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Abstract. The detection of finite-time coherent particle sets
in Lagrangian trajectory data, using data-clustering tech-
niques, is an active research field at the moment. Yet, the
clustering methods mostly employed so far have been based
on graph partitioning, which assigns each trajectory to a clus-
ter, i.e. there is no concept of noisy, incoherent trajecto-
ries. This is problematic for applications in the ocean, where
many small, coherent eddies are present in a large, mostly
noisy fluid flow. Here, for the first time in this context, we
use the density-based clustering algorithm of OPTICS (or-
dering points to identify the clustering structure; Ankerst
et al., 1999) to detect finite-time coherent particle sets in La-
grangian trajectory data. Different from partition-based clus-
tering methods, derived clustering results contain a concept
of noise, such that not every trajectory needs to be part of
a cluster. OPTICS also has a major advantage compared to
the previously used density-based spatial clustering of ap-
plications with noise (DBSCAN) method, as it can detect
clusters of varying density. The resulting clusters have an
intrinsically hierarchical structure, which allows one to de-
tect coherent trajectory sets at different spatial scales at once.
We apply OPTICS directly to Lagrangian trajectory data in
the Bickley jet model flow and successfully detect the ex-
pected vortices and the jet. The resulting clustering sepa-
rates the vortices and the jet from background noise, with an
imprint of the hierarchical clustering structure of coherent,
small-scale vortices in a coherent, large-scale background
flow. We then apply our method to a set of virtual trajectories
released in the eastern South Atlantic Ocean in an eddying
ocean model and successfully detect Agulhas rings. We illus-
trate the difference between our approach and partition-based

k-means clustering using a 2D embedding of the trajecto-
ries derived from classical multidimensional scaling. We also
show how OPTICS can be applied to the spectral embedding
of a trajectory-based network to overcome the problems of
k-means spectral clustering in detecting Agulhas rings.

1 Introduction

Understanding the transport of tracers in the ocean is an im-
portant topic in oceanography. Despite large-scale transport
features of the mean flow, on smaller scales, mesoscale ed-
dies and jets play an important role for tracer transport (van
Sebille et al., 2020). Such eddies can capture large amounts
of a tracer and, while transported in a background flow, re-
distribute them in the ocean. Eddies have been shown to play
an important role in the accumulation of plastic (Brach et al.,
2018) and the transport of heat and salt (Dong et al., 2014).
To quantify the effects of eddies on tracer transport in the
ocean, it is necessary to develop methods that are able to de-
tect and track them. Many methods exist to detect such finite-
time coherent sets of fluid parcels based on different math-
ematical or heuristic principles (Hadjighasem et al., 2017).
The term finite-time coherent set is based on the work of
Froyland et al. (2010) and is, in our context, defined as a
set of particles that, in a sense, stay specifically close to each
other along their entire trajectories. Here, for the first time
in this context, we make use of the density-based clustering
algorithm OPTICS (ordering points to identify the clustering
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structure; Ankerst et al., 1999) to detect finite-time coherent
sets in Lagrangian trajectory data.

The detection of coherent Lagrangian vortices using ab-
stract embeddings of Lagrangian trajectories together with
data-clustering techniques has received significant attention
in the recent literature (Froyland and Padberg-Gehle, 2015;
Hadjighasem et al., 2016; Padberg-Gehle and Schneide,
2017; Banisch and Koltai, 2017; Schneide et al., 2018; Froy-
land and Junge, 2018; Froyland et al., 2019). Using embed-
ded trajectories for the detection of finite-time coherent sets
is interesting as it allows one to use sparse trajectory data,
and it can, in principle, be applied to ocean drifter trajecto-
ries, as demonstrated by Froyland and Padberg-Gehle (2015)
and Banisch and Koltai (2017) for the detection of the five
ocean basins. Yet, most of these methods cluster trajectory
data with graph partitioning, which does not incorporate the
difference between coherent, clustered trajectories and noisy
trajectories that should not belong to any cluster. Graph parti-
tioning has been shown to work in situations where the finite-
time coherent sets are not too small compared to the fluid
domain (Froyland and Padberg-Gehle, 2015; Hadjighasem
et al., 2016; Padberg-Gehle and Schneide, 2017; Banisch and
Koltai, 2017; Froyland and Junge, 2018). For applications
to Lagrangian trajectory data sets on basin-scale ocean do-
mains, where multiple small-scale coherent sets (eddies) co-
exist with noisy trajectories in the background, graph parti-
tioning is, however, likely to fail. Similar observations were
made by Froyland et al. (2019) for the partition-based clus-
tering approaches based on transfer and dynamic Laplace
operators (Froyland and Junge, 2018). Although some at-
tempts have been made to accommodate such concepts in
hard partitioning, e.g. by incorporating one additional cluster
corresponding to noise (Hadjighasem et al., 2016), this ap-
proach is likely to fail for large ocean domains, as discussed
by Froyland et al. (2019) and shown in Sect. 4 of this pa-
per. Froyland et al. (2019) have developed a special form of
trajectory embedding, based on sparse eigenbasis decompo-
sition, given the eigenvectors of transfer operators and dy-
namic Laplacians. By superposing different sparse eigenvec-
tors, they successfully separate coherent vortices from un-
clustered background noise.

Motivated by the results Froyland et al. (2019) obtained
by developing a new form of trajectory embedding, we here
explore the potential of another clustering algorithm to over-
come the inherent problems of partition-based clustering. We
use the density-based clustering method of OPTICS, devel-
oped by Ankerst et al. (1999), to detect finite-time coherent
sets in large ocean domains, using a very simple choice of
embedding (see Sect. 3.2.1). Density-based clustering aims
to detect groups of data points that are close to each other,
i.e. regions with high data density. Our data points corre-
spond to entire trajectories, and groups of trajectories staying
close to each other over a certain time interval correspond to
such regions of high point density. Different from partition-
based methods such as k-means or fuzzy-c-means, OPTICS

does not require one to fix the number of clusters beforehand.
Furthermore, density-based clustering has an intrinsic notion
of a noisy data point – a point does not belong to any clus-
ter (i.e. a finite-time coherent set) if it is not part of a dense
region. A more detailed comparison of the method presented
here to existing related methods can be found in Sect. 3.4.

Another desirable property of the OPTICS algorithm is
its ability to capture coherence hierarchies. In the ocean,
coherent sets of trajectories naturally come with a notion
of such a hierarchy. For example, the surface flow in the
North Atlantic Ocean can be seen as approximately coherent
(Froyland et al., 2014), while mesoscale eddies and jets are
also finite-time coherent sets of trajectories at smaller scales
within the North Atlantic Ocean. Froyland et al. (2019) show
how their leading eigenvectors resolve coherent sets at large
scales, while small-scale results can be obtained with a sparse
eigenbasis approximation of a set of eigenvectors. Similarly,
clustering results obtained from OPTICS is typically hierar-
chical. The main result of OPTICS, i.e. the reachability plot,
provides this hierarchical information in a simple 1D graph.

In Sect. 4, we first show how OPTICS detects finite-time
coherent sets at different scales for the Bickley jet model flow
(also discussed, e.g., by Hadjighasem et al., 2017) and suc-
cessfully detects the six coherent vortices and the jet as the
steepest valleys in the reachability plot. The general struc-
ture of the reachability plot also reveals the large-scale finite-
time coherent sets, i.e. the northern and southern parts of
the model flow, separated by the jet. We then apply our
method to Lagrangian particle trajectories released in the
eastern South Atlantic Ocean, where large rings detach from
the Agulhas Current (e.g. Schouten et al., 2000). We detect
several Agulhas rings and, on the larger scale, also separate
the eastward- and westward-moving branches of the South
Atlantic subtropical gyre. While the traditional approach to
studying Agulhas rings is based on sea surface height analy-
sis (see, e.g., Dencausse et al., 2010), several methods based
on virtual Lagrangian trajectories have been applied to Ag-
ulhas ring detection before (Haller and Beron-Vera, 2013;
Beron-Vera et al., 2013; Froyland et al., 2015; Hadjighasem
et al., 2016; Tarshish et al., 2018). Our method is different
from these approaches in that it is directly applicable to a tra-
jectory data set, i.e. without much preprocessing of the data.
As the OPTICS algorithm is readily available in the scikit-
learn library in Python, the detection of finite-time coherent
sets can be done without much effort and with only a few
lines of code. A further difference is the mentioned intrinsic
notion of coherence hierarchy, which allows for simultane-
ous analysis of trajectory data at different scales. While we
mainly focus on the direct embedding of trajectories in an
abstract, high-dimensional Euclidean space, we also show in
Appendix C that OPTICS can be used to overcome the limits
of k-means clustering in the context of spectral clustering of
the trajectory-based network of Padberg-Gehle and Schneide
(2017).
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2 Trajectory data sets

2.1 Quasi-periodically perturbed Bickley jet

We apply our method to a model system that has been
used frequently in studies to detect finite-time coherent sets
(Hadjighasem et al., 2017; Padberg-Gehle and Schneide,
2017; Hadjighasem et al., 2016; Banisch and Koltai, 2017;
Froyland and Junge, 2018). The velocity field of the
quasi-periodically perturbed Bickley jet (Bickley, 1937;
del Castillo-Negrete and Morrison, 1993) is defined by a
stream function ψ(x,y, t), i.e. ẋ =− ∂ψ

∂y
and ẏ = ∂ψ

∂x
, with

ψ(x,y, t)= ψ0(y)+ψ1(x,y, t) consisting of a stationary
eastward background flow as follows:

ψ0(y)=−UL tanh(y/L), (1)

and a time-dependent perturbation, as follows:

ψ1(x,y, t)= UL sech2(y/L) Re

[
3∑
n=1

fn(t)exp(iknx)

]
, (2)

where Re(z) denotes the real part of the complex num-
ber z. We use the same parameter values as Hadjighasem
et al. (2017), with U = 62.66 m/s the characteristic veloc-
ity of the zonal background flow, and L= 1770 km. The
parameters in Eq. (2) are given by kn = 2n/r0 and fn(t)=
εn exp(−ikncnt), with ε1 = 0.075, ε2 = 0.4, ε3 = 0.3, c1 =

0.1446U , c2 = 0.205U and c3 = 0.461U . The domain of in-
terest is �= [0,πr0]× [−3000 km, 3000 km], where r0 =
6371 km is the radius of the Earth, and the left and right edges
of � are identified, i.e. the flow is periodic in the x direction
with period πr0. Similar to Banisch and Koltai (2017), we
seed the domain with an initial number of 12 000 particles
on a uniform 200× 60 grid. For this choice, the initial par-
ticle spacing is slightly above 100 km in both directions. We
compute the trajectories for 40 d with a time step of 1 s us-
ing the SciPy integrate package. We output the trajectories
every day, i.e. we have T = 41 data points in time for each
trajectory.

2.2 Agulhas rings in the South Atlantic

To test the OPTICS algorithm with a more realistic ocean
flow, we simulate surface particle trajectories in a strongly
eddying ocean model. Surface velocities are derived from
a Nucleus for European Modelling of the Ocean (NEMO)
ORCA-N006 run (Madec, 2008), which has a horizontal res-
olution of 1/12◦ and velocity output for every 5 d. The model
is forced by reanalysis and the observed data of wind, heat
and freshwater fluxes (Dussin et al., 2016), i.e. the currents
do not only contain the geostrophic component, as is the
case in altimetry-derived currents (Beron-Vera et al., 2013;
Froyland et al., 2019). For the advection of virtual particles,
we use version 1.11 of the open source Parcels framework
(Lange and van Sebille, 2017, see http://oceanparcels.org/,

last access: 2 January 2021). The 2D surface current velocity
is interpolated in space and time with the C-grid interpola-
tion scheme of Delandmeter and van Sebille (2019), using a
fourth-order Runge–Kutta method with a time step of 10 min.
We initially distribute particles uniformly in the ocean on the
vertices of a 0.2◦× 0.2◦ grid in the domain (30◦W, 20◦ E)
× (40◦ S, 20 ◦ S), which corresponds to a total number of
23 821 particles. At 30◦ S, a spacing of 0.2◦ corresponds to
roughly 20 km. The particles start on 5 January 2000 and are
advected for 2 years. We output the trajectories with a time
interval of 5 d. We only use the first 100 d as data to detect
the finite-time coherent sets, i.e. we have T = 21 data points
for each trajectory, but also look at later times to see how
long the rings need to disperse. We provide the used trajec-
tory data for the Agulhas flow as a NumPy file on Zenodo
(Wichmann, 2020b).

3 Methods

3.1 Detecting coherent structures in Lagrangian
trajectory data

For N trajectories of dimension D and length T , the trajec-
tory information can be stored in a data matrix X ∈ RN×DT ,
where each row results from a particle trajectory by concate-
nating the different spatial dimensions. The analysis of the
trajectory data to detect the finite-time coherent sets of tra-
jectories (Froyland and Padberg-Gehle, 2015; Banisch and
Koltai, 2017; Hadjighasem et al., 2016; Padberg-Gehle and
Schneide, 2017; Schneide et al., 2018; Froyland and Junge,
2018; Wichmann et al., 2020) can be split into the following
two essential steps:

Step 1. Embedding of the trajectories in an abstract
(metric) space, i.e. X→ X̄ ∈ RN×M , where M ≤DT .
If one uses a dimensionality reduction method, then
M <DT .

Step 2. Clustering of the embedded data with a cluster-
ing algorithm.

The embedding is necessary to represent the trajectories
as points in a metric space. Different options for embed-
ding the trajectories exist, e.g. a direct embedding of the
data points along the trajectories (Froyland and Padberg-
Gehle, 2015) or embeddings based on the eigenvectors de-
rived from networks that are defined by physically motivated
trajectory similarities (Banisch and Koltai, 2017; Padberg-
Gehle and Schneide, 2017; Banisch and Koltai, 2017; Froy-
land and Junge, 2018). Once an embedding of each trajectory
as a point in a metric (typically Euclidean) space is estab-
lished, one can apply a clustering algorithm. Roughly speak-
ing, clustering algorithms try to identify groups of points that
are close to each other as a cluster. Partition-based cluster-
ing methods divide the entire data set into a (typically fixed)
number of K clusters, such that each data point belongs to
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a cluster. The most popular method in this category is the
k-means algorithm, which tries to find a given number of
K clusters such that the sum of the pairwise squared dis-
tances of points within a cluster is minimized. Other clus-
tering algorithms contain a concept of noisy data, i.e. data
points that do not belong to any cluster or belong to a cluster
only with a certain probability. Examples of the former case
are density-based spatial clustering of applications with noise
(DBSCAN; Ester et al., 1996), as discussed by Schneide
et al. (2018) in the fluid dynamics context, and the OPTICS
(Ankerst et al., 1999) algorithm presented here. For the latter
case, the most popular method is fuzzy-c-means clustering,
as discussed by Froyland and Padberg-Gehle (2015) in the
context of finite-time coherent sets.

Figure 1 shows a few possible options for trajectory em-
bedding and clustering that have partially been explored be-
fore (see the footnotes in the figure for the combinations used
in related studies). For a given trajectory data set, one can, in
principle, apply an arbitrary combination of embedding and
clustering methods. Only a few of the different combinations
have been explored so far, and many more options for em-
bedding and clustering (like those shown in Fig. 1) exist. It is
important to note that a good choice of embedding and clus-
tering might well depend on the specific problem at hand,
and there might be no combination that performs well for all
possible situations.

Most of the studies that use clustering techniques to de-
tect finite-time coherent sets have focused on developing new
forms of trajectory embeddings. For example, Hadjighasem
et al. (2016), Padberg-Gehle and Schneide (2017), Banisch
and Koltai (2017) and Froyland and Junge (2018) all use dif-
ferent forms of spectral embeddings together with k-means
clustering. Froyland et al. (2019) have developed a powerful
form of embedding based on a sparse eigenbasis approxima-
tion. Here, we focus on the clustering step in Fig. 1 and pro-
pose the OPTICS clustering algorithm in the fluid dynamics
context. We test the algorithm for the following three differ-
ent kinds of embeddings:

E1. A direct embedding of the trajectory data in a
high-dimensional Euclidean space, i.e. M =DT (see
Sect. 3.2.1).

E2. A reduction in the trajectory data to a 2D embedding
space, using classical multidimensional scaling (MDS;
see Sect. 3.2.2). This is mainly to visualize the differ-
ence from partition-based k-means clustering.

E3. A spectral embedding of the network proposed by
Padberg-Gehle and Schneide (2017).

In the following sections, we explain in detail the embed-
dings of E1 and E2 and the OPTICS algorithm. We introduce
the network embedding of E3 together with the correspond-
ing results in Appendix C.

3.2 Trajectory embedding

3.2.1 Direct embedding

The direct embedding of each trajectory in RDT is the
most straightforward embedding as it requires no further
preprocessing of the trajectory data. For simplicity, assume
we are given a set of N trajectories in a 3D space, i.e.
(xi(t),yi(t),zi(t)), where i = 1, . . .,N and t = t1, . . ., tT . We
then simply define the embedding of trajectory i in the ab-
stract 3T -dimensional space as follows:

ui =(xi(t0),xi(t1), . . .,xi(tT ),yi(t0),yi(t1), . . .,

yi(tT ),zi(t0),zi(t1), . . .,zi(tT )) ∈ R3T , (3)

and impose an Euclidean metric in R3T to measure distances
between the different embedded trajectories. The resulting
embedded data matrix X̄ is then simply given by the vertical
concatenation of the different embedding vectors. This kind
of embedding was also explored by Froyland and Padberg-
Gehle (2015), together with a fuzzy-c-means clustering. In-
tuitively, if two trajectories i and j belong to the same finite-
time coherent set, the corresponding particles follow very
similar pathways, i.e. the Euclidean distance of the embed-
ding vectors dij = ||ui −uj || is expected to be small. On the
other hand, a particle i that belongs to a coherent set is ex-
pected to have a larger distance to a particle j that is not
part of the set. In other words, groups of particles that form a
finite-time coherent set are dense in the embedding space.
This motivates the use of a density-based clustering algo-
rithm to detect finite-time coherent sets.
To take into account the πr0 periodicity in the x direction
of the Bickley jet flow, we first put the individual 2D data
points on the surface of a cylinder with radius r0/2 in R3 and
interpret the resulting trajectories in a 3D Euclidean space.
The resulting data matrix is X̄ ∈ RN×3T , with N = 12000
and T = 41. For the Agulhas particles, we put the single data
points on the Earth’s surface in a 3D Euclidean embedding
space by the standard coordinate transformation of spherical
to Euclidean coordinates. The resulting data matrix is thus
X̄ ∈ RN×3T , with N = 23821 and T = 21.

3.2.2 Dimensionality reduction with classical
multidimensional scaling

To develop an intuition for what the OPTICS algorithm does,
and the differences to k-means, we wish to visualize the
data structure in the plane. For this visualization, it is nec-
essary to reduce the embedding dimension of each trajectory
from 3T to two in such a way that the density structure, and
hence the individual Euclidean distances between embed-
ded trajectories dij = ||ui −uj || (see Eq. 3), are preserved.
We do so through a common method of nonlinear dimen-
sionality reduction, called classical multidimensional scaling
(MDS; see, e.g., chap. 10.3 of Fouss et al., 2016). Classi-
cal MDS tries to find an embedding of the high-dimensional
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Figure 1. Different steps for detecting coherent trajectories in Lagrangian data with trajectory clustering. The figure is nonexhaustive, and
many more options for embedding and clustering exist. Footnotes: 1 Froyland and Padberg-Gehle (2015). 2 Hadjighasem et al. (2016),
Padberg-Gehle and Schneide (2017) and Banisch and Koltai (2017) all define networks with spectral embedding and subsequent k-means
clustering. Froyland et al. (2019) define spectral embeddings as being on dynamic Laplacian and transfer operators. 3 Schneide et al. (2018).

data points in a low-dimensional space such that the pairwise
distances are approximately preserved. Similar to a principal
component analysis, classical MDS makes use of the eigen-
vectors corresponding to the largest eigenvalues of a kernel
matrix, which is, in this case, defined by the following:

B=−
1
2

H12H, (4)

where 12
∈ RN×N is a matrix containing all squared dis-

tances between the points, 12
ij = ||ui −uj ||

2 and H is the
centring matrix with Hij = δij − 1/N , where δij denotes the
Kronecker delta. The matrix B in Eq. (4) is called the cen-
tred inner product matrix. If B̃ is the matrix of inner products
of the embedded data points, i.e. B̃ij = ui ·uj with Euclidean
scalar product, then B can be obtained by removing the mean
of all rows and columns of B̃ (see chap. 10.3 of Fouss et al.,
2016). An embedding of the data points using the eigenvec-
tors corresponding to the leading nonnegative eigenvalues of
B in Eq. (4) ensures that one captures the main variance of
the (squared) distance structure, similar to a principal com-
ponent analysis.

We compute 12 with the Euclidean embedding described
in Sect. 3.2.1 and restrict ourselves to the first 2D to visualize
the data structure in the plane, i.e. the embedding is defined
by the following:

ui = (w0,i,w1,i), i = 1, . . .,N, (5)

where Bwj = λjwj , and λ0 ≥ λ1 ≥ λk for all k = 2, . . .N −
1. This choice of embedding ensures that the main variance
of the data points is captured, and we therefore also expect
to capture the main structure in terms of data density. For
large particle sets, however, computing the spectrum of B
in Eq. (4) is computationally not feasible as the matrix B is
dense and computing the spectrum scales with O(N3). We

apply classical MDS to the 12 000 particles of the Bickley jet
model flow and a random selection of the equal number of
particles for the Agulhas flow. In our context, the method is
most useful for visualization purposes as it provides a good
2D approximation of the point distances, i.e. also the density
structure of the embedded trajectories.

3.3 Clustering with OPTICS

The detection of dense accumulations of points that are sep-
arated from each other by non-dense regions (noise) is the
main goal of density-based clustering. We use the OPTICS
algorithm by Ankerst et al. (1999) to detect these regions.
The OPTICS algorithm can be seen as an extension of DB-
SCAN (Ester et al., 1996). As we have no prior information
on the density structure of the embedded nodes, we set the
generating distance of OPTICS to infinity, and our presen-
tation here is limited to this case. The general OPTICS al-
gorithm with finite generating distance is computationally
more efficient and slightly more complicated, and we refer
to Ankerst et al. (1999) for more details.

For δ ∈ R, the δ neighbourhood of a point p ∈ RM is de-
fined as the M-dimensional ball of radius δ around p. We
define Mδ(p) as the number of points that is in the δ neigh-
bourhood of p, including p itself. OPTICS requires one pa-
rameter, i.e. an integer smin (called MinPts by Ankerst et al.,
1999), to define the core distance of a point p as follows:

c(p)= {min(δ) |Mδ(p)≥ smin}. (6)

The core distance is simply the minimum radius of a ball
around p, such that the ball contains smin points. Note that
the generating distance that we set to infinity is a maximum
cut-off distance for the computation of the core distance in
Eq. (6), beyond which the core distance is not defined. As
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we do not have an intuition for a good value of such a cut-
off, we remove it by setting it to infinity.

The ordering of the points is based on the reachability dis-
tance of a point p with regards to another point q and is de-
fined as follows:

r(p|q)=max(c(q), ||p− q||), (7)

where ||p− q||, in our case, denotes the Euclidean distance
between p and q. The ordering of points is then constructed
with the following scheme:

Step 1. Pick a point p1. This is the first point in the
order, and it is arbitrary.

Step 2. Compute the core distance c(p1) of p1.

Step 3. Define an ordered seed list containing all other
points, i.e. pl , l = 2, . . .,N . For each point pl , define
the reachability value r(pl) as the reachability distance
(Eq. 7) with regards to p1, r(pl)= r(pl |p1). Order the
list in ascending order of the r(pl).

Step 4. Pick the first point on the ordered seed list as p2
and compute the core distance c(p2). For all remain-
ing points, i.e. pl , l = 3, . . .,N , update the reachability
value r(pl)→min(r(pl),r(pl |p2)).

Step 5. Update the ordered seed list according to the
new reachability.

Step 6. Repeat steps 4–5 to obtain p3. Continue until
all points are processed.

Note that the ordering of points is achieved by constantly
updating the ordered seed list (see step 3). In this way, the
algorithm iterates through groups of dense points, one after
the other, and it only continues with other points once a dense
region has been fully explored. Note also that the entire algo-
rithm depends on the choice of the parameter smin. The value
of smin should be chosen roughly as a minimum value of the
expected cluster size. In the examples presented in this pa-
per, we take values for smin that correspond to the estimated
minimum size of the coherent sets.

The main result of the OPTICS algorithm is a reachabil-
ity plot. This plot is the graph defined by (i, r(pi)), where
r(p1)=∞ by definition. The reachability plot is a power-
ful presentation of the global and local distribution of a set of
points at once. The valleys in this plot correspond to dense re-
gions, which we relate to finite-time coherent sets. We show
examples of reachability plots in Sect. 4. Given the reacha-
bility plot (i, r(pi)), we use the following two common ways
to derive a clustering result:

1. DBSCAN clustering. Choose a cut-off parameter ε and
define all points pi with c(pi)≤ ε as core points. All
points that are not in the ε neighbourhood of a core
point are defined as noise. This set of noisy data points

is equivalent to all points pi that are not core points
and have a reachability value r(pi) with r(pi) > ε.
A cluster of size L is then defined as a consecutive
set (in the sense of the ordering) of non-noise points
(pj ,pj+1, . . .,pj+L−1), with the adjacent points of
pj−1 and pj+L being noise. This is similar to the clus-
tering result of a DBSCAN run with equal values for
smin and ε. All possible realizations of DBSCAN clus-
ters, with the same value for smin, can therefore be de-
rived from the reachability values, core distances and
the ordering determined by OPTICS. Up to boundary
points, a DBSCAN clustering result can be obtained
by drawing horizontal lines in the reachability plot (see
Sect. 4).

2. ξ -clustering. While the DBSCAN clustering method
looks for deep valleys in the reachability plot, this
method looks for valleys with steep boundaries. In
short, the larger a parameter ξ with 0< ξ < 1, the
steeper the boundary of a valley has to be to be classi-
fied as a cluster. In more detail, a ξ -cluster is defined as
a consecutive set of points (pj ,pj+1, . . .,pj+L−1) that
has steep boundaries in the sense that for a parameter ξ ,
0< ξ < 1. This leads to the following:

a. The start of the cluster pj is in a ξ -steep down-
ward area. A ξ -steep downward area is a maxi-
mal set of consecutive points (pl,pl+1, . . .,pl+k),
k ∈ {1, . . .,N−l}, where (1) pl and pl+k are ξ -steep
downward points, i.e. r(pl)≤ (1− ξ)r(pl−1) and
r(pl+k)≤ (1− ξ)r(pl+k−1), (2) pl+i ≤ pl for all
i = 1, . . .,k, and (3) not more than smin consecutive
points in the set are no ξ -steep downward points.

b. The end of the cluster pj+L−1 is a ξ -steep upward
area. The definitions are the reverse of the ξ -steep
downward area, with the definition of a ξ -steep up-
ward point being r(pj )≤ (1− ξ)r(pj+1).

c. The cluster contains at least smin points, i.e. L≥
smin.

d. Every point in the inside the cluster is at least a fac-
tor of (1− ξ) smaller than the boundary points pj
and pj+L−1. All points that do not belong to a clus-
ter are classified as noise.

We refer to Ankerst et al. (1999) for a more detailed dis-
cussion of the ξ -clustering method, with illustrations for ex-
ample data. Note that the full ξ -clustering method presented
by Ankerst et al. (1999) contains some more details related
to the choice of the start and end points which we did not
mention here.

The OPTICS algorithm and functions for deriving both
clustering results from an OPTICS output are available in
the scikit-learn library in Python. Note that the implementa-
tion in the scikit-learn library allows for a minimum cluster
size that is different from smin for the ξ -clustering method
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(item 2c above), but we will not make use of this additional
freedom to reduce the number of parameters. Note that, dif-
ferent from k-means, both clustering methods do not require
an a priori determination of the number of clusters. For the
ξ -clustering method, a larger ξ requires steeper boundaries to
form a cluster, i.e. it will typically lead to a reduction in the
number of resulting clusters. For DBSCAN clustering with
very large ε, one will detect one large global cluster. Mak-
ing ε smaller then leads to consecutive splits of this cluster,
forming (up to noise) a cluster hierarchy. We will demon-
strate the properties for both clustering methods in Sect. 4
for different situations. In the following applications, we use
an estimation of the minimum number of particles per finite-
time coherent set for the parameter smin.

Intuitively, the two clustering methods can be understood
as follows. DBSCAN detects those groups of points that have
a certain minimum density defined by the minimum reacha-
bility distance ε. Clusters detected by DBSCAN are there-
fore defined by a global density criterion. This assumes no
structural differences in the type of coherent sets in differ-
ent regions of the fluid. Different from that, the ξ -clustering
method detects clusters by finding strong changes in the den-
sity of the data points, and it is not based on absolute den-
sities. This has an advantage in that clusters of different ab-
solute densities can be detected. Such a situation can arise if
the distribution of particles is inhomogeneous over the fluid
domain or if the spatial extend of the fluid domain is very
large, such that the properties of finite-time coherent sets
vary significantly. It is important to note that the main re-
sult of OPTICS is the reachability plot itself. The DBSCAN-
and ξ -clustering methods should be seen as useful tools for
identifying the most important features of that plot.

3.4 Comparison to related methods

Our method is closely related to existing methods for de-
tecting finite-time coherent sets with clustering techniques.
Most notably, Froyland and Padberg-Gehle (2015) also
use a direct embedding of individual trajectories similar
to Eq. (3), together with fuzzy-c-means clustering. Had-
jighasem et al. (2016), Banisch and Koltai (2017), Padberg-
Gehle and Schneide (2017) and Froyland and Junge (2018)
use spectral embeddings of graphs that are defined by some
form of physical intuition, or by dynamical operators, to-
gether with k-means clustering. These studies show appli-
cations of their methods to example flows where the size of
almost-coherent sets is not too small compared to the fluid
domain. Such examples are the Bickley jet flow, which we
also study in Sect. 4.1, the five major ocean basins (Froy-
land and Padberg-Gehle, 2015; Banisch and Koltai, 2017), a
few individual eddies in an ocean or atmospheric flow (Had-
jighasem et al., 2016; Padberg-Gehle and Schneide, 2017;
Froyland and Junge, 2018). In such situations, noisy back-
ground trajectories can be detected as individual clusters by
the partitioning method, as discussed by Hadjighasem et al.

(2016). For applications in large ocean domains, where the
number of eddies is not known beforehand and where there
are many more noisy trajectories than coherent trajectories,
such an approach is likely to fail (see also the discussion
by Froyland et al., 2019). OPTICS does not require fixing
the number of clusters beforehand, and it also contains an
intrinsic concept of noisy trajectories that do not belong to
any cluster, making OPTICS suitable for challenging flows
in large domains.

As mentioned, OPTICS also contains an intrinsic notion of
cluster hierarchy, i.e. coherent sets that are themselves part of
coherent sets at larger scales. Ma and Bollt (2013) studied hi-
erarchical coherent sets in the transfer operator framework of
Froyland et al. (2010), in the spirit of the hierarchical clus-
tering method proposed by Shi and Malik (2000). Their ap-
proach is also partition based, i.e. there is no concept of noisy
trajectories. In addition, at each stage of the hierarchy, a fixed
cut-off has to be chosen based on minimizing an objective
function (Ma and Bollt, 2013). Different from that approach,
the main result of OPTICS, the reachability plot, contains
such hierarchical information in a smooth and intrinsic man-
ner.

As described in Sect. 3.3, clustering results of the DB-
SCAN algorithm (Ester et al., 1996) can be derived from
the reachability plot of OPTICS. DBSCAN has been used in
the context of coherent sets before by Schneide et al. (2018),
although not to identify specific clusters but to distinguish
noisy from clustered trajectories. The potential of density-
based clustering for applications in the ocean, and its com-
parison to other existing clustering methods for flow exam-
ples such as the Bickley jet (see Sect. 2.1), has not been
explored so far. Different from OPTICS, DBSCAN detects
clusters with a certain fixed minimum density, although clus-
ters with varying densities might be present in a data set
(Ankerst et al., 1999). More specifically, the value for the
cut-off parameter ε (see Sect. 3.3) has to be set beforehand.
Choosing a good value for the density parameter in DB-
SCAN is challenging if there is no underlying physical in-
tuition for the density structure. As described in Sect. 3.3,
OPTICS allows one to derive any DBSCAN clustering result,
with the same value for the parameter smin, after computing
the reachability plot, i.e. after one can obtain the first insights
into the clustering structure of the data set to make an appro-
priate choice for ε. Furthermore, it also allows one to use the
ξ -clustering method instead of DBSCAN (see Sect. 3.3).

A more recent and powerful technique for detecting finite-
time coherent sets in sparse trajectory data was presented
by Froyland et al. (2019), based on dynamic Laplacian and
transfer operators (Froyland and Junge, 2018). Froyland et al.
(2019) apply their method to a trajectory data set in the west-
ern boundary current region in the North Atlantic Ocean
and successfully detect many eddies by superposing individ-
ual eigenvectors. The methods presented there are based on
a form of spectral embedding derived from discretized dy-
namical operators. Based on this embedding, clustering re-
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sults have also been derived with k-means by Froyland and
Junge (2018) and with individual thresholding by Froyland
et al. (2019). Froyland et al. (2019) also show how the low-
order eigenvectors correspond to large-scale coherent fea-
tures, while the individual eddies are derived by a sparse
eigenbasis approximation of a number of eigenvectors. The
latter approach is essentially a transformation of the embed-
ding to represent the most reliable features, such that a su-
perposition of the eigenvectors alone yields the information
about the location and size of finite-time coherent sets (with-
out a clustering step). This is essentially an optimized form
of embedding, i.e. the second step in Fig. 1. Our aim here is
to focus on the third step in Fig. 1, i.e. to demonstrate the
potential of the density-based clustering algorithm OPTICS,
together with a very simple embedding of Eq. (3).

A downside of our method compared to other approaches
is the rather ad hoc choice of embedding (see Eq. 3). Dif-
ferent from many other methods, most notably the ones of
Banisch and Koltai (2017), Froyland and Junge (2018) and
Froyland et al. (2019), this type of embedding is not derived
from a meaningful dynamical operator. It could be fruitful to
explore a combination of these more meaningful embeddings
together with OPTICS as a clustering algorithm in future re-
search.

4 Results

4.1 Bickley jet flow

We start with the direct embedding of the Bickley jet flow
trajectories (see Sect. 2). The data matrix has the dimension
X ∈ R12 000×123. We apply the OPTICS algorithm to the re-
sulting points, together with DBSCAN clustering, choosing
smin = 80 as a minimum size of the finite-time coherent sets.
In the following, all axis units are in multiples of 1000 km.
Figure 2 shows the reachability plot, together with the DB-
SCAN clustering result of three different choices of ε. The
six vortices and the jet are clearly visible as the major val-
leys in the reachability plot. The hierarchical structure of the
DBSCAN clustering with decreasing ε is visible in the fig-
ures from top (large-scale coherence) to bottom (small-scale
coherence). Note that for the DBSCAN clustering results,
boundary points of the clusters can be above the horizontal
line at y = ε. This is because of the definition of the DB-
SCAN clustering in Sect. 3.3.

To illustrate the difference between OPTICS and k-means,
we use the embedded trajectories and apply classical MDS
to obtain a 2D embedding. As described in Sect. 3.2.2, this
assures the capturing of the major variance along the embed-
ding axes. The spectrum of B in Eq. (4) is shown in Fig. A1
in the appendix, with two clearly dominant eigenvalues. The
fact that there are two very dominant eigenvalues ensures
that the illustration of the data in the plane captures the ma-
jor variance in the data points. Figure 3a shows the corre-

sponding embedding of the trajectories in the 2D Euclidean
space. The star-shaped distribution of data points reflects the
strong symmetries of the underlying idealized Bickley jet
flow. Such symmetry is not expected to be present for more
realistic flows. Figure 3b and c show the cluster labels for
OPTICS with DBSCAN clustering at ε = 106 km, and for a
k-means clustering with K = 8 clusters, respectively. K = 8
corresponds to the six vortices, the jet, and one noise cluster
as suggested by Hadjighasem et al. (2016).

The corresponding clustering results in real space are
shown in Figs. 4 and 5 for OPTICS and k-means, respec-
tively. The jet and the six vortices are clearly recognizable as
dense accumulations of points in the 2D space of Fig. 3b (see
Fig. 4 for the corresponding colours). The clustering result
with k-means in Fig. 5 shows that the clusters corresponding
to the vortices are much less focused. In addition, each of
the eight clusters in Fig. 3c contains some of the noisy points
of Fig. 3b, which shows that using one additional cluster for
noise does not work in this situation. It is interesting to note
that capturing the noisy data points of Fig. 3b with an ad-
ditional cluster in k-means is geometrically impossible, sim-
ply because k-means clusters are circular. Covering all noisy
points without including the centre, i.e. the jet in Fig. 3b, is
not possible for k-means.

It should be noted here that the poor performance of k-
means in Figs. 3c and 5 is not representative for other meth-
ods that use k-means. For example, the method of Banisch
and Koltai (2017) captures the coherent structures in the
Bickley jet rather well, including the jet in the middle. We
emphasize again that we use classical MDS here mostly for
visualization purposes as the computation of the classical
MDS embedding is difficult for large particle sets. In our
case, a dense 12000×12000 symmetric matrix has to be di-
agonalized, which already takes a significant amount of com-
putation time.

We finally also tested the performance of our algorithm
with a random subset of 2000 particles, using data for ev-
ery 5 d instead of every day (see Fig. A2 in the Appendix).
OPTICS still detects the six vortices and the jet, although
the cluster boundaries are less clearly defined compared to
Fig. 2. Froyland and Junge (2018) detect the vortices and the
jet by using the data of 3000 particles only at initial and final
times (t = 0 and t = 40 d). Our method is not able to detect
the expected finite-time coherent sets by using only initial
and final particle data. This is likely to be a result of the ad
hoc direct embedding; see Eq. (3) and the discussion at the
end of Sect. 3.4.

4.2 Agulhas rings

We next apply OPTICS to the Agulhas trajectories. As de-
scribed in Sect. 2, we have X ∈ RN×63 with N = 23821. We
choose smin = 100 in the following, which corresponds ini-
tially to a square cell of 2◦× 2◦, i.e. a reasonable minimum
size of an Agulhas ring. Figure 6 shows the result of the
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Figure 2. Result of the OPTICS algorithm applied to the direct embedding of the trajectories. (a), (d) and (f) show the reachability plot, with
different DBSCAN clustering results indicated by the black horizontal line. The corresponding clustering results of each choice of DBSCAN
parameter ε is shown on the right of the reachability plots for different times. Grey particles correspond to noise. Axis units in the centre and
right column are in 1000 km.

Figure 3. (a) A 2D embedding of the classical MDS method (see Sect. 3.2.2) of the trajectories. (b) Labels according to the DBSCAN result
of Fig. 4. The six vortices and the jet are clearly visible as dense regions. Grey particles correspond to noise. (c) The k-means clustering
result for K = 8; see Fig. 5 for the spatial clustering result of k-means.

direct embedding. The reachability plot in Fig. 6a is much
more jagged than for the Bickley jet model flow (see Fig. 2a).
The narrow, deep valleys and the wider valleys in the reach-
ability plot indicate the presence of large- and small-scale
coherence patterns. Figure 6a–c show the DBSCAN cluster-
ing result for a relatively large value of ε. The main separa-
tion of fluid domains is between the red and the blue parti-
cles, with a few vortices at their boundary. These two water
masses are the northern and southern parts of the subtropi-
cal gyre in the South Atlantic, with the red particles moving
to the west and the blue particles moving to the east. The
second and third rows of Fig. 6 show other clustering results
for the DBSCAN- and the ξ -clustering method, respectively.

The valleys in Fig. 6g with steepest boundaries, as detected
by the ξ -clustering method, mostly correspond to eddy-like
structures separated by background noise. Note that not all
clusters in the figure correspond to eddies. For example, the
blue cluster in Fig. 6g–i stays approximately coherent over
the considered time interval, although it is certainly not an
Agulhas ring. An animation of the detected finite-time co-
herent sets for the full 2 years of trajectory data, based on
the ξ -clustering method as in the last row of Fig. 6, can be
found on Zenodo (Wichmann, 2020a), showing that many of
the sets stay coherent for significantly longer times than the
first 100 d.
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Figure 4. Result of DBSCAN clustering of the 2D embedding of the classical MDS method. (a) Reachability plot, with the black line
representing the DBSCAN parameter ε. (b–c) Corresponding clustering results at different times. Grey particles represent noise. Axis units
are in 1000 km.

Figure 5. Result of K = 8 k-means clustering of the 2D embedding from classical MDS (see Fig. 4). Axis units are in 1000 km.

Figure 6 shows that, for this situation, the ξ -clustering
method detects more Agulhas rings than DBSCAN. While
the clustering results shown in the figure all depend on the
parameter values for ξ and ε, it is visible in the reachability
plot of Fig. 6g that the definition of some eddies includes the
entire boundary of the valleys, i.e. up to very high reachabil-
ity values. At the same time, the detection of the large-scale
clusters, as in Fig. 6a–c, is not possible with the ξ -clustering
method. These findings are in fact expected; see the discus-
sion of the two clustering methods at the end of Sect. 3.3.
DBSCAN is best for detecting global density structures, i.e.
when the reachability values of all points are compared to
the same cut-off ε. Regions that are dense locally but not
necessarily globally are better detected with the ξ -clustering
method. Despite these differences between the two cluster-
ing methods, we again emphasize that the main result of OP-
TICS is the reachability plot itself. Figure 7 shows a colour
map at the initial time of the reachability values. We clearly
see Agulhas rings as the dark regions corresponding to low-
est values of reachability. The regions of large reachability
correspond to trajectories that are relatively noisy compared
to all the other trajectories.

In order to illustrate again the difference between OPTICS
and k-means for this example, we choose 12 000 random tra-
jectories and again embed the trajectories in a 2D space with
classical MDS (see Sect. 3.2.2). The reduction in the particle
set is necessary for simplifying the eigendecomposition of
the matrix B in Eq. (4), and we therefore choose smin = 30.
The corresponding spectrum of B is shown in Fig. B1 in the
Appendix, showing that there are again two dominant eigen-
vectors, i.e. visualizing the network in the plane captures
the main variance of the data. Figure 8 shows the embedded
trajectories together with OPTICS and DBSCAN clustering
(Fig. 8b) and k-means (Fig. 8c) for K = 40. Figures 9 and

10 show the corresponding clustering results in the fluid do-
main. It is clear that k-means does not detect a single vortex
but instead splits the fluid domain into regions of approxi-
mately similar size. OPTICS detects multiple Agulhas rings
by finding the deepest valleys in the reachability plot.

It is interesting to note that the use of classical MDS in
Fig. 9 has led to the detection of many of the vortices of
Fig. 6d–f with DBSCAN instead of the ξ -clustering method.
The transformation to the reduced 2D space has hence led
to a simplification of the reachability plot, which now rep-
resents the major variations in the distances of the embed-
ded trajectories. At the same time, the large-scale structure
of Fig. 6a is not visible any more in Fig. 9. This indicates that
exploring more dimensionality-reduction techniques could
be useful for future research, in particular for those that are
computationally more efficient than classical MDS.

Spectral embeddings derived from networks, together with
partition-based clustering, have a similar problem to the one
illustrated in Figs. 8c and 10 (Froyland et al., 2019). Similar
to the case discussed here, OPTICS can be used to overcome
the problems of k-means. We show this in Appendix C for the
network proposed by Padberg-Gehle and Schneide (2017) for
the Agulhas region, together with a brief introduction to the
network and how to construct spectral embeddings. In sum-
mary, k-means again fail to detect any of the vortices, while
OPTICS detects many of the coherent vortices in the spec-
trally embedded network. Yet, other flow features are also
present that result from the physical motivation of the net-
work definition (see the results in Appendix C).

5 Conclusions

The abstract embedding of particle trajectories in a met-
ric space with subsequent clustering is a promising field
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Figure 6. Result of the OPTICS algorithm applied to the direct embedding of the trajectories with different clustering methods. Grey particles
correspond to noise.

Figure 7. Reachability values at the initial time that resulted from
the OPTICS algorithm being applied to the direct embedding of the
trajectories. The regions with lowest values clearly correspond to
Agulhas rings. The colour bar is cut off at a reachability of 1000 km
to show the relevant structure of the variations.

of research for the detection of finite-time coherent sets in
oceanography. Yet, most of the existing methods have been
based on graph partitioning, which has no concept of noisy,
unclustered trajectories. This is a problem for applications
in the ocean, where many eddies are transported in a noisy
background flow on large domains. This study is motivated
by the success of Froyland et al. (2019) in overcoming the
problem of graph partitioning by a sophisticated form of tra-
jectory embedding. Here, we show how the density-based
clustering algorithm of OPTICS (Ankerst et al., 1999) can
be used instead of graph partitioning in order to detect small-

scale eddies in large ocean domains. Different from partition-
based clustering methods such as k-means, OPTICS does not
require one to fix the number of clusters beforehand. Clusters
are detected by identifying dense accumulations of points,
i.e. groups of trajectories that are close to each other in the
embedding space. Coherent groups of particle trajectories
can be identified as valleys in the reachability plot computed
by the OPTICS algorithm. This plot also has a natural in-
terpretation in terms of cluster hierarchies, i.e. finite-time co-
herent sets that are by themselves part of a larger-scale finite-
time coherent set. Such hierarchies are present in the surface
ocean flow, where the subtropical basins are approximately
coherent and, at the same time, contain other finite-time co-
herent structures such as eddies and jets.

We apply OPTICS to Lagrangian particle trajectories di-
rectly, in the spirit of Froyland and Padberg-Gehle (2015).
OPTICS successfully detects the expected coherent struc-
tures in the Bickley jet model flow, separating the six vortices
and the jet from background noise. We also apply OPTICS to
simulated trajectories in the eastern South Atlantic and suc-
cessfully identify Agulhas rings separated by noise. We vi-
sualize the difference between OPTICS and k-means with a
2D embedding of the trajectories, based on classical multi-
dimensional scaling. We also show how OPTICS can be ap-
plied to the spectral embedding of the particle-based network
proposed by Padberg-Gehle and Schneide (2017), providing
a necessary amendment to their method of detecting coher-
ent vortices in a large ocean domain, i.e. when k-means fails.
Our method is very simple to implement in Python, as OP-
TICS is available in the scikit-learn library in Python. While
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Figure 8. Embedding of the Agulhas trajectories in the 2D space defined by the leading eigenvectors of the MDS kernel matrix B. (a) No
labels. (b) Clustering labels of OPTICS and DBSCAN (see Fig. 9 for the corresponding plot in the Agulhas region). Grey particles represent
noise. (c) The k-means with K = 40 (see Fig. 10 for the corresponding plot in the Agulhas domain.)

Figure 9. Result of OPTICS applied to the 2D embedding of 12 000 randomly selected particles with the classical MDS method (see Fig. 8b;
smin = 30). The corresponding spectrum is shown in Fig. B1 in the Appendix, showing that there are two dominant eigenvectors. Grey
particles are classified as noise.

Figure 10. Result of the k-means clustering, with K = 40 applied to the 2D embedding with classical MDS (see Fig. 8c).

we here present the results of OPTICS with three different
kinds of embeddings, it is likely that OPTICS also works for
other trajectory embeddings, such as the spectral embeddings
of Banisch and Koltai (2017) or Froyland and Junge (2018).
Using such dynamically motivated embeddings instead of the
ad hoc direct embedding presented here could be a promising
direction for future research.

Extending our method to data sets with more trajectories
can be made more efficient by choosing a finite generating
distance for OPTICS (Ankerst et al., 1999). While this is
better from a computational point of view, it requires some
knowledge or intuition about the spatial distribution of the
embedded trajectories. A major challenge for the method
proposed here is the embedding dimension. For long trajec-
tories, it is necessary to reduce the dimensionality of the tra-
jectories before applying OPTICS. A complication here is
the desired property of an embedding to preserve both local
and global distances in order to make full use of the hierar-
chical properties of OPTICS. This means, for example, that
the popular method of a locally linear embedding (Roweis

and Saul, 2000) is not suitable, unless only the small-scale
(densest) finite-time coherent sets are to be detected. Using
classical multidimensional scaling (MDS), as we did here to
visualize the clustering results, preserves local and global
distances in principle, although our results indicate that the
large-scale coherence structure in the Agulhas flow is less
pronounced for the classical MDS embedding compared to
the full embedding of trajectories. In any case, classical MDS
is not an option for very large data sets, as it requires the
diagonalization of a dense symmetric square matrix of size
equal to the particle number. Spectral embeddings of derived
networks, such as the ones of Hadjighasem et al. (2016),
Padberg-Gehle and Schneide (2017) and Banisch and Koltai
(2017), are useful for achieving lower dimensional embed-
dings, but they come with the introduction of additional pa-
rameters for the network construction and heuristics to trun-
cate the embedding dimension. Further research into other
nonlinear dimensionality-reduction techniques that have not
been explored in the context of finite-time coherent sets can
lead to more efficient and robust methods.
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Appendix A: Additional figures for the Bickley jet flow

Figure A1. Spectrum of the classical MDS kernel matrix B for the Bickley jet flow. It is evident that there are two dominant eigenvalues. We
choose the vectors corresponding to these first two eigenvalues as embedding vectors in Sect. 4.1.

Figure A2. Result of the OPTICS algorithm for a random subset of 2000 particles in the Bickley jet flow, with particle data every 5 d instead
of every day. To account for the smaller number of particles, we set smin = 15 for this case. The six vortices and the jet are still clearly visible.
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Appendix B: Additional figures for the Agulhas flow

Figure B1. Spectrum of the classical MDS kernel matrix B for the
Agulhas flow, where we first constrain the particle data to 12 000
randomly selected trajectories. There are again two dominant eigen-
values for which we choose the corresponding vectors for embed-
ding in Sect. 4.2.

Appendix C: Detecting Agulhas rings with a
particle-based network

To demonstrate that OPTICS can also be applied to the spec-
tral embedding of a particle-based network, we use the net-
work proposed by Padberg-Gehle and Schneide (2017). If we
have a set of particle trajectories xi(t), where i = 1, . . .,N ,
and t = t1, t2, . . ., tT with N the number of particles and T is
the number of time steps, the network A ∈ RN×N is defined
as follows:

Aij =

{
1, if ∃t ∈ {t1, t2, . . ., tT } s.t. ||xi(t)− xj (t)||< d,

0, otherwise.
(C1)

Here, ||.|| denotes the Euclidean norm, and d > 0 is a
fixed predetermined cut-off parameter. See Padberg-Gehle
and Schneide (2017) for a discussion on the choice of d
(called ε in Padberg-Gehle and Schneide, 2017). Similar to
Padberg-Gehle and Schneide (2017), we embed the nodes in
a lower dimensional space RK by means of the eigenvectors
of its random walk Laplacian (see, e.g., Von Luxburg, 2007)
as follows:

Lr = D−1A, (C2)

where D is a diagonal matrix with Dii =
∑
jAij . The em-

bedding of node i is defined by the following:

yi = (v1,i,v1,i, . . .,vK,i) ∈ RK , (C3)

where vi, i = 0, . . .,N − 1 are the right eigenvectors corre-
sponding to the largest eigenvalues λi of Lr. The eigen-
values are assumed to be ordered in descending order, i.e.
1= λ0 > λ1 ≥ . . .,≥ λN . The classical simultaneous K-way

Figure C1. Spectrum of the random walk Laplacian (see Eq. C2)
of the network proposed by Padberg-Gehle and Schneide (2017)
applied to the Agulhas trajectory data. No clear gap exists to suggest
a truncation of the embedding.

normalized cut proceeds with applying the k-means algo-
rithm to the embedding defined in Eq. (C3) to detect K clus-
ters (Von Luxburg, 2007), resulting in an approximate solu-
tion to the normalized cut problem (Shi and Malik, 2000).

Figure C1 shows the spectrum of the resulting random
walk Laplacian with d = 200 km. No obvious spectral gap
is visible that would suggest a truncation of the embedding
space. Figure C2 shows the clustering result if we apply
a k-means algorithm, as suggested by Padberg-Gehle and
Schneide (2017), to detect K = 40 clusters. It is visible that
the partition-based k-means clustering method does not de-
tect any individual Agulhas rings but instead partitions the
state space into regions of approximately equal size.

Applying OPTICS instead of k-means with a subsequent
ξ clustering detects some of the Agulhas rings (see Fig. C3),
where we choose smin = 100 as in Sect. 4.2. Note also that
structures other than typical circular eddies are detected.
While this depends on the clustering parameter ξ (or ε for
DBSCAN), this is also a consequence of the physically mo-
tivated network defined by Eq. (C3), where particles are con-
nected equally if they are close to each other at least once at
a point in time. This is different from the direct embedding,
where we require particles to stay close to each other along
the entire trajectory.
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Figure C2. Result of k-means clustering applied to the 40 leading eigenvectors of the random walk Laplacian (see Eq. C2), looking for 40
clusters. No individual vortices are detected.

Figure C3. Result of OPTICS applied to theK = 40 spectral embedding of the network defined in Eq. (C1), with d = 200 km and smin = 100.
Grey particles are classified as noise.
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Code and data availability. All code is available at
https://doi.org/10.5281/zenodo.4426287 (Wichmann, 2021a),
including the code to generate the Bickley jet trajectories. The
data for the virtual particles in the South Atlantic are available
at https://doi.org/10.5281/zenodo.3899942 (Wichmann, 2020b).
Details on the Parcels simulation for the virtual trajectories in
the ocean can be found at the GitHub repository of our previous
paper, i.e. https://doi.org/10.5281/zenodo.4426310 (Wichmann,
2021b). The NEMO N006 data are kindly provided by Andrew
Coward at NOC Southampton, UK, and can be downloaded at
http://opendap4gws.jasmin.ac.uk/thredds/nemo/root/catalog.html
(last access: 10 March 2019).
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