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Abstract. The Trajectory-Adaptive Multilevel Sampling
(TAMS) is a promising method to determine probabilities
of noise-induced transition in multi-stable high-dimensional
dynamical systems. In this paper, we focus on two improve-
ments of the current algorithm related to (i) the choice of the
target set and (ii) the formulation of the score function. In
particular, we use confidence ellipsoids determined from lin-
earised dynamics in the choice of the target set. Furthermore,
we define a score function based on empirical transition paths
computed at relatively high noise levels. The suggested new
TAMS method is applied to two typical problems illustrating
the benefits of the modifications.

1 Introduction

Systems from various areas of physics exhibit multiple sta-
ble states. In such multi-stable systems, transitions between
states can occur as a result of small-scale processes, usually
referred to as noise-induced transitions (Ashwin et al., 2012).
Typical elements in the Earth’s system which show multista-
bility include the Greenland Ice Sheet (Ridley et al., 2010;
Robinson et al., 2012), the Amazon rainforest (Higgins and
Scheiter, 2012; Lasslop et al., 2016) and the Atlantic Merid-
ional Overturning Circulation (AMOC). In particular, the lat-
ter can undergo transitions to a collapsed state due to fluc-
tuations in the surface freshwater forcing (Castellana et al.,
2019).

A central issue in models of these multi-stable systems
is the computation of transition probabilities between dif-
ferent states. If we exclude very special classes of systems,

analytical results are generally not available. The Eyring–
Kramers formula (Eyring, 1935; Kramers, 1940), which al-
lows the computation of transition rates for reversible pro-
cesses in the zero noise limit, has been recently generalised
to non-gradient systems (Bouchet and Reygner, 2016). How-
ever, this method involves the calculation of quasi-potentials,
which are generally hard to compute from their variational
characterisation. From the numerical point of view, the naive
method would be to follow a Monte Carlo approach by per-
forming simulations of large ensembles of trajectories and
calculate transition probabilities by counting the number of
trajectories which actually undergo a transition. However, if
the occurrence of a transition is a rare event, such compu-
tations are not feasible. For instance, to sample an event of
probability p ∼ 10−8, one would need to compute at least
N >Nmin = 108 trajectories (Nmin ∼ 1/p), which is cur-
rently impossible to achieve for large-dimensional dynamical
systems, where time integrations are expensive.

In order to sample tails of distributions more effectively,
various methods have been developed, generally referred to
as rare-event algorithms. One of the promising methods to
compute transition probabilities is the Trajectory-Adaptive
Multilevel Sampling (TAMS) method (Lestang et al., 2018).
Its underlying idea is to perform a selection/mutation pro-
cess that discards trajectories going away from a certain tar-
get set and splits/branches from those that get closer to this
set. A very similar algorithm (Adaptive Multilevel Splitting
or AMS), based on the same approach, has been used in the
study of transitions in Jupiter’s turbulent dynamics (Bouchet
et al., 2019) and in molecular dynamics to compute the ex-
pected dissociation time between a protein and its ligand
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(Teo et al., 2016). In these studies, AMS proved to be a pow-
erful tool that reduced computational costs by several orders
of magnitude. Indeed, the required minimum number of com-
puted trajectories scales like Nmin ∼ 1/ logp (Cérou et al.,
2016), which is exponentially better than that for the Monte
Carlo estimation. The aforementioned selection and muta-
tion process of discarding and branching trajectories is car-
ried out according to a score function, which allows us to
rank trajectories. Rolland and Simonnet (2015) have shown
that the choice of the score function plays an important role
in the performance of the algorithm, even for systems with
only 2 degrees of freedom. When using non-optimal score
functions, especially near phase transitions, the variance of
the estimated probability can peak and the convergence of
the algorithm can be slow.

The aim of this work is to propose improvements to the
use of the TAMS algorithm to be able to compute transi-
tions in multi-stable systems more efficiently. The first type
of improvement is the choice of the target set, which is of-
ten determined from rather arbitrary thresholds. This choice
also raises more broadly the question of a precise definition
of what we consider a noise-induced transition between two
(stable) states. In the second type of improvement, we pro-
pose a more systematic method of defining a score function,
i.e. based on empirical transition paths. The modified TAMS
method is first applied to an idealised gradient system and
then to a system representing a box model of the AMOC
(Castellana et al., 2019).

In Sect. 2, we describe the methods developed to improve
the TAMS algorithm. In Sect. 3 we show how to incorporate
these techniques into the definition of the score function and
present the results for idealised dynamical systems and the
AMOC model. A discussion follows in Sect. 4, assessing the
strengths and the limitations of the new TAMS method.

2 Methods

2.1 Transition probabilities using TAMS

We consider finite-dimensional dynamical systems described
by stochastic differential equations (SDEs) of the following
form:

dXt = F (Xt )dt +GdW t , (1)

where Xt ∈ Rn and F : Rn→ Rn is the drift field. The noise
term W t ∈ Rm consists of m independent Wiener processes,
with the matrix G : Rn×Rm being the noise matrix.

A prominent example of such a system is a model of a free
particle moving in a two-dimensional double-well potential
(with n=m= 2). The drift term in the time-evolution equa-
tion for the variables x and y is in this case

F (x,y)≡−∇V (x,y)= (x− x3,−y), (2)

where V (x,y) represents the potential (Fig. 1a). In the deter-
ministic case (i.e. G= 0), the stable steady states of the sys-
tem are XA = (−1,0) and XB = (+1,0), while the unstable
steady state is XC = (0,0). Without fluctuations, a particle
starting in XA stays in XA. However, because of the pres-
ence of unresolved processes (such as thermal fluctuations),
modelled by the noise term in the SDE, the particle can move
away from XA and in some cases make the transition to the
state XB . An example of such a transition is shown in Fig. 1b.

The transition probability that a trajectory starting in XA

reaches a neighbourhood B around XB before time T is in-
dicated by P(τB < T |X0 =XA). Here, τB denotes the stop-
ping time associated with reaching B. The TAMS algorithm
is based on a selection and mutation process of discarding
and branching trajectories, which are ranked according to a
score function φ : Rn×R→ R. For a given state (X, t) ∈
Rn×R, φ(X, t) is supposed to measure how likely it is to
start in (X, t) and reach B before time T . As a consequence,
if the choice of score function is successful, the probability
that a trajectory reaches the target set B keeps increasing at
each iteration of the algorithm, which is why this method is
more efficient than brute-force techniques. A visual represen-
tation of the algorithm is given in Fig. 2 and a step-by-step
description is provided in Appendix A (more details can be
found in Lestang et al., 2018).

2.2 Score functions

Consider a general SDE (1) and two stable states XA and XB

of the corresponding deterministic system. The TAMS algo-
rithm (see Appendix A) needs a score function to be defined,
which allows us to rank trajectories and select the ones to
discard. The optimal score function φcom(X, t), i.e. the score
function that minimises the variance of the probability esti-
mator, is called the static committor. Its generic expression is
given by the following conditional probability (Lestang et al.,
2018):

φcom(X, t)= P(τB < T |X, t), (3)

where T is again the fixed duration of the trajectories and τB
is the stopping time associated with reaching the target set
B. In other words, φcom(X, t) is the probability that a tra-
jectory starting in X at time t reaches B before time T . This
expression is quite natural because ideally, the score of (Y , s)
should be higher than the score of (X, t), i.e. φ(X, t)≤
φ(Y , s), if and only if P(τB < T |X, t)≤ P(τB < T |Y , s).
This condition is clearly satisfied by φcom (and in fact any
increasing function of φcom). However, the expression given
in Eq. (3) is generally unusable because it is the very quantity
that we want to compute. For instance, φcom(XA,0) is pre-
cisely the transition probability that TAMS estimates. As a
conditional probability of the form P(Y , s|X, t), the commit-
tor φcom(X, t) satisfies the backward Fokker–Planck equa-
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Figure 1. (a) Iso-potential contours corresponding to the double-well potential (Eq. 2). The two stable steady states XA = (−1,0) and
XB = (+1,0) are marked with a filled circle and a cross, respectively. The saddle XC = (0,0) is indicated by a circle. (b) Example of a
noise-induced transition from XA to XB for a particle moving in the double-well potential in (a). The noise matrix in the general SDE (1) is
chosen as G= σ I, with σ = 0.32. The red circle denotes an arbitrarily defined target set B.

Figure 2. Illustration of the TAMS algorithm. First, simulate N tra-
jectories starting in XA (N = 3 blue trajectories in the figure). The
trajectories are ranked according to their score φi , which is the max-
imum value of the score function φ along the trajectory. Then, at
each iteration, the trajectory with the lowest score (1 in the figure,
with score φ1) is discarded. It is replaced by picking a trajectory
uniformly at random from the other ones (2 in the figure), then com-
puting the earliest position at which it reaches a higher score than
the discarded trajectory (orange dot) and finally using this position
as the branching point for the new trajectory (1′). This is repeated
until all the trajectories reach B or the number of iterations reaches
a predefined limit.

tion (Lestang et al., 2018):

∂φ

∂t
+F ·∇φ+

1
2

∑
i,j

Gij

∂2φ

∂Xi ∂Xj

= 0, (4)

with boundary conditions{
∀X ∈ ∂B, ∀t ∈ [0,T ], φ(X, t)= 1,

∀X ∈ RnrB, φ(X,T )= 0.

However, solving the backward Fokker–Planck equation in
systems with many degrees of freedom is computationally
unfeasible. Moreover, even if the committor is available on a
grid used for the discretisation of Eq. (4), using interpolation
to evaluate it during a TAMS loop can also have a prohibitive
computational cost.

Bouchet et al. (2019) made use of a score function based
on the distances of the state X from the starting state XA and
the destination equilibrium XB , respectively. It is defined as

φdist(X)≡

{
dA/2dB , if dA < dB ,

1− dB/2dA, otherwise,
(5)

with dA ≡‖X−XA ‖, dB ≡‖X−XB ‖ .

Alternatively, a Gaussian-shaped score function φgauss was
proposed in Baars (2019). It is defined as

φgauss(X) ≡ η− ηe
−β‖X−XA‖

2/‖XC−XA‖
2

(6)

+ (1− η)e−β‖X−XB‖
2/‖XC−XB‖

2
,

with η ≡‖XC −XA ‖ / ‖XA−XB ‖. Here β ∈ R is a pa-
rameter controlling the decay and XC is the saddle state of
the system. Due to the general expressions of φgauss and φdist,
these score functions can be used in systems of any dimen-
sion.

2.3 Definition of the target set

Once the score function has been chosen, a threshold needs to
be defined for the TAMS algorithm to converge, so that the
occurrence of a transition can be detected. In other words,
we do not expect each trajectory that undergoes a transition
to reach exactly the destination equilibrium XB , but rather a
neighbourhood of it (B). The target set B can then be defined
according to a level set φtarget of the score function φ:

B = {X ∈ Rn | φ(X) > φtarget
}. (7)
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Figure 3. Confidence ellipsoids for the two-dimensional double-
well potential system (Eq. 2), with confidence level 1−α = 0.95
and noise matrix G= 0.25I, where I is the identity matrix in R2.
Two trajectories of duration T = 200 are shown: one (blue) is ini-
tialised at the initial state and one (orange) at the target state. 93 %
of the points composing a trajectory are inside their corresponding
ellipsoid. This is lower than the prescribed confidence level because
away from the equilibrium, the first-order dynamics from which the
confidence ellipsoids are derived does not hold.

However, different score functions φ and different level sets
φtarget correspond to different target sets B, which can differ
in volume and in shape. Moreover, often the level set φtarget

is defined somewhat arbitrarily. For example, by using φgauss
with target score φtarget

= 0.85,0.9 or 0.95, we found that
the average of the transition probability estimator for a two-
dimensional double-well potential system (Eq. 2) can vary
by up to 30 %. This may not be a concern if one only cares
about the order of magnitude of the transition probability, but
it will be problematic if quantitative comparisons are needed.
Moreover, a poor choice of target set can lead to inaccuracies
when a trajectory has a score greater than φtarget without ac-
tually making the transition in all the degrees of freedom.
Thus, there is a need to define a canonical choice of a target
set B, which needs to fundamentally address what is consid-
ered to be a noise-induced transition.

For this purpose, we use the concept of a confidence el-
lipsoid. This is an ellipsoidal neighbourhood around a stable
equilibrium state, inside which a trajectory subject to the lo-
cally linearised dynamics stays, within a certain confidence
level (Cowan, 1998).

Consider a general SDE system given by Eq. (1). Because
the drift vanishes at an equilibrium state F(XB)= 0, its first-
order approximation around the equilibrium state XB via
Taylor expansion is

F (X)= A(XB)(X−XB)+O(‖X−XB‖
2), (8)

where A(XB)=∇F(XB) ∈ Rn×n is the Jacobian matrix of
F at XB . Using a translation X̃ =X−XB , the first-order

approximation of the SDE is then

dX̃t = A(XB)X̃t dt +G dWt . (9)

Because the drift term has been linearised, this is the equa-
tion for an n-dimensional Ornstein–Uhlenbeck process. The
stationary probability density function (PDF) f of the ap-
proximating process is Gaussian (Cowan, 1998) and given
by

f (X)=
1

(2π)
n
2 |CB |

1
2
e
−

1
2 ‖X−XB‖

2
C−1
B , (10)

where CB ∈ Rn×n is the covariance matrix of the system cal-
culated in XB and ‖ .‖C−1

B
the norm induced by its inverse

C−1
B , defined by ‖X‖2

C−1
B

≡X>C−1
B X. The covariance ma-

trix CB can be thought of heuristically as the matrix contain-
ing the correlations E(xixj ) (with X = (x1, . . .,xn)), which
generalises the notion of variance in n dimensions. CB is ob-
tained by solving the Lyapunov equation (see Kuehn, 2012,
for the full derivation):

A(XB)CB +CBA(XB)
T
+GGT

= 0. (11)

We then define the confidence ellipsoid, which has C−1
B as a

shape matrix, as follows:

E = {X ∈ Rn |‖X−XB‖
2
C−1
B

≡ (X−XB)
TC−1

B (X−XB) < Qα}, (12)

where Qα is the quantile of confidence level 1−α of the n-
dimensional χ2 distribution (Cowan, 1998), usually 1−α =
0.95. The directions of symmetry of the ellipsoids are given
by the eigenvectors of the covariance matrix CB and the radii
are given by the corresponding eigenvalues and the confi-
dence level 1−α. Intuitively, the greater the eigenvalue, the
more a trajectory fluctuates in the given direction.

The (1−α)-covariance ellipsoid represents the n-
dimensional volume where a trajectory is confined with
confidence level 1−α, provided its dynamics is well ap-
proximated by the first-order expansion at the equilibrium
point. An illustration of the 0.95-confidence ellipsoid for the
double-well potential is shown in Fig. 3. The confidence el-
lipsoid E constitutes a way to meaningfully define the tar-
get set B with minimal arbitrary parameters. As shown in
Fig. 3, when initialising a trajectory at XA or XB in the
two-dimensional double-well system, it stays inside the cor-
respondent ellipsoid with a certain confidence 1−α = 0.95.
In the next section, we show how to incorporate this choice
of target set into the score function φ.

2.4 Estimating the typical transition path using
histograms

The second line of improvement of the score function con-
cerns the estimation of typical transition paths of the dynam-
ical system. In the zero noise limit, the Freidlin–Wentzell
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theory of large deviations predicts that transition paths will
cluster around the most probable transition path, called the
instanton (Freidlin and Wentzell, 1984). On the other hand, in
the finite noise regime, transition paths may deviate from the
instanton. Moreover, instantons may be computationally in-
accessible for systems with many degrees of freedom. There-
fore, it can prove more relevant to estimate empirically the
typical transition path that the system follows at a given fi-
nite noise level, which is the approach we follow here.

The idea is to first accumulate transition paths at a noise
level where transitions are frequent enough (typically p >
10−3) so that any sampling method (direct Monte Carlo or
TAMS with naive score functions) can be used. Then, we
compute the spatial histogram of the transition paths over a
discretised phase space using n-dimensional boxes. This pro-
vides the spatial distribution of the transition paths, which
is concentrated around a typical transition path, reminiscent
of an instanton phenomenology, which was also observed in
more complex systems (Bouchet et al., 2019). From the spa-
tial histogram, we extract a typical transition path.

The main steps of the path-finding algorithm are listed be-
low:

i. the trajectory of the typical transition path starts in the
box of the histogram containing the initial state XA;

ii. the next box in this trajectory corresponds to the neigh-
bour which has the highest nonzero histogram value but
which has not already been visited by the typical transi-
tion path;

iii. the algorithm stops if it reaches the box containing the
target state XB .

In addition, the full typical path estimation algorithm uses a
self-correcting method to avoid dead ends when there are no
valid neighbours to be the next point in the trajectory. The
spirit of the path-finding algorithm is similar to the depth-
first search algorithm (Cormen et al., 2009). We found that,
as long as the histogram is not fragmented, i.e. there is a suf-
ficient number of accumulated trajectories or large enough
histogram bins, the algorithm converges. Possible artefacts
created by this estimation include spiralling near the initial
equilibrium (because of the concentric shell structure of the
local probability density function, Eq. 10) and zigzagging at
the histogram box size. They can both be addressed by a
clean-up algorithm: starting from the first box, at each box
Xj , if the trajectory goes back to one of its neighbours at
a later time, with Xj+k being the latest neighbour visit, we
erase the points Xj+1, . . .,Xj+k from the trajectory.

In a general system, transitions induced at high noise do
not necessarily follow similar transition paths at lower noise
levels. However, high-noise estimates are robust as long as
there is no drastic change in the behaviour of the system at
an intermediate noise level, which would signal a physical
phase transition in the system (Rolland and Simonnet, 2015).

Moreover, we can check a posteriori if such a transition oc-
curs by starting at high noise, gradually decrease the noise
level and apply the empirical estimation of the typical path
or simply compare histograms each time the noise level is
decreased.

3 Results

In this section, we apply both modifications to TAMS (el-
lipsoids in the score function and typical path estimation) to
different problems.

3.1 Incorporating ellipsoids in the score function

First, we apply the modified TAMS method to the two-
dimensional double-well system defined by Fig. 1. As out-
lined in Sect. 2.3, given any score function φ, we want the
target set B = {X ∈ Rn | φ(X) > φtarget

} to coincide with the
0.95-confidence ellipsoid E associated with the equilibrium
state XB . However, because the contour levels of φ, in gen-
eral, do not have the shape of an ellipsoid, there is no suitable
choice of φtarget such that B coincides with E . Here, we pro-
pose a general method to modify any score function φ so that
we are able to choose the target set B to be exactly the 0.95-
confidence ellipsoid E of XB .

We first compute the level φ̃target, defined as the minimum
of the score function φ on the confidence ellipsoid E :

φ̃target
≡ min

X∈E
φ(X), (13)

such that the set {X ∈ Rn | φ(X) > φ̃target
} contains the el-

lipsoid E and is tangent to E . This can be done numerically
by generating a mesh of points around XB , then selecting the
points inside E by comparing their norm ‖X−XB‖

2
C−1
B

with

the quantile Qα and finally computing the minimum φ̃target

of φ on these points. Then, define the modified score function
φ̃ in the following way:

φ̃(X)≡


1 if X ∈ E, i.e. ‖X−XB‖

2
C−1
B

<Qα,

φ̃target if φ(X) > φ̃target and X 6∈ E,

φ(X) otherwise.

(14)

The target set B = {X ∈ Rn | φ̃(X) > φ̃target
} for the modi-

fied score function φ̃ turns out to coincide with E . We apply
this procedure on both the score functions φgauss and φdist,
and the results for the improved score functions φ̃dist and
φ̃gauss are shown in Fig. 4.

3.2 Designing a score function based on a typical
transition path

In order to show how to design a score function based on a
typical transition path, we consider a two-dimensional sys-
tem slightly less trivial than the double-well system, i.e. a
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Figure 4. (a) Contour levels of the modified score function φ̃gauss, for the two-dimensional double-well system represented in Fig. 1,
according to the procedure described in Eq. (14). The level set φtarget (dotted blue line) of the former score function φgauss is tangent to the
ellipsoid. The level set φ̃target (dotted red) of the modified score function φ̃gauss coincides with the ellipsoid. (b) Same plot for the score
function φ̃dist.

two-dimensional system with the following potential,

V (x,y)= 0.1x2
+ 0.05y2︸ ︷︷ ︸

global confinement

+ 30e−(x/2)
2
(1+ tanh(15− y))︸ ︷︷ ︸

potential barrier at y<15,x=0

− 10e((x+6)/2)2−(y/2)2︸ ︷︷ ︸
left potential well

− 10e−((x−6)/2)2−(y/2)2︸ ︷︷ ︸
right potential well

, (15)

depicted in Fig. 5a. It consists of two energy minima at
XA ≈ (−5.77,0) and XB ≈ (5.77,0) and a potential barrier
spanning y < 15 and at x = 0. The dynamics is then given by
the SDE (1), with drift F (Xt )=−∇V (Xt ).

The dynamics of the system is quite interesting, as it ex-
hibits two distinct regimes for transition paths, depending on
the noise level σ (assuming G= σ I). At high noise (σ 2

�

1V , where the potential barrier height is 1V = V (0,0)−
VA), trajectories are likely to cross the potential barrier. At
low noise (σ 2

�1V ), trajectories are not likely to cross the
barrier, and the trajectories which undergo the transition in-
stead go through the upper channel at y ≈ 15. Typical ex-
amples of such trajectories are shown in Fig. 5b. Rolland
and Simonnet (2015) investigated the convergence proper-
ties of AMS using a triple-well potential system, which also
exhibits two regimes of preferred transition paths depend-
ing on the noise. They found a strong dependency of the
statistics of the rare-event algorithm (e.g. the number of iter-
ations) and the duration of reactive trajectories on the choice
of score function. We expect the same behaviour when ap-
plying TAMS to the system with potential (Eq. 15) and that

this system will reveal differences in performance between
various score functions.

Figure 6a shows a histogram computed with 300 transition
paths for the system with the potential given by Eq. (15), with
noise level set at σ = 3. We need enough trajectories so that
the histogram gives an accurate representation of all possi-
ble transition paths and that fluctuations along the typical
path can be effectively averaged out by the path estimation
algorithm. One way to verify that there are enough trajecto-
ries is to check that the histogram near the equilibria is sim-
ilar to the Gaussian stationary distribution that arises from
locally linearised Ornstein–Uhlenbeck dynamics. For exam-
ple, starting from an equilibrium point and picking any di-
rection, then if for the first few histogram cells the histogram
value is not decreasing (as would be the case for a Gaus-
sian distribution), this would mean that too few trajectories
were used. The typical transition path was estimated using
the algorithm sketched in Sect. 2.4. As already mentioned,
some artefacts created by the estimation (such as spiraling
or zigzagging) can be corrected using a clean-up algorithm.
The result is shown in Fig. 6b: the empirical estimation of the
typical path resembles the instanton around which the tran-
sition paths are clustered at lower noise (Fig. 6b, blue path).
The instanton was calculated by implementing the geomet-
ric minimum action method (Heymann and Vanden-Eijnden,
2008). Note that if, instead, we accumulated trajectories at
high noise σ > 10, we would obtain trajectories going from
XA to XB in a straight line, which is the typical path at high
noise similar to Rolland and Simonnet (2015). This typical
transition path is then substantially different from the instan-
ton, which goes through the upper channel. Thus, our method
can be advantageous in multistable systems where the typi-
cal transition path depends on the noise level. We can start at
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Figure 5. (a) Potential landscape of the two-dimensional gradient system defined by Eq. (15). Two energy minima are located at XA ≈

(−5.77,0) and XB ≈ (5.77,0). They are separated by a potential barrier spanning y < 15 and at x = 0. (b) Typical transition paths from XA
to XB for two noise levels σ . At high noise, trajectories can cross the potential barrier (σ = 10, blue). At low noise, trajectories go through
the upper channel (σ = 3, red).

high noise and reapply the empirical estimation of the typical
path each time the noise level is decreased.

Given a typical transition path C, we present the design of a
score function φC which encourages trajectories to follow the
transition path C such that it gives a reasonable approxima-
tion of the static committor. Let us consider a trajectory C(s)
in Rn parameterised by arclength s ∈ [0,1]. Then we define
the score function φC , called the path-based score function,
such that it grows from 0 to 1 along the trajectory from XA to
XB and decays exponentially along the direction transverse
to the trajectory:

φC : Rn→ [0,1]

X 7−→ s(X,C)exp

(
−
d(X,C)2

d2
0

)
, (16)

where d(X,C)= infs∈[0,1]‖X− C(s)‖d is the distance be-
tween X and the trajectory C(s), s(X,C) is the curvilinear
coordinate of the position on the trajectory that satisfies the
infimum in the definition of d(X,C) and d0 is the character-
istic decay length (free parameter). The score function φC is
shown in Fig. 7 for the estimated transition path C shown in
Fig. 6 and two values of decay length d0 = 20 and d0 = 200.

The score function increases from 0 to 1 along the trajec-
tory. Thus, it encodes the preferred direction that the system
has to follow. This contrasts with the generic score functions
φgauss and φdist, which are symmetrical in y: they do not con-
tain the information that the system has to increase in y in
order to make the transition to XB . Note that the method we
developed here can be applied, in principle, to systems of any
dimension. As shown in Fig. 7b, the score function φC is dis-
continuous because the trajectory has positive curvature. The
discontinuity is located near the axis x = 0. Indeed, when
crossing the axis x = 0, the closest point on C changes and
s(X,C) is discontinuous.

Next, we applied TAMS with the path-based score func-
tion φC to the two-dimensional system in Eq. (15). We com-
pare its performance with the previously defined score func-
tions φdist and φgauss. In fact, we use the associated modi-
fied score functions, such that the target set B matches the
0.95-confidence ellipsoid (we drop the tildes for readabil-
ity). We use the following parameters: duration of a trajec-
tory T = 20, time step dt = 0.01, andN = 100 trajectories in
the ensemble, which we found was enough to ensure that the
interquartile range of the independent realisations spans less
than 1 order of magnitude around the mean for most noise
levels.

We show in Fig. 8a the transition probability estimates us-
ing the score functions φdist, φgauss (with β = 1.5) and φC
(with decay parameters d0 = 2, 20, 200) averaged over 10
instances of the algorithm. The probability estimates are in
good agreement with each other and with a Monte Carlo es-
timation for σ > 2.5. The score function φC is robust with
respect to the choice of the decay length d0.

The performances of the numerical methods are next mea-
sured using the work-normalised relative error ε, which com-
bines the variance of the algorithm and its computational cost
(Glynn et al., 2009):

ε ≡
σp̂

µp̂
×ω, (17)

where µp̂ and σp̂ are the mean and standard deviation of the
probability estimate over the different instances, and ω is the
average number of time steps calculated in one realisation.
In short, ε measures how precise the numerical method is at
equal computational cost. The smaller the ε, the better the
algorithm performs.

The results are shown in Fig. 8b. For the system in
Eq. (15), the score functions φdist, φgauss and φC have little
difference in performance. For the lowest noise values, the
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Figure 6. (a) Histogram of N = 300 transition paths at noise level σ = 3, using the modified score function φ̃gauss with β = 1.5, defined by
Eq. (6) and implemented with Eq. (14). The corresponding transition probability (p = 2× 10−3) is high enough so that direct Monte Carlo
sampling could have been used to produce a similar histogram. The bin resolution (1x = 1.4, 1y = 1.75) is coarse for illustration purposes.
The histogram is used as input in the path-finding algorithm which produces the transition path in red. Grid-scale spiralling occurs near the
initial state XA because of the concentric shell structure of the local probability density function given by Eq. (10). (b) Same histogram as
panel (a). The estimated typical transition path (red) has been cleaned up from its grid-scale spiraling and zigzags with the clean-up algorithm
and has then been smoothed. It strongly resembles the instanton (blue) which was computed by implementing the geometric action minimum
method (Heymann and Vanden-Eijnden, 2008).

Figure 7. (a) Contour levels of the score function φC defined in Eq. (16) associated with the estimated transition path C shown in Fig. 6 and
with decay length d0 = 20. (b) Same figure for d0 = 200.

path-based score function has at most a 30 % smaller error
ε than the score function φgauss. Changing the decay length
d0 hardly changes the error ε. When adjusting the parame-
ters of the potential V or applying the same method to the
triple-well system used in Rolland and Simonnet (2015), the
performance gain, while often present, never systematically
exceeded 30 %. All in all, in this category of two-dimensional
systems, using the path-based score function approach yields
little improvement.

3.3 Transition probabilities in a box model of the
AMOC

Finally, as a main application of the modification of the tar-
get set B into a confidence ellipsoid E , we consider the dy-
namical system in Castellana et al. (2019), which represents
a box model of the AMOC. The system consists of a set
of stochastic differential equations, plus one algebraic con-
straint, the latter representing the salt conservation in the
model (as shown in Appendix B). This model can be for-
mulated as

dY t = F 1(Y t ,Zt )dt +G dWt ,

0= F 2(Y t ,Zt ). (18)
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Figure 8. (a) Transition probability p as a function of noise parameter σ . Mean estimates and interquartile range (error bars) overNsamples =
10 independent realisations of the TAMS algorithm using the score functions φdist (green down triangle), φgauss (with β = 1.5, blue circle)
and φC with decay parameters d0 = 2, 20, 200 (yellow square, pink diamond, purple up triangle) are shown. The Monte Carlo estimate (black
cross) has been run with N = 5× 105 trajectories with the target sets coinciding with the confidence ellipsoids around XB , with associated
standard deviation σp =

√
p(1−p)/N (error bars). There is an overall good agreement between the numerical estimations. The path-based

score function is robust to the choice of decay parameter. (b) Performance of the score functions measured by the work-normalised error
ε as a function of noise σ (same markers as panel a). At most, there is a 30 % decrease in error when using the path-based score function
φC at low noise. Note that at high noise σ = 3, using a short decay length d0 = 2 with φC leads to poor performance because the greater
values of φC are tightly concentrated around the estimated instanton, whereas typical transition paths are not necessarily clustered around it.
Otherwise, the performances of the score functions are roughly similar.

In the equations above, we split the state of the system Xt

into two parts: Y t , which includes salinities of four of the
boxes plus the depth of the pycnoclineD, and Zt , which rep-
resents the salinity of the deep box (Sd). As the noise is ap-
plied only to the asymmetric component of the atmospheric
freshwater flux (Ea), it directly affects only two of the vari-
ables: Sn and Ss. Moreover, the stochastic increments asso-
ciated with the two variables are identical to make sure that
each decrease in freshwater forcing in the southern box re-
sults in the same increase in it in the northern box in the
model. Therefore, the noise is not spatially independent, and
the noise matrix G is no longer diagonal: it consists of a
(5× 1) row vector, with only two elements different from
zero. For a reasonable choice of the parameters, the deter-
ministic system is in a bistable regime (Castellana et al.,
2019), which means that there are two possible equilibrium
states under the same forcing conditions. In general, we are
interested in studying transitions between the present-day
AMOC (XA) and the collapsed state (XB ).

For a differential-algebraic system of equations (DAEs),
such as the system in Eq. (18), we need to be particularly
careful while computing the covariance ellipsoids. First of
all, we make use of the Schur complement of the Jacobian
of the system, which allows us to calculate the covariance
matrix when an algebraic constraint is present (Baars et al.,
2017). Nevertheless, the resulting matrix CB is singular, with
two eigenvalues being equal to zero. One of the correspond-
ing eigenvectors is a vector pointing in the direction of the

variable D (depth of the pycnocline). The reason behind it
is that the differential equation governing the evolution of D
does not contain any of the other variables (see Castellana
et al., 2019) when the system is in the collapsed state (XB ).
This results in D not being affected by the noise, as this is
imposed only on two of the salinities. Hence, we compute
the covariance matrix CSB relative to the salinities, remov-
ing 1 degree of freedom from the original matrix. Unfortu-
nately, such a matrix still has one zero eigenvalue, which is
due to the salinity conservation (the algebraic equation in the
system Eq. 18). To overcome this problem, we compute the
Moore–Penrose inverse (or pseudo-inverse) of the covariance
matrix, CS+B , by performing a singular value decomposition
of CSB and removing the zero eigenvalue, together with the
corresponding eigenvector (Ben-Israel and Greville, 2003).
A two-dimensional projection of the ellipsoid constructed for
the box model is shown in Fig. 9.

For the system in Eq. (18), the modified score function
is more complicated, as the covariance matrix used to con-
struct the ellipsoid contains only the degrees of freedom re-
lated to the salinities of the model, leaving the variable D
(depth of the pycnocline) out. From a geometric point of
view, that means that the covariance ellipsoid around XB is
degenerated along the D direction. Figure 9 shows a pro-
jection of the ellipsoid – once the noise amplitude is fixed
– onto the plane identified by the variables Sn and Ss (re-
spectively, the salinity of the northern box and the one of
the southern box in the model). The projection was obtained
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Figure 9. Level sets of the score function φgauss in proximity to the
collapsed equilibrium state XB of the system in Castellana et al.
(2019), projected onto the plane identified by the variables Sn and
Ss (respectively, the salinity of the northern box and the one of the
southern box in the model). A trajectory of the system, initiated in
the collapsed state, has been projected onto the same plane (blue
circles). The red ellipse is the two-dimensional projection of the
covariance ellipsoid constructed by using the matrix CS

B
and a con-

fidence level of 0.95; 98 % of the points comprising the trajectory
are inside the ellipsoid.

by calculating the conditional covariance matrix of the two
variables under consideration, given that the other variables
are set on their mean value (Wasserman, 2013). The two-
dimensional ellipse contains the large majority of the pro-
jected time points (on the same plane) of a trajectory that
wanders around the equilibrium. By construction, the con-
fidence level of the confinement is higher than the one pre-
scribed for the full-dimensional ellipsoid (in this case 0.95).
Clearly the level sets of the score function φgauss do not coin-
cide with the one of the ellipsoid. Hence, the importance of
modifying the score function appears evident.

When constructing an improved score function, in order
to evaluate whether a state belongs to the neighbourhood of
XB , we need to check two conditions: (i) whether the state
of the system is inside the salinity covariance ellipsoid drawn
around the destination equilibrium and (ii) whether the vari-
able D of the state is the same as the one of XB . Hence, the
improved score function for the box model reads as

φ̃box(X)≡



1 if XS
∈ ES and XD

=XD
B ,

φ̃target if φgauss(X) > φ̃
target and

(XS
6∈ ES or XD

6=XD
B ),

φgauss(X) otherwise,

(19)

where XS indicates the part of the state vector representing
the set of the salinities, whereas XD represents the variable
D. As already mentioned, to check whether a certain state
belongs to the salinity ellipsoid, we made use of the pseudo-
inverse of CSB in the definition of Eq. (12).

To be able to assess the relevance of a proper definition
of the target set in the TAMS algorithm and hence the im-
portance of using the improved version of the score function,
we computed transition probabilities of the AMOC from the
present-climate state to the collapsed state for reasonable val-
ues of the atmospheric forcing and noise. In particular, we
chose Ēa = 0.20Sv and fσ = 0.16. This last value represents
the ratio between the standard deviation of the noise in the
atmospheric forcing and its mean value (Castellana et al.,
2019). The number of trajectories used in the algorithm was
set to 100, and the timescales at which the probabilities were
evaluated were chosen to be 1000 and 10 000 years, respec-
tively. For each transition probability, we used three different
versions of the algorithm, based on three different settings for
the score function. The first two versions were implemented
by using φgauss in Eq. (6), with two different choices for the
threshold φtarget. In the third version, we used φ̃box as defined
in Eq. (19), where the starting score function was φgauss. Each
probability was calculated by running 15 instances of the al-
gorithm and then computing the median and the interquartile
range (IQR). The results are shown in Table 1 below.

When running TAMS to compute transition probabilities
between two states of the Atlantic circulation in this model,
with different versions of the score function, we found a con-
siderable discrepancy between the obtained values. In partic-
ular, it appears that setting a very high threshold in the Gaus-
sian score function makes the algorithm detect no transitions
(we set up the algorithm so that it stops when the probabili-
ties involved are smaller than 10−9): the reason behind this is
that, because of the presence of the noise, we do not expect
the state of the system to stay indefinitely close to the desti-
nation equilibrium but rather to wander around it. Therefore,
the score function, which assigns the maximum score only
to a very small neighbourhood of the equilibrium, is not able
to properly recognise transitions. Moreover, it is not surpris-
ing that, when using φgauss with a smaller value of φtarget

(0.99) or φ̃box, we obtain different results: as the shape of the
covariance ellipsoid is not spherical (see Fig. 9), we expect
φgauss to detect transitions even though the state is actually
still far from the destination equilibrium, at least in certain
directions. As a general rule, we expect φgauss to give results
different from φbox as long as the ellipsoid of the system is
not spherical, regardless of the choice of the threshold φtarget.

4 Summary and discussion

We presented and applied several improvements to the
TAMS rare-event algorithm, when used to compute tran-
sitions in multistable systems. The first improvement was
based on a more rigorous criterion to define noise-induced
transitions involving confidence ellipsoids E to formalise this
criterion. In turn, this led to the rigorous choice of the target
set B = EB , which was traditionally set by rather arbitrary
thresholds. We then showed how to incorporate this defini-
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Table 1. Results of the transition probabilities for the AMOC model using different score functions.

Score function p at 1000 years (IQR) p at 10 000 years (IQR)

φgauss, φtarget
= 1− 10−4 < 10−9 < 10−9

φgauss, φtarget
= 1− 10−2 (1.1 [0.6 : 1.2])× 10−3 (5.3 [4.7 : 6.0])× 10−2

φ̃box < 10−9 (2.0 [0.7 : 3.0])× 10−3

tion of B into the score function φ̃. For certain classes of
systems, like the ones containing algebraic constraints in ad-
dition to differential equations or when the noise does not
affect one or more directions in the variable space (i.e. the as-
sociated covariance matrix is singular), this method requires
some precautions. In particular, for the box model in Castel-
lana et al. (2019), we had to adapt the definition of the im-
proved score function in Eq. (19) as well as calculate the
pseudo-inverse matrix of the covariance matrix in order to
compute the ellipsoid.

This method, while quite general, has several limitations.
While the modified score function φ̃ is continuous outside B,
it is constant in the domainM = {X ∈ Rn | φ(X) > φ̃target

}r
E (see Fig. 4). This means that in the TAMS algorithm,
branching will never occur inside M , but at the boundary
∂M . This can have an influence on the convergence of TAMS
if the level sets of the initial score function φ have a patho-
logical shape near XB and the spatial extension of D is not
negligible. Nevertheless, we expect this to have little impact
because this phenomenon is localised near the target state
XB . Therefore, the trajectories will naturally converge to-
wards XB as a result of the dynamics, even without the help
of the branching process of TAMS. However, to ensure that
the confidence ellipsoid E defines a meaningful target set,
one needs to be sure that E is contained inside the basin of
attraction of the target state XB . While this is the case in the
limit of small noise σ → 0, it might not be the case for finite
noise. A solution to this issue would be to compute the basin
of attraction V of XB and define the target set B as the inter-
section B = E ∩V . However, we expect that, in the generic
case, this occurs when the noise level σ is high enough so
that transitions are less rare and that a direct Monte Carlo
estimation is sufficient to estimate transition probabilities.

Next, we proposed a systematic method of defining a
score function, designed to approximate the static commit-
tor, based on empirical transition paths. We proposed an al-
gorithm to estimate the typical transition path under a high
noise level, which is then used to define a family of score
functions with a single decay parameter d0. We applied our
method to a two-dimensional well with a potential barrier.
We found that our typical path estimation gave satisfactory
results and that the associated score function φC , while dis-
continuous, remained unbiased and relatively insensitive to
the change in the decay parameter d0. While we did not find
significant performance improvements over existing non-
trivial score functions, we think that differences will become

apparent if applied to higher-dimensional systems, where
there are more directions to fluctuate in. We did not show any
results of the application of this method to the box model of
the AMOC (Castellana et al., 2019), because for this rather
complicated case, we were not able to efficiently compute
typical transition paths from the trajectory histograms of the
system.

One key limitation of our approach of constructing the
path-based score function φC is the computer memory
needed to store the trajectory histogram, which becomes pro-
hibitively huge for high-dimensional systems such as discre-
tised partial differential equation (PDE) systems. As an ex-
ample, a 50×50 two-dimensional grid storing four variables
in each cell (e.g. two velocity components, pressure and a
tracer) with 10 bins of resolution in each degree of free-
dom would require more than 10 PB of memory, which is
unfeasible. However, this limitation can be easily bypassed
by defining the objects needed to run the TAMS algorithm,
namely the score function φ and the target set B, in a reduced
space of much fewer dimensions. For instance, Bouchet et al.
(2019) studied the dynamics of the barotropic beta-plane
quasi-geostrophic equations describing Jupiter’s turbulent at-
mosphere. While the PDE system was evolved in the full
phase space, their rare-event algorithm was run in a reduced
three-dimensional phase space defined by three Fourier co-
efficients. The target set B and the score function were de-
fined on this reduced space. Moreover, they accumulated
transition trajectories in a three-dimensional histogram and
showed their concentration around instantons. By applying
the path-finding algorithm, an empirical estimation of the in-
stanton can be made. This offers a viable alternative to solv-
ing a minimisation problem in the full space to compute the
instanton and then project it in the reduced space, which is
next to intractable for this system.

Another way to define the reduced space V in which to run
TAMS is to consider the principal components, also called
empirical orthogonal functions (EOFs), which are the eigen-
vectors of the covariance matrix. One idea, suggested by
Baars (2019), is to retain the EOFs {YA1 , . . .,Y

A
k ,Y

B
1 , . . .,Y

B
k′
}

with the largest variance (i.e. the eigenvalue of the covari-
ance matrix) at the initial state XA and target state XB .
EOFs represent the directions in which the system fluc-
tuates the most. They are then assumed to be the direc-
tions which capture best the noise-driven dynamics. When
studying transitions in a PDE model of the Atlantic Merid-
ional Overturning Circulation, den Toom et al. (2011) and
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Baars et al. (2021) projected the dynamics in a reduced
space W ≡ Span{XA,XB ,Y

A
1 , . . .,Y

A
k ,Y

B
1 , . . .,Y

B
k′
} of a di-

mension (≈ 500) still too large to apply the histogram
method directly. However, one idea is that the TAMS al-
gorithm could be run in an even smaller space – V ≡
Span{XA,XB ,Y

A
1 , . . .,Y

A
d ,Y

B
1 , . . .,Y

B
d ′
} (of dimension<

10) – while still computing the dynamics in the space W .
Then, the memory required to store a histogram becomes rea-
sonable and our histogram method can be applied.

Another potential issue of our modified TAMS method is
the fact that the score function φC is discontinuous because
the trajectory has positive curvature, as shown in Fig. 7b,
blue path. The discontinuity is located near the axis x = 0.
Indeed, when crossing the axis x = 0, the closest point on C
changes and s(X,C) is discontinuous. In fact, in the math-
ematical proofs about the statistical and convergence prop-
erties of the probability estimator (Cérou et al., 2016), the
score functions are assumed to be continuous. Nevertheless,
in our applications, we did not detect any statistically signifi-
cant bias in the probability estimator due to the discontinuity.
Moreover, some meaning can be attributed to the discontinu-
ity: it is located at the boundary between the attraction basins
of XA and XB , and it thus reflects a qualitative change in be-
haviour in the system. Crossing this boundary means that the
trajectory converges to XB instead of XA if σ = 0. In addi-
tion, the remnant of a discontinuity is observed in the static
committor of the similar triple-well system used in Rolland
and Simonnet (2015). Indeed, their Fig. 4c shows the contour
plots of the static committor in the low-noise regime. A steep
gradient is present at the x = 0 boundary, which gives further
evidence that the discontinuity of φC may not be problematic.

Further testing of the ideas presented in this work in high-
dimensional systems such as discretised PDEs would give
more insight as to the effectiveness of our approach com-
pared to the more generic score functions used up to now.
Moreover, incorporating some form of time dependence into
the score function φ to specifically optimise TAMS would
constitute an interesting project.
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Appendix A: Trajectory-Adaptive Multilevel Sampling
(TAMS) algorithm
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Appendix B: Box model for the Atlantic Meridional
Ocean Circulation

The equations determining the evolution of the AMOC in
this model are the salinity budgets of the different boxes, to-
gether with the variation of the volume of the pycnocline, and
the salt and volume conservation equations (Castellana et al.,
2019):

d(VtSt)

dt
= qS(θ(qS)Sts+ θ(−qS)St)

+ qUSd− θ(qN)qNSt

+ rS(Sts− St)

+ rN(Sn− St)+ 2EsS0,

d(VtsSts)

dt
= qEkSs− qeSts− qS(θ(qS)Sts

+ θ(−qS)St)+ rS(St− Sts),

d(VnSn)

dt
= θ(qN)qN(St− Sn)+ rN(St− Sn)

− (Es+Ea)S0,

d(VsSs)

dt
= qS(θ(qS)Sd+ θ(−qS)Ss)+ qeSts

− qEkSs− (Es−Ea)S0,(
A+

LxALy

2

)
dD
dt

= qU+ qEk− qe− θ(qN)qN,

S0V0 = VnSn+VdSd+VtSt

+VtsSts+VsSs, (B1)

where the function θ(x) is the Heaviside step function. The
transports depend on the variables via the following rela-
tions:

qEk =
τLxS

ρ0|fS|
,

qe = AGM
LxA

Ly
D,

qU =
κA

D
,

qN = η
ρn− ρts

ρ0
D2,

qS = qEk− qe, (B2)

where the density of the generic box i is defined as

ρi = ρ0 (1−α(Ti − T0)+β(Si − S0)) . (B3)

The volumes depend, in turn, on the variable D:

Vt = AD,

Vts =
LxALy

2
D,

Vd = V0−Vn−Vs−Vt−Vts. (B4)

The reference parameter values are shown in Table B1.
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Table B1. Reference parameters used in Eqs. (B1)–(B4) from Castellana et al. (2019).

Parameters used in the model

V0 3× 1017 m3 Total volume of the basin
Vn 3× 1015 m3 Volume of the northern box
Vs 9× 1015 m3 Volume of the southern box
A 1× 1014 m2 Horizontal area of the Atlantic pycnocline
LxA 1× 107 m Zonal extent of the Atlantic Ocean at its southern end
Ly 1× 106 m Meridional extent of the frontal region of the Southern Ocean
LxS 3× 107 m Zonal extent of the Southern Ocean
τ 0.1 Nm−2 Average zonal wind stress amplitude
AGM 1700 m2 s−1 Eddy diffusivity
fS −10−4 m3 Coriolis parameter
ρ0 1027.5 kgm−3 Reference density
κ 10−5 m2 s−1 Vertical diffusivity
S0 35 psu Reference salinity
T0 5 K Reference temperature
Tn 5 K Temperature of the northern box
Tts 10 K Temperature of the box ts
η 3× 104 ms−1 Hydraulic constant
α 2× 10−4 K−1 Thermal expansion coefficient
β 8× 10−4 psu−1 Haline contraction coefficient
rS 1× 107 m3 s−1 Transport by the southern subtropical gyre
rN 5× 106 m3 s−1 Transport by the northern subtropical gyre
Es 0.17× 106 m3 s−1 Symmetric freshwater flux

https://doi.org/10.5194/npg-28-135-2021 Nonlin. Processes Geophys., 28, 135–151, 2021



150 P. Wang et al.: Improvements to the use of TAMS

Code availability. The software is available at
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