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Abstract. In spread spectrum induced polarization (SSIP)
data processing, attenuation of background noise from the
observed data is the essential step that improves the signal-
to-noise ratio (SNR) of SSIP data. The time-domain spec-
tral induced polarization based on pseudorandom sequence
(TSIP) algorithm has been proposed to improve the SNR of
these data. However, signal processing in background noise
is still a challenging problem. We propose an enhanced cor-
relation identification (ECI) algorithm to attenuate the back-
ground noise. In this algorithm, the cross-correlation match-
ing method is helpful for the extraction of useful compo-
nents of the raw SSIP data and suppression of background
noise. Then the frequency-domain IP (FDIP) method is used
for extracting the frequency response of the observation sys-
tem. Experiments on both synthetic and real SSIP data show
that the ECI algorithm will not only suppress the background
noise but also better preserve the valid information of the
raw SSIP data to display the actual location and shape of
adjacent high-resistivity anomalies, which can improve sub-
sequent steps in SSIP data processing and imaging.

1 Introduction

Induced polarization (IP) technology operated in both the
time domain and the frequency domain is useful in explo-
ration for groundwater mapping, mineral exploration, and
other environmental studies (Revil et al., 2012, 2019; Høyer
et al., 2018). Since the phenomenon of IP in the time domain

was first discovered by Liu et al. (2017b), there has been con-
sistent efforts to explore its utilization in various research ef-
forts. In 1959, the frequency-domain IP (FDIP) approach was
proposed by Collett et al. (1959) and Seigel (1959), which
became a classic, widely used mapping technique. For ex-
ample, the first variable-frequency approach was proposed
by Wait (1959), then the spectrum approach of the complex
resistivity was developed by Zonge and Wynn (1975), and
the dual-frequency IP approach was presented and developed
by He (1993) and Han et al. (2013). Recently, spread spec-
trum induced polarization (SSIP) is a popular branch of FDIP
which uses pseudorandom current pulses of opposite polar-
ity as an excitation source (Chen et al., 2007; Xi et al., 2013,
2014; He et al., 2015). According to the intrinsic broadband
characteristics of the source itself, the spectral response of an
observation system can be simultaneously calculated at mul-
tiple frequencies in electrical exploration (Liu et al., 2019).
Thus, this SSIP technology has been gaining attention and
application in electrical prospecting (Xi et al., 2014; Lu et
al., 2019; Wang and He, 2020).

In field detection experiments, it is still a major problem
that IP data are often contaminated with background noise.
The background noise can be mainly categorized into two
types: the Gaussian noise and the impulsive interference with
different percentage of outliers (Liu et al., 2016; Kimiaefar et
al., 2018; Li et al., 2019). If the background noise is not effec-
tively reduced, the remnant noise can affect the calculation of
complex resistivity and may mislead subsequent interpreta-
tions of the subsurface structure.
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The field of FDIP denoising has achieved quite good re-
sults through the constant research of experts and scholars.
There have been many algorithms that can be used to sup-
press the FDIP random noise (Mo et al., 2017), such as
smooth filter (Guo, 2017), Mean stack (Liu, 2015), digital fil-
ter (Meng et al., 2015), and robust stacking (Liu et al., 2016).
The smooth can effectively attenuate Gaussian noise, but the
impulsive interference with intense energy leaves the effec-
tiveness of this algorithm limited. Therefore, an effective at-
tenuating algorithm for background noise is still a challeng-
ing task for traditional noise suppression algorithms (Neela-
mani et al., 2008; Liu et al., 2017a). SSIP method also faces
the same issue (Liu and Chen, 2016; Liu et al., 2017b).

Recently, the new algorithm based on a circular cross-
correlation method, time-domain spectral induced polariza-
tion based on pseudorandom sequence (TSIP) algorithm, has
also been used to suppress the SSIP noise (Li et al. 2013;
Zhang et al., 2020). Due to its effective denoising ability, the
identification method has gained more attention and devel-
opment. However, the TSIP algorithm is restricted because
the excitation signal is sensitive to the random noise. For this
problem, we propose an enhanced correlation identification
(ECI) algorithm for reducing the noise in SSIP data. The ECI
algorithm obtains cross-correlations between the transmitter
output signal, the excitation signal, and the response signal.
The performance of the ECI algorithm is demonstrated on
both synthetic and field SSIP data. Experimental results show
that the ECI algorithm can effectively control the root mean
square of noise (NRMS) increase, enhance its denoising per-
formance in background noise and improve the valid signal
preservation to display the actual location and shape of high-
resistivity anomalies with higher resolution.

2 Theory

2.1 The TSIP theoretical model

Figure 1 shows a traditional diagram of the electrical resis-
tivity survey. The transmitter output signal uT (t) is poured
from electrode A to electrode B, the excitation signal i(t)
flows from electrode A to electrode B, and the response sig-
nal u(t) between the electrodes M and N is measured. To
simultaneously obtain the spectral response of subsurface at
various frequencies, pseudorandom sequence based the exci-
tation signal i(t) is considered. Thus, the spectral response of
subsurface be retrieved by the TSIP algorithm, and its spec-
tral response be expressed as (Li et al., 2013):

He(ω)=
Pui(ω)

Pii(ω) ·PS(ω)
, (1)

where Pui(ω) is the cross-power spectral density of u(t)
and i(t), Pii(ω) the auto-power spectral density of i(t), and
PS(ω) is the impulse spectral response of the observing sys-
tem.

Figure 1. (a) The observation model of the four-electrode measure-
ment. (b) Its equivalent diagram.

Given this observation mode using low-power signals, the
magnetotelluric system is a time-invariant system and let
us suppose thatHS(ω) is 1. Equation (1) can further be ex-
pressed as

He(ω)=
Pui(ω)

Pii(ω)
=

fft [Rui(τ )]
fft [Rii(τ )]

=
U(ω)

I (ω)
, (2)

where fft[.] denotes fast Fourier transform (FFT), Rui(τ )
is the cross-correlation function of u(t) and i(t), Rii(τ )
is the autocorrelation function of i(t), U(ω) and I (ω) de-
pict the geometric factor defined by the frequency spectrum
of u(t)and the frequency spectrum of i(t) respectively, and
τdenotes time delay.

In the practical field environment, this observation mode
is contaminated by the background noise, as shown in Fig. 2.
The output of the sensors Ak (k = 1,2,3) can be expressed
as

y1 = uT (t)+ n1(t), (3)
y2 = u(t)+ n2(t), (4)
y3 = i(t)+ n3(t), (5)

where nk(t) is the background noise.
Therefore, according to Eq. (2), the formula of the TSIP

algorithm is given as

He(ω)=
Py2y3(ω)

Py3y3(ω)
=

fft
[
Ry2y3(τ )

]
fft
[
Ry3y3(τ )

]
=

fft
[
Rui(τ )+Run2(τ )+Rin1(τ )

]
fft
[
Rii(τ )+Rin1(τ )+Rn1n1(τ )

]
≈

fft [Rui(τ )]
fft
[
Rii(τ )+Rn3n3(τ )

] . (6)

Equation (6) demonstrates that the TSIP algorithm has a
weak denoising effect when n3(t) is the massive intense
noise. In other words, the TSIP algorithm depends on the
energy intensity of n3(t) present in i(t).
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Figure 2. Schematic diagram using the TSIP algorithm.

Figure 3. The schematic diagram of the ECI denoising model.

2.2 The ECI theoretical model

That the denoising ability of the TSIP algorithm is limited is
caused by that i(t) is sensitive to n3(t). To solve this prob-
lem, the ECI algorithm is proposed in Fig. 3 and its derivation
process is as follows.

Firstly, let us suppose that the telluric system is a time-
invariant system under low-power signals. For three sensor
output signals, their cross-correlation functions are the peri-
odic correlation functions of time τ . When the length of the
correlation window NT is specified, 0.0125 s in this exper-
iment. The cross-correlation functions can be expressed as
follows:

Ry1y2(τ )= E
[
y1(t)y2(t − τ)

]
=
(
RuT u(τ )

)
N
+Rn1n2(τ ), (7)

Ry1y3(τ )= E
[
y1(t)y3(t − τ)

]
=
(
RuT i(τ )

)
N
+Rn1n3(τ ), (8)

where Rn1n2(τ ) and Rn1n3(τ ) are the cross-correlations of,
n2(t) and n3(t) respectively, and τ is time delay that lies in
the range of −NT to NT.

Figure 4 shows the schematic diagram of the ZW-CMDSII
instrument (Zhang et al., 2014; He et al., 2014). As is known
from the figure, we can conclude that uT (t) is mainly dis-
turbed by the floor noise energy of the instrument, and i(t)
and u(t) are mainly contaminated by environmental noise.
The floor noise is relatively very low, while environmental
noise possesses a much higher energy level. Thus we assume
that n1(t)≈ 0, and can conclude that zero correlation be-
tween n1(t) and n2(t), n3(t), Rn1n2(τ )≈ 0 and Rn1n3(τ )≈

0.
Based on the above analyses, we can further obtain:

Ry1y2(τ )≈
(
RuT u(τ )

)
N
, (9)

Ry1y3(τ )≈
(
RuT i(τ )

)
N
. (10)

Figure 4. Schematic diagram of the instrument.

Then the cross-power spectrum of Eqs. (9) and (10) can be
written as following

Py1y2(ω)≈ PuT u(ω), (11)
Py1y3(ω)≈ PuT i(ω). (12)

Finally, according to Eqs. (2) and (11), Eq. (12) can be ex-
pressed as following

He(ω)=
U(ω)

I (ω)
=
U(ω)U∗T (ω)

I (ω)U∗T (ω)
=
PuT u(ω)

PuT i(ω)

≈
Py1y2(ω)

Py1y3(ω)
=

∣∣∣∣Py1y2(ω)

Py1y3(ω)

∣∣∣∣e−j(ϕy1y2(ω)−ϕy1y3(ω)) (13)

where ϕy1y2(ω) and ϕy1y3(ω) denotes the difference between
y1(t), y2(t) and y3(t).

So, Eq. (13) is the formula of the ECI algorithm. The
derivation process of this formula clearly describes that the
ECI algorithm can effectively suppress the background noise
and be independent on the degree of n3(t) present in i(t).
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Figure 5. (a) Experimental schematic; (b) experimental setup.

3 Experiment on synthetic SSIP data record

We test the ECI algorithm for attenuating background noise
of SSIP data sets in comparison with the FDIP algorithm and
the TSIP algorithm. For the comparison, the signal-to-noise
ratio (SNR), root mean square of noise (NRMS), and rela-
tive error (ε) are the objective parameters to judge the perfor-
mance of denoising, which are calculated as follows:

SNR= 10log10


M∑
i=1

[
y(i)−µy

]2
M∑
i=1

[n(i)−µn]2

 , (14)

NRMS=

√√√√√ M∑
i=1
[n(i)]2

M
, (15)

ε = 100×
ρ1− ρ0

ρ0
, (16)

i(t)= ui(t)/RS, (17)

where µy and µn denote the mean values of the useful signal
and the noise separately. y(i) and n(i) are the useful signal
and the noise separately,M is the length, ρ0 denotes the com-
plex resistivity calculated without noise, and ρ1 is the com-
plex resistivity calculated with the noise added to ρ0. RS is
the value of the sampling resistor (RS = 1�), and ui(t) is the
voltage at the sampling resistor.

To validate the effectiveness of the ECI system, we
performed a resistance–capacitance experiment, as shown
in Fig. 5. The circuit parameters are chosen to be
RA = 30.3�/5 W, RMN = 30.1�/5 W, RB = 30�/5 W, and
CMN = 470 µF. We recorded the applied voltage uT (t), the
injected current i(t), and the measured potential signal u(t)
as the raw signals. These signals are a three-order spread
spectrum pseudorandom sequence at the clock cycle of
0.0125 s, as shown in Fig. 6a–c and Table 1.

Since our experiment is in a stable environment, we con-
sider the system to be linear time-invariant, and the noise
from the current and voltage measurements are linearly su-
perpositioned (Pelton and Sill, 1983; Vinegar and Waxman,
1984; Garrouch and Sharma, 1998). Therefore, it is actually
equivalent whenever the noise is added to the injected current

Figure 6. The time waves of (a) the applied voltage uT (t), (b) the
measured potential signal u(t), (c) the voltage ui(t) at the sampling
resistor, (d) noise (t), and (e) the synthetic signal (ui(t)+noise(t)).

Table 1. Amplitude and phase values of complex resistivity ob-
tained with Fig. 6a–c.

Frequency Theoretical Theoretical Measured Measured
(Hz) amplitude phase amplitude phase

(�) (rad) (�) (rad)

80.2 30.8 −0.14 30.8 −0.14
160.4 30.4 −0.07 30.3 −0.08
320.8 30.2 −0.03 30.7 −0.03
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Figure 7. Amplitude and phase of complex resistivity values at (a1, b1) 80 Hz, and (a2, b2) 160 Hz, (a3, b3) 320 Hz using the three methods.

i(t), the measured potential signal u(t), or the applied volt-
age uT (t). Therefore, the injected current i(t) is only pol-
luted by the synthetic background noise, including Gaussian
and impulsive, as shown in Fig. 6d and e. Thirdly, the com-
plex resistivity of the main frequency is considered and dis-
cussed because the main energy of the pseudorandom signal
is concentrated on the main frequency (He, 2017). Finally,
for detailed comparisons between the ECI algorithm and the
others, we add the synthetic Gaussian and impulsive noises
to the response signal i(t), respectively.

We use synthetic Gaussian noise with the deviation and
mean values of 0.1 and 1.1 as a standard template. The exci-
tation signal i(t) is polluted by synthetic different energy lev-
els of the Gaussian noise. Figure 7 shows that the denoised
results are obtained and compared at the three main frequen-
cies when the NRMS ranges from 0.12 to 0.25. The figure
shows that as the NRMS increases, the complex resistivity
information obtained by each algorithm decreases. However,
the amplitude spectrum after ECI processing has the slowest-
falling speed, and the phase spectrum has the slowest-falling
speed at 80 Hz.

Previous literature has shown that if the percentages of
outliers in impulsive noise exceed 50 %, the traditional de-
noising algorithm will be limited (Liu and Chen, 2016; Liu
et al., 2017a). Thus, synthetic impulsive noise is added to
the excitation signal i(t) in 10 % steps. Their standard devi-
ations (SDs) and skewness values (SKs) are shown in Fig. 8.
As depicted in Fig. 9, the three algorithms have a certain de-
gree of denoising performance versus the different percent-
ages of the synthetic outliers against the raw data. The figure
shows that with the discrete points of impulse noise growing,
the NRMS is different. The amplitude spectrum and phase
spectrum of complex resistivity obtained by each algorithm
fluctuate. The amplitude spectrum after ECI processing re-
mained the slowest-falling speed. Although the noise reduc-
tion performance of the phase spectrum processed by ECI

Figure 8. The standard deviations (SDs) and skewness values (SKs)
of synthetic impulsive noise.

does not stand out, the overall change of the amplitude spec-
trum after ECI processing is still slow, especially when the
discrete point is more than 60 %.

4 Experiment on real SSIP data record

To further verify the performance of the ECI algorithm, the
Wenner array, which is the traditionally applied system in
the field, was selected for performing laboratory tests, as
shown in Figs. 10 and 11. SSIP data was acquired with a
high-density meter and 20 electrodes at 1 m spacing. A Wen-
ner acquisition sequence was adopted with 55 potential mea-
surements expressed using the green points. The figure shows
an example of two high-resistance cavities. The two cavities
were presented by the letters A and B, and their calibers were
about 1.8 m× 2 m. The two cavities are buried by loess. The
loess is measured to have an electronic resistivity of 36�m.
The measured excitation signal had a range between 0.04
and 0.19 A approximately. The transmitter output signal is
a three-order sequence with 80 Hz frequency, and its voltage
is about ±11.8 V. The sampling frequency is 625 kHz. The
excitation and response data of 40 periods were recorded at
each point.

Figure 12 demonstrates the experimental SSIP data pro-
cessed by the three algorithms, inverted with Res2DInv (Ar-
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Figure 9. Complex resistivity values at (a1, b1) 80 Hz, (a2, b2) 160 Hz, and (a3, b3) 320 Hz using the three methods.

Figure 10. Diagram of the field test.

Figure 11. The schematic of the two high-resistance cavities.

ifin et al., 2019). It can be observed that the location and
shape of two abnormal bodies are distinguished only in the
ECI algorithm while recognized as one whole in the other
algorithms. We believe the reason that ECI has higher detec-
tion precision is due to its higher denoising ability.

To verify the reason for the improved detecting precision,
the SDs of data points are calculated from 18 to 50 (Fig. 11),
as shown in Fig. 13. This figure shows that the 33 SD in ECI
processing the SSIP data is the lowest at all points. The aver-
age SD values in ECI processing of the SSIP data are 7 % and
3.8 % lower than the FDIP and TSIP methods, respectively.
Also, the maximum value of SDs with the ECI method is 5 %

and 1.4 % lower than the others, and the minimum value is
8 % and 10 % lower, respectively.

Meanwhile, amplitude–frequency |ρ(f )| and phase–
frequency ϕ(f ) characteristics of complex resistivity are cal-
culated by the three algorithms (one period) in survey point
no. 38 in Fig. 11.

For example, Fig. 14a1 and a2 show that the amplitude
and phase of the complex resistivity spectrum for this point
at 80 Hz processed by FDIP are 39.7�m and −0.0881 rad,
the amplitude and phase are 40.9�m and 6.12 rad when
at 160 Hz, and the amplitude and phase are 38.7�m and
−0.253 rad when at 320 Hz. As depicted in Fig. 14, the
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Figure 12. Inverted resistivity sections of the two high-resistivity anomalies (A and B) at 80 Hz with using (a) the FDIP method, (b) the
TSIP algorithm, and (c) the ECI algorithm.

Figure 13. Standard deviation (SD) values of the ECI algorithm and the others compared to the data dots from 18 to 50 at 80 Hz.

complex resistivity processed by the ECI shows a linear
trend with the three main frequencies. Also, the SD of the
amplitude–frequency |ρ(f )| characteristic is 0.10 and 0.49
lower than the others, and the SD of the phase–frequency
ϕ(f ) is 3.56 and 0.03 lower. Therefore, we believe that the
ECI algorithm has an advantage in suppressing background
noise, which benefits the subsequent steps in SSIP data pro-
cessing and imaging.

5 Discussion

The simulation results indicate that the ECI algorithm has
very good performance in noise reduction and robustness.
Along with the increase of the Gaussian noise level, we found
that the ECI algorithm can, to some extend, overcome the
shortcomings of the TSIP algorithm has, i.e., being suscep-
tible to the noise of the current. This result coincided with
Eqs. (6) and (13), which provides a novel approach for cor-
related identification noise reduction. In the impulsive noise
experiment, we found that the ECI algorithm still has good

noise reduction when the discrete point is more than 60 %,
which compensates for the disadvantage of the traditional
denoising algorithm. Moreover, these simulation results also
reveal that the ECI algorithm should have high robustness.

The standard deviation analysis of the real data indicates
that the ECI algorithm improves the accuracy and robustness
of the collected data, which are compatible with the simula-
tion analyses. This consistency shows that the ECI algorithm
can obtain the location and shape of two abnormal bodies
by improving the SNR of SSIP data, which can increase the
resolution of inversion results.

6 Conclusions

We propose the ECI algorithm that effectively attenuates the
background noise in SSIP data and improves the complex re-
sistivity spectrum. This algorithm uses the correlation func-
tion to neutralize the influence of the background noise in the
SSIP data, and the spectrum complex resistivity can be calcu-
lated at multiple frequencies by the formula of the complex
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Figure 14. Complex resistivity spectrum calculated by the three algorithms (one period) in survey point no. 38.

resistivity. Simulation results show that the ECI algorithm
can effectively attenuate the background noise and improve
the SNR. Subsequently, the practicability of the ECI algo-
rithm is further verified by a field test. The results demon-
strate that the SD of the SSIP data is improved, which ben-
efits the accuracy and stability of the collected data. There
is a good agreement between the complex resistivity and the
geological target body with high resistance, which indicates
that the ECI algorithm can help to improve the quality of in-
terpretation and inversion in the survey area. For the ampli-
tude spectrum, the ECI algorithm can more effectively sup-
press the background noise, including the Gaussian random
and impulsive noises. Still, its effect is very limited for the
phase spectrum. Therefore, a denoising algorithm based on
pseudorandom sequence correlation identification is still left
open for more investigation.
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