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Abstract. Our recently developed tool, called Directed
Affinity Segmentation (DAS), was originally designed for
the data-driven discovery of coherent sets in fluidic systems.
Here we interpret that it can also be used to indicate early
warning signs of critical transitions in ice shelves as seen
from remote sensing data. We apply a directed spectral clus-
tering methodology, including an asymmetric affinity matrix
and the associated directed graph Laplacian, to reprocess the
ice velocity data and remote sensing satellite images of the
Larsen C ice shelf. Our tool has enabled the simulated pre-
diction of historical events from historical data and fault lines
responsible for the critical transitions leading to the breakup
of the Larsen C ice shelf crack, which resulted in the A-68
iceberg. Such benchmarking of methods, using data from the
past to forecast events that are now also in the past, is some-
times called post-casting, analogous to forecasting into the
future. Our method indicated the coming crisis months be-
fore the actual occurrence.

1 Introduction

Warming associated with climate change causes the global
sea level to rise (Mengel et al., 2016). There are three primary
reasons for this, namely ocean expansion (McKay et al.,
2011), ice sheets losing ice faster than it forms from snow-
fall and glaciers at higher altitudes melting. During the 20th
century, the sea level rise has been dominated by glacier re-
treat. This has started to change in the 21st century because of
the increased iceberg calving (Seroussi et al., 2020; Mengel
et al., 2016). Ice sheets store most of the land ice (99.5 %)
(Mengel et al., 2016), with a sea-level equivalent (SLE) of

7.4 m for Greenland and 58.3 m for Antarctica. Ice sheets
form in areas where the snow that falls in winter does not
melt entirely over the summer. Over the thousands of years
of this effect, the layers have grown thicker and denser as
the weight of new snow and ice layers compresses the older
layers. Ice sheets are always in motion, slowly flowing down-
hill under their weight. Much of the ice moves through rela-
tively fast-moving outlets called ice streams, glaciers and ice
shelves near the coast. When a marine ice sheet accumulates
a mass of snow and ice at the same rate as it loses mass to
the sea, it remains stable. Antarctica has already experienced
dramatic warming, especially the Antarctic Peninsula, jutting
out into relatively warmer waters north of Antarctica, which
has warmed by 2.5 ◦C (4.5 ◦F) since 1950 (NASA, 2017).

A large area of the western Antarctic Ice Sheet is also los-
ing mass, which is attributed to warmer water upwelling from
the deeper ocean near the Antarctic coast. In eastern Antarc-
tica, no clear trend has emerged, although some stations re-
port slight cooling. Overall, scientists believe that Antarctica
is starting to lose ice (NASA, 2017), but so far, the process
is not considered relatively fast, compared to the widespread
changes in Greenland (NASA, 2017).

Since 1957, the current record of the continent-wide av-
erage reveals a surface temperature trend in Antarctica that
has been positive and significant at > 0.05 ◦C/decade (Steig
et al., 2009; Gagne et al., 2015). Western Antarctica has
warmed by more than 0.1 ◦C/decade in the last 50 years, and
this warming is most active during the winter and spring.
Although this is partly offset by autumn cooling in eastern
Antarctica, this effect was prevalent in the 1980s and 1990s
(Steig et al., 2009).
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Figure 1. The A-68 iceberg. The fractured berg and shelf are visible
in these images, acquired on 21 July 2017, by the thermal infrared
sensor (TIRS) on the Landsat 8 satellite. Credit: NASA Earth Ob-
servatory images by Jesse Allen, using Landsat data from the U.S.
Geological Survey.

Of particular interest to us in this presentation is the Larsen
Ice Shelf, which extends like a ribbon down from the east
coast of the Antarctic Peninsula, from James Ross Island to
the Ronne Ice Shelf. It consists of several distinct ice shelves
separated by headlands. The major Larsen C ice crack was
already noted to have started in 2010 (Jansen et al., 2015).
Still, it was initially evolving very slowly, and there were no
signs of radical changes according to interferometry studies
of the remote sensing imagery (Jansen et al., 2010). However,
since October 2015, the major ice crack of Larsen C had been
growing more quickly, to the point where recently it finally
failed, resulting in the calving of the massive A-68 iceberg.
See Fig. 1; this is the largest known iceberg, with an area of
more than 2000 square miles (5180 km2) or nearly the size
of Delaware. In summary, A-68 detached from one of the
largest floating ice shelves in Antarctica and floated off into
the Weddell Sea.

In Glasser et al. (2009), the authors presented a struc-
tural glaciological description of the system and a subse-
quent analysis of the surface morphological features of the
Larsen C ice shelf, as seen from satellite images spanning

the period 1963–2007. Their research results and conclusions
stated that

Surface velocity data integrated from the ground-
ing line to the calving front along a central flow
line of the ice shelf indicate that the residence time
of ice (ignoring basal melt and surface accumula-
tion) is ∼ 560 years. Based on the distribution of
ice shelf structures and their change over time, we
infer that the ice shelf is likely to be a relatively
stable feature, and that it has existed in its present
configuration for at least this length of time.

In Jansen et al. (2010), the authors modeled the flow of
the Larsen C and northernmost Larsen D ice shelves using a
model of continuum mechanics of the ice flow. They applied
a fracture criterion to the simulated velocities to investigate
the ice shelf’s stability. The conclusion of that analysis shows
that the Larsen C ice shelf is inferred to be stable in its current
dynamic regime. This work was published in 2010. Accord-
ing to analytic studies, the Larsen C ice crack already existed
at that time but was considered to be growing slowly. There
was no expectation, at that time, that the crack growth would
proceed quickly, and that the collapse of the Larsen C was
imminent.

Interferometry has traditionally been the primary tech-
nique for analyzing and predicting ice cracks based on re-
mote sensing. Interferometry (Bassan, 2014; Lämmerzahl
et al., 2001) constitutes a family of techniques in which
waves, usually electromagnetic waves, are superimposed,
causing the phenomenon of interference patterns which, in
turn, are used to extract information concerning the viewed
materials. Interferometers are widely used across science and
industry to measure small displacements, refractive index
changes and surface irregularities. So, it is considered a ro-
bust and familiar tool that is successful in the macroscale
application of monitoring the structural health of the ice
shelves. Here we will instead take a data-driven approach,
directly from the remote sensing imagery, to infer struc-
tural changes indicating the impending tipping point toward
Larsen C’s critical transition and eventual breakup.

Figure A1 shows the interferometry image as of
20 April 2017. Although it clearly shows the crack that al-
ready existed at that time, apparently it provided no informa-
tion concerning forecasting the breakup that soon followed.
Just a couple of weeks after the image shown in Fig. A1,
the Larsen C ice crack changed significantly and presented a
different dynamic that quickly divided into two branches, as
shown in Fig. A2. Interferometry is a powerful tool for de-
tecting spatial variations in the ice surface velocity. However,
when it comes to inferring the early stages of future critical
transitions, it did not provide useful indications portending
the important event that soon followed. Therefore, there is
clearly a need for other methods that may be capable of per-
forming this task. As we will show, our method achieves a
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very useful and successful data-driven early indicator of this
important outcome.

2 Directed partitioning

In our previous work (Al Momani, 2017; AlMomani and
Bollt, 2018), we developed the method of Directed Affinity
Segmentation (DAS), and we showed that our method is a
data-driven analogue to the transfer operator formalism de-
signed. DAS was originally designed to characterize coher-
ent structures in fluidic systems, such as ocean flows or at-
mospheric storms. Furthermore, DAS is truly a data-driven
method in that it is suitable even when these systems are ob-
served only from film data and, specifically, without either
an exact differential equation or the need for the intermediate
stage of modeling the vector field (Luttman et al., 2013) re-
sponsible for the underlying advection. In the current work,
we apply this concept of seeking coherent structures under
the hypothesis that a large ice sheet that begins to move in
mass appears a great deal like a mass of material in a fluid
that holds together in what is often called a coherent set.

The two most commonly used and successful image seg-
mentation methods are based on (1) k means (Kanungo et al.,
2002), and (2) spectral segmentation (Ng et al., 2002), re-
spectively. However, while these were developed success-
fully for static images, they require major adjustments for
successful application to sequences of images, i.e., films. The
spatiotemporal problem of motion segmentation is associ-
ated with coherence, despite the fact that, traditionally, they
are considered well suited to static images (Shi and Malik,
2000). The key difference between the image segmentation
of static images and coherence, as related to motion segmen-
tation, is what underlies a notion of coherent observations,
since we must also consider the directionality of the arrow of
time.

Defining a loss function of some kind is often the start-
ing point when specifying an algorithm in machine learning.
An affinity measure is the phrase used to describe a compar-
ison, or cost, between states. In this case, a state may be the
measured attributes at a given location in an image scene.
However, when there is an underlying arrow of time, the loss
functions that most naturally arise to track coherence will
not be inherently symmetric. Correspondingly, affinity ma-
trices associate the affinity measure for each pairwise com-
parison across a finite data set. A graph is associated with
the affinity matrix where there is an edge between each state
for which there is a nonzero affinity. Generally, in the sym-
metric case, these graphs are undirected. Now consider that if
the affinity matrices are not symmetric, then these are associ-
ated with directed graphs, which describes the arrow of time.
This is a theoretical complication of standard methodology
since many of the theoretical underpinnings of the standard
spectral partitioning assume a symmetric matrix correspond-
ing to an undirected graph and then consider the spectrum of

eigenvalues of the corresponding symmetric graph Laplacian
matrix that follows. This new case can be accommodated
by the spectral graph theory, as there is a graph Laplacian
for weighted directed graphs built upon the theoretical work
of Fan Chung (Chung and Oden, 2000). Our own work in
AlMomani and Bollt (2018) specialized this concept of the
directed spectral graph theory to the scenario of image se-
quences derived from an assumed underlying evolution op-
erator.

To proceed with our directed partitioning method, we for-
mulate the (film) imagery sequences data set as the following
matrices:

X 0
= [X1|X2|. . .|XT−τ ], (1)

X τ
= [Xτ+1|Xτ+2|. . .|XT ], (2)

where each Xi is the ith image (or the image at ith time
step) and describes a d1× d2 pixelated image reshaped as
a column vector, d × 1 and d = d1d2 (see Fig. 2). This de-
scribes a grayscale image, but in the likely scenario of mul-
tiple attributes or color bands at each pixel, then these data
structures likewise include the corresponding tensor depth.
Here, τ is the time delay and X0 and Xτ are the images se-
quences stacked as column vectors with a time delay at the
current and future times, respectively. Choosing the value of
the time delay τ can result in significant differences in the
segmentation process. Consider that, in the case of a rela-
tively slowly evolving dynamical system where the change
between two consecutive images is not significantly distin-
guishable, choosing a large value for τ may be better suited.
In our work, we considered the mean image over a period of
1 month as a moving window generating our images, which
implies τ to be 1 month.

Note that the rows of X 0andX τ
∈ Rd×T−τ represent the

change in the color of the pixel at a fixed spatial location zi .
It is crucial to keep in mind that we chose the color as the
evolving quantity for a designated spatial location for clarity
and consistency with our primary application and approach
described in this paper. However, we can select the evolv-
ing quantity to be the magnitude of the pixels obtained from
spectral imaging or experimental measures obtained from the
field such as pressure, density or velocity. Section 3 intro-
duces examples where the ice surface velocity was used in-
stead of the color to highlight how the results may vary based
on the selected measure.

We introduced (AlMomani and Bollt, 2018) an affinity
matrix in terms of a pairwise distance function between the
pixels i and j as follows:

Di,j = S(X 0
i ,X

τ
j )+αC(X

0
i ,X

τ
j ,τ ), (3)

where the function S : R2
7−→ R is used to define the spatial

distance between pixels i and j describing physical locations
zi and zj . The function C : RT−τ×RT−τ×R 7−→ R is a dis-
tance function describing the color distance between the ith
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Figure 2. Directed partitioning method. We see the image sequence to the left, and to the right, we reshape each image as a single column
vector. Following the resultant trajectories, we see that the pairwise distance between the two matrices will result in an asymmetric matrix.
Raw images sourced from Scambos et al. (1996).

and the j th color channels. The parameter α ≥ 0 regularizes,
balancing these two effects. The value of α can be seen as
a degree of importance of the function C relative to the spa-
tial change. Large values of α will make the color variability
dominate the distance in Eq. (3), and it would classify very
close (spatially) regions as different coherent sets when they
have small color differences. On the other hand, small val-
ues of α may classify spatially neighboring regions as one
coherent set, even when they have a significant color differ-
ence. In our work, the color is quantified as a grayscale color
of the images (C ∈ [0,1]). So, we scaled the value of S to
be in [0,1], then we choose α = 0.25 to emphasize spatial
change, where we choose the functions S and C each to be
L2 distance functions, as follows:

Szi,zj )=‖ zi − zj‖2, (4)

and

C(X 0
i ,X

τ
j ,τ )=‖ X

0
i −X τ

j ‖2. (5)

We see that the spatial distance matrix S is symmetric.
However, the color distance matrix C is asymmetric for all
τ > 0. While the matrix generated by C(X 0

i ,X
τ
j ,0) refers

to the symmetric case of spectral clustering approaches, we
see that the matrix given by C(X 0

i ,X
τ
j ,τ ), τ > 0 implies an

asymmetric cost naturally due to the directionality of the ar-
row of time. Thus, we require that an asymmetric clustering
approach must be adopted.

First, we define our affinity matrix from Eq. (3) as follows:

Wi,j = e
−D2

i,j /2σ
2
. (6)

This has the effect that both the spatial and measured (color)
effects almost have Markov properties, as far-field effects are
almost forgotten in the sense that they are almost zero. Like-
wise, near-field values are the largest. Notice that we have
suppressed including all the parameters in writing Wi,j , in-
cluding time parameter τ that describes sampling history and
the parameters α and σ that serve to balance the spatial scale
and resolution of color histories.

We proceed to cluster the spatiotemporal regions of the
system, in terms of the directed affinity W , by interpreting
the problem as random walks through the weighted directed
graph, G= (V ,E), designed by W as a weighted adjacency
matrix. In the following, let:

P =D−1W, (7)

where

Di,j =
{ ∑

k

Wi,k, i = j,

0, i 6= j
(8)

is the degree matrix, and P is a row stochastic matrix repre-
senting the probabilities of a Markov chain through the di-
rected graph G. Note that because P is row stochastic, this
implies that it row sums to one. This is equivalently stated
that the right eigenvector is the one vector, P1= 1, but the
left eigenvector corresponding to left eigenvalue, 1, repre-
sents the steady state row vector of the long-term distribu-
tion, as follows:

u= uP. (9)

Consider that, for example, if P is irreducible, then u=

(u1,u2, . . .,upq) has all positive entries, uj > 0 for all j or,
as said for simplicity of notation, u > 0, which is interpreted
componentwise. Let 5 be the corresponding diagonal ma-
trix, as follows:

5= diag(u), (10)

and likewise,

5±1/2
= diag(u±1/2)= diag((u±1/2

1 ,u
±1/2
2 , . . .,u

±1/2
pq )), (11)

which is well defined for either ± sign branch when u > 0.
Then, we may cluster the directed graph using the spectral

graph theory methods specialized for directed graphs, fol-
lowing the weighted directed graph Laplacian described by
Fan Chung (Chung, 2005). A similar computation has been
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used for transfer operators in Froyland and Padberg (2009);
Hadjighasem et al. (2016) and as reviewed in (Bollt and
Santitissadeekorn, 2013; Santitissadeekorn and Bollt, 2007;
Bollt et al., 2012), including in oceanographic applications.
The Laplacian of the directed graph G is defined (Chung,
2005) as follows:

L= I −
51/2P5−1/2

+5−1/2PT51/2

2
. (12)

The first, smallest eigenvalue larger than zero, λ2 > 0, is
such that, in the following:

Lv2 = λ2v2, (13)

allows a bipartition by the sign structure of the following:

y =5−1/2v2. (14)

Analogously to the Ng–Jordan–Weiss symmetric spectral
image partition method (Ng et al., 2002), the first k eigen-
values larger than zero, and their eigenvectors, can be used
to associate a multipart partition, by the assistance of the k-
means clustering of these eigenvectors. By defining the ma-
trix V = [v1,v2, . . .,vk] that has the eigenvectors associated
with the kth most significant eigenvalues on its columns, we
then use the k-means clustering to multi-partition V , based
on the L2 distance between the rows of V . Since each row
in the matrix V is associated with a specific spatial location
(pixel), by reshaping the labels vector that results from the
k-means clustering, we obtain our labeled image.

3 Results

We apply DAS to satellite images of the Larsen C ice shelf
and ice surface velocity data. Here we show that the DAS of
spatiotemporal changes can work as an early warning sign
tool for critical transitions in marine ice sheets. We applied
our post-casting experiments on Larsen C images before the
splitting of the A-68 iceberg, and then we compared our fore-
casting, based on segmentation, to the actual unfolding of the
event.

In Fig. 3, we see different snapshots of the ice surface ve-
locity data set (Rignot et al., 2017, 2011; Mouginot et al.,
2012), which are part of the NASA Making Earth System
Data Records for Use in the Research Environments (MEa-
SUREs) program. It provides the first comprehensive Rignot
et al. (2017), high-resolution, digital mosaics of ice motion in
Antarctica assembled from multiple satellite interferometric
synthetic aperture radar systems. We apply our directed affin-
ity partitioning algorithm to these available data sets, and the
results are shown as a labeled image in Fig. 4.

As shown in Fig. 4, we note the following:

– The data were collected from eight different sources
(Rignot et al., 2017), with different coverage and var-
ious error ranges, and interpolating the data from these

Figure 3. Ice surface velocity. The figure shows the data set for 3
different years around the beginning of the Larsen C ice crack in
2010. The data from the years 2007, 2008 and 2010 are corrupted
on the region of interest, and they are excluded. The color scale
indicates the magnitude of the velocity from light red (low velocity)
to dark red (high velocity), and the arrow points to the starting tip of
the crack. The result of the directed partitioning is shown in Fig. 4.
Data sourced from Rignot et al. (2017).

different sources explains the smooth curves in segmen-
tation around the region of interest.

– The directed partitioning shows the Larsen C ice shelf
as a nested set of coherent structures that are contained
successively within each other.

– The magnified view shown in the inset of Fig. 4 high-
lights the region where the Larsen C ice crack starts.
Furthermore, we see a significant change in velocity
within a narrow spatial distance (4 miles; 6.44 km).
More precisely, the outer boundaries of the coherent sets
become spatially very close (considering the margin of
error in the measurements; Rignot et al., 2017). We con-
clude that, likely, these have contact.

Directed partitioning gives us informative clustering,
meaning that each cluster has homogeneous properties, such
as the magnitude and the direction of the velocity. Con-
sider the nested coherent sets, A1 ⊂ A2 ⊂ . . .⊂ An, shown
in Fig. 5. Each set Ai−1 maintains its coherence within Ai
because of a set of properties (i.e., chemical or mechanical
properties) that rules the interaction between them. However,
observe that the contact between the boundaries of the sets
Ai−1 and Ai can mean a direct interaction between dissimi-
lar domains. These later sets may significantly differ in their
properties, such as a significant difference of velocity, which
may require different analysis under different assumptions
than the gradual increase in the velocity.

https://doi.org/10.5194/npg-28-153-2021 Nonlin. Processes Geophys., 28, 153–166, 2021



158 A. A. AlMomani and E. Bollt: A data-driven tool for a spatiotemporal tipping point

Figure 4. Directed affinity result. The directed partitioning (left) results for the ice surface velocity of 2006, 2009, 2011 and 2012. Note
that the ice shelf crack started in 2010. A narrow field magnifying the region of interest (right) shows large variations in ice surface velocity
within a small area to give a clearer focused view of the differences in speeds. In Appendix B, Fig. B1 shows the surface plot for the same
result.

Figure 5. The dynamic of two coherent sets. As the inner set con-
tacts the boundary of the outer one, it gives the chance for new re-
actions that may cause a critical transition.

However, since the boundaries of the sets are not entirely
contacted, the directions of the velocities reveal no critical
changes; we believe this results implicitly from the data pre-
processing that includes interpolation and smoothing of the
measurements. We believe that the interpolation and smooth-
ing of the measurements cause loss in data informativity
about critical transitions. Our method, using the ice surface
velocity data, was able to detect more details. However, it still
cannot detect critical transitions such as the crack branching,
as discussed in the introduction and as shown in Fig. A2.
Based on our results using the ice velocity data, we state
nothing more than such close interaction between coherent
set boundaries. As shown in Fig. 4, an early warning sign
should be considered and investigated by applying the po-
tential hypothesis (what-if assumptions) and analyzing the
consequences from any change or any error in the measured
data.

It is interesting to contrast our directed partitioning results,
which give early indications of impending fracture changes
using the remote sensing satellite images, to classical inter-

ferometry analysis methods (Scambos et al., 1996). To re-
duce the obscuration effects of noise (clouds and images
of variable intensity), we used the averaged images, over
1 month, as a single snapshot for the directed affinity con-
structions. We excluded some images that have high noise
and a lack of clarity in the region of interest (see Fig. B8).
Figure 6, the directed affinity partitioning for two time win-
dows, starts from December 2015. Notice that the directed
partitioning begins to detect the Larsen C ice shelf’s signifi-
cant change in July 2016. In Fig. 7, we see that, by Septem-
ber 2016, we detect a structure very close in shape to the
eventual and actual iceberg A-68, which calved from Larsen
C in July 2017. Moreover, by November 2016 (see Fig. B2),
the boundaries of the detected partitions match the crack di-
viding into two branches that happened later in May 2017
(shown in Fig. A2).

4 Discussion

We have shown that our data-driven approach, originally de-
veloped for detecting coherent sets in fluidic systems, shows
promise for predicting possible critical transitions in spa-
tiotemporal systems, specifically for marine ice sheets, based
on remote sensing satellite imagery. Our approach shows re-
liability in detecting coherent structures when the object of
concern is a quasi-rigid body such as ice sheets. The main
idea is that observing a significant and perhaps topological
form change of a coherent structure may indicate an essen-
tial underlying critical structural change in the ice over time.
The computational approach is based on spectral graph the-
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Figure 6. For two time windows (top and bottom), we see the mean image (left) of the images included in the window, the DAS labeled
clusters (middle) and the overlay of the DAS boundaries (right) over the mean image of the window. We took these two time windows from
February and July 2016 as a detailed example, and more time window results are shown in Fig. 7. During 2016, there was no significant
change in the Larsen C crack at the beginning of the year. However, in July 2016, based solely on data up to that point in time, the DAS
proposed a large change in the crack dynamics, and this change continued faster, as Fig. 7 shows. Raw images sourced from Scambos et al.
(1996).

Figure 7. Complementing Fig. 6, this figure shows the DAS boundaries (right) for different time windows, starting from July 2016 to
April 2017. Raw images sourced from Scambos et al. (1996).

ory in terms of the directed graph Laplacian. We have shown
here that carefully designing a directed affinity matrix, which
accounts for balancing spatial distance and measurements at
spatial sites, for application of spectral graph theory is rel-
evant in our applied setting of remote sensing imagery. In

the case of the Larsen C ice shelf, we have carried forward
this data-driven program. We successfully observe the calv-
ing event of the A-68 iceberg and some critical transitions
months before their actual occurrence. This transition in the
coherent structure can indicate, by directed affinity partition-
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Figure 8. The 2012 prediction based on ice surface velocity data,
and the 2016 prediction based only on satellite images, compared
to the actual crack (white curve between the two prediction curves)
on July 2017, as shown in Fig. 1. Raw image sourced from Scambos
et al. (1996).

ing, a possible fracture. We see that the directed affinity par-
titioning can be a useful early warning sign that indicates the
possibility of critical spatiotemporal transitions, and it may
help to bring the attention to specific regions in order to in-
vestigate different possible scenarios in the analytic study,
whether these are further computational analyses or possi-
bly even supporting further field studies and deployed aerial
remote sensing missions. We have demonstrated that, in the
case of the Larsen C ice shelf event, with the evidence in
Figs. 6–8 and B1–B7, potentially important events may be
observable months ahead of the final outcome.

In our future work, we plan to pursue the idea of connect-
ing our data-driven approach to computing boundaries by di-
rected partitioning with the computational science approach
in terms of stress/strain analysis of rigid bodies and an un-
derstanding of the underlying physics.
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Appendix A: Figures

Figure A1. Interferometry (20 April 2017) in which two Sentinel-1
radar images from 7 and 14 April 2017 were combined to create
an interferogram showing the growing crack in Antarctica’s Larsen
C ice shelf. Polar scientist Anna Hogg said, “We can measure the
iceberg crack propagation much more accurately when using the
precise surface deformation information from an interferogram like
this rather from than the amplitude (or black and white image)
alone, where the crack may not always be visible.” Sourced from
Agency (2017).

Figure A2. The Larsen C crack development (new branch) as of
1 May 2017. Labels highlight significant jumps, and the tip po-
sitions are derived from Landsat (USGS) and Sentinel-1 InSAR
(ESA) data. The background image blends Bedmap2 elevation
(BAS) with a MODIS MOA2009 Image Map (NSIDC). Other data
are from the Scientific Committee on Antarctic Research Antarctic
Digital Database (SCAR ADD) and OpenStreetMap (OSM). Credit:
Project MIDAS (Impact of Melt on Ice Shelf Dynamics And Stabil-
ity); Adrian John Luckman, Swansea University.
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Appendix B: More numerical results

Figure B1. Directed affinity partitions, with the mean velocity (speed) of the partition assigned for each label entry. The spatial distance
between the arrow tips is less than 2 miles (3.22 km), while the difference in the speed is more than 200 m/yr.

Figure B2. The mean image and the directed affinity partitioning as of November 2016. The results show a similar structure to the crack
branching that occurred on May 2017 (shown in Fig. A2) and a similar structure to the final iceberg that calved from Larsen C on July 2017.
Raw images sourced from Scambos et al. (1996).

Figure B3. The mean image and the directed affinity partitioning as of February 2016. Raw images sourced from Scambos et al. (1996).
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Figure B4. The mean image and the directed affinity partitioning as of July 2016. Raw images sourced from Scambos et al. (1996).

Figure B5. The mean image and the directed affinity partitioning as of September 2016. Raw images sourced from Scambos et al. (1996).

Figure B6. The mean image and the directed affinity partitioning as of November 2016. Raw images sourced from Scambos et al. (1996).
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Figure B7. The mean image and the directed affinity partitioning as of April 2017. Raw images sourced from Scambos et al. (1996).

.

Figure B8. Example of noisy images that have been excluded when computing the average image. Raw images sourced from Scambos et al.
(1996)
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