w and η are the low-frequency
variables that conceptually simulate the simple variation
characteristics of the upper ocean and the deep ocean, re-
spectively.

The original σ , κ , and b sustain the chaotic nature of the
atmosphere. The coupling between the fast atmosphere and
the slow ocean is reflected by c1 and c2. The coefficient c1
represents the oceanic forcing on the atmosphere and c2 rep-
resents the atmospheric forcing on the ocean. To ensure that
the timescale of the ocean is slower than the atmosphere, the
heat capacity Om must be much larger than the damping rate
Od. For w, the parameters Sm and Ss define the magnitudes
of the annual mean and seasonal cycle of the imposed exter-
nal forcing, and the period of the seasonal cycle is defined
by Spd. The interactions and nonlinear interactions of the up-
per ocean and deep ocean are represented by coefficients c3,
c4, c5, and c6. The terms c3η and c4wη (c5w and c6wη) rep-
resent the linear exchange flux and the nonlinear role from
the deep (upper) ocean to the upper (deep) ocean. The ratio
of the constant of proportionality 0 and Od determines the
timescale of variation of η. The standard values of these pa-
rameters in the model are set to (σ , κ , b, c1, c2, Om, Od, Sm,
Ss, Spd, 0, c3, c4, c5, c6)= (9.95, 28, 8/3, 10−1, 1, 1, 10, 10,
1, 10, 100, 10−2, 10−2, 1, 10−3).

3.1.3 The three-box MOC model coupled with the
five-variable model (MOC3B-5V)

The construction of the MOC3B-5V model starts with
the three-box model of the previous study of Shen and
Guan (2015), including the non-dimensional temperature and
salinity differential equations, the continuity equations, and
the equation for the overturning rate (Eqs. 5–10). The first
aim of this study is to simulate the AMOC transition between
different equilibrium states in the time series. However, a
time series of overturning rate cannot be obtained by solv-
ing the governing equations after setting the time tendency
in Eqs. (5) and (8) to 0. Therefore, without setting the time
tendency to 0, we use a leapfrog time-differencing scheme
to forward the temperature and salinity to obtain the time se-
ries. For an unstable solution obtained by setting the time

tendency to 0, a small perturbation on the solution will grow
exponentially (Shen et al., 2011), so it cannot be obtained
by using the time-differencing scheme. Thus, the equilibrium
states resolved by integrating time tendency equations in this
study do not include the unstable solution described by Shen
et al. (2011).

To test the feasibility of the time-differencing scheme, the
values of e, p, and ω in the three-box model are changed,
respectively, from small to large, and the overturning rate
is calculated when the temperature and salinity in the three
boxes are almost steady, which means that the AMOC
reaches a quasi-equilibrium state. By using a leapfrog time
differencing, the three-box model is first spun up for 105 TUs
(time units, 1 TUs= 100 steps) starting from (T1, T2, T3,
S1, S2, S3)= (20.0, 0.0, 15.0, 35.5, 35.0, 34.5) with the val-
ues of relevant parameters described in the previous study
(Shen and Guan, 2015). The initial values of temperature
and salinity at the equilibrium state are obtained. Then the
value of e (from 0.0 to 3.0× 10−7 kg m−2 s−1), p (from 1.0
to 0.0 m yr−1) or ω (from 0.0 to 5.0 Sv, 1 Sv= 106 m3 s−1)
is changed within a certain range. Each time it changes, the
three-box model is integrated for another 500 TUs for spin-
up to reach an equilibrium state, and the overturning rate cor-
responding to different values of e, p, and ω is calculated. To
distinguish the overturning rate in the haline mode from that
in the thermal mode, the overturning rate in the haline mode
can be represented by −vs, which means that the circulation
is reversed.

The results are consistent with previous results from the
research on model stability in Shen et al. (2011). Figure 3a
shows the effects of e on the circulation in the three-box
model. The corresponding threshold of e exists in the ha-
line mode. When e is less than the critical value, the over-
turning rate is less than 0. When the value of e is increased
beyond the threshold, the haline mode switches to the ther-
mal mode. Similarly, when p is decreased beyond the corre-
sponding critical value (in Fig. 3b) or when ω is increased be-
yond the corresponding critical value (in Fig. 3c), the AMOC
transitions from the haline mode to the thermal mode.

To simulate the transition between different states of the
AMOC and achieve the shift from the thermal mode to the
haline mode, the non-dimensional differential equations for
temperature and salinity balance are adjusted by adding a
term Qa which represents an additional freshwater flux from
the atmosphere to the upper box and the pole box. Similarly
to the parameterization scheme in Roebber (1995), a simple
and more idealized parameterization scheme for Qa is de-
vised, which assumes that the additional freshwater flux from
the atmosphere to the ocean is divided into mean transport
components and transient components. The transient compo-
nents are assumed to be linearly related to x2. Then, the term
Qa can be defined as Qa =Q0+α0x2, where Q0 and α0 are
constants. Since the additional freshwater flux Qa should be
much smaller than the freshwater flux p, the values of Q0
and α0 are set to 0.02 and 0.000125 considering the magni-
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Figure 3. Variations of overturning rates in the space of (a) energy constraint parameter e, (b) freshwater flux p and (c) wind-driven
circulation ω in the three-box model with (a) p = 0.5 m yr−1 and ω = 1.5 Sv, (b) e = 2.5× 10−7 kg m−2 s−1 and ω = 0.0 Sv, and (c) e =
2.5× 10−7 kg m−2 s−1 and p = 1.0 m yr−1. The red line indicates the stable thermal mode and the blue line indicates the stable haline
mode. The dashed black line is a division line between the thermal-mode equilibrium state and the haline-mode equilibrium state.

tude and variation of p and x2. The calculation result of the
overturning rate in the thermal mode (denoted by vt) is dif-
ferent from that in the haline mode (denoted by vs). To unify
Eqs. (5)–(7) for the thermal mode and Eqs. (8)–(10) for the
haline mode, “−vs” and “−us” are introduced in the haline
mode. Thus, v or u greater (less) than 0 represents the ther-
mal (haline) mode, with circulation flowing clockwise (coun-
terclockwise) in the three boxes in Fig. 2.

Hence, the non-dimensional differential equations are

Ṫ1 = v [θ(v)T3+ θ(−v)T1]− u [θ(v)T1+ θ(−v)T2]

+ T ∗0 − T1+ω(T2− T1) ,

Ṫ2 = u [θ(v)T1+ θ(−v)T2]− v [θ(v)T2+ θ(−v)T3]

−
1

a+ 1
T2+ω(T1− T2) ,

aṪ3 = v [θ(v)T2+ θ(−v)T3]− v [θ(v)T3+ θ(−v)T1] ,

Ṡ1 = v [θ(v)S3+ θ(−v)S1]− u [θ(v)S1+ θ(−v)S2]

+ω(S2− S1)+Qa,

Ṡ2 = u [θ(v)S1+ θ(−v)S2]− v [θ(v)S2+ θ(−v)S3]

+ω(S1− S2)+Qa,

aṠ3 = v [θ(v)− θ(−v)]
[
(a+ 2)S∗0 − (a+ 1)S3

]
− vθ(v)S1+ vθ(−v)S2, (12)

where the function θ(x) is a step function, which has the
value 1 for a positive argument and the value 0 otherwise.

Through this function, we can represent the different circu-
lation given by a different sign of v. The continuity equation
is

u= v−p, (13)

and the overturning rate can take a form as

v =
e

ρ0α(T1− T2)− ρ0β(S1− S2)
, (14)

so that the sign of v will represent where the equilibrium
state of the AMOC is. The intensity of the overturning rate
and the state of the AMOC are mainly affected by e, p, and
ω in the circulation control equations. A similar AMOC box
model with many switches could be found in Castellana et
al. (2019).

In reality, the circulation intensity and the AMOC state are
affected by many factors, such as mechanical energy, which
is directly used to sustain the vertical mixing in stratification,
freshwater flux, and wind-driven circulation. These factors
change irregularly in the Earth system. To make the varia-
tions of e, p, and ω in the model have chaotic characteristics,
which is similar to reality, these three influencing factors and
the five-variable model are combined. Since the energy con-
straint e is related to the upper ocean and the deep ocean, the
freshwater flux p is related to the atmosphere and the upper
ocean, and the wind-driven circulation ω is directly related to
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the atmosphere, it is possible to conceptually idealize a sim-
ple equation for the relationship between e, p, and ω with x2,
w, and η.

The energy constraint e reflects the strength of the external
mechanical energy that sustains mixing, the main sources of
which are the energy provided by the wind and tidal dissipa-
tion. In this process, kinetic energy is converted to potential
energy through turbulence and internal waves (Huang, 2004).
Such external mechanical energy is estimated to be about
2 TW (terawatts), with about 1.2 TW as the contribution of
wind to mixing, including the generation of internal waves in
the surface ocean (Munk and Wunsch, 1998), and the energy
from the wind can radiate throughout the ocean (Wunsch and
Ferrari, 2004). Besides, a previous study has estimated the
energy provided by wind at 1 TW, which is also about half of
the total external energy to sustain mixing (Wunsch, 1998).
The other half of the total energy comes mainly from the
tidal dissipation in the deep ocean and to a lesser extent from
the interactions of the eddy with the ocean bottom topogra-
phy (Wunsch and Ferrari, 2004; Kuhlbrodt et al., 2007). The
energy parameter e varies continuously with climate condi-
tions, but it is difficult to establish the connection between
them accurately due to the large uncertainty in the estimation
of these energy sources (Guan and Huang, 2008).

For the idealized three-box model coupled with the sim-
ple conceptual climate model, the energy constraint e can
only be conceptually constructed by approximate estima-
tion. However, this paper focuses primarily on capturing
regime transitions of the AMOC, so it will not be affected
by the inaccurate energy constraint e that is conceptually
established. The main sources of external energy to sustain
mixing are tide and wind, so e is defined as e = Et+Ew,
where Et represents the kinetic energy originating from the
abyssal tidal flow and Ew represents the energy from wind
contribution to the ocean. Et is primarily associated with
the deep ocean, so the equation is simply established as
Et = a1(η+ b1). Since the wind affects the upper ocean di-
rectly and radiates throughout the ocean through the interac-
tion of the upper ocean with the deep ocean, the equation is
established as Ew = a2(w+b2)+a3(w+b2)(η+b1), where
a1, a2, a3, b1, and b2 are constants to be determined. The
range of e has been estimated to be roughly 1× 10−7 to
3× 10−7 kg m−2 s−1 (Guan and Huang, 2008), and consid-
ering that the threshold for the equilibrium state transition is
near 1.0× 10−7 kg m−2 s−1 (in Fig. 3a), the mean value of
e is taken to be about 1.5× 10−7 kg m−2 s−1, with wind and
tide contributing half of the total, respectively. Scaling w and
η based on the mean and range of variation of them, the val-
ues for a1, a2, a3, b1, and b2 can be readily derived.

The freshwater flux mainly consists of river runoff (de-
noted by Pr), evaporation, and precipitation (jointly denoted
by Pep), so p is formulated by p = Pr+Pep. Since Pr is
primarily associated with the upper ocean, establishing the
equation Pr = a4(w+ b2). Pep are related to the interaction
of the upper ocean with the atmosphere, so the equation

Pep = a5(x2+ b3)+ a6(x2+ b3)(w+ b2) is established. The
river runoff accounts for a major portion of the total fresh-
water flux in the northern part of the Atlantic (Broecker
et al., 1990), and concerning Fig. 3b, where the threshold
for the equilibrium state transition is approximately 0.5 m
yr−1, the values of a4, a5, a6 and b3 can be readily derived.
The wind-driven circulation is mainly related to the atmo-
spheric forcing, and the equation is simply established as
ω = a7(x2+ b3). Based on the fact that the equilibrium state
transition point is near 2.5 Sv (in Fig. 3c) and scaling is per-
formed on x2, the values of a7 can be estimated. Then, the
relationships between e, p, and ω from the three-box model
and x2, w, and η (red terms in Fig. 2) are established as fol-
lows:

e = a1 (η+ b1)+ a2 (w+ b2)+ a3 (w+ b2)(η+ b1) ,

p = a4 (w+ b2)+ a5 (x2+ b3)+ a6 (x2+ b3)(w+ b2) ,

ω = a7(x2+ b3). (15)

A set of parameter values (a1, a2, a3, a4, a5, a6, a7, b1, b2,
b3)= (3−1, 10−1, 30−1, 9−1, 800−1, 7200−1, 16−1, −11,
−7, 40) is used to simulate the variation of e, p and ω in the
air–sea system. Therefore, the three-box model and the five-
variable model are combined. The time series of the overturn-
ing rate can be calculated, which can simulate the transition
between different states of the AMOC.

3.2 Experimental design

For the MOC3B-5V model, the model states (vector x)
are the five variables, the ocean temperature variables, and
the ocean salinity variables. The physical processes ∂x

∂t
=

F(x,β) are represented by Eqs. (11) and (12), where the
influencing factors e, p, and ω are calculated by Eq. (15).
The AMOC states are obtained by Eq. (14). Assuming that
there is an error between the true value of a parameter and
the value in the model, a twin experiment framework is set.
The MOC3B-5V model is set with standard parameter val-
ues, where the standard value of the original κ in Eq. (11)
is 28. Starting from the conditions (x1, x2, x3, w, η)= (0,
1, 0, 0, 0), the model is integrated for 300 TUs to obtain
the initial values of the five variables. The initial values of
temperature and salinity at the equilibrium state in the three
boxes are obtained as described in Sect. 3.1.3. When using
observations of x1, x2, x3, and w for estimation, κ = 28 is
the “true” solution of the parameter. The truth model is run
forward for 5000 TUs to establish the “truth” (see the dashed
line in Fig. 4 with x2 as a case). To simulate the observation
errors, white noise is added to the true value, and the standard
deviations of these observation errors are set to 2 for x1, x2,
and x3 and 0.5 for w. Then, the true value with white noise
is sampled at a certain frequency (5 time steps for x1, x2, and
x3, and 20 time steps for w) as observations. The “+” signs
in Fig. 4 show an example of observations (x2).

For the assimilation model, the initial conditions are the
same as the above “observation”. Twenty model ensembles

Nonlin. Processes Geophys., 28, 481–500, 2021 https://doi.org/10.5194/npg-28-481-2021



Z. Liu et al.: A study of capturing AMOC regime transition 491

Figure 4. Time series of the observations (“+” signs) of x2 and the
x2 values of the control model simulation (solid line) with κ = 32
without data assimilation and parameter estimation. The “observa-
tions” are taken from the “truth” simulation (dashed line as the ref-
erence) at an interval of 0.05 TU and superimposed by a white noise
with a standard deviation of 2.

are set with different κ to simulate the transitions of the
AMOC in different models. Twenty Gaussian random num-
bers are drawn for the parameter κ to be estimated, with the
mean (κ i = 32) and the guessed standard deviation (σ 2

0 =

0.1). The 20 models are spun up from the same initial con-
ditions for another 5000 TUs with different values of κ and
standard values for other model parameters.

3.3 Sensitivity of model parameters

Several numerical models have shown that multiple equi-
libria exist in the thermohaline circulation, but the AMOC
regime transitions obtained in different models are differ-
ent. Changes in freshwater flux, energy constraint, wind-
driven circulation, and other factors will cause the AMOC to
switch between different equilibrium states. By combining
the three-box model with the five-variable model, it is simu-
lated so that the AMOC switches between different equilib-
rium states in the time series.

As described in Sect. 3.2, the parameter κ , which affects
the variation of e, p, and ω in the model, is erroneously
guessed as 32. The errors of AMOC transitions caused by
model parameters grow rapidly. For the 20 different ensem-
ble members in the free model control ensemble simulations,
although the values of κ are all close to 32 with a small dif-
ference and their variance is only 0.1, the simulation results
(orange lines in Fig. 5a) are quite different, which means that
the equilibrium states of AMOC are different. Meanwhile,
the path of transition between different equilibrium states is
also different and does not converge to the truth (red lines).
The overturning rate greater than 0 means that the AMOC is
in the thermal mode. By contrast, the value of the overturn-
ing rate is negative because of the reversed direction of water
flow in the three boxes.

Figure 5. Time series of the overturning rate in the “truth” simu-
lation with κ = 28 (red) and the individual ensemble members (or-
ange) in the free model control ensemble simulations (a) without
data assimilation and parameter estimation, (b) with data assimila-
tion or (c) with data assimilation and parameter estimation using
erroneously guessed κ values with a Gaussian perturbation that has
a mean value of 32 and a standard deviation of 0.1. The dashed
black line denoting v = 0 is a division line between the thermal-
mode equilibrium state and the haline-mode equilibrium state. The
dotted-dashed black line denoting the 300th unit marks the start of
parameter estimation.

3.4 Data assimilation and parameter estimation

AMOC simulation results in 20 ensemble members along
different transition paths, which are different from the “ob-
servations”. To adjust the model to make the simulation re-
sults closer to the truth, the “observations” are assimilated
into the model. Based on the method in Sect. 2.2, the ob-
servational increment and the covariance between the prior
ensemble of the model variable and the model-estimated en-
semble are calculated first, after which each observational in-
crement is applied to Eq. (3) to update the model variable
ensemble. Obtain an updated prior ensemble of the variable
in preparation for the next cycle of data assimilation. The
results show that after data assimilation, although the 20 en-
semble members (orange lines in Fig. 5b) are in the same
path of transition, where the AMOC switches between differ-
ent equilibrium states at the same pace, their transition paths
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Figure 6. Time series of the estimated κ values with a Gaussian
perturbation that has a mean value of 32 and a standard deviation of
0.1 in the individual ensemble members (orange) in the free model
control ensemble simulations with data assimilation and parame-
ter estimation. The solid red line denoting κ = 28 marks the true
value of κ being estimated. The dotted-dashed black line denoting
the 300th unit marks the start of parameter estimation using x2, w,
and η observations.

are still different from the “observational” path (red lines).
This is because there is a deviation between the parameter
value in the model and its best estimate.

Parameterization can approximate many physics in the
model, but the values of parameters are usually estimated
roughly by summing up experiences in a large number of
experiments. To reduce the error caused by parameter errors
between model simulation results and the truth, parameter
estimation is performed next. The observational increment is
applied to the error covariance between the model-estimated
ensemble and the prior parameter ensemble by Eq. (4). Pa-
rameter estimation starts at the 300th unit. The result shows
that after the 300th unit, the overturning rates in 20 ensemble
members all follow the same transition path (orange lines in
Fig. 5c), which is the same as the “observational” path (red
lines). Meanwhile, the parameter κ is adjusted to around the
best-estimated value 28 (Fig. 6). As an example of capturing
regime transitions of the AMOC, Fig. 7 shows the results in
1 of the 20 ensemble members in the free model control en-
semble simulations with or without CDAPE. From Fig. 7, we
learned that although the model parameter κ is erroneously
guessed, constraining κ with observational data can change
the path of AMOC transition between different equilibrium
states. The model deviations are mitigated significantly.

The five-variable conceptual climate model could simulate
the interactions between the atmosphere and ocean, and cou-
pling it with the three-box MOC model could accurately ad-
dress the main questions in this paper. The transferring of the
uncertainty of the MOC3B-5V model is particularly simple
and easily understood. With the help of this model, we found
that the coupled model parameter estimation with observa-
tions can significantly mitigate the model deviations, thus
capturing regime transitions of the AMOC. As such, the main
outcome of this paper can be more readily demonstrated with
this simple model. However, The MOC3B-5V model is just

Figure 7. Time series of the overturning rate in one of the ensem-
ble members in the free model control ensemble simulations with
(red) or without (orange) data assimilation and parameter estima-
tion, where κ is erroneously guessed as 31.87768. The dashed black
line denoting v = 0 is a division line between the thermal-mode
equilibrium state and the haline-mode equilibrium state.

a simple conceptual model, and the model states x2,w, and η
simply conceptually simulate the variation characteristics of
the atmosphere and the ocean. Although the transitions of the
AMOC are simulated by the MOC3B-5V model, the specific
physical meaning of the model is not explicit enough. The
method of capturing regime transitions in Sect. 2 is proven to
be feasible in the simple model, and the next step is to apply
the method to a physics-based MOC box model.

4 Capturing AMOC regime transitions by parameter
estimation in a physics-based MOC box model
(MOCBM)

4.1 The MOCBM

After proving that it is feasible to capture regime transitions
by constraining parameters in an idealized conceptual model,
we also use a MOCBM (Tardif et al., 2014; Zhao et al., 2019)
with a better physical basis to study the problem of AMOC
transition. The MOCBM is a coupled lower-order ocean–
atmosphere climate model constructed by Roebber (1995),
which reflects the chaotic variability in the atmosphere and
the oscillation or multi-equilibria in the ocean (Roebber,
1995; Taboada and Lorenzo, 2005). The atmospheric part
of the model is represented by the wave-mean-flow atmo-
spheric circulation model of Lorenz (1984). In contrast to
Lorenz’s 1963 model describing convection, Lorenz’s 1984
model simulates the general atmospheric circulation at mid-
latitudes (Lorenz, 1984). The ocean part of the model is rep-
resented by another three-box model of the North Atlantic
Ocean at mid-latitude (Birchfield, 1989). A schematic illus-
tration of this MOCBM can be found in Fig. 1 of Tardif et
al. (2014).

In MOCBM, the model states (vector x) include atmo-
spheric states X, Y, and Z and oceanic states T1, T2, T3, S1,
S2, and S3. The governing equations of the atmosphere model
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are

Ẋ =−
(
Y 2
+Z2

)
− aX+ aF,

Ẏ =XY − bXZ−Y +G,

Ż =XZ+ bXY −Z, (16)

where X represents the intensity of the westerly wind cur-
rent, and Y andZ represent the magnitudes of cosine and sine
phases of large-scale eddies, respectively. The terms XY and
XZ represent the amplification of the eddies through inter-
action with the westerly current. This amplification is at the
expense of the westerly current, which is denoted by the term
−(Y 2

+Z2). The terms −bXZ and bXY represent the dis-
placement of the eddies by the westerly current, while −aX,
−Y , and −Z represent mechanical damping. Finally, F rep-
resents the diabatic heating contrasts between the low- and
high-latitude ocean, and G represents the longitudinal heat-
ing contrast between land and sea.

The simple non-dimensional ordinary differential equa-
tions are

r1Ṫ1 =
1
2
q(T2− T3)+KT (TA1− T1)−KZ(T1− T3),

r2Ṫ2 =
1
2
q(T3− T1)+KT (TA2− T2)−KZ(T2− T3),

r3Ṫ3 =
1
2
q(T1− T2)+KZ(T1− T3)+KZ(T2− T3),

r1Ṡ1 =
1
2
q(S2− S3)−KZ(S1− S3)−QS,

r2Ṡ2 =
1
2
q(S3− S1)−KZ(S2− S3)+QS,

r3Ṡ3 =
1
2
q(S1− S2)+KZ(S1− S3)+KZ(S2− S3), (17)

where KT represents the coefficient of heat exchange be-
tween the ocean and the atmosphere,KZ represents the coef-
ficient of vertical interaction between the upper ocean and
the deep ocean, TA1 and TA2 are the air surface tempera-
ture, and QS is the volume-averaged equivalent salt flux.
The non-dimensional variables r1, r2 and r3 are defined as
rj = Vj/(V1+V2+V3), where Vj represents the volume of
box j . The meridional overturning circulation q satisfies

q = µ [α(T2− T1)−β(S2− S1)] , (18)

where α and β are the thermal and haline expansion coef-
ficients of seawater, respectively, and µ is a proportionality
constant.

The coupled interaction between the ocean box model and
the atmosphere model is accomplished by the terms F , G,
TA1, TA2, and Qs. Superimposing the background value and
the variation in a seasonal cycle as well as long-term varia-
tion associated with changes in upper ocean temperatures, F
and G are defined as

F = F0+F1 cosωt +F2(T2− T1),

G=G0+G1 cosωt +G2T1, (19)

Figure 8. Variation of meridional overturning circulation q in the
space of salt flux Qs. The dashed black line denoting q = 0 Sv is a
division line between two equilibrium states.

where F0, F1, F2, G0, G1, and G2 are constants, and ω is
the annual frequency. Since X in the atmosphere model is
directly related to the temperature, the temperature is defined
as

TA1 = TA2− γX, (20)

where TA2 and γ are constants. Finally, the equivalent salt
flux is formulated by QS =Qrunoff+QWV+Q

′
WV, where

Qrunoff is the runoff into the ocean from the rivers, and QWV
andQ′WV are the mean and transient eddy components of the
atmospheric water vapor transport, respectively. Qrunoff and
QWV are assumed to be constant and Q′WV is postulated to
be linearly related to the eddy sensible heat flux (Y 2

+Z2)
(Stone and Yao, 1990). Finally, Qs is obtained as follows:

QS = c1+ c2(Y
2
+Z2), (21)

where c1 and c2 are constants to be determined.
The parameters in this MOCBM are set to (a, b, r1,

r2, r3, KT , Kz, TA2, α, β, µ, F0, F1, F2, G0, G1,
G2, γ )= (0.25, 4.00, 16.495, 5.295, 1.332, 0.35, 0.05276,
1, 9.622× 10−5 K−1, 7.755× 10−4 psu−1, 4× 1010 m3 s−1,
6.65, 2.0, 47.9, −3.60, 1.24, 3.81, 0.06364). As in Roeb-
ber (1995), the value ofQs affects the solution of the thermo-
haline circulation, and Qs above a critical value will eventu-
ally lead to a complete reversal of the flow. To obtain this
critical value of Qs, the equilibrium solution for the ther-
mohaline circulation is calculated as the value of Qs varies
from 0.5× 10−3 to 4.0× 10−3. As shown in Fig. 8, this crit-
ical value is near 2.05× 10−3. Considering the mean and the
range of variation of (Y 2

+Z2), and also referring to the val-
ues taken in Roebber (1995) and Tardif et al. (2014), c1 and
c2 are set here to 1.94× 10−3 and 4.05× 10−5, respectively.

https://doi.org/10.5194/npg-28-481-2021 Nonlin. Processes Geophys., 28, 481–500, 2021



494 Z. Liu et al.: A study of capturing AMOC regime transition

4.2 Parameter estimation with observational
information

A twin experimental framework is designed to perform the
study of capturing regime transitions using the MOCBM.
Using a fourth-order Runge–Kutta time-differencing scheme
with a time step of 3 h, the MOCBM is specified with param-
eter values described above. The truth model is spun up for
an initial 105 years starting from an initial value of q equal
to 15 Sv. Then, another 60 000 years are run forward to pro-
duce the “truth” states. The states of the atmosphere and the
temperature and salinity of the surface ocean are considered
the variables to be observed. The white noise is added to the
“truth” states, and the standard deviations of the observation
errors are set to 0.1 for X, Y , and Z, 0.5 K for T1 and T2, and
0.1 psu for S1 and S2. The “observations” are eventually ob-
tained by sampling these variables at a frequency of 1 year.
In the twin experimental framework, the assimilation model
is similar to the truth model, except that parameter γ in the
box model is assumed to be incorrectly estimated, with an
error that is 10 % greater than the standard value 0.06364.
Thus, the mean value of all parameters from the 20 assim-
ilation models is 0.070004, and their standard deviation is
10 % of the standard value. The parameters in the atmosphere
model or in the ocean model could be selected for parame-
ter estimation to address the points in this paper. Given that
we have experimented with the parameter in the atmosphere
model before, here we show the experiment with the parame-
ter of the ocean model. Again, the parameter being estimated
is based on the model sensitivities regarding all parameters
in the box model (Zhao et al., 2019).

Figure 9 shows the time series of meridional overturning
circulation q, where the positive and negative aspects of q
reflect the reversed circulation, which represents the transi-
tion between two different states. The simulation results of
the 20 assimilation models (orange line in Fig. 9a) are differ-
ent, and they all have significant errors with the results from
the truth model (red line). Then, the “observations” from the
truth model are used to adjust the model states (Fig. 9b) as
well as to further constrain the parameter γ (Fig. 9c). Fig-
ure 9b shows the time series of the MOC value in the “truth”
simulation (red lines) and in the free model control ensem-
ble simulations with only data assimilation. Due to the ex-
istence of parameter error, inaccurate analyses are obtained
when only data assimilation was performed without parame-
ter estimation. The results of data assimilation and parameter
estimation are shown in Fig. 9c, where the simulation results
of the 20 assimilation models (orange lines) are constrained
by “observations”, and the more accurate reconstructed tran-
sition path (red lines) is obtained. Since the behaviors of the
MOCBM and MOC3B-5V models are very similar, the fig-
ures corresponding to Figs. 6 and 7 are not shown here.

The box model in the MOCBM is based on the classical
approach of adopting a buoyancy constraint, and the circu-
lation is regulated by the surface buoyancy difference, im-

Figure 9. Time series of the meridional overturning circulation q
in the “truth” simulation with γ = 0.06364 (red) and the individ-
ual ensemble members (orange) in the free model control ensemble
simulations (a) without data assimilation and parameter estimation,
(b) with data assimilation or (c) with data assimilation and param-
eter estimation using erroneously guessed γ values with a Gaus-
sian perturbation that has a mean value of 0.070004 and a standard
deviation of 10 % times the standard value. The dashed black line
denoting q = 0 is a division line between two equilibrium states.

plying that surface thermohaline forcing drives the AMOC
(Birchfield, 1989). In contrast, for the box model in the
MOC3B-5V model, the constraint is based on mechanical
energy sustaining diapycnal mixing, and the circulation is
maintained by mechanical energy from wind stress and tides
(Shen et al., 2011). The AMOC is driven differently in the
two box models. Compared with the buoyancy constraint
(MOCBM), the energy constraint (MOC3B-5V) can offer a
significant advantage in rational interpretations of the tran-
sitions between the thermal and haline modes (Guan and
Huang, 2008). Compared to the MOC3B-5V model, the
MOCBM is more explicit in physical meaning, which is
mainly reflected in the meaning of the model states. The
meaning of the state variables in the atmospheric part of the
MOCBM is more explicit, such as X for the westerly wind
current and Y and Z for large-scale eddies. The MOC3B-
5V model, however, only describes the chaotic characteristic
of the atmosphere starting from a simple heating disturbance
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problem. It further describes the basic variation characteris-
tic of the ocean by the coupled interaction between the at-
mosphere and the ocean. Besides, the coupling of ocean and
atmosphere in the MOCBM is sufficiently accomplished by
several variables such as F , TA1, and Qs. The MOC3B-5V
model and the MOCBM, although both are simple models,
can reveal the characteristic of AMOC multi-equilibria and
thus can be used to test the feasibility of the methodology in
Sect. 2. By constraining the model parameters with observa-
tions, both models result in capturing regime transitions of
the AMOC.

5 Summary and discussions

A method for combining the general AMOC simulation
model with ensemble Kalman filtering is designed to form
a CDAPE system. Given that the discrepancy exists between
the influencing factors of the AMOC in the real world and the
corresponding parameters of models, parameter estimation is
used to estimate the model parameters. Using the CDAPE
system, within a “twin” experiment framework, 20 assimila-
tion models are set with an incorrectly estimated parameter,
while a model representing the “truth” uses the parameters as
the standard values. The assimilation models simulate 20 dif-
ferent transition paths between AMOC states with disturbing
parameters. The observational information from the “truth”
is assimilated into the assimilation models, and the transition
path of the AMOC is optimized by parameter estimation, so
that regime transitions of the AMOC are captured correctly.
Our results suggest that, guided by estimation theory, ap-
propriately constraining coupled model parameters with ob-
served data can make a climate model capture regime tran-
sitions of the AMOC. The research methodology is applied
to simple climate models that can simulate AMOC multi-
equilibria. The first model in this study provides conceptual
proof that the methodology is feasible, and the second model
with more explicit physical meaning provides further demon-
stration through simulation results.

A simple model that consists of a three-box ocean model
and a five-variable climate model (the MOC3B-5V model)
has been developed to simulate the basic characteristic of
the AMOC that transits between different equilibrium states.
The parameters in the three-box model are linked to the at-
mospheric variables, the upper ocean variable, and the deep
ocean variable in the five-variable model to construct en-
ergy constraint, wind-driven circulation, and freshwater flux,
which dynamically change within a reasonable range. By
projecting observational information of model states to the
parameters, the AMOC regime transitions simulated by the
model are much closer to reality. It has to be noted that af-
ter the change in the three-box model from the stable haline
mode to the stable thermal mode, a catastrophic change oc-
curs in the system, which results in the disappearance of the
stable haline mode (Guan and Huang, 2008). It is impossi-

ble to change the state from the thermal mode to the haline
mode by changing parameters. Therefore, to adjust the tran-
sition between the thermal mode and the haline mode, addi-
tional atmospheric forcing (additional freshwater flux from
the atmosphere) is added to the two boxes that have contact
with the atmosphere. The effect of this forcing is small and
does not affect the overall balance of the model. Although we
acknowledge that the effect of additional forcing still needs
to be further investigated, the disappearance of the haline
mode is not addressed in this study, so that we may focus
on capturing regime transitions by observation-constrained
model parameters. It is important to emphasize that the sim-
ple conceptual model is not attempting to simulate a specific
oceanic and atmospheric physical process, but rather the op-
posite: our objective is to explore whether the error between
models and reality in terms of the AMOC transition can be
reduced by incorporating observational information into the
model parameters.

The MOCBM (Roebber, 1995) with clearer physical
meaning is used in this study. Since the circulation is driven
only by the meridional gradients of the upper ocean tem-
perature and salinity in the buoyancy-constraint MOCBM,
AMOC regime transitions can be captured to some extent
when the upper ocean temperature and salinity are directly
adjusted by data assimilation only, but the simulation results
are not accurate enough. In this simple model, since the data
assimilation has worked well, the contribution of parame-
ter estimation is relatively small but still indispensable. The
AMOC regime transitions are captured more accurately by
parameter estimation. The degree of contributions of data
assimilation or parameter estimation to the optimization of
simulation results is different in these two models. Compared
with the MOCBM, the energy-constraint MOC3B-5V model
is more representative of the role of parameter estimation be-
cause the circulation is maintained by mechanical energy.
When leaving out the parameter estimation steps and con-
straining the model states only by data assimilation, the ac-
curacy of state estimation is not high due to the existence of
parameter errors. Given the fact that the circulation is driven
in a more complex way in the real world, this simple model
study only provides a conceptual understanding and guide-
line for more complex real systems such as a coupled gen-
eral circulation model (CGCM). Although both the MOCBM
and the MOC3B-5V model are simple idealized hemispheric
models, our concerns can be illustrated more clearly through
them. Our effort here is to make the AMOC multiple equilib-
rium states from model simulations better reflect the features
in reality. Our focus is on adjusting the model parameters by
sampling the observations so that the simulation of the model
is closer to the truth in the feature of regime transitions. The
conceptual model, albeit simple, has demonstrated the im-
portance of data assimilation and parameter estimation. It is
hoped that such a simple model study on AMOC transition
will inspire the hypotheses and the optimization of parame-
ters in CGCMs. Taking a study by Ashkenazy and Tziper-
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man (2007) as an example, to understand the ocean general
circulation model results, they constructed a simple three-
box model to understand the behavior of the thermohaline
circulation in more realistic parameter regimes (Ashkenazy
and Tziperman, 2007).

We have already captured regime transitions of the AMOC
in a conceptual model as well as in a simple model with
clearer physical meaning and will apply this method to more
complex real systems such as CGCMs. The characteristic of
AMOC multi-equilibria has been simulated in box models
(e.g., Stommel, 1961; Rooth, 1982; Welander, 1986; Birch-
field, 1989), ocean circulation models (e.g., Marotzke and
Willebrand, 1991), and coupled ocean–atmosphere models
(e.g., Manabe and Stouffer, 1988). However, it should also
be noted that AMOC multiple equilibria have not been di-
rectly simulated by some CGCMs. Tremendous research ef-
forts thus have been put into tackling this issue. One fo-
cus was on the CGCM presentation of Stommel’s salt ad-
vection feedback (Rahmstorf, 1996). It has been suggested
that this feedback is distorted in CGCMs due to salinity bi-
ases (Huisman et al., 2010; Jackson, 2013; Liu et al., 2017).
Another argument is on ocean eddies. It has also been sug-
gested that CGCMs with an eddy-permitting ocean allow
for a simulation of AMOC multiple equilibria (Jackson and
Wood, 2018) since ocean eddies modify the overall freshwa-
ter balance (Mecking et al., 2016). In follow-up studies, we
will explore the contribution of a CDAPE system to AMOC
multi-equilibrium using different resolutions, ranging from a
coarse-resolution CGCM with the ability to simulate AMOC
multi-equilibrium characteristic and eventually to a high-
resolution and more realistic Earth system model. In a re-
cent study, two types of AMOC transitions were described,
with a temporary cessation of the downwelling (called an
F-type transition) or a full collapse of the AMOC (called
an S-type transition), and the F-type transitions might have
been found in the direct observation (Castellana et al., 2019;
Castellana and Dijkstra, 2020). The general methodology of
this study could be used for both S-type transition and F-type
transition. The S-type transition with centurial and millennial
timescales could use observations from paleoclimate records,
and the methodology can be applied to paleoclimate models
for capturing AMOC regime transitions. In the current cli-
mate system, the F-type transition with very high transition
probabilities on multi-decadal timescales (Castellana et al.,
2019; Castellana and Dijkstra, 2020) could use direct obser-
vations from RAPID or indirect observations from satellites
or the ARGO program.

Although the observation-constrained model simulates the
transition between different equilibrium states of the AMOC,
this study only serves as the first step of capturing regime
transitions, and many challenges still exist. First, the devia-
tions of AMOC transition paths simulated in different mod-
els are caused by not only parameter errors, but also mis-
matches between real physical processes and model simula-
tions (Zhang et al., 2012). Therefore, the performance of pa-

rameter estimation still needs further experimentation with
more realistic models. Second, the mechanism of AMOC
transition needs further investigation. The effect of stochas-
tic forcing has been taken into account in previous work.
Cessi (1994) studied the transition from one equilibrium to
another in a modified Stommel model, and she found that
the transition could occur under stochastic white-noise forc-
ing. In our study, the transition phenomenon of the AMOC
is ultimately affected by the model parameters. Usually, tra-
ditional state estimation with data assimilation has limited
usage in detecting the mechanism. Here, we aim at con-
straining the model parameters through utilization of obser-
vational information, which eventually results in a more re-
alistic model behavior in terms of the AMOC transitions. A
future effort is needed on how the effect of the stochastic
component will manifest in the AMOC system. Third, Ak-
soy et al. (2006b) proposed a spatial updating technique that
recovers the globally uniform parameter value using a spatial
average of the entire spatially varying parameter field. Wu et
al. (2012, 2013) explored the impact of the geographic de-
pendence of the observing system on the parameters. The ad-
justment of the parameters is based on the spatial distribution
of the model state sensitivity to parameters. Liu et al. (2014a,
b) proposed the adaptive spatial average method that obtains
the final global uniform posterior parameter based on spa-
tially varying posterior estimated parameter values. In this
study, considering that the simple box models are used as
a first step to explore AMOC transitions, it is more appro-
priate to use the identity model. The impact of geographic-
dependent parameter optimization on climate estimation and
prediction can be considered in future studies for complex
systems such as CGCMs.

Besides, in the study of two simple models, the observa-
tional information, which is used for data assimilation and
parameter estimation, only comes from the atmosphere and
surface ocean. In the real Earth system, the flow of seawa-
ter located in the deep ocean is an important part of the
AMOC, and its measurement is difficult. The changes in each
component of the AMOC will affect the entire circulation.
AMOC reconstruction heavily relies on comprehensive ob-
servational data. In the future, with the improvement of the
Earth-observing system, the coupled climate system model
will be improved continuously, and the results of numerical
simulation will have a higher credibility. These could lead to
significant improvement of the reanalysis and prediction of
the AMOC.
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