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Abstract. The identification of recurrences at various
timescales in extreme event-like time series is challenging
because of the rare occurrence of events which are separated
by large temporal gaps. Most of the existing time series anal-
ysis techniques cannot be used to analyze an extreme event-
like time series in its unaltered form. The study of the sys-
tem dynamics by reconstruction of the phase space using the
standard delay embedding method is not directly applicable
to event-like time series as it assumes a Euclidean notion of
distance between states in the phase space. The edit distance
method is a novel approach that uses the point-process na-
ture of events. We propose a modification of edit distance to
analyze the dynamics of extreme event-like time series by in-
corporating a nonlinear function which takes into account the
sparse distribution of extreme events and utilizes the physi-
cal significance of their temporal pattern. We apply the mod-
ified edit distance method to event-like data generated from
point process as well as flood event series constructed from
discharge data of the Mississippi River in the USA and com-
pute their recurrence plots. From the recurrence analysis, we
are able to quantify the deterministic properties of extreme
event-like data. We also show that there is a significant se-
rial dependency in the flood time series by using the random
shuffle surrogate method.

1 Introduction

One of the main challenges of society is to understand and
manage natural disasters, such as earthquakes, tsunamis, and
floods, which often lead to big loss of economic assets and
even lives. Flooding is an important example with high so-
cietal relevance and affects more people globally than any
other natural hazard. Globally, the expected annual costs of
floods have been estimated to more than USD 100 billion
(Desai et al., 2015). Furthermore, climate change projec-
tions point to an increasing flood risk. Direct flood damages
could rise by 160 % to 240 % and human losses by 70 % to
83 % in a 1.5 ◦C warmer world (Dottori et al., 2018). Cli-
mate change has already influenced river flood magnitudes
(Bloschl et al., 2019) and has been related to increases in the
intensity and frequency of heavy precipitation events aggre-
gating flash flood and river flood risk (Donat et al., 2016;
Kemter et al., 2020). Natural climate variability at differ-
ent timescales may lead to flood-rich and flood-poor periods
(Merz et al., 2018). In addition, human interventions in river
systems and catchments also heavily influence flood magni-
tudes and frequencies (Hall et al., 2014). Since floods can
massively affect life quality of our societies, it is desirable to
understand the underlying dynamics and, thus, put forward
precautionary measures to avert potential disasters.

The occurrence of extreme events is not random but rather
a manifestation of complex dynamics, and such events tend
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214 A. Banerjee et al.: Recurrence analysis of extreme event-like data

to have long-term correlation. Comparing data of extreme
events with other non-event data using standard methods
(linear/nonlinear) is problematic, because the temporal sam-
pling differs largely (time points of events vs. continuous
sampling). Furthermore, linear methods such as the Fourier
transform (Bloomfield, 2004) and wavelet analysis (Percival
and Walden, 2007) are often insufficient to capture the full
range of dynamics occurring due to the underlying nonlin-
earities (Marwan, 2019). Hence, defining a principled non-
linear method is necessary for the analysis of extreme event
time series, in particular when the correlation or coupling be-
tween several variables is investigated.

Out of the various approaches to study nonlinear dynam-
ical systems (Bradley and Kantz, 2015), the reconstruction
of the phase space using delay coordinates (Takens, 1981) is
a widely used method that allows us to estimate dynamical
invariants by constructing a topologically equivalent dynam-
ical trajectory of the original (often high-dimensional and un-
known) dynamics from the measured (scalar) time series. In
the delay coordinate approach, the distance between states
in the phase space plays a pivotal role in describing the un-
derlying dynamics of a system. After reconstructing the dy-
namical trajectory, we can extract further information about
the dynamics of a system encoded in the evolution of the
distances between the trajectories, e.g., through recurrence
plots (Marwan et al., 2007), correlation dimension (Grass-
berger and Procaccia, 1983b), Kolmogorov entropy (Grass-
berger and Procaccia, 1983a), or Lyapunov exponents (Wolf
et al., 1985).

Although there are powerful techniques based on phase
space reconstruction of a wide range of nonlinear dynam-
ical processes, they are not directly applicable to event-like
time series. Extreme events such as flood, earthquakes, or so-
lar flares are known to have long-term correlations (Jentsch
et al., 2006). However, capturing the correlations of extreme
events using such methods is difficult as the phase space re-
construction and the Euclidean distance for measuring the
distances of states are not suitable for event-like time series
because, by definition, extreme events are small in number
and are separated by large temporal gaps. In this case, it be-
comes necessary to define an appropriate distance measure
that can help analyze the dynamics of extreme event-like
time series. Event-like time series can be analyzed in their
unaltered form by considering a time series of discrete events
as being generated by a point process. Victor and Purpura
(1997) presented a new distance metric to calculate a dis-
tance between two spike trains (binary event sequences) as
a measure of similarity. Hirata and Aihara (2009) extended
this idea called edit distance for converting a spike train into
time series. The method has also been adopted to measure
a distance between marked point processes to analyze for-
eign currencies (Suzuki et al., 2010) and irregularly sampled
palaeoclimate data (Eroglu et al., 2016). Although the exist-
ing definition of edit distance is quite suitable for measur-
ing similarity between event series, it introduces a bias (dis-

cussed in Sect. 3), when there are large gaps in the data as in
extreme event time series. Additionally, the method depends
on multiple parameters, and often it is difficult to associate
a physical meaning with them. This further complicates the
parameterization of the method in case of extreme events.

In this study, we propose a modification of the edit dis-
tance metric for analyzing extreme event-like time series.
The proposed extension allows us to consider the shifting pa-
rameter of the edit distance metric in terms of a temporal de-
lay which can be physically interpreted as a tolerance intro-
duced to deal with the quasi-periodic nature of a real-world
extreme event time series. We demonstrate the efficacy of the
proposed modified edit distance measure by employing re-
currence plots and their quantification for characterizing the
dynamics of flood time series from the Mississippi River in
the United States. A flood time series shows a complex time-
varying behavior. Moreover, flood generation is often char-
acterized by nonlinear catchment response to precipitation
input or antecedent catchment state (Schröter et al., 2015),
requiring methods able to deal with nonstationarity and non-
linearity. By using the random shuffle surrogate method, we
show that there is a significant serial dependency in the flood
events.

2 Edit distance for event-like time series

Distance measurements between two data points play an im-
portant role for many time series analysis methods, for ex-
ample, in recurrence quantification analysis (RQA) (Marwan
et al., 2007), estimation of the maximum Lyapunov exponent
(Rosenstein et al., 1993), scale-dependent correlations (Rodó
and Rodríguez-Arias, 2006), data classification (Sakoe and
Chiba, 1978), and correlation dimension estimation (Grass-
berger, 1983). In case of regularly sampled data, the Eu-
clidean distance is often used. However, for event-like data
where big gaps between events are common, this approach is
not directly applicable.

Event-like time series can be analyzed in their unaltered
form by considering a time series of discrete events as be-
ing generated by a point process. Victor and Purpura (1997)
presented a specific distance metric to calculate a distance
between two spike trains (binary event sequences) as a mea-
sure of similarity. Hirata and Aihara (2009) extended this
idea for analyzing event-like time series and named it edit
distance. Ozken et al. (2015) suggested a novel interpolation
scheme for irregular time series based on the edit distance,
and Ozken et al. (2018) extended this approach to perform
recurrence analysis for irregularly sampled data.

In order to apply the edit distance as a distance measure
for, e.g., recurrence analysis, the whole time series is divided
into small, possibly overlapping, segments (windows), which
should contain some data points (Fig. 1). The aim is to deter-
mine a distance measure between every pair of segments. As
a distance, we use the effort of transforming one segment into
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Figure 1. (a) Non-overlapping windows of window size 4; (b) over-
lapping windows with 25 % sharing.

Figure 2. A minimum-cost path is shown to transform Sa to Sb.

another using a certain set of operations. For this a combina-
tion of three elementary operations is required: (1) delete or
(2) insert a data point and (3) shift a data point to a different
point in time; each of these operations is assigned a cost. We
obtain the distance measure by minimizing the total cost of
this transformation. In Fig. 2, we show an illustrative exam-
ple of how the elementary operations transform an arbitrary
segment Sa to a segment Sb.

For the edit distance we use the sum of the costs of the
three operations. The cost function is

P(C)=3s (| I | + | J | −2 | C |)

+

∑
(α,β)∈C

30‖ta(α)− tb(β)‖,

where α and β are events in segments Sa and Sb occurring at
times ta(α) and tb(β); C is the set containing all such pairs
(α,β) from the two segments; I and J are the sets of indices
of events in Sa and Sb; | I |, | J |, and | C | are the cardi-
nalities of I , J , and C; 3s is the cost of deletion/insertion
and30 the cost assigned for shifting events in time. The first
summand in the cost function deals with deletion/insertion,
and the second summand (the summation) deals with shifting
of the pairs (α,β) ∈ C.

The distance D is the minimum cost needed to transform
the event sequence in Sa to the event sequence in Sb:

D(Sa,Sb)=min
C
P(C)

=min
C

{
3s(| I | + | J | −2 | C |)

+

∑
(α,β)∈C

30‖ta(α)− tb(β)‖

}
. (1)

The operation costs 3s and 30 are defined as

3s = const. (2a)

and

30 =
M

total time
, (2b)

where M is the number of all events in the full time series.
Originally, 3s was chosen as a constant value 1 (Victor and
Purpura, 1997). Later, 3s was optimized in a range [0,4]
(Ozken et al., 2018). The units of the parameters are (time)−1

for 30 and unitless for 3s.
The treatment of an event series as a point process makes

the edit distance measure a good starting point for defining
a distance between segments of an extreme event time se-
ries. However, the existing form of the edit distance has a
linear dependency on the difference between the occurrences
of events which is inappropriate for an extreme event time
series, as the rare occurrence leads to large gaps between
events. Also, as already mentioned, the existing method de-
pends on a number of parameters. Therefore, we suggest a
modification of the cost function to address these two con-
cerns.

3 Modified edit distance

The cost of transformation between related events (e.g.,
events belonging to the same climatological phenomenon in
a climate event series) should be lower than that between
independent, unrelated events. Hence, the shifting operation
should be a more likely a choice for comparison between seg-
ments if the events in each segment are related or belong to
the same phenomenon. Consequently, deletion/insertion as a
choice of operation for transformation tends to be associated
with unrelated events.

Now, we consider two event sequences Sa and Sb, where
each of them has only one event at times ta and tb, respec-
tively (Fig. 3). We want to transform segment Sa to Sb by us-
ing either deletion/insertion or shifting. The path for shifting
the solitary spike has the cost 301t , where 1t =| ta− tb |;
i.e., it grows linearly with the distance between the two
events. On the other hand, the cost of deleting the event at
ta from Sa and inserting it at time tb in Sa for it to resemble
Sb has cost 2, as the single operation cost for deletion and
insertion is each 1. So, the shifting operation will take place
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Figure 3. Figures illustrating the operation of shifting (a) and dele-
tion/insertion (b).

only as long as the time difference between both events is
smaller than 1t < 2

30
.

The above condition has two limiting cases which need to
be considered for an unbiased choice between shifting and
deletion/insertion – when the cost of shifting is too low or
when it is too high. The former case arises for an extreme
event time series where the number of extreme events M �
total length of the time series, i.e.,30→ 0, Eq. (2b). This as-
signs a low cost for the transformation due to a biased choice
of shifting over deletion/insertion for largely separated events
which may be independent.

The other limiting case, when the cost of shifting per unit
time,30, is moderately high, leads to a biased preference for
the deletion/insertion operation over shifting depending on
how high 30 is, because the cost of shifting increases lin-
early with the distance between two events according to the
definition in Eq. (1). In this case, related events separated
by a relatively small gap may be considered independent as
the shifting cost may exceed the deletion/insertion cost be-
cause of higher30. The following example of a real extreme
event series illustrates how this biased preference can lead
to erroneous results. In regions with seasonal precipitation
regimes, high precipitation events are more similar to those
of the same season of another year compared to other sea-
sons. However, the exact time of occurrence of the extreme
precipitation events varies from year to year; i.e., even if the
events in each segment are related, there might be a certain
time delay between the events (Fig. 4). Now, a linear depen-
dency of the shifting cost on the difference between times
of events, Eq. (1), does not allow us to consider small de-
lays between potentially similar events. In addition, a not so
high value of 30 could increase the cost of shifting for small
delays higher than the cost of deletion/insertion, implying a
lower similarity between the segments.

As the maximum cost for shifting is limited by the cost
for deletion/insertion, we need to lower the cost of shifting
to get a higher similarity between the segments for the above
case. This modification is done by considering the temporal

distance1t at which the maximum cost of shifting occurs as
a delay between the two events.

Selecting a certain temporal delay is relevant for climate
time series, such as precipitation, or hydrological variables,
like discharge, which are of an event-like nature, where
the synchronization between extreme events (Malik et al.,
2010, 2012; Boers et al., 2013, 2014; Ozturk et al., 2018)
at different geographical locations and recurrence of extreme
events for the same location are of interest.

The above discussion illustrates the importance of an ap-
propriate choice of the cost of shifting per unit time, 30,
based on properties of the event series, such as time series
length, total number of events, and event rate. Thus it is more
reasonable to optimize 30 as opposed to 3s. Victor and Pur-
pura (1997) suggested generalizations of the cost assigned
to finite translations, such as modifying the simple 301t to
more general functions, satisfying the triangle inequality.

In view of comparing two events under a predefined de-
lay, we suggest replacing the linear cost function for shifting,
Eq. (1), by a nonlinear cost function which allows a tempo-
ral tolerance and also ensures a smooth change from the cost
function for shifting to the cost for deletion/insertion (Fig. 5).
We propose using the logistic function (Cramer, 2002) as the
cost for shifting:

f (t)=
3s

1+ e−k(t−τ)
, (3)

where

– τ is the chosen time interval between events marking the
transition of the function from exponential growth (for
closely spaced events) to bounded exponential growth
(for events separated by large time gaps) (Fig. 6a),

– 3s is the maximum cost, and

– k is a parameter that affects the rate of the exponential
growth; in this study we choose k = 1. For k =∞, the
logistic function becomes a step function.

The logistic function (Eq. 3) is used for modeling the popu-
lation growth in an area with limited carrying capacity.

The sigmoid nature of the logistic function is apt for repre-
senting the cost of shifting with low values for closely spaced
events and which tends to saturate for events separated by a
time delay greater than a certain τ .

A step function (e.g., Heaviside function) would be an-
other choice for the cost function according to whether shift-
ing is chosen below a certain delay and deletion/insertion is
chosen above it (Fig. 6b):

f (t)=

{
30 1t ≤ τ,

3s 1t > τ,
(4)

where30 is the cost for shifting, according to Eq. (2b), and τ
is the given delay choice which decides between shifting and
deletion/insertion. However, such a cost function maintains a
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Figure 4. Daily precipitation time series of the Aroostook River catchment near Masardis, Maine, in the United States for the years (a) 1915
and (b) 2011; red bars indicate extreme rainfall events (four events per year), usually occurring in spring and summer, whereas in fall extreme
rainfall events usually do not occur.

Figure 5. Linear cost function for shifting (black) and alternative,
nonlinear cost function (orange).

constant value irrespective of the event spacing and switches
to a different value only at the delay threshold. Therefore,
the logistic function, as a smooth approximation of the step
function, is a preferable choice.

The parameter optimization problem of the modified edit
distance equation now becomes a problem of solving a single
linear equation with two unknown variables – the coefficient
related to the cost of shifting events in time and3s. Since, in
our method, we choose to optimize the former by using the
logistic function, we keep 3s constant.

This constant can be absorbed in the optimization function
of the first term and, therefore, the coefficient of the second
term related to the cost of addition/deletion.

For a particular pair of events (α, β), we can arbitrarily
set the maximum cost 3s for shifting or deletion/insertion to
be 1, because it is the only free cost parameter (we have no
3k because of neglecting the amplitudes). Thus, the cost for
transforming one segment to another using the modified edit
distance (mED) is defined as

P(C)= (| I | + | J | −2 | C |)

+

∑
(α,β)∈C

{
1

1+ e−k(‖ta(α)−tb(β)‖−τ)

}
,

and the corresponding distance function to calculate the dis-
tance between two segments Sa and Sb is

D(Sa,Sb)=min
C

{
(| I | + | J | −2 | C |)

+

∑
(α,β)∈C

{
1

1+ e−k(‖ta(α)−tb(β)‖−τ)

}}
. (5)

This new definition of cost depends only on the parameter
τ , which can be interpreted in the sense of a delay between
events. Moreover, this definition holds the triangular inequal-
ity when τ satisfies a certain condition (see the Appendix for
proof).

In the next section we use the modified version of edit dis-
tance to perform recurrence analysis of extreme event-like
data.

4 Recurrence plots

A recurrence plot (RP) is a visualization of the recurrences
of states of a dynamical system, capturing the essential fea-
tures of the underlying dynamics into a single image. The
quantification of the patterns in a RP by various measures of
complexity provides further (quantitative) insights into the
system’s dynamics (RQA) (Marwan et al., 2007). RQA was
designed to complement the nonlinearity measures such as
the Lyapunov exponent, Kolmogorov entropy, information
dimension, and correlation dimension (Kantz, 1994). RP-
based techniques have been used in many real-world prob-
lems from various disciplines. In the field of finance, Strozzi
et al. (2002) studied RQA measures for high-frequency cur-
rency exchange data. In astrophysics, Stangalini et al. (2017)
applied RQA measures to detect dynamical transitions in so-
lar activity in the last 150 years. It has also been used to
classify dynamical systems (Corso et al., 2018) or to detect
regime changes (Marwan et al., 2009; Eroglu et al., 2016;
Trauth et al., 2019) and has many applications in Earth sci-
ence (Marwan et al., 2003; Chelidze and Matcharashvili,
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Figure 6. Variation of the cost contributed by shifting an event by 1t for different parameter values τ = 2,3, and 4.7 using (a) the logistic
function with k = 1 and (b) the Heaviside function.

2007), econophysics (Kyrtsou and Vorlow, 2005; Crowley
and Schultz, 2010), physiology (Webber and Zbilut, 1994;
Zbilut et al., 2002; Marwan et al., 2002; Schinkel et al.,
2009), and engineering (Gao et al., 2013; Oberst and Tuttle,
2018).

Consider a time series that encodes N measured states of
a dynamical system {xi ∈M}Ni=1 on space M . A state of
this system is said to be recurrent if it falls into a certain
ε-neighborhood of another state. Given a distance function
D :M×M→ {0}∪R+, for a given trajectory xi , the recur-
rence matrix of the system is defined as

Ri,j (ε)=

{
1, if D(xi,xj ) < ε,
0, otherwise. (6)

In a RP, when Ri,j (ε)= 1, a point is plotted at (i,j); other-
wise, nothing is plotted. Different classes of dynamics result
in different patterns in their respective RPs (Marwan et al.,
2007).

The RP contains a main diagonal line, called the line of
identity (LOI), corresponding to the recurrence of a state with
itself. The RP is symmetrical about the LOI whenD is a met-
ric (e.g., a symmetrical norm). We are interested in the line
structures in a RP as they capture several aspects of the un-
derlying dynamical behavior of a system. For instance, long,
continuous lines parallel to the LOI denote (pseudo-)periodic
behavior, whereas short, discontinuous diagonal lines are in-
dicative of a chaotic system.

In order to incorporate mED into a RP, we divide the time
series into small segments and compute the distance between
these segments; the time indices are the center points of these
segments. We can now define the RP in terms of the distance
between the segments calculated by mED:

Ri,j (ε)=2
(
ε−D(Si,Sj )

)
i,j = 1,2, . . .,ω, (7)

where ω is the number of segments and the size of the RP is
ω×ω.

One of the most important measures of RQA is the deter-
minism (DET), based on the diagonal line structures in the

RP. The diagonal lines indicate those time periods where two
branches of the phase space trajectory evolve parallel to each
other in the phase space. The frequency distribution P(l) of
the lengths of the diagonal lines is directly connected to the
dynamics of the system (Marwan et al., 2007).

DET=

∑N
l=lmin

lP (l)∑N
l=1lP (l)

(8)

In our study we choose lmin = 2. RPs of stochastic processes
mainly contain single points, resulting in low DET values,
where RPs of deterministic processes contain long diagonal
lines, resulting in high DET values.

In this work, we are interested in the deterministic nature
of flood event time series. For this purpose, we focus on the
DET measure.

5 Choice of window size

We divide the time series into segments/windows. If adja-
cent windows overlap, we call it an overlapping sliding win-
dow, else a non-overlapping window (Fig. 1). Sliding win-
dow techniques are widely used for signal processing (Bas-
tiaans, 1985) and activity recognition processes (Dehghani
et al., 2019). The window size should be selected properly;
i.e., each window should contain enough data points to be
differentiable from similar movements. Consider a time se-
ries of data xi ∈ R at times ti ∈ N. For generalization we con-
sider a constant sampling rate, i.e.,

1T = ti+1− ti = const. ∀i ∈ N.

Each window consists of n (n ∈ N,n > 1) data points, so the
window size is w = n1T . For overlapping windows, a frac-
tion of the data is shared between consecutive windows, de-
noted by L ∈ {1,2,3, ..,n− 1} as the number of data points
within the overlapping range, where L=∅ signifies the non-
overlapping case. The overlapping range is OL = L1T and,
in terms of percentage, OL(%)= L

n
100 %.
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Because mED focuses on event-like data, finding an op-
timum window size is important. An inappropriate window
size may lead to missing events in windows (“empty win-
dows”) due to the sparse occurrence of events. Here we pro-
pose some criteria for choosing the optimum window size.

– To avoid empty windows, we try to fix the number of
events (n) in each window. Here we choose the window
size as 1 year, as most climate phenomena such as flood
events exhibit annual periodic behavior, and therefore
we get a similar number of events each year.

– In case we need to choose a larger window size to have
enough data points in each window, the number of seg-
ments decreases if the windows do not overlap, which
in turn reduces the dimension of the recurrence ma-
trix. The underlying dynamical behavior of the system
will not be completely captured by the resulting coarse-
grained recurrence plot. Overlapping windows alleviate
this problem by increasing the number of windows. In
our work, we use a certain percentage of overlapping.

– An inappropriate window size can lead to the aliasing
effect (Fig. 11). As a result, different signals would be
indistinguishable, and we might lose important transi-
tions.

6 Applications of modified edit distance

We apply mED first to generated data and then to real-world
flood observations to understand how well our method can
identify recurrences in extreme event-like time series.

6.1 Numerically generated event series using a Poisson
process

The Poisson process is used as a natural model in numerous
disciplines such as astronomy (Babu and Feigelson, 1996),
biology (Othmer et al., 1988), ecology (Thomson, 1955), ge-
ology (Connor and Hill, 1995), or trends in flood occurrence
(Swierczynski et al., 2013). It is not only used to model many
real-world phenomena, but also allows for a tractable mathe-
matical analysis.

Consider N(t) to be a stochastic counting process which
represents the number of events above some specified base
level in the time period (0, t). Suppose the events occur above
the base level at a constant rate λ > 0 (units of 1 / time). So,
the probability that n events occur in the time between t and
t + s is given by (Ross, 1997; Loaiciga and Mariño, 1991)

P {N(t+s)−N(s)= n} = e−λt
(λt)n

n!
(n= 0,1,2, . . .). (9)

A Poisson process is a set of random events whose
stochastic properties do not change with time (stationary),
and every event is independent of other events; i.e., the wait-
ing time between events is memoryless (Kampen, 2007).

Here, we study three cases of numerically generated event
series which are motivated by the occurrence of natural
events. First, we test mED for a simple Poisson process. Each
subsequent case tries to capture features of these real-world
phenomena by adding an element of memory to the simple
Poisson process. We compare the RPs and the structures in
the RPs (by considering the RQA measure DET) derived
from the standard edit distance and from the modified edit
distance.

For edit distance (ED) (Eq. 1), the cost parameter for shift-
ing is calculated according to Eq. (2a) and 3s = 1, whereas
Eq. (5) is used for mED. We choose the upper bound for the
range of τ to be less than the mean inter-event time gap for
the complete time series. The physical interpretation of this
choice is that the temporal tolerance or delay in the arrival of
events in a particular season (event cluster) should not only
be less than the time period of the seasonal cycle, but also
relatively less than the length of the season.

The selection of the threshold based on a certain percentile
of the distance distribution makes the recurrence quantifica-
tion more stable (Kraemer et al., 2018). Keeping in mind
that this threshold should neither be too high nor too low,
we chose it as the 8th to 10th percentiles of the distance dis-
tribution based on a number of trials.

It is expected that the quasi-periodic behavior of the event
series will lead to high DET values. In the case of ED, the
DET should be constantly high at all τ , as ED does not in-
clude the concept of time delay. On the other hand, DET
computed using mED should first increase with τ and then
slowly decrease.

6.1.1 Homogeneous Poisson process

The homogeneous Poisson process models the occurrence of
randomly spaced, i.e., stochastic, events in time, where the
average time between the events is known. It is used to model
shot noise, radioactive decay, arrival of customers at a store,
earthquakes, etc. Here we construct an event series (Fig. 7a)
from Eq. (9) with λ= 1

5 . The RP of a realization of such a
homogeneous Poisson process is shown in Fig. 8a, b. In a
stochastic process, a recurrence of a randomly selected state
occurs by chance, resulting in randomly distributed points in
the RP. Accordingly, DET has low values (Fig. 8c).

6.1.2 Repeating Poisson process

We generate a small segment of a simple Poisson process and
repeat the same segment after certain time gaps (Fig. 7b).
Here, the Poisson process is generated for a segment of
length 50 with mean rate of events λ= 1

5 . The gap between
the event segments is chosen randomly in the range 105 to
115. The RP of this event series is shown in Fig. 9. Identi-
cal sequences of events result in longer diagonal lines in the
RP (with lengths on the order of the event sequences), but
the varying time gaps between the event chunks make the di-
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.

Figure 7. Generated time series from a (a) homogeneous Poisson process (total length= 10 000), (b) repeating Poisson process (total
length= 22 442), and (c) Poisson process with periodical forcing to mimic discharge time series (total length 0–500 with 10 000 equally
spaced points); small red bars indicate the events.

Figure 8. RP of a homogeneous Poisson process (Fig. 7a) using (a) mED and (b) ED; (c) comparison of DET for 300 realizations using ED
(blue horizontal line) and using mED for varying τ in the range 0 to 10.

agonal lines discontinuous, implying a quasi-periodic behav-
ior. Quasi-periodicity is often a characteristic of an extreme
event time series such as flood events. RP using ED Fig. 9b
contains more short and discontinuous diagonal lines corre-
sponding to a lower DET value. In Fig. 9c, we find a certain
range where the DET value calculated using mED is higher
than ED.

6.1.3 Poisson process with periodical forcing

Quasi-periodicity in a time series can be expressed as a
sum of harmonics with linearly independent periods. Here
we construct a time series with superposition of a slow-
moving signal f (T1)= sin(2πt/T1) and a fast-moving sig-
nal f (T2)= sin(2πt/T2), whereas the events are drawn by a
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Figure 9. RP of a repeating Poisson process (Fig. 7b) using (a) mED and (b) ED; (c) comparison of DET for 300 realizations using ED (blue
horizontal line) and using mED for varying τ in the range 0 to 15.

Figure 10. RP of the Poisson process with periodical forcing (Fig. 7c) using (a) mED and (b) ED; (c) comparison of DET for 300 realizations
using ED (blue horizontal line) and using mED for varying τ in the range 0 to 20.

Poisson process (Fig. 7c). We select the extreme events by
using a certain threshold and take the peak over the threshold
(POT). Their occurrences and positions can be seen as the
outcome of a point process (Coles, 2001). Such a time series
can be used to mimic a streamflow time series which may
exhibit periodic behavior on several scales (annual, seasonal,
decadal, etc.). Here the window size is equal to the time pe-
riod of the slow-moving signal. The RP is shown in Fig. 10.
The periodic occurrences of the event chunks are visible in
the RP by the line-wise accumulation of recurrence points
with a constant vertical distance (which corresponds to the
period). The stochastic nature of the “local” event pattern
is visible by the short diagonal lines of varying lengths. As
mentioned earlier, when using an improper window size, we
can lose recurrence points, and a smaller number of diagonal
lines occurs due to the aliasing effect (Fig. 11).

For a certain range of τ , DET for mED (Figs. 8, 9, and 10)
is higher than the DET for ED, thus capturing the underlying
periodic behavior better.

Figure 11. RP of the Poisson process with periodical forcing
(Fig. 7c) using mED showing the aliasing effect due to improper
window size (note that this effect also occurs for the standard ED
approach).
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Figure 12. Recurrence plot of flood events using mED, window size= 1 year, with 6 months of overlapping for delays τ = (a) 15 d, (b) 30 d,
and (c) 45 d.

6.2 Recurrence analysis of flood events

As a case study, we apply our method to the Mississippi
River, which has a rich history of flood events. Here we are
motivated to study the recurring nature of flood events using
recurrence plots. Recurrence plot analysis also helps to quan-
tify the serial dependency of flood time series. Wendi et al.
(2019) used RQA to study the similarity of flood events.

We use the mean daily discharge data of the Mississippi
River from the Clinton, Iowa, station in the USA for the
period 1874–2018. The data are obtained from the Global
Runoff Data Centre (http://www.bafg.de/GRDC, last access:
15 July 2020).

In order to find the events from the time series, we follow
the procedure below.

1. First, we select events above an arbitrary threshold, say
the 99th percentile value of the daily discharge time se-
ries for a particular year, which gives about three to four
events per year.

2. Next, if several successive days fall above the threshold
forming a cluster of events, we pick only the day which
has the maximum discharge value and remove the re-
maining events of the same cluster.

3. Then we lower the threshold by the 0.1st percentile (the
threshold is lowered from the 99th to 90th) and repeat
the same procedure as above until we get the desired
number of events.

We apply mED for finding recurrence patterns for flood
events. To this end, we choose our window size equal to the
annual cycle (1 year) with 6 and 9 months of overlapping
and with the cost function of delay, τ = 15, 30, and 45 d. The
recurrence threshold ε = 8th percentile of the distance ma-
trix. The recurrence plot of flood events is shown in Figs. 12
and 13. We also compute the recurrence plot using ED and
calculate DET Fig. 14.

The black points in the RP (Figs. 12, 13) denote the seg-
ments which have higher similarity, and the white points im-
ply less similarity in the occurrence of flood events. The RP
of Mississippi floods shown in Fig. 13c might look similar
to the RP in Fig. 8 for events generated by the Poisson pro-
cess. However, the zoomed-in image of the RP of Mississippi
floods, Fig 13d, is very similar to the RP in Fig. 10a for events
generated by the Poisson process with periodical forcing. Di-
agonal structures are seen in the flood RP (Figs. 12, 13) de-
noting an inherent serial dependency in the data as indicated
by the DET value. Serial dependency is a property by virtue
of which the future depends on the past. When diagonal lines
are likely to appear in a RP, the current neighbors tend to
be neighbors in the near future, and thus the corresponding
system is said to have serial dependence.

In order to compare the ED with the modified edit dis-
tance (mED) in the study of flood events, we compute the
RP and determinism DET using both methods. For ED, there
is no scope to implement a delay; we get the DET value for a
constant temporal gap. In the case of mED, because of the
predefined delay τ we can study the behavior at different
timescales. In order to do so, we vary the parameter τ in the
range from 1 to 60 d. For mED the DET values are slightly
lower than ED up to τ = 30 d (Fig. 15). However, after that,
in the range of 30 to 60 d of τ , DET becomes higher for mED.
So, for this particular time series we get more deterministic
behavior for delay in the range 30 to 60 d.

To determine the statistical significance of the RP analy-
sis, we develop the following statistical test. We use random
shuffle surrogate (Scheinkman and LeBaron, 1989) statistical
testing. Suzuki et al. (2010) used this method for finding se-
rial dependency on foreign exchange tick data by quantifying
the diagonal lines in the RP (DET measure).

We first set a null hypothesis, and then we generate a set of
random surrogates that preserve the null hypothesis property.
After that, we compare the test statistics of the original data
with the surrogate data. We can reject the null hypothesis if
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Figure 13. Recurrence plot of flood events using mED, window size= 1 year, with 9 months of overlapping for delays τ = (a) 15 d, (b) 30 d,
and (c) 45 d; (d) zoom-in image of the blue area of panel (c).

the test statistics obtained from the surrogate data and the
original data are out of the specified range, else we cannot
reject the null hypothesis.

The null hypothesis is that there is no serial dependency in
the data. Thus, we expect that after each random shuffling the
information will be preserved. We create each random surro-
gate by randomly shuffling rows and columns of a recurrence
plot simultaneously. We can reject the null hypothesis if the
test statistics of the original data K0 (DET value) is out of
the specified range from the distribution of those surrogate

datasets Ks (Theiler et al., 1992). The algorithm works as
follows.

1. Calculate the distance matrix and compute the RP for a
certain window size.

2. Reorder the row and columns randomly to create surro-
gate recurrence plots.

3. Calculate the DET of the surrogate recurrence plots.

4. Repeat steps 1–3 and get DET for 50 different surrogate
RPs.
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Figure 14. Recurrence plot of flood events using ED, window size= 1 year, with (a) 6 months of overlapping and (b) 9 months of overlapping.

Figure 15. Comparison of DET for flood events using ED (horizon-
tal line) and using mED (curved line) for 6 months of overlapping
(in blue color) and for 9 months of overlapping (in red color).

We assume the statistics obtained from the surrogates Ks is
normally distributed, and we consider only one experimental
dataset. The measure of “significance” as defined by Theiler
et al. (1992)

ρ =
K0−µKs

σKs

(10)

follows a t distribution, the number of surrogates are n= 50
with (n− 1) degrees of freedom. µKs and σKs are the mean
and standard deviation of the statistics of surrogate data. The
value of ρ has to be compared to the value of the t distri-
bution that corresponds to the 99th percentile and the men-
tioned degrees of freedom, i.e., t0.01/2(49)= 2.68. If ρ ex-
ceeds this value, the null hypothesis has to be rejected.

We measure ρ for the data generated from a homogeneous
Poisson process, Eq. (9), and also for the flood event data.
First, for the Poisson process the value of ρ = 1.91,< 2.68,

Figure 16. Distribution of the DET value of surrogate data (blue)
and the original DET value (black).

so we cannot reject the null hypothesis, confirming the miss-
ing serial dependency in the homogeneous Poisson process.

For the flood event data, the distribution of the test statis-
tics (DET) is far away from the value of the original data
(Fig. 16). The ρ value for the flood event RP with 6 months
of overlapping and τ = 15 d is 23.80, which is much larger
than 2.68. Hence, we can reject the null hypothesis at the sig-
nificance level of α0 = 0.01, getting strong indications that
there is serial dependency at a high significance level in the
occurrence of flood events.

7 Conclusion

In this paper, we propose a distance measure for recurrence-
based analysis of extreme event time series. The proposed
measure is based on a modification of the edit distance mea-
sure proposed by Victor and Purpura (1997). We include the
concept of time delay to incorporate the slight variation in
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the occurrence of recurring events of a real-world time se-
ries due to changes in seasonal patterns by replacing the lin-
ear dependency of the cost of shifting events by a nonlinear
dependency using the logistic function. This is a substantial
improvement over the previous definition of the edit distance
as used for the TACTS algorithm proposed by Ozken et al.
(2015) as the optimization of 30 is based on the temporal
delay between events, which is of physical relevance to the
study of extreme events and can be chosen according to the
phenomenon being studied. The modified edit distance also
reduces the number of independent parameters. We tested
mED on prototypical event series generated by a point pro-
cess (Poisson process). We found that for the quasi-periodic
repeating Poisson process event series, the determinism of
the RP computed using mED varies with temporal delay and
is higher than the measured DET value of the RP computed
using ED for a certain range of delay. We applied the method
to study recurrences in the flood events of the Mississippi
River. Our analysis revealed deterministic patterns in the oc-
currence of flood events from the RP. Finally, using the ran-
dom shuffle surrogate method, we have shown that the data
of the occurrence of flood events have a statistically signifi-
cant serial dependency.

In this work, we have only considered binary extreme
event time series and ignored the amplitude of events. Next,
the mED measure should be further modified by including
the cost due to difference in amplitude for applications in
real-world time series where patterns of intensity of extremes
might be of interest. Moreover, an elaborate method to opti-
mize for a proper window size may be devised to capture
recurrences of events at different timescales.
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Appendix A

For deletions and insertions, the new definition inherits the
triangle inequality for the original definition of edit dis-
tance by Victor and Purpura (1997). Thus, we can show that
the new definition of the edit distance preserves the trian-
gle inequality as a total if a shift preserves the triangle in-
equality. For this sake, considering the following situation
is sufficient: suppose that there are three simple point pro-
cesses, each of which has an event: the first point process
has an event at u(u > 0); the second point process has an
event at u+ s(s > 0); the third point process has an event at
u+ s+ t (t > 0). Therefore, the first and second point pro-
cesses have an inter-event interval of s; the second and third
point processes have an inter-event interval of t ; and the first
and third point processes have an inter-event interval of s+ t .

We assume that τ ≤ s+t
2 . Then, the distance between the

first and second point processes is

D(S1,S2)=
1

1+ e−s+τ
.

Likewise, the distance between the second and third point
processes is

D(S2,S3)=
1

1+ e−t+τ
.

The distance between the first and third point processes is

D(S1,S3)=
1

1+ e−s−t+τ
.

Then, the following chain of inequalities holds.

−D(S1,S3)+D(S1,S2)+D(S2,S3)

= −
1

1+e−(s+t)+τ +
1

1+e−s+τ +
1

1+e−t+τ

=
1

{1+e−(s+t)+τ }{1+e−s+τ }{1+e−t+τ }

×
{
−
(
1+ e−s+τ

)(
1+ e−t+τ

)
+
(
1+ e−(s+t)+τ

)(
1+ e−t+τ

)
+
(
1+ e−(s+t)+τ

)(
1+ e−s+τ

)}
=

1
{1+e−(s+t)+τ }{1+e−s+τ }{1+e−t+τ }

×
{
− 1− e−s+τ − e−t+τ − e−s−t+2τ

+ 1
+e−(s+t)+τ + e−2t−s+2τ

+ e−t+τ + 1+ e−(s+t)+τ

+e−2s−t+2τ
+ e−s+τ

}
=

1
{1+e−(s+t)+τ }{1+e−s+τ }{1+e−t+τ }

×
{
− e−s−t+2τ

+ e−(s+t)+τ + e−2t−s+2τ
+ 1

+e−(s+t)+τ + e−2s−t+2τ}
=

1
{1+e−(s+t)+τ }{1+e−s+τ }{1+e−t+τ }

×
{
e2τ (
−e−s−t + e−2t−s

+ e−2s−t)
+ 2eτ e−s−t

+1
}

=
1

{1+e−(s+t)+τ }{1+e−s+τ }{1+e−t+τ }

×
{
e2τ (
−e−s−t + e−2t−s

+ e−2s−t
− e−2s−2t)

+
{
eτ e−s−t + 1

}2}
=

1
{1+e−(s+t)+τ }{1+e−s+τ }{1+e−t+τ }

×
{{
eτ e−s−t + 1

}2
+ e2τ e−s−t

(
−1+ e−t

+e−s − e−s−t
)}

=
1

{1+e−(s+t)+τ }{1+e−s+τ }{1+e−t+τ }

×
{{
eτ e−s−t + 1

}2
− e2τ e−s−t

(
1− e−t

)(
1− e−s

)}
=

1
{1+e−(s+t)+τ }{1+e−s+τ }{1+e−t+τ }

×e2τ−2s−2t{{1+ e−τ+s+t}2
−
(
et − 1

)
(es − 1)

}
≥

1
{1+e−(s+t)+τ }{1+e−s+τ }{1+e−t+τ }

×e2τ−2s−2t{e−2τ+2s+2t
− etes

}
≥

1
{1+e−(s+t)+τ }{1+e−s+τ }{1+e−t+τ }

×
{
1− e2τ−s−t}

≥ 0

As a result, we have

D(S1,S3)≥D(S1,S2)+D(S1,S3).

Thus, the triangle inequality holds if τ ≤ s+t
2 .
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