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Abstract. We give a simple description of the blessing of di-
mensionality with the main focus on the concentration phe-
nomena. These phenomena imply that in high dimensions
the lengths of independent random vectors from the same
distribution have almost the same length and that indepen-
dent vectors are almost orthogonal. In the climate and at-
mospheric sciences we rely increasingly on ensemble mod-
elling and face the challenge of analysing large samples of
long time series and spatially extended fields. We show how
the properties of high dimensions allow us to obtain analyti-
cal results for e.g. correlations between sample members and
the behaviour of the sample mean when the size of the sam-
ple grows. We find that the properties of high dimensionality
with reasonable success can be applied to climate data. This
is the case although most climate data show strong anisotropy
and both spatial and temporal dependence, resulting in effec-
tive dimensions around 25–100.

1 Introduction

In many areas of geophysics we operate in high-dimensional
spaces. Examples from the atmospheric and climate sciences
include extended spatial fields, such as precipitation or near-
surface temperature, and long time series of atmospheric
variables, such as the global mean temperature. These fields
and time series may be either observed or modelled. Over
the last decades ensemble modelling has been generally ac-
cepted as a valuable tool to gauge the unpredictability and er-
ror originating from uncertain initial conditions or deficien-
cies in model physics. There is also an increased tendency
for gridded observational products and reanalyses to apply
ensemble techniques to represent the different uncertainties.
We are therefore often in a situation where we need to anal-
yse large samples of high-dimensional fields. These samples

could consist of the individual ensemble members or just in-
dividual years of a spatial field.

This might seem a daunting challenge as the properties
of high-dimensional space often appear counterintuitive to
minds experienced only in the low-dimensional world. How-
ever, the properties of high-dimensional space may some-
times simplify the analysis and allow us to obtain rather gen-
eral analytical results. A central result in this respect is the
concentration of measures which, with a quote from Cha-
zottes (2015), loosely states that “A random variable that
smoothly depends on the influence of many weakly depen-
dent random variables is, on an appropriate scale, very close
to a constant”. The importance of this is described with an-
other quote: “The idea of concentration of measures is ar-
guably one of the great ideas of analysis in our time” (Tala-
grand, 1996). We will see how in high dimensions such con-
centration properties often allow us to substitute the length
of a random vector with its expectation value and to treat in-
dependent vectors as orthogonal (i.e. having a zero dot prod-
uct).

These advantageous properties of high dimensionality –
often referred to as the blessing of dimensionality – have
rarely been applied to the atmospheric and climate sciences.
Exceptions are our previous papers on the subject. In Chris-
tiansen (2018) we described how the blessing of dimension-
ality explains why the ensemble mean often outperforms the
individual ensemble members and why the ensemble mean
often has an error that is 30 % smaller than the median error
of the individual ensemble members. In Christiansen (2019)
we used the properties of high dimensions to analyse a global
ensemble reforecast. We described how the behaviour of the
ensemble mean forecast can be described by a simple model
in which variances and bias depend on lead time. In Chris-
tiansen (2020) we analysed a multi-model climate ensemble
using the properties of high dimensions to separate two com-
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410 B. Christiansen: Blessing of dimensionality in climate

peting understandings of the ensemble – the indistinguish-
able interpretation and the truth-centred interpretation. In this
paper we aim to give a more comprehensive and coherent dis-
cussion of the blessing of dimensionality and to which extent
it applies to the situation in atmospheric science.

In Sect. 2 we describe the properties of high-dimensional
spaces, focusing first on what is often called the
curse/blessing of dimensionality (Sect. 2.1) and then more
specifically on the concentration of measures (Sect. 2.2). The
mathematical results are often only proved for independent
and identically distributed (iid) random variables. In Sect. 3
we discuss how this requirement can be loosened and how
it relates to geophysical fields which often contain strong
temporal and spatial dependence. In Sect. 4 we focus on
the application to atmospheric and climate science. First, in
Sect. 4.1 we directly investigate to which extent the climatic
fields fulfill the requirements of high dimensionality. We then
(Sects. 4.2 and 4.3) discuss analytical results for distances
and correlations between samples and how well these hold
for climate fields. In Sect. 4.4 we likewise explore analyti-
cal results for how the ensemble mean depends on ensemble
size. The paper is closed with the conclusions in Sect. 5.

2 Properties of high-dimensional spaces

Here we give a brief overview of the properties of high-
dimensional spaces. We begin in Sect. 2.1 with some general
considerations about high-dimensional spaces, while we in
Sect. 2.2 focus more on the concentration of measures. Some
of the simple examples were also, but more briefly, described
in Christiansen (2018).

2.1 Curse of dimensionality

The properties of high-dimensional spaces often defy our in-
tuition based on two and three dimensions (Cherkassky and
Mulier, 2007; Bishop, 2007; Blum et al., 2020). Apart from
the well-known fact – sometimes called the empty space
phenomenon – that the number of samples needed to ob-
tain a given coverage grows exponentially with dimension,
there are other less appreciated features of high-dimensional
spaces (Blum et al., 2020). For example, almost every point
is an outlier in its own projection, and independent vectors
are almost always orthogonal. The latter property is called
waist concentration and, more precisely, states that when the
dimension increases, the angles between independent vectors
become narrowly distributed around the mean π/2, with a
variance that converges towards zero.

The properties of high-dimensional spaces are sometimes
called the curse and sometimes the blessing of dimensional-
ity, depending on the considered problem. In the present con-
text these properties turn out to be a blessing as they strongly
simplify the analysis and make analytical results possible.

As a simple example we consider a cube in N dimensions
with side d and centred around 0. The cube has 2N ver-
tices with the positions d(±1/2,±1/2, . . .± 1/2). The dis-
tance between each vertex and the centre is d

√
N/2. The

volume of the cube within a distance εd of the edge is
(dN − (d− εd)N )/dN = 1− (1− ε)N and the volume of the
inscribed sphere is πN/2(d/4)N/0(N/2+ 1). The situation
is shown in Table 1 for a unit cube (d = 1) for different
values of N . For N = 100 there are more than 1030 ver-
tices1 and more that 99 % of the volume is within a dis-
tance 0.05 of the edge. The volume of the inscribed sphere
– which for two dimensions contains the bulk of the cube –
is virtually zero. Thus, the volume increasingly concentrates
near the surface when the dimension increases. The form of
the N -dimensional cube has been compared to that of a sea
urchin (Hecht-Nielsen, 1990).

Consider now a sample of points drawn independently
from the high-dimensional cube. For moderate sample size
(� 2N , which already forN = 25 is larger than 107, so mod-
erate is probably not the right word), all samples will be lo-
cated in different vertices. This means that all samples will
have almost the same distance from the centre and that all
pairs of samples will be almost perpendicular. The distances
between pairs of samples will also be almost identical, mak-
ing concepts such as nearest neighbours problematic. How-
ever, the ensemble mean will be different as it will be located
near the otherwise vacant centre of the cube. These proper-
ties are not particular for the cube but are quite general also
for unbounded distributions, as we will see in the next sub-
section.

The beneficial properties of high dimensionality are rec-
ognized in many areas of machine learning (Kainen, 1997;
Gorban and Tyukin, 2018), but the lack of contrast between
distances may also pose problems for algorithms, such as
clustering (Tomašev and Radovanović, 2016; Kabán, 2012).

2.2 Concentration of measures

We first look at a very simple example to describe the general
idea of concentration of measures. Consider N iid random
variables xi , i = 1,2. . .N , each with mean µ and variance
σ 2. For the sum of the variables,

∑
ixi , we have for the ex-

pectation and variance

E

(∑
i

xi

)
=

∑
i

E(xi)=Nµ (1)

and

Var

(∑
i

xi

)
=

∑
i

Var(xi)=Nσ 2. (2)

1Comparable to the number of atoms in 30 t of water or the num-
ber of bacteria on the Earth: a factor of 1 million larger than the
estimated number of stars in the universe.

Nonlin. Processes Geophys., 28, 409–422, 2021 https://doi.org/10.5194/npg-28-409-2021
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Table 1. Results for a unit cube in N dimensions. The vertices of a unit cube [−1/2,1/2]N are [±1/2,±1/2, . . .± 1/2]. The number of
vertices is 2N and the length of the vertices

√
N/2. The fraction of volume within ε of the edge is 1− (1− ε)N . The volume of the inscribed

sphere is πN/2(d/4)N/0(N/2+ 1) with d = 1.

N Volume No. of vertices Length of Volume of Fraction of volume
vertices inscribed sphere within 0.05 of edge

2 1 4 0.707 0.785 0.0975
3 1 8 0.866 0.524 0.1426
5 1 32 1.118 0.164 0.2262
10 1 1024 1.581 0.00249 0.4013
25 1 3.35×107 2.500 2.85×10−11 0.7226
50 1 1.13×1015 3.535 1.54×10−28 0.9231
100 1 1.27×1030 5.000 1.87×10−70 0.9941

Figure 1. (a) N -dimensional Gaussian distributions with unit variances and zero means as a function of r = ||x|| for different values of N
(Eq. 3). The position of the mode goes like

√
N and the width is approximately the constant 1/

√
2. (b) The distribution of angles between

pairs of independent N -dimensional Gaussian vectors for the same values of N . Thick curves are calculated in the large ensemble limit. For
both (a) and (b) the thin dashed curves illustrate the distributions for a sample of size 50.

Thus,
√

Var(
∑
ixi)/E(

∑
ixi)=

√
1
N
µ
σ

. Therefore, when N
grows, both the expectation of the sum and the width of its
distribution will grow, but the relative width will decrease.
We can therefore, with some reason, say that the distribu-
tion of the sum becomes more and more sharply defined
around its mean. If we normalize the sum with N to get
the mean, x =

∑
ixi/N , we have E(x)= µ and Var(x)=

σ 2/N . Therefore, the mean becomes increasingly narrowly
distributed around the constant µ. Thus, for large N we can
in many situations treat the mean, x, as a constant.

The considerations above are basically the rationale be-
hind the law of large numbers and are also closely related to
the central limit theorem which states that (x−µ)/

√
N/σ

converges towards a standard Gaussian distribution, N (0,1).
The concentration of measures can be extended beyond the
iid situation (see Sect. 3) as indicated by the quotation from
Chazottes (2015) in the introduction.

Let us organize the random variables into an N vector
x = (x1,x2. . .xN ). Now ||x||2 = x2

1 + x
2
2 . . .x

2
N is a sum of

independent variables and will therefore – according to the
arguments above – for large N be approximately a constant.

Let us consider a multi-variate standard Gaussian distribu-
tion P(x)= (2π)−N/2 exp(−

∑N
n=1x

2
n/2). The surface area

of a hyper-sphere with radius r in N dimensions is SN−1 =

2πN/2rN−1/0
(
N
2

)
. So, as a function of r = ||x||, we get the

χ distribution

P(r)= SN−1P(x)=
21−N/2

0
(
N
2

) rN−1 exp(−r2/2). (3)

The maximum of P(r) is reached for r =
√
N − 1 and the

width (standard deviation) of the peak converges quickly
with N towards 1/

√
2. This is illustrated in Fig. 1.

The concentration of measures is the backbone of statisti-
cal mechanics. As a simple example, we consider the canon-
ical ensemble of weakly interacting identical particles. This
ensemble describes a system with a constant number of par-
ticles,N , in a heat bath. All particles have the same spectrum
of energy states, Ei , and the probability of a particle being in
the ith state is proportional to exp(−βEi). The total energy
grows like N , while the fluctuations (standard deviation) in
the total energy grow like

√
N . Thus, the relative fluctua-

tions in the total energy go as ∼ 1/
√
N , and in the thermo-
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dynamic limit, N→∞, these fluctuations and fluctuations
in other macroscopic quantities can be neglected. This holds
also for non-identical and interacting particles (see Gorban
and Tyukin, 2018, for a recent discussion), just as the con-
centration of measures can be extended beyond the iid situa-
tion.

Let us take a brief look at waist concentration. Consider
two independent unit vectors a and b. Without lack of gen-
erality we can set a = (1,0,0. . .). The dot product then be-
comes b1. It is therefore easy to see that a · b has zero mean
and that its spread converges to zero as ∼ 1/

√
N . This result

does not require Gaussianity; see e.g. Lehmann and Romano
(2005) for a general derivation. The angle φ between a and
b will therefore converge towards π/2 as cosφ = a · b. This
is illustrated in Fig. 1 for Gaussian-distributed vectors for
different values of N : for N = 2 the distribution of angles is
flat, but for larger values ofN it becomes increasingly peaked
around π/2.

The topic of concentration properties is an active math-
ematical field with focus on probabilistic bounds on how
quickly empirical means converge to the ensemble means for
different classes of random variables, including non-iid vari-
ables (Vershynin, 2018; Wainwright, 2019). Such bounds in-
clude Bernstein’s and Hoeffding’s inequalities and give strict
mathematical meaning to the looser considerations above. As
an example, the Hoeffding bound states that for all t ≥ 0,

P

(∣∣∣∣ 1
N

∑
(xi −µi)

∣∣∣∣≥ t)≤ exp(−Nt2/(2σ 2)). (4)

This holds for independent random variables drawn from a
distribution which tails decay at least as quickly as the tails
of a Gaussian distribution (sub-Gaussian, Wainwright, 2019).
Here µi is the mean of xi and σ is a constant. For the angle
φ between two independent vectors, we have similarly for all
t ≥ 0 (from Gorban and Tyukin, 2018)

P (|cosφ| ≥ t)≤ 2exp(−Nt2/2). (5)

Such relations are also central to the related field of large-
deviation theory, which specifically studies the exponential
decay of probabilities of large fluctuations. See Touchette
(2009) for a general review and Gálfi et al. (2019) for an
application to weather extremes.

3 Extension to situations with dependent and
non-identical variables

Like the central limit theorem (CLT), the concentration prop-
erties are originally developed for iid variables. However,
also as the central limit theorem, they can be extended to
classes of dependent variables. Although no general condi-
tion exists for the CLT (Clusel and Bertin, 2008), an impor-
tant factor for both the CLT and the concentration proper-
ties is the strength of the dependence (Kontorovich and Ra-

manan, 2008; Chazottes, 2015). Many properties of iid pro-
cesses can be extended to processes where the rate of mixing
is strong enough (Chazottes, 2015). Here, mixing processes
are defined by a decay of correlations towards zero; i.e. xi
and xj should become independent when |i− j | increases.

Here correlations generally refer to measures of the de-
pendence, e.g. the distance between the joint distribution and
the product of the marginal distributions. Note that the de-
cay of Pearson’s correlation coefficient is not necessarily
sufficient as a zero correlation coefficient does not guaran-
tee independence as it only gauges linear dependence. The
auto-regressive moving-average (ARMA) models which are
often used in geophysics are examples of mixing processes
(Mokkadem, 1988). More generally, Chazottes (2015) finds
that the concentration of measures holds for a random vari-
able that smoothly depends on the influence of many weakly
dependent random variables.

The mixing and decay of correlations are closely related
to the concept of effective degrees of freedom also known as
the effective dimension (e.g. Clusel and Bertin, 2008). Shal-
izi (2006)2 shows an example of the CLT for dependent vari-
ables, “only with the true sample size replaced by an effec-
tive sample size.” The basic idea is that dependent variables
of effective dimension N∗ gives the same information as in-
dependent variables of dimension N . Heuristically, consider
a function in a two-dimensional square region with each side
of length L. If correlations decay exponentially with char-
acteristic length ξ , then we can to a first approximation de-
scribe the function by N∗ = (L/ξ)2 independent variables.
For fixed ξ the number of independent variables go to infinity
with increasing L, and in this situation we may assume that
the limit theorems hold. Note that some methods to calculate
the number of effective dimensions of e.g. surface tempera-
ture are directly based on these arguments using an average
ξ (see the summary in Christiansen and Ljungqvist, 2017).

The situation is well known in the study of one-
dimensional time series (see e.g. von Storch and Zwiers,
1999, Sect. 17). As a simple example we consider a time
series, xi , of length N generated with a first-order auto-
regressive, AR(1), process with coefficient ρ. The auto-
correlations behave as ∼ ρr , where r is the lag. A decor-
relation time, τ , can be found where the auto-correlations
have decayed to e−1: τ =−1/ lnρ. The effective degrees
of freedom would therefore be −N lnρ. Less heuristically,
we have for the ensemble mean, x̄ =

∑
ixi/N , that

√
Nx̄ ∼

N (0,σ 2(1+ ρ)/(1− ρ)). Compared with the similar re-
sults for iid Gaussian variables,

√
Nx̄ ∼N (0,σ 2), this sug-

gests an effective dimension of N(1−ρ)/(1+ρ) (Crack and
Ledoit, 2010; von Storch and Zwiers, 1999). For the sum
of squares we have

√
N ¯x2
∼N (σ 2,2σ 4(1+ ρ2)/(1− ρ2)),

now suggesting an effective dimension ofN(1−ρ2)/(1+ρ2)

2https://www.stat.cmu.edu/~cshalizi/754/2006/notes/
lecture-27.pdf (last access: 23 August 2021)
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Figure 2. The AgERA data set. Daily means with 5 d separation for June 1980–1990. (a, c) Distribution of the lengths. (b, d) Distribution of
the angles. (a, b) Near-surface temperature (K). (c, d) Precipitation (mm d−1).

(Bartlett, 1935). We note that the effective dimension N∗ de-
pends on the measure of interest.

In the case of two-dimensional fields, different methods
exist to estimate the number of effective dimensions N∗

(Wang and Shen, 1999; Bretherton et al., 1999). Some meth-
ods are directly based on the characteristic length, ξ , using
an average over the different directions (Christiansen and
Ljungqvist, 2017). The estimated number depends both on
the method used and on the field, the timescale, and the geo-
graphical region. For the annual mean surface temperature
values of N∗ vary between 50 and 100 depending on the
method (Briffa and Jones, 1993; Hansen and Lebedeff, 1987;
Shen et al., 1994) when the whole globe is considered. Val-
ues in the same range have been found for monthly surface
temperatures in the Northern Hemisphere (Wang and Shen,
1999; Bretherton et al., 1999).

These numbers are of course small compared to Avo-
gadro’s number relevant for statistical mechanics, but they
are still comparable to the dimensions in Fig. 1 where the
concentration properties hold to a reasonable degree. In
Sect. 4.1 we directly investigate to which extent the concen-
tration properties hold for atmospheric fields.

4 Atmospheric and climate science

As we saw in Sect. 2, concentration of measures and waist
concentration allow us in high dimensions to set dot prod-
ucts of independent vectors to zero and substitute the length
of a random vector with its expectation value. In Sect. 3 we

argued that when the components of the fields or time series
are dependent, the concentration phenomena hold when the
effective dimension is large. However, to test the concentra-
tion properties, we also need independent samples.

For initial condition ensembles consisting of experiments
with the same model but with different initial conditions, the
different ensemble members can be considered independent
(considering anomalies with respect to the ensemble centre
as explained in the next subsection). For multi-model ensem-
bles where experiments are performed with models with dif-
ferent physical parameterizations (but the same external forc-
ings), the situation is more complicated (e.g. Knutti et al.,
2013; Boé, 2018; Christiansen, 2020, and references therein).
The annual or monthly climatologies are obvious measures
for comparing models or for validating the models against
observations (Gleckler et al., 2008). Another used measure
is the forced response in e.g. time series of global means.

Another way to obtain independent samples from the same
distribution is to consider a given variable at different times.
For example, we could look at the spatial field of precipi-
tation or temperature at different days or months. To ensure
that the fields are drawn from the same distribution, we need
to avoid or remove the annual cycle and – if longer periods
are considered – to make sure that there is no external forc-
ing. The sample times should also be sufficiently separated.

In the next sections we will consider the following
geophysical data sets. (1) Daily means of near-surface
temperature and precipitation from AgERA for June in
the period 1980–1990. The AgERA provides daily sur-
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face meteorological data for agro-ecological studies (doi:
10.24381/cds.6c68c9bb) based on ECMWF’s ERA5 reanal-
ysis (Hersbach et al., 2019). AgERA is land-only and of high
resolution, with more than 2 million (N = 2353526) grid
points. Using daily means taken every fifth day for June in
11 years, we have a sample size of 66. (2) Monthly near-
surface temperature from the multi-model CMIP5 ensem-
ble (Flato et al., 2013) consisting of 45 (the sample size) his-
torical experiments. The models are identified in Table 1 of
Christiansen (2020). (3) The Max Planck Institute Grand En-
semble (MPI-GE, Maher et al., 2019) consisting of 100 (the
sample size) members differing only in initial conditions.
From MPI-GE we consider the monthly mean near-surface
temperature and precipitation. For both model ensembles we
consider the monthly climatology in the period 1980–2005
and the annual Northern Hemisphere (NH) mean values in
the period 1961–2005.

In addition to the geophysical data, we also include two
simple samples of independent vectors. The first sample con-
sists of independent vectors drawn from an N -dimensional
spherical (all components have zero mean and unit variance)
Gaussian distribution as in Fig. 1. The second sample is
drawn from a standard Gamma distribution with shape pa-
rameter 3 (location and scale parameters 0 and 1). In the latter
case we include anisotropy (not identically distributed com-
ponents) by multiplying the nth component by 5n/N , so the
mean and variance of the nth component become 15n/N and
75(n/N)2, respectively. For the simple random variables we
let the dimension, N , vary from 1 to 100. The sample size is
chosen to 50.

4.1 Concentration of measures in atmospheric fields

In this subsection we directly investigate the distributions of
the lengths of the sample members and the distributions of
the angles between them. The results from this and the fol-
lowing subsections are summarized in Table 2.

We centre the sample, xk , k = 1, . . .K , to the sample mean,
x =

∑
kx
k/K , and calculate the lengths as the square root of

||xk−x||2/N for each sample member. The angle φ between
two sample members, k and l, is given by (xk−x)·(xl−x)=
||xk−x|| ||xl−x||cosφ. This gives usK lengths andK(K−
1)/2 angles. This centering – the subtraction of the sample
mean – is not important for the calculation of the lengths, as
we explain at the end of this subsection.

We first consider the near-surface temperature and precip-
itation fields from the AgERA data set. Figure 2 shows the
lengths and angles for daily means taken every fifth day for
June in the period 1980–1990. The 11 years give us 66 sam-
ples. We see that for temperature the lengths are relatively
tightly distributed around 4.36 K (σ in Eq. 6) with a stan-
dard deviation of 0.58 K. The angles are likewise distributed
around π/2 with a standard deviation of 0.21. For precip-
itation the distributions are somewhat narrower, in particu-
lar for the angles. This is what we would expect due to the

larger number of effective degrees of freedom compared to
temperature. However, this effect is reduced as we include
both dry and wet days in the analysis. While the precipita-
tion amount on wet days has a short decorrelation length, this
does not hold for the spatial field indicating wet/dry days.
Note also that the distribution of precipitation is extremely
non-Gaussian. These results indicate that the concentration
of measures and the waist concentration hold at least to some
extent for these fields.

Figure 3 shows the lengths and angles for the monthly
seasonal cycle in near-surface temperature, 1980–2015, for
the multi-model CMIP5 ensemble. The models have been re-
gridded to a common 144× 73 grid, so N = 144× 73× 12.
The sample has a size of 45 and consists of one ensemble
member from each of the models. The lengths are distributed
around 2.57 K with a standard deviation of 0.46 K and the
angles around π/2 with a standard deviation of 0.28. Thus,
compared to the example in Fig. 2, the distributions are less
tightly distributed. The main explanation is probably that the
effective degrees of freedom in the monthly climatology is
smaller than that of the daily fields. However, there are also
reasons to believe that the multi-model ensemble is not to-
tally independent (Knutti et al., 2013; Boé, 2018). Note the
negative skewness in the distribution of the angles. Angles
close to zero indicate pairs of models that are almost paral-
lel and therefore strongly dependent. These pairs correspond
to variants of the same model, such as MIROC-ESM and
MIROC-ESM-CHEM, which are well known to be close in
the model genealogy (Knutti et al., 2013). A simple compar-
ison between the distributions of φ in Figs. 2 and 3 with the
distributions in Fig. 1 (from Gaussians) shows that the ef-
fective dimension is between 25 and 50 for temperature and
several hundreds for precipitation.

Results for the MPI-GE 100-member initial condition en-
semble are shown in Table 2. Here we have 192× 96 grid
points, so N = 192×96×12 and the sample size is 100. The
distributions of lengths and angles are now narrower com-
pared to the multi-model CMIP5 ensemble. This corresponds
to a larger effective dimension in the monthly climatology
which now reflects only different initial conditions and not
model differences. Also in this example are the distributions
for precipitation narrower than those for temperature.

Reducing the spatial area decreases the effective dimen-
sion. As an example we have included in Table 2 the results
for the AgERA when applied to northern Europe (50–65◦ N,
0–25◦ E). As expected, we see an increase in the width of the
distributions for both precipitation and near-surface temper-
ature.

In the analysis above we centred the sample to the sam-
ple mean before calculating the lengths; i.e. we used ||xk −
x||2/N instead of ||xk||2/N . However, these expressions
only differ by the length of the mean, ||xk||2/N = x2/N +

||xk − x||2/N , as xk − x and x are orthogonal in high di-
mensions (due to waist concentration). The absence of cen-
tering makes most sense for precipitation that has a natural
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Figure 3. The multi-model 45-member CMIP5 ensemble. Monthly climatology in TAS (K). (a) Distribution of the lengths. (b) Distribution
of the angles.

Figure 4. The normalized distances as a function of dimension N . For each N we draw 50 N -dimensional random vectors and calculate the
pairwise distances

√
||xk − xl ||2/N (blue) and the distances to the sample mean

√
||xk − x||2/N (black). The thick curves show the mean

of the distances and the broken curves the mean ±2 standard deviations. In (a) each component of the vectors is drawn from a standard
Gaussian; in (b) each component is drawn from a standard Gamma distribution with shape parameter 3 (location and scale parameters 0
and 1). In the latter case we include anisotropy by multiplying the nth component by 5n/N , so the mean and variance of the nth component
become 15n/N and 75(n/N)2. Note the factor of

√
2 between the mean distances.

zero point. For AgERA precipitation ||x||/
√
N is 3.35, the

mean of ||xk − x||/
√
N is 4.34, and the mean of ||xk||

√
N

is 5.48 (all mmd−1), fulfilling the Pythagorean relationship
(5.482

= 3.352
+ 4.342).

4.2 Distances between samples and between samples
and ensemble mean

If the sample members are drawn independently from the
same distribution in high dimensions, they have approxi-
mately the same length, and we can write

||xk − x||2/N = σ 2. (6)

For the distance between two different sample members, we
get

||xk − xl ||2/N = ||(xk − x)− (xl − x)||2/N = 2σ 2, (7)

where we have used the fact that xk − x and xl − x are or-
thogonal.

Therefore, the distance between two sample members is a
square root of 2 larger than the distance between a sample
member and the sample mean. The geometric interpretation

is that the sample mean and any two sample members form
an isosceles right triangle with the right angle at the sample
mean (Hall et al., 2005; Palmer et al., 2006). The factor of√

2 then comes from Pythagoras’ equation. It is worth not-
ing that the sample mean is special and is not drawn from
the same distribution as the sample members. As mentioned
when discussing the example of the high-dimensional unit
cube from Sect. 2a, the sample members would be located
in the spikes, while the sample mean would be close to the
centre.

Figure 4 demonstrates this in the simple situation where
50 N -dimensional vectors are drawn from prescribed distri-
butions. The results are shown as a function of N . When
N increases, the spread of the distances decreases, and for
large N the factor of

√
2 is clearly seen. This holds both for

simple spherical Gaussian-distributed vectors (left panel) and
for Gamma-distributed vectors with strong anisotropy in the
components (right panel), although the convergence is faster
in the Gaussian case.

Figure 5 shows the distances for AgERA daily mean pre-
cipitation for June (left panel) and for the monthly clima-
tology of near-surface temperature for the CMIP5 ensemble
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Table 2. Summary of the different measures. Entries show mean/standard deviation. Units are K for temperature and mmd−1 for precipita-
tion.

No. of Lengths Angles Distances between Distances between Correlations Correlations between
samples pairs of ensemble ensemble members between pairs ensemble members

members and ensemble of ensemble and ensemble
mean members mean

AgERA, temperature, 66 4.36/0.58 1.59/0.21 6.21/0.88 4.36/0.58 0.41/0.13 0.64/0.07
daily, June

AgERA, precipitation, 66 4.34/0.44 1.59/0.05 6.20/0.47 4.34/0.44 0.46/0.05 0.69/0.04
daily, June

AgERA, temperature, 66 3.25/1.06 1.58/0.50 4.61/1.58 3.25/1.06 0.35/0.31 0.57/0.25
daily, June, N. Europe

AgERA, precipitation, 66 4.05/1.88 1.56/0.28 5.92/2.32 4.95/1.88 0.66/0.17 0.82/0.13
daily, June, N. Europe

CMIP5, monthly 45 2.57/0.46 1.59/0.28 3.66/0.73 2.57/0.46 0.44/0.18 0.64/0.12
climatology,
precipitation

MPI-GE, monthly 100 0.34/0.03 1.58/0.12 0.49/0.04 0.34/0.03 0.49/0.07 0.70/0.04
climatology,
precipitation

MPI-GE, monthly 100 0.27/0.01 1.58/0.06 0.39/0.02 0.27/0.01 0.51/0.04 0.72/0.03
climatology,
precipitation

CMIP5, NH annual 45 0.67/0.35 1.60/1.14 0.90/0.59 0.67/0.35 0.39/0.19 0.63/0.10
means, temperature

MPI-GE, NH annual 100 0.16/0.02 1.58/0.20 0.22/0.03 0.16/0.02 0.54/0.12 0.74/0.07
means, temperature

Figure 5. Distances between samples (cyan) and between sample and sample mean (blue). (a) AgERA, daily mean precipitation for June.
(b) CMIP5, monthly climatology of near-surface temperature. Note the factor of

√
2 between mean distances.

(right panel). The distribution of the distances between sam-
ple members is shown together with the distribution of the
distances between the sample members and the sample mean.
The mean and width of these distributions are also shown in
Table 2 for both these and the other data sets. In all cases the
factor of

√
2 is clearly seen for the mean values, although the

widths of the distributions are substantial in all cases. For the
AgERA daily precipitation (Fig. 5 left), the two distributions
are almost separated, while this is not the case for the CMIP5
ensemble.

The indistinguishable interpretation claims that observa-
tions are drawn from the same distribution as the ensem-

ble members. With this assumption and the considerations
above, Christiansen (2018) explained the ubiquitous observa-
tion that the error (compared to observations) of the ensem-
ble mean often is 30 % smaller ((1−

√
2)/
√

2) than the typ-
ical error of the individual ensemble members (e.g. Gleckler
et al., 2008). We also explained why the ensemble mean very
often has a smaller error than all individual ensemble mem-
bers (Christiansen, 2019).

The results in this subsection and Sects. 4.2 and 4 not only
hold for the Euclidean (square) norm distance, but also for
e.g. the maximum norm distance and the correlation distance
(
√

1− r2, where r is correlation).
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Figure 6. Correlations as a function of dimension N . For each N we draw 50 N -dimensional random vectors and calculate correlations of
pairs of sample differences (blue, corr(xk − xm,xl − xm)) and correlations of sample differences and differences between ensemble mean
and individual ensemble members (black, corr(xk−xm,x−xm)). The thick curves show the mean of the correlations and the broken curves
the mean ±2 standard deviations. In (a) each component of the vectors is drawn from a standard Gaussian; in (b) each component is drawn
from a Gamma distribution (see caption to Fig. 4). The horizontal black lines indicate 1/2 and 1/

√
2.

Figure 7. Correlations of pairs of sample differences corr(xk − xm,xl − xm) (cyan) and correlations of sample differences and differences
between sample mean and individual sample members corr(xk − xm,x− xm) (blue). (a) Daily mean precipitation June from AgERA.
(b) Monthly climatology of near-surface temperature in CMIP5.

4.3 Correlations between sample differences

Error correlations and correlations between model differ-
ences are important when studying the structure of a model
ensemble and when comparing an ensemble to observa-
tions (Annan and Hargreaves, 2010; Pennell and Reichler,
2011; Bishop and Abramowitz, 2013).

We have in general corr(xk,xl)= 1− 1
2 ||x̂

k
− x̂l ||2/N ,

where ˆ indicates variables standardized to zero mean and
unit variance. Therefore, with εk = xk − xm we have ε̂k =
(xk − xm)/

√
2/σ . We now get

corr(xk − xm,xl − xm)= corr(εk,εl)

= 1−
1
2

∥∥∥ε̂k − ε̂l∥∥∥2
/N

= 1−
1
2

∥∥∥∥xk − xl√
2σ

∥∥∥∥2

/N

= 1−
1
2
=

1
2
, (8)

where in the last step we have used Eq. (7). Thus, in high di-
mensions the correlation between sample differences is 1/2.

Replacing xl with the sample mean, we get

corr(xk − xm,x− xm)= 1−
1
2

∥∥∥∥xk − xm√
2σ
−
x− xm

σ

∥∥∥∥2

/N (9)

= 1−
1
2

∥∥∥∥xk − x√
2σ
+ (1− 1/

√
2)
xm− x

σ

∥∥∥∥2

/N (10)

= 1−
1
2
(1/2+ (1− 1/

√
2)2)= 1/

√
2. (11)

In the last step we used the independence of the two terms
and applied Eq. (6) to each.

Figure 6 shows the correlations for the simple random vec-
tors as also used in Fig. 4. For all N the correlations are
distributed around 1/2 and 1/

√
2. For small N the spread

is large, but it decreases when N increases, and for large N
the correlations are very narrowly distributed around 1/2 and
1/
√

2≈ 0.71.
The correlations for AgERA daily mean precipitation for

June and for the CMIP5 monthly climatology of near-surface
temperate are shown in Fig. 7. The mean values are close to
the high-dimensional values from Eqs. (8) and (9), although
the spread is rather high. This is also the case for the other
fields as reported in Table 2.

https://doi.org/10.5194/npg-28-409-2021 Nonlin. Processes Geophys., 28, 409–422, 2021



418 B. Christiansen: Blessing of dimensionality in climate

Figure 8. The length of the sample mean ||x||2/N as a function of sample size K . Black curves show results from N = 100 and blue curves
forN = 10. For eachK results are based on 200 draws. The solid curves show the mean over these draws and the broken curves the mean±2
standard deviations. The red curve is an analytic result (Eq. 12) with the theoretical values for µ and σ . In (a) each component of the vectors
is drawn from a standard Gaussian µ2

= 0, σ 2
= 1; in (b) each component is drawn from a Gamma distribution, µ2

= 75.00, σ 2
= 25.00

(see caption to Fig. 4).

If we again assume that the observations are drawn from
the same distribution as the ensemble members – the indistin-
guishable interpretation – the error correlation is 1/2 (Eq. 8).
On the other hand, if observations are near the ensemble
mean – the truth-centred interpretation – the error correla-
tions will be zero as xk −x and xl −x are orthogonal. Error
correlations around 1/2 have been observed in many studies
of climate models (e.g. Pennell and Reichler, 2011; Herger
et al., 2018; Abramowitz et al., 2019), providing evidence
for the indistinguishable interpretation.

With xm replaced by observations, Eq. (9) gives the corre-
lation between individual model errors and the model mean
error. This quantity is shown in Fig. 2 of Pennell and Re-
ichler (2011) for the climatology of different variables in
the CMIP3 multi-model ensemble, and it is always close to
1/
√

2≈ 0.71, as predicted by Eq. (9).

4.4 Effect of sample size

We now consider how the sample mean depends on the sam-
ple size. The ensemble mean is often used to estimate the
forced response from initial condition and multi-model en-
sembles (Frankcombe et al., 2018; Bengtsson and Hodges,
2019; Liang et al., 2020), and it is of interest to know how
large an ensemble is needed for the estimation to be satu-
rated (Milinski et al., 2019).

Letting x∞ represent the true (i.e. the distribution) mean
of the sample, we get in the high-dimensional case (reformu-
lating Eq. 6)

||x||2/N = µ2
+ σ 2/K, (12)

where µ2
= ||x∞||2/N . Thus, ||x||2 converges like 1/K ,

and the convergence is slowest where the sample spread is
largest. Similar results have been presented by van Loon et al.
(2007) and Potempski and Galmarini (2009) based on other

arguments. See also Christiansen (2020) for the decay of the
error of the ensemble mean when compared to observations.

The practical way to estimate the effect of sample size
is to apply a bootstrap procedure to a large sample of size
K0. From this sample we draw (with replacement) a num-
ber of sub-samples of sizeK ,K = 1, . . .K0. From these sub-
samples we calculate the mean and spread of ||x||2/N for
each K .

The mean is shown as a function of K – using the boot-
strap procedure – in Fig. 8 for the simple examples with
N = 100 and N = 10. For N = 100 (black curves) ||x||2/N
is narrowly distributed around the theoretical mean (Eq. 12)
for both the Gaussian- (left) and Gamma-distributed samples
(right). ForN = 10 (cyan curves) ||x||2/N is also distributed
around the theoretical mean, but with larger spread.

In the three previous subsections we studied the samples
of daily June temperatures and of monthly climatologies. In
the former the N vectors consisted of spatial maps and in the
latter of combined spatial climatologies for all 12 months.
However, we also work in high dimensionality when consid-
ering a single long time series. The left panel in Fig. 9 shows
time series of the annual NH mean near-surface temperature
for the MPI-GE 100 member initial condition ensemble and
the CMIP5 45-member multi-model ensemble for the period
1961–2005. Both ensembles have been centred to their en-
semble means in the first 10 years. Both ensemble means
agree on a forced response consisting of an overall trend with
some signals of volcanic eruptions after 1982 (El Chrichón)
and 1991 (Mount Pinatubo). The spread of the multi-model
ensemble is much larger than the spread of the initial condi-
tion ensemble.

The right panel shows ||x||2/N as a function of K . As
expected from Eq. (12), the initial condition ensemble con-
verges more quickly than the multi-model ensemble due to its
smaller variance. Note the excellent agreement with Eq. (12)
(red curves), where σ 2 has been estimated as the variance
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Figure 9. (a) Time series of annual NH mean temperature from MPI-GE (black) and CMIP5 (cyan). Thick solid curves are ensemble
means, a dashed curves ensemble means ±2 standard deviations, and thin curves are individual models. Each ensemble has been centred
to its ensemble mean in the first 10 years. (b) The length of the ensemble mean ||x||2/N as a function of ensemble size K for MPI-GE
(black) and CMIP5 (cyan). The ensemble means ±2 standard deviations are also shown. Theoretical results from Eq. (12) with σ 2

= 0.094,
µ2
= 0.164K2 for MPI-GE and σ 2

= 0.654, µ2
= 0.193K2 for CMIP5 are shown in red.

over time and all ensemble members and µ2 likewise esti-
mated from the ensemble mean over all ensemble members.
The large spread for the CMIP5 ensemble is due to the well-
known fact that the bias in global mean temperature is dif-
ferent for different models (Wang et al., 2014), which led to
a breakdown of the condition of independence. This is not
the case for the initial condition ensemble (see also Table 2).
Smaller spread is obtained for the CMIP5 ensemble if each
model is centred to its own (and not the ensemble) mean in
the first 10 years.

5 Conclusions

It is well known that the number of samples necessary for a
given coverage increases exponentially with the dimension.
In this paper we have described other more non-intuitive
properties of high-dimensional space such as the concen-
tration of measures and waist concentration. In loose terms
these properties state that independent sample members from
the same distribution have the same lengths and that pairs of
independent sample members are orthogonal. While most re-
sults are derived for iid random variables, we discussed the
extension to the non-iid situation and how the strength of the
dependence is related to the effective dimension.

We directly investigated to which extent these properties
hold for typical climate fields and time series. Ensemble
modelling provides an obvious source of samples, but sam-
ples can also be obtained by considering e.g. different days
or years. We investigated the monthly climatology of both
an initial condition ensemble and a multi-model ensemble.
We also investigated fields of daily means from a reanaly-
sis. While the nominal dimensions of such fields are high,
the effective dimensions are typically of the order 25–100,
and it is not obvious to which degree the properties of high-
dimensional dimension apply to such fields.

We found that for the global-scale fields of near-surface
temperature and precipitation, both the concentration of mea-
sures and the waist concentration hold to a reasonable degree.
The lengths of the sample members are rather narrowly dis-
tributed around the mean length, with widths (standard de-
viation) around 1/5–1/10 of the mean value. The angles be-
tween pairs of sample members are also rather narrowly dis-
tributed around π/2. This holds both when the samples con-
sist of the climatology of different ensemble members from a
model and when the samples consist of different daily means
from a reanalysis.

Regarding the model ensembles, the concentration prop-
erties are better fulfilled for the initial condition ensemble
(MPI-GE) than for the multi-model ensemble (CMIP5). In
the latter case the dependence of related models will result in
these models being far from orthogonal.

Based on the concentration properties, we derived simple
analytical results that hold for large dimensions. These an-
alytical results include (1) the distances between two sam-
ple members are a factor of

√
2 larger than the distance be-

tween sample members and the sample mean. (2) The corre-
lations between differences of pair of sample members are
1/2, while the correlations between differences of sample
members and the sample mean are 1/

√
2. (3) An expression

for how the sample mean depends on the sample size and on
the sample spread. We found that these results describe the
behaviour of the climate fields reasonably well.

We conclude that in many cases the concentration proper-
ties allow us a deeper understanding the behaviour of sam-
ples of climate fields. However, in each case it is important
to investigate whether the conditions of high dimensionality
and independence are fulfilled. Even for global fields there is
a substantial spread around the values predicted for the high-
dimensional limit.
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We have only briefly mentioned the relation between ob-
servations and models. The relation depends on whether we
assume that observations are drawn from the same distri-
bution as the model ensemble (the indistinguishable inter-
pretation) or whether we assume that the ensemble mem-
bers are centred around the observations (truth-centred in-
terpretation). In the former case the results for individual
model members also hold for observations, as we discussed
in Sect. 4.2, while in the latter case results may be different.
Many of the simple analytical results can be extended to situ-
ations where e.g. the models are biased as explored in Chris-
tiansen (2020) using a simple statistical model that included
both interpretations as limits.
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