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Abstract. Height of new snow (HN) forecasts help to pre-
vent critical failures of infrastructures in mountain areas, e.g.
transport networks and ski resorts. The French national me-
teorological service, Météo-France, operates a probabilistic
forecasting system based on ensemble meteorological fore-
casts and a detailed snowpack model to provide ensem-
bles of HN forecasts. These forecasts are, however, biased
and underdispersed. As for many weather variables, post-
processing methods can be used to alleviate these drawbacks
and obtain meaningful 1 to 4 d HN forecasts. In this paper,
we compare the skill of two post-processing methods. The
first approach is an ensemble model output statistics (EMOS)
method, which can be described as a nonhomogeneous re-
gression with a censored shifted Gamma distribution. The
second approach is based on quantile regression forests, us-
ing different meteorological and snow predictors. Both ap-
proaches are evaluated using a 22 year reforecast. Thanks
to a larger number of predictors, the quantile regression for-
est is shown to be a powerful alternative to EMOS for the
post-processing of HN ensemble forecasts. The gain of per-
formance is large in all situations but is particularly marked
when raw forecasts completely miss the snow event. This
type of situation happens when the rain–snow transition el-
evation is overestimated by the raw forecasts (rain instead
of snow in the raw forecasts) or when there is no precipita-
tion in the forecast. In that case, quantile regression forests
improve the predictions using the other weather predictors
(wind, temperature, and specific humidity).

1 Introduction

In cold regions (e.g. mountainous areas), the height of new
snow (Fierz et al., 2009; also commonly known as the depth
of fresh snow) expected for short lead times is critical for
many safety issues (e.g. avalanche hazard) and the econom-
ical impacts of dysfunctional transport networks (road, air-
ports, and train track viability). National weather services
increasingly provide automatic predictions for that purpose,
usually relying on numerical weather prediction (NWP)
model outputs. Forecasting the height of new snow (HN)
is particularly challenging for many reasons. First, the pre-
cipitation forecasts in NWP models are biased and under-
dispersed. Then, HN is strongly dependent on elevation in
mountainous areas, and this relationship cannot be perfectly
reproduced by the current resolution of NWP models. Fi-
nally, several processes affecting snow properties (density,
height, and precipitation phase) are either absent or poorly
represented in NWP models (e.g. density of falling snow and
mechanical compaction during the deposition). In particular,
the evolution of the rain–snow limit elevation can greatly dif-
fer according to meteorological conditions and is only partly
understood (Schneebeli et al., 2013).

Few attempts have been made to post-process ensemble
HN forecasts. To the best of our knowledge, Stauffer et al.
(2018) and Scheuerer and Hamill (2019) are the first studies
to present post-processed ensemble forecasts of HN. They
consider direct ensemble NWP outputs as predictors (pre-
cipitation and temperature). Nousu et al. (2019) incorporate
physical modelling of the snowpack in order to integrate the
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high temporal variations in temperature and precipitation in-
tensity during a storm event, which can have highly nonlinear
impacts on HN. In addition, Nousu et al. (2019) demonstrate
the ability of a nonhomogeneous regression method to im-
prove the ensemble forecasts of HN from the PEARP-S2M
ensemble snowpack (ARPEGE – Action de Recherche Pe-
tite Echelle Grande Echelle; PEARP – Prévision d’Ensemble
ARPEGE; SAFRAN – Système Atmosphérique Fournissant
des Renseignements Atmosphériques à la Neige; SURFEX
– SURFace EXternalisée; MEPRA – Modèle Expert pour
la Prévision du Risque d’Avalanches; S2M – SAFRAN–
SURFEX MEPRA). Using a regression method based on the
censored shifted Gamma distribution (Scheuerer and Hamill,
2015, 2018), the forecast skill was improved for the majority
of the stations from common events to more unusual events.
However, as this method only considers a single predictor
(the simulated HN itself) at a given point, dry days and rainy
days cannot be discriminated as long as all forecast members
provide a zero value for HN. This prevents an appropriate
correction of some specific NWP errors, such as a systematic
error among all simulation members in the rain–snow transi-
tion elevation.

In this study, we consider the application of quantile re-
gression forests (QRFs) as an alternative to nonhomogeneous
regression methods. This approach has been successfully ap-
plied for the post-processing of ensemble forecasts of surface
temperature, wind speed (Taillardat et al., 2016), and rainfall
(Taillardat et al., 2019). QRFs are often considered as being
a non-parametric method since they do not rely on an explicit
mathematical relationship between the predictors and the tar-
get distribution of the predictand. Furthermore, many predic-
tors can be incorporated without decreasing the forecast skill
(Taillardat et al., 2019), which can be particularly interest-
ing in our case when, for example, the raw ensemble only
contains zero HN while rainfall forecasts are large. Indeed,
in some cases, the PEARP-S2M ensemble snowpack com-
pletely misses large snow events (e.g. due to an erroneous
rain/snow limit). For some problematic meteorological situ-
ations, QRFs can possibly provide a specific correction.

Section 2 summarizes the forecasts and observations data
set used in this study. Section 3 provides the details of the en-
semble model output statistics (EMOS) method tested in this
study, a particular nonhomogeneous regression method al-
ready employed in Nousu et al. (2019) and considered here as
a benchmark method. Section 4 describes the QRF method.
In Sect. 5, we detail the evaluation of the performances of
each method. Section 6 presents the results. Finally, Sect. 7
provides a discussion of the results with some future out-
looks.

2 Data

In this study, we select 92 stations in the French Alps and
Pyrenees based on a minimum availability of observations

Table 1. Set of all available predictors.

Name Description

CTRL Control member of raw ensemble of HN
MEAN Mean of raw ensemble of HN
MED Median of raw ensemble of HN
Q10 First decile of raw ensemble of HN
Q90 Ninth decile of raw ensemble of HN
PR0 Raw probability of HN> 0 cm
PR1 Raw probability of HN> 1 cm
PR3 Raw probability of HN> 3 cm
PR5 Raw probability of HN> 5 cm
PR10 Raw probability of HN> 10 cm
PR20 Raw probability of HN> 20 cm
SIGMA Standard deviation of raw ensemble of HN
IQR Interquartile range of raw ensemble of HN

Q10, 50, and 90 are the first decile, the median, and ninth decile of
the raw ensemble for the following variables:

SNOWR_q10,50,90 Snow rate (kgm−2 h−1)
RAINR_q10,50,90 Rain rate (kgm−2 h−1)
WIND_q10,50,90 Wind speed (ms−1)
TAIR_q10,50,90 Near-surface air temperature (K)
QAIR_q10,50,90 Near-surface specific humidity (ø)

of 60 % (percentage of missing observations thus varies be-
tween 0 % and 40 %, with an average of 18 %). Forecasts and
observations are available and reliable for these 92 stations
presented in Fig. 1 for 22 winter seasons covering the period
1994–2016, where each winter season starts on 6 December
and ends on 30 April of the following year (3218 d in total).

The forecasts are obtained by a chain of ensemble numeri-
cal simulations. The 10-member reforecasts of the PEARP
ensemble NWP (Descamps et al., 2015; Boisserie et al.,
2016) are downscaled by the SAFRAN system (Durand et al.,
1999) to obtain a meteorological forcing adjusted in eleva-
tion. The Crocus multilayer snowpack model, part of the
S2M modelling chain (Vernay et al., 2019), is forced by these
forecasts to provide ensemble simulations of HN, account-
ing for all the main physical processes explaining the vari-
ability in HN for a given precipitation amount, namely the
dependence of falling snow density on meteorological con-
ditions, the mechanical compaction over time depending on
snow weight, the microstructure and wetness of the snow, a
possible surface melting, and so on. The forecasts used in
this paper are the same as those used by Nousu et al. (2019),
who provided more details on the models’ configurations.

Table 1 presents the selected predictors based on the avail-
able reforecasts. This selection is derived from studies of
Scheuerer and Hamill (2015) and Taillardat et al. (2019) for
rainfall. It includes summary statistics and probabilities of
the variable to be predicted (rainfall in the previous refer-
ences transposed into HN in our case). We also consider
statistics of other weather variables of the ensemble sus-
pected to add predictability because they might affect the sta-
tistical relationship between observed and simulated HN.
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Figure 1. Map of the 92 observation stations (white dots) in the French Alps (b) and Pyrenees (c).

In this paper, for each station, we thus consider i =
1, . . .,n= 3218 d with an observed HN Yi (the response) and
a vector of corresponding predictors Xi .

3 Ensemble model output statistics

Among the ensemble model output statistics (EMOS) meth-
ods available, non-homogeneous regression approaches are
the most common and were originally based on Gaussian re-
gressions, whose mean and variance are linear functions of
ensemble statistics (Gneiting et al., 2005; Wilks and Hamill,
2007). Non-homogeneous regression methods can also in-
corporate climatological properties and additional predictors.
For meteorological predictands such as rainfall and snow,
however, the high number of zero values motivate the use of
a discrete–continuous distribution with a mass of probability
at zero. In this study, we use a regression based on the zero-
censored shifted Gamma distribution (CSGD; see Scheuerer
and Hamill, 2015, 2018; Nousu et al., 2019).

The non-homogeneous regression method applied in this
study is similar to the approach presented in Nousu et al.
(2019) and is referred to as EMOS hereafter. Further details
of this EMOS method are presented in Appendix A. More
precisely, we detail how the CSGD is used to represent the
predictive distribution of daily HN forecasts, the parameter
estimation method, and the related predictive distribution.
Please note that expression (A3) is slightly different from ex-
pression (4) in Nousu et al. (2019) and strictly corresponds

to Scheuerer and Hamill (2018) (see their expression of σ
in Sect. 3a, p. 1653). While this difference is not critical on
the performances, expression (A3) avoids scaling issues in
parameter β2.

4 Quantile regression forest

Compared to the EMOS method, quantile regression forest is
expected to incorporate any predictor without degrading the
quality of the predictions. Subsets of the space covered by the
predictors are created in order to obtain homogeneous groups
of observations inside these subsets. If the predictors include
many meteorological forecasts, these subsets are expected
to describe different meteorological situations. Compared to
EMOS, this so-called non-parametric regression does not as-
sume a particular distribution for the predictors or the re-
sponse, and empirical distributions represent the uncertainty
about the prediction.

4.1 Method

The QRF methods presented in this paper are based on the
construction of binary decision trees, as proposed by Mein-
shausen (2006). These decision trees (Classification and Re-
gression Trees or CART for short; Breiman et al., 1984) are
built by iteratively splitting each predictor space (D0) into
two groups (D1 and D2) according to some threshold. The
predictor and the threshold are chosen in order to maximize
the homogeneity of the corresponding values of the response
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(here the observed HN) in each of the resulting groups, i.e.
we want to minimize the sum of variances of the response
variable within each group as follows:

ν(Dj )=
∑
Y∈Dj

[
Y − Ȳ

]2
,

where Y and Ȳ correspond to the response sample and its
mean in Dj , respectively. The optimal threshold s maximizes
the following:

H(D1,D2)= max
s∈T ∗

[
ν(D0)− ν(D1)− ν(D2)

]
,

where T ∗ is a random subset of the predictors in the pre-
dictors’ space T . These trees are obtained by bootstrapping
the training data, which justifies the name of “random forest”
since each split of each tree is built on a random subset of the
predictors (Breiman, 2001). The final “leaf” corresponds to
the group of predictors at the end of each tree (see Fig. 1 in
Taillardat et al., 2019, for an illustration).

4.2 Implementation

The QRFs are obtained using the function
quantregForest of the package quantregForest in
R (R Core Team, 2017). The splitting procedure described
above can be constrained by different choices, e.g. a min-
imum number of observations in leaves. In this paper, we
grow 1000 trees, which represent a sufficiently large number
of trees to span a great variety of meteorological situations
without demanding an unbearable computational effort.
Different values for the parameters mtry, which specify
the number of predictors randomly sampled as candidates at
each split (usually small, i.e. less than 10) and nodesize
which defines the minimum number of cases (days) in termi-
nal nodes, have been tried, and the best performances being
found for mtry= 2 and nodesize= 10 (see Sect. 6).

4.3 Predictive distribution

For QRFs, the predictive distribution, given a new set of pre-
dictors x, is the conditional cumulative distribution function
(CDF) introduced by Meinshausen (2006) as follows:

F̂ (y|x)=

n∑
i=1

wi(x)1({Yi ≤ y}), (1)

where the weights wi(x) are deduced from the presence
of Yi in a final leaf of each tree when one follows the
path determined by x. In practise, the resulting forecast
is a set of quantiles from F̂ (y|x) obtained with the func-
tion predict.quantregForest from the R package
quantregForest. Different quantiles are thus computed
for synthetic graphical representations or for score calcula-
tions.

5 Evaluation

This section details the process applied to assess the perfor-
mance of the different approaches. Classical evaluation met-
rics include the continuous ranked probability score (CRPS),
which sums up the forecast performance attributes in terms
of both reliability and sharpness simultaneously (Murphy
and Winkler, 1987; Hersbach, 2000; Candille and Talagrand,
2005). Rank histograms are also a common tool to assess
systematic biases and over/under dispersion.

5.1 Cross-validation

For all the experiments in this study, we use a leave-one-
season-out cross-validation scheme. For each of the 22 sea-
sons, one season is used as a validation data set while the
other 21 seasons are used for training. It first ensures that
a robust calibration of the post-processing methods is ob-
tained. It also avoids the evaluation of the performances with
a unique validation period that could be atypical (e.g. a very
snowy/dry winter season).

5.2 CRPS

The CRPS is one of the most common probabilistic tools for
evaluating the ensemble skill in terms of reliability (unbiased
probabilities) and sharpness (ability to separate the proba-
bility classes). For a given forecast, the CRPS corresponds
to the integrated quadratic distance between the cumulative
distribution function (CDF) of the ensemble forecast and the
CDF of the observation. Commonly, the CRPS is averaged
over n days as follows:

CRPS=
1
n

n∑
i=1

∫
IR

[
Fi(y)−H(y−Yi)

]2dy, (2)

where Fi(x) is the CDF obtained from the ensemble fore-
casts for day i, Yi is the corresponding observation, andH(z)
is the Heaviside function (H(z)= 0 if z < 0; H(z)= 1 if
z ≥ 0). The CRPS value has the same unit as the evaluated
variable and equals zero for a perfect system.

For the EMOS–CSGD model described above, an analytic
formulation of the CRPS is available (Scheuerer and Hamill,
2015), and a correct CRPS estimation is directly obtained.

In other cases, a correct evaluation of the CRPS defined in
Eq. (2) can be difficult. For example, the raw ensemble does
not provide a forecast CDF but only a very limited ensem-
ble of values. In this case, the CRPS is estimated with some
error. In this study, we apply the recommendations given by
Zamo and Naveau (2018). More specifically, when the fore-
cast CDF is known only through an M-ensemble x1, . . .,xM ,
we apply the following definition to estimate the instanta-
neous CRPS (i.e. for one ensemble) as follows:

ĈRPSINT =

∫
IR

[
1
M

M∑
m=1

H(x− xm)−H(x− y)

]2

dx, (3)

Nonlin. Processes Geophys., 28, 467–480, 2021 https://doi.org/10.5194/npg-28-467-2021



G. Evin et al.: Calibrated ensemble forecasts of the height of new snow 471

where y is the observation corresponding to the fore-
cast ensemble. This expression is evaluated with the
function crpsDecomposition of the R package
verification. In the case of the instantaneous CRPS of
the raw ensemble forecasts, Eq. (3) is applied directly, while
some refinements can be made to improve the estimated
CRPS in the case of QRFs, which provide a much larger
number of different quantiles (so-called order) than what
is available in the raw ensemble. Unfortunately, the set of
possible quantiles and their corresponding order cannot be
known a priori, which represents an additional difficulty.
To evaluate instantaneous CRPS values for QRFs, we thus
use the recommendations by Zamo and Naveau (2018),
i.e. we use the average ĈRPSINT given in Eq. (3) with
linearly interpolated regular quantiles between unique
quantiles. The so-called regular ensemble of M = 200
quantiles xi=1,...,M of orders τi=1,...,M ∈ [0;1] is defined as
zi = F

−1(τi), for all i, with τi ∈ { 1
M
, 2
M
, . . ., M−1

M
, M−0.1

M
}.

5.3 Sharpness

While the CRPS are often used to verify the overall quality
of the predictive distributions, it can also interesting to as-
sess the sharpness of the predictions. Gneiting et al. (2007)
propose looking at the width of the predictive intervals for
different nominal coverages (e.g. 50 % and 90 %).

5.4 Rank histograms

The reliability of ensemble forecast systems can be assessed
using rank histograms (Hamill, 2001). If the predictive distri-
butions obtained with the different post-processing methods
are adequate, then the CDF values of the predictive distri-
butions for the observations should be uniformly distributed
(so-called probability integral transform – PIT). The flatness
of the histogram of these CDF values is a necessary but not
a sufficient condition of the system reliability. Systematic bi-
ases are detected by strongly asymmetric rank histograms. It
is also an indicator of the spread skill, as underdispersion will
result in a U shaped rank histogram and overdispersion in a
bell-shaped rank histogram. Rank histograms can be com-
puted for the whole forecast data set or stratified according
to different classes of average ensemble forecasts (stratifying
according to the observations leading to erroneous conclu-
sions; see Bellier et al., 2017). In this study, as proposed in
the recent study of Bröcker and Bouallègue (2020), a stratifi-
cation based on the average of the combination of raw fore-
casts and the verification observations is used. In total, the
following three HN intervals are considered: [0 cm; 10 cm),
[10 cm; 30 cm), and [30 cm; ∞). To guarantee a sufficient
sample size for rank histograms, they are computed for the
whole evaluation data set by considering all dates and sta-
tions as being independent.

5.5 ROC curves

Finally, the relative operating characteristic (ROC) curves
(Kharin and Zwiers, 2003) can be used to assess the quality
of probability forecasts by relating the hit rate (probability of
detecting an event which actually occurs) to the correspond-
ing false alarm rate (probability of detecting an event which
does not occur).

6 Results

We first discuss the application of the QRF methods with
regards to the parameters mtry (number of predictors ran-
domly sampled as candidates at each split) and nodesize
(minimum number of days in terminal nodes). Different val-
ues have been tried for both parameters (2, 4, 6, 8, and 10
for mtry and 5, 10, 15, and 20 for nodesize). For a 1 d
lead time, the best (smallest) average CRPS values for the
validation data sets are obtained for small values of mtry (2
or 4) and high nodesize values (15 or 20), with the mean
CRPS being minimized for mtry= 2 and nodesize= 10
(results not shown). However, the range of mean CRPS val-
ues is narrow (1.282 and 1.294). We conclude here that the
performances obtained with the QRF approach are not very
sensitive to the value of the QRF parameters, and mtry= 2
and nodesize= 10 are retained in the rest of this study.

Figure 2 highlights the most important predictors for the
QRF method for different lead times. The importance crite-
ria here is related to the accuracy of the predictions when the
predictors are permuted. Random permutations of each pre-
dictor variable Xj are applied in order to verify how well the
response Y can be predicted with this deterioration. When
an important permuted variable Xj and unpermuted predic-
tor variables are used to predict the response, the prediction
accuracy, quantified here with the sum of squares of the dif-
ferences between predicted and observed response variables,
decreases substantially. The variable importance is the dif-
ference in prediction accuracy before and after permuting
Xj and is implemented by the function importance of
the package randomForest in R (see, e.g., Louppe et al.,
2013, for further details).

For a 1 d lead time, the Q90 of the forecast snow rate, fol-
lowed by the Q90 of raw forecasts of HN, are the most impor-
tant predictors. The most important predictors are directly re-
lated to snow quantities, and the role of other meteorological
forcings is minor. As the lead time increases, the importance
of the snow predictors decreases while the importance of the
forecast rain rate becomes larger. In particular, the Q90 of the
snow and rain rates are the two most important predictors at
a 4 d lead time.

Figure 3 shows the time series of observed HN for a period
with large snowfalls, along with raw reforecasts and predic-
tive intervals with a 80 % probability obtained with the dif-
ferent post-processing methods, for the station 5079400 at
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Figure 2. Importance criteria (sum of squares of the differences between predicted and observed response variables, averaged over all trees
obtained with the random permutations) of the predictors for different lead times for the QRF method.

Table 2. Mean and standard deviation (SD) of the width of the predictive intervals (PIs; 50 % and 90 % nominal coverages), with the different
methods and for all locations and dates, for a 1 d lead time. The width associated to a 50 % probability corresponds to the difference between
the 25th and 75th percentiles, and the width for a 90 % probability corresponds to the difference between the 5th and 95th percentiles.

Mean PI 50 % SD PI 50 % Mean PI 90 % SD PI 90 %

Raw 0.40 1.16 0.69 1.66
EMOS 2.24 4.03 9.52 9.86
QRFs 2.62 4.87 8.66 11.12

Le Monêtier-les-Bains during the period 26 February 2001–
18 March 2001 and for a 1 d lead time. The following obser-
vations can be made:

– The raw ensembles generally underestimate the largest
observed HN (see, e.g., the period 26 February–
5 March). The intervals given by the raw ensembles
are thin and underdispersed in comparison to post-
processed ensembles.

– Predictive intervals obtained with the post-processing
methods are large and look very similar. Observations
generally lie within these intervals (with one major ex-
ception at the end of the period).

– When the raw reforecasts are all equal to zero, the
EMOS method mechanically predicts zero HNs, which
is often verified (see, e.g. on 5, 6, and 11 March). How-

ever, EMOS predicts these zero values with a 100 %
probability, while QRF predicts small intervals in this
example, which avoids failures (i.e. prediction of a zero
value with absolute certainty while a positive HN value
is observed). In this example, it happens for 2 d, on 7
and 9 March.

Figure 4 shows the time series for station 4193400 at
Saint-Paul-sur-Ubaye during the period 29 March–18 April
2012. A large observed HN of 40 cm occurred on 10 April.
The EMOS method completely misses this event because no
snow was present in the raw forecasts. In this case, QRF pre-
dicts a large interval, with a 90th percentile around 20 cm.
Looking at the raw forecasts of the meteorological forcings
for this day, the 90 % intervals of the snow rate is [0.7,8.1]
and [1.2,9.4] cmh−1 for the rain rate and [2.1, 3.2] ◦C for
the air temperature. High snow/rain rates combined to above-
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Figure 3. Time series of the raw reforecasts for a 1 d lead time
(orange plain lines) and predictive quantiles using QRFs (purple
dashed lines) and EMOS (green dotted lines) during March 2001
for the station 5079400. For each of the three prediction systems,
the lower and upper curves represent the 10th and 90th percentiles,
respectively. The solid black line represents the time series of the
HN observations.

Figure 4. Time series of the raw reforecasts for a 1 d lead time
(orange plain lines) and predictive quantiles using QRFs (purple
dashed lines) and EMOS (green dotted lines) during April 2012 for
the station 4193400. For each of the three prediction systems, the
lower and upper curves represent the 10th and 90th percentiles, re-
spectively. The solid black line represents the time series of the HN
observations.

zero temperatures led to zero HN forecasts by the snowpack
model, while the QRF method exploits these high precipita-
tion rates in order to predict large HN amounts.

Figure 5 shows the 2024 CRPS values averaged over the
different winter seasons (92 stations× 22 winter seasons) ob-
tained with the raw reforecasts, and with EMOS and QRF
post-processing methods, for a 1 d lead time (left plots).
While EMOS gives a considerable gain of performance, it
is still outperformed by the QRF method. The right panel
quantifies this improvement as a percentage in terms of rela-

tive CRPS. For most of the stations, EMOS shows a degrada-
tion of the performances between 20 % and 30 %, up to 40 %
compared to QRF. Results (not shown) are very similar for
the other lead times.

Table 2 reports the mean width and the corresponding stan-
dard deviation of the predictive intervals (50 % and 90 %
nominal coverages) over all locations and dates, for a 1 d lead
time, with the different methods. As indicated above and il-
lustrated in Figs. 3 and 4, the predictive intervals obtained
with the raw ensembles are a lot thinner than with EMOS
and QRF, but they are underdispersed. The sharpness of the
post-processed ensembles are very similar, the mean width
for a 50 % probability being around 2.5 and 9 cm for a 90 %
probability.

Figure 6 shows the rank histograms of HN with the raw
forecasts and with EMOS and QRF post-processing meth-
ods. As indicated in previous studies (see, e.g., Nousu et al.,
2019), raw forecasts are clearly underdispersed, leading to
a U shape rank histogram, and also usually underestimate
large HN values (over-representation of the last class). These
defaults are particularly visible for classes of raw ensemble
averages above 10 cm (rows 2–3). The rank histogram with
the EMOS method is almost perfectly flat for the small en-
semble/observation averages ([0, 10) cm). For larger classes
of events, it seems that the EMOS predictive distribution is
slightly underdispersed. The QRF method shows better per-
formances than EMOS in that regard, with the only limitation
being an underestimation of the largest snowfalls (see the last
class for HN> 30 cm in the bottom-right plot).

Figure 7 shows the ROC curves for three categories of HN
observed values, i.e. all snow events (HN greater than 1 cm;
19 % of the observed cases), “moderate” snow events (HN
greater than 10 cm; 5 % of the observed cases), and “rare”
snow events (HN greater than 30 cm; 1.4 % of the observed
cases). Figure 7a shows that the raw forecast ensemble per-
forms almost as well as post-processed ensembles when all
snow events are considered. For this category, the purple
curve corresponding to the QRF approach deviates farther
away from the no-skill diagonal than the green curve cor-
responding to the EMOS method, indicating the better skill
of the QRF approach. For moderate snow events (Fig. 7b),
while QRF and EMOS show similar performances, the ROC
curve corresponding to raw ensembles is close to the diago-
nal and indicates almost no skill. For rare and intense snow
events exceeding 30 cm of fresh snow on a single day Fig. 7c
shows a slight gain of performance with the QRF approach
compared to EMOS.

To investigate further the different behaviours of EMOS
and QRF, Fig. 8 shows the relative CRPS value of EMOS
versus QRF for all dates and stations with a positive observed
HN values (greater than 1 cm) and for different classes based
on the predictors. More specifically, we try to investigate the
difference in performances according to the presence or not
of at least one positive rain/snow rate value among the dif-
ferent members of the ensemble forecast. Cases where there
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Figure 5. Box plots of CRPS (a) and relative CRPS with QRFs as a reference (b), with the different methods and for all locations, for a 1 d
lead time.

Figure 6. Rank histograms of HN forecasts for three classes of HN ensemble/observation mean, with the different methods, for a 1 d lead
time.

is not any rain or snow in the forecasts while positive HN
values have been observed represent only 0.4 % of all dates
and stations (Fig. 8a). Cases corresponding to precipitation
phase errors (at least one member with rain in the forecasts
but no snow, while a positive HN has been measured; Fig. 8b)
represents 1.2 % of all cases. Obviously, cases with snow in
the forecasts and a positive HN are more frequent (8.9 %

and 14.7 % for cases c and d, respectively). Overall, while
QRF outperforms EMOS in all cases (as outlined in Fig. 2),
we see that the gain of performances is particularly marked
for cases (a) and (b), i.e. when there is no snow in the fore-
casts. These results demonstrate the advantage of the QRF
approach in this case, i.e. when other predictors (rain, tem-
perature, etc.) can be exploited to overcome the limitations
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Figure 7. ROC curves for different snow events. (a) HN exceeds 1 cm. (b) HN exceeds 10 cm. (c) HN exceeds 30 cm. Values in brackets
indicate the observed frequencies in percent. A sharp prediction system must maximize the hit rate and minimize false alarms.

Figure 8. Relative CRPS values of EMOS versus QRFs as percentages, with QRFs as a reference, for all dates and stations and for a 1 d lead
time. Only dates with a positive observation greater than 1 cm are selected and for different classes of predictors. (a) All forecast members of
rain rate and snow rate equals to zero. (b) At least one member with a positive rain rate value and all forecast members of snow rate equals
to zero. (c) All forecast members of rain rate equal to zero and at least one member with a positive snow rate value. (d) At least one member
with a positive rain rate value and one member with a positive snow rate values. Values in brackets indicate the corresponding frequencies,
in percent, among all the dates.

of the snow forecasts for the prediction of observed HN (see
a further discussion in Sect. 7 below).

7 Discussion and outlook

7.1 Comparison of performances between QRF and
EMOS approaches

In this paper, we compare the scores of post-processed fore-
casts of the 24 h height of new snow between two commonly
used statistical methods, namely EMOS and QRF. With this
data set, the added value of QRF is unambiguous, with a
general improvement in CRPS, an improvement in rank dia-
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grams for severe snowfall events, and a slight improvement
in ROC curves for more common events. The predictors se-
lected by the QRF training clearly suggest that the simulated
HN from the Crocus snow cover model is useful but not suf-
ficient to optimize the post-processed forecasts as the meteo-
rological variables forcing the snow cover model are also se-
lected by the algorithm. The added value coming from these
meteorological predictors is the most likely explanation of
the improvement obtained between QRF and EMOS. This
improvement is frequent in various situations, and the physi-
cal reason for which the simulated HN does not translate all
the predictive power of the meteorological forcings is proba-
bly not unique but can be partly explained by the presence of
precipitation phase errors.

It must be noticed that the EMOS–CSGD model applied
in this study only uses forecasts of the variable of inter-
est as predictors. Different EMOS extensions can include
more predictors, in particular the boosting extension (Mess-
ner et al., 2017). Schulz and Lerch (2021) compare a gradient
boosting extension of EMOS (EMOS–GB) to many machine
learning methods for postprocessing ensemble forecasts of
wind gusts, using a truncated logistic distribution. The per-
formances of EMOS–GB and other machine-learning-based
postprocessing methods are promising. In particular, the dis-
tributional regression network (Rasp and Lerch, 2018) and
the Bernstein quantile network (Bremnes, 2020) often out-
perform all the other methods, including QRFs. These recent
models need, however, to be adapted to HN forecasts, i.e. us-
ing a zero-censored distribution with possibly long tails such
as the CSGD.

7.2 Role of precipitation phase errors in the added
value of QRFs

The examples selected for illustration suggest that phase er-
rors (or, in other words, errors in the rain–snow transition
elevation) is one of the possible explanations for the insuffi-
cient predictive power of the simulated HN. Indeed a num-
ber of observed snowfall events are simulated with a zero
value in terms of HN, sometimes for all members, but with
a large precipitation amount. EMOS is not able to consider
these days with a large probability of positive HN because
they are identical to dry days when considering only this pre-
dictor, whereas the other predictors considered by QRF (total
precipitation and air temperature) can help to discriminate
the days with an error in phase but with forecast precipita-
tion and relatively cold conditions from dry days or warm
days. This assumption is difficult to statistically generalize
due to the large variety of situations, i.e. errors in precipita-
tion phase often concern only a part of the total duration of a
snowfall event and/or a part of the simulation members. Nev-
ertheless, our classification of CRPS, depending on rainfall
and snowfall occurrence shows a systematic improvement of
CRPS by QRF for the cases where an error in the rain–snow
transition elevation is the most obvious (e.g. observed snow-

fall with simulated rainfall but no simulated snowfall during
the whole day for all members; Fig. 8b).

The sensitivity of snow cover models to errors in precipi-
tation phase was already illustrated by Jennings and Molotch
(2019), with a meteorological forcing built from weather sta-
tions. The magnitude of errors is expected to be much higher
when the forcing comes from NWP forecasts. The reduction
in phase errors in atmospheric modelling is beyond the scope
of this paper. However, an improvement in post-processed
forecasts might be opened by considering predictors more
directly related to this phase issue. In particular, interviews
of operational weather forecasters show that expert HN fore-
casts strongly rely on the 1 ◦C isothermal level in terms of
pseudo-adiabatic wet-bulb potential temperature (θ ′w). Un-
fortunately, this diagnostic was not available in the PEARP
reforecast, but this feedback encourages future reforecast
productions to include this additional diagnostic, as the post-
processing might be able to more directly account for phase
errors with such a predictor. More simply considering the
surface wet-bulb temperature is also increasingly done in
land surface modelling for phase discrimination (Wang et al.,
2019), and it may also be an easier alternative predictor for
statistical post-processing, although the information content
of the simulated atmospheric column is probably better sum-
marized by the pseudo-adiabatic wet-bulb temperature iso-
θ ′w (WMO, 1973). Nevertheless, forecasters also mention that
a common limitation of NWP models is their inability to sim-
ulate the unusually thick 0 ◦C isothermal layers encountered
in some intense storms (up to 1000 m). The complex inter-
actions between the processes involved in this phenomenon
are only partly understood (latent cooling from melting pre-
cipitation and evaporation/sublimation, melting distance of
snowflakes, adiabatic cooling of rising air, specific topogra-
phies, blocked cold air pockets, etc.; Minder et al., 2011;
Minder and Kingsmill, 2013). In these specific cases, even
the level θ ′w = 1 ◦C is considered to be a poor predictor of
the rain–snow transition elevation. These situations are often
the most critical in terms of impacts (wet snow at low eleva-
tions affecting the roads and the electrical network), but their
very low frequency will remain a severe challenge even with
statistical post-processing.

7.3 Limitations for operational perspectives

In order to investigate the potentials of the statistical meth-
ods themselves, regardless of the constraints on the available
data set, we choose in this paper to calibrate and evaluate the
post-processing methods on the same 22-year-long data set
with a cross-validation scheme. However, Nousu et al. (2019)
illustrate the strong impact of the discrepancies between re-
forecasts and operational forecasts in the post-processing ef-
ficiency. In complementary investigations (not shown), we
noted that QRF is even more sensitive to the homogeneity
between calibration and application data sets. For instance,
the added value of QRF compared to EMOS was completely
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lost when using the evaluation data set of (Nousu et al., 2019;
operational PEARP-S2M forecasts). Therefore, despite the
large added value of QRF compared to EMOS with consis-
tent and homogeneous data sets for calibration and evalu-
ation, its practical implementation in real-time operational
forecasting products is still a challenge because reforecasts
strictly identical to operational configurations are often not
available. Time-adaptive training based on operational sys-
tems is an alternative to favour the homogeneity of the data
set. Although new theories are emerging to face the chal-
lenge of model evolutions (Demaeyer and Vannitsem, 2020),
several consistent recent studies show that the length of the
calibration period is more critical than the strict homogene-
ity of data sets to forecast rare events (Lang et al., 2020;
Hess, 2020). In the case of HN forecasts from EMOS (Nousu
et al., 2019), even a 4-year calibration period was detrimen-
tal for the reliability of severe snowfall events compared to
a longer heterogeneous reforecast. However, Taillardat and
Mestre (2020) manage to successfully implement QRFs in
real-time forecasting products of hourly precipitation, using
a calibration limited to 2-year operational forecasts, because
they adapt the distribution tail with a parametric method. Pro-
ducing reforecasts that are more homogeneous with opera-
tional forecasts is still one of the most promising solutions
to improve the forecast probabilities of severe events, but
the evolutive skill of NWP systems is strongly linked to the
available data to be assimilated and will never be completely
removed. Therefore, the robustness of post-processing algo-
rithms for their transfer to operational data set or their ef-
ficiency when calibrated with shorter data sets will always
remain the most important criteria compared to their theo-
retical added values with perfect and long data sets. This is,
therefore, a major point to consider to transpose the advances
of this paper towards operational automatic HN forecasts.
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Appendix A: Ensemble model output statistics for
post-processing of ensemble forecasts of the daily HN

A1 Zero-censored, censored shifted Gamma regression

Here, the zero-censored, censored shifted Gamma regression
distribution (CSGD) is used to represent the predictive distri-
bution of daily HN forecasts and is defined as follows:

G̃k,θ,δ(y)=

{
Gk

(
y−δ
θ

)
for y ≥ 0

0 for y < 0
, (A1)

where k, θ , and δ are shape, scale, and shift parameters, re-
spectively, and Gk is the CDF of a standard gamma distribu-
tion with unit scale and shape parameter k. The shape param-
eter k and scale parameter θ are directly related to the mean
µ and the standard deviation σ of the gamma distribution
through the relations µ= kθ and σ 2

= kθ2. Scheuerer and
Hamill (2018) propose a non-homogeneous regression based
on the CSGD which combines a CSGD representing the cli-
matology of past observations. For a given day, the param-
eters µ, σ , and δ of the predictive CSGD are related to the
climatology and to the raw forecast ensemble with the fol-
lowing expressions (Scheuerer and Hamill, 2018, Sect. 3a):

µ=
µcl

α1
log1p

[
expm1(α1)

(
α2+α3POP+α4x̄

)]
, (A2)

σ = σcl

(
β1

√
µ

µcl
+β2MD

)
, (A3)

δ = δcl, (A4)

where log1p(u)= log(1+ u), and expm1(u)= exp(u)− 1.
The shift parameter δ is fixed at its climatological value δcl.
This regression model only employs the statistical properties
of HN ensemble forecasts, summarized by its ensemble mean
x̄, the probability of having a positive value POP, and the en-
semble mean difference MD (a metric of ensemble spread),
as defined by the following equations:

x̄ =
1
M

M∑
m=1

xm, (A5)

POP=
1
M

Ixm>0, (A6)

MD=
1
M2

M∑
m=1

M∑
m′=1

|xm− xm′ |, (A7)

with xm the raw HN forecast of each member m among the
M members, and Ixm>0 = 1, if xm > 0 and 0 otherwise.

A2 Parameter estimation

For each station, the six parameters {α1,α2,α3,α4,β1,β2} in
Eqs. (A2)–(A4) are estimated by optimizing the CRPS pre-
diction skill on the training data set. As CRPS can be directly
expressed in the case of a CSGD (when Fi = G̃k,θ,δ), this
score can be easily minimized for this EMOS model. Com-
plete expressions of the CRPS and details about model fitting
are given in Scheuerer and Hamill (2015).

A3 Predictive distribution

Using Eqs. (A2)–(A4), parameter estimates
{α̂1, α̂2, α̂3, α̂4, β̂1, β̂2} obtained on the training data set,
and summary statistics x̄, POP, and MD of a new ensemble
forecasts, we directly obtain µ̂, σ̂ , and δ̂. This fully specifies
the predictive distribution G̃

k̂,θ̂,δ̂
(y) of this new ensemble

forecast, with k̂ = µ̂2/σ̂ 2 and θ̂ = σ̂ 2/µ̂.
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Code and data availability. The R code used for the application
of the EMOS approach is based on different scripts originally
developed by Michael Scheuerer (Cooperative Institute for Re-
search in Environmental Sciences, University of Colorado, Boul-
der, and the NOAA Earth System Research Laboratory, Physical
Sciences Division, Boulder, Colorado, USA). The modified ver-
sion can be provided on request, with the agreement of the original
author. The QRF approach has been applied using the R package
randomForest for training and predictions. The score calcula-
tions have been performed using the R package verification
and R functions developed by Mickaël Zamo. The Crocus snow-
pack model has been developed as part of the open-source SUR-
FEX project (http://www.umr-cnrm.fr/surfex/, CNRM, 2021). The
full procedure and documentation with respect to accessing this Git
repository can be found at https://opensource.cnrm-game-meteo.fr/
projects/snowtools_git/wiki (last access: 22 April 2021). The codes
of PEARP and SAFRAN are not currently open source. For re-
producibility of results, the PEARP version used in this study is
“cy42_peace-op2.18”, and the SAFRAN version is tagged as “re-
forecast_2018” in the private SAFRAN Git repository. The raw
data of HN forecasts and reforecasts of the PEARP-S2M system
can be obtained on request. The HN observations used in this work
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