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Abstract. Recently, various models have been developed, in-
cluding the fractional Brownian motion (fBm), to analyse the
stochastic properties of geodetic time series together with the
estimated geophysical signals. The noise spectrum of these
time series is generally modelled as a mixed spectrum, with
a sum of white and coloured noise. Here, we are interested
in modelling the residual time series after deterministically
subtracting geophysical signals from the observations. This
residual time series is then assumed to be a sum of three
stochastic processes, including the family of Lévy processes.
The introduction of a third stochastic term models the re-
maining residual signals and other correlated processes. Via
simulations and real time series, we identify three classes
of Lévy processes, namely Gaussian, fractional and stable.
In the first case, residuals are predominantly constituted of
short-memory processes. The fractional Lévy process can be
an alternative model to the fBm in the presence of long-term
correlations and self-similarity properties. The stable pro-
cess is here restrained to the special case of infinite variance,
which can be only satisfied in the case of heavy-tailed distri-
butions in the application to geodetic time series. Therefore,
the model implies potential anxiety in the functional model
selection, where missing geophysical information can gener-
ate such residual time series.

1 Introduction

Among the geodetic data, Global Navigation Satellite Sys-
tem (GNSS) time series have been of particular interest for
the study of geophysical phenomena at regional and global
scales (e.g. study of the crustal deformation due to large
earthquakes and sea level rise; Bock and Melgare, 2016; Her-
ring et al., 2016; He et al., 2017). These time series provide
the estimated daily positions of the receiver coordinates. The
position vector of a station can be decomposed in a geocen-
tric Cartesian axis system or in a local or topocentric Carte-
sian axis system (E, N , and U ) in which the axes point east,
north, and up. These coordinates are influenced by the sum
of three displacement modes (distinct classes of motion) that
describe the progressive ground motion, any instantaneous
jumps in position, and periodic or cyclic displacements. The
progressive ground motion is generally referred to as the tec-
tonic rate. Jumps include coseismic offsets, which are real
movements of the ground, and artificial offsets, associated ei-
ther with changes in the GNSS antenna and/or its radome or
changes in the antenna monument, etc. Nearly all GNSS time
series exhibit a seasonal cycle of displacement which can be
modelled as a Fourier series. These cycles are caused by sea-
sonal changes in the water, snow, and ice loads supported by
the solid earth or (less commonly) by seasonal changes in
atmospheric pressure. Therefore, the model associated with
each class of motion (or geophysical signals) is here defined
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as a functional model following Bevis and Brown (2014) and
Montillet and Bos (2019, chap. 1). Furthermore, these time
series contain white noise and coloured noise. To model the
different noise components, a stochastic noise model is de-
fined. To name a few, previous choices include the first order
Gauss–Markov (FOGM) model, the white noise with power-
law noise, including flicker noise (Williams, 2003; Williams
et al., 2004), the generalized Gauss–Markov (GGM) noise
model, or the band-pass noise (Langbein, 2008; Langbein
and Svarc, 2019). The scientific community agrees with the
existence of a trade-off in estimating both the stochastic
and functional models (He et al., 2017). More precisely, the
choice of the stochastic model directly influences the esti-
mation of the geophysical signals included in the functional
model (i.e. tectonic rate, seasonal variations, and slow-slip
events; Bock and Melgare, 2016; He et al., 2017, 2020).

In addition, recent studies (Langbein and Svarc, 2019; He
et al., 2019) have also advocated the introduction of a ran-
dom walk to model small jumps and residual transient signals
which is a non-stationary stochastic process. Thus, several
studies (Montillet and Yu, 2015) proposed the use of the frac-
tional Brownian motion (fBm), first developed by Mandel-
brot et al. (1968), in order to model long-memory processes.
Botai et al. (2011) and Montillet and Yu (2015) focused on
modelling (residual) geodetic time series using the family
of Lévy α–stable distributions (Samorodnitsky and Taqqu,
1994; Nolan, 2018). The application of this family of distri-
butions was supported by the ability to model long-memory
processes and the existence of impulsive signals/noise bursts
in the data sets, suggesting deviations from a Gaussian dis-
tribution (Botai et al., 2011).

This work discusses several statistical assumptions (i.e.
stationary properties and presence of long-term correlations)
on the underlying processes in the GNSS time series, justi-
fying the application of the fBm and the family of Lévy α–
stable distributions introduced by Montillet and Yu (2015).
The Lévy stable distributions can model the heavy tail char-
acteristics of some data sets with generally infinite variance.
For example, the presence of unmodelled large jumps within
the data can produce a distribution with large tails and infinite
variance. In order to take into account a large variety of sce-
narios, we investigate and identify within the family of Lévy
processes which process can be applied to model geodetic
time series.

Here, the statistical modelling is applied to residual time
series following Montillet and Yu (2015). The residual time
series are defined as the remaining time series after subtract-
ing the deterministically modelled tectonic rate and seasonal
components (i.e. the functional model) from the GNSS ob-
servations. Therefore, our assumption is that the family of
Lévy processes can model the remaining geophysical signals
and correlations, which have not been captured by the initial
model used, to produce the residual time series.

The next section starts with the statistical inference on the
residual geodetic time series, including the application of the

fBm model and the relationship with the fractional autore-
gressive integrated moving average (FARIMA) model. Sec-
tion 2.3 presents the assumptions on the use of the Lévy pro-
cesses in the model of the residual time series. To do so, we
model the residual geodetic time series as a sum of three
stochastic processes, with the hypothesis that the third one
is a Lévy process. It involves some justifications when com-
pared to established models in the scientific community. In
Sect. 3, we develop an N -step method based on the varia-
tions in the stochastic and functional models when varying
the length of the time series. This algorithm should verify our
statistical assumptions on the third process. Sections 3.1.1
and 3.1.2 focus on the application to simulated and real time
series. Finally, Sect. 3.2 discusses the limits of modelling
geodetic time series with Lévy processes.

2 The stochastic properties of the residual time series
and statistical inferences

2.1 Stochastic modelling of residual GNSS time series

Let us model the GNSS observations and residual time series
as an additive model as follows:

x0(ti)= s0(ti)+ n(ti)

x(ti)= sr(ti)+ n(ti)

sr(ti)= x0(ti)− s0(ti). (1)

x0 is the time series defined as the GNSS observations,
and x is the residual time series after subtracting the func-
tional model (s0). At each ith observation, x(ti) is a sum
of a residual geophysical signal sr(ti) and noise n(ti). Fol-
lowing Williams (2003) and He et al. (2017), the spectrum
of the (residual) GNSS time series is best characterized by
a stochastic process following a power law with index K
(i.e. P(f )= P0(f/fs)

K ; f is the frequency, P0 is a con-
stant, and fs is the sampling frequency). A power-law noise
model means that the frequency spectrum is not flat but gov-
erned by long-range dependencies. An example is shown in
Fig. 3, using the ASCO station; other examples are displayed
in the Supplement. Power-law noise is a type of coloured
noise. The coloured noise results from various parameters
during the processing of the GNSS observations, such as
the mismodelling of GNSS satellites orbits, Earth orientation
parameters, and large-scale atmospheric or hydrospheric ef-
fects (Williams, 2003; Klos et al., 2018). The stochastic noise
model of the (residual) GNSS time series is then described
with the following variance:

E{nT n} = σ 2
wnI+ σ 2

plJ(K), (2)

where the vector n= [n(t1),n(t2), . . .,n(tL)] is a multivari-
ate, continuous-time stochastic process. At each time step,
we define n(ti)= nwn(ti)+ npl(ti), with nwn(ti) and npl(ti)

as the white Gaussian noise (zero mean) and the power-law
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noise sample, respectively. Note that this type of time se-
ries belongs to the family of mixed spectra, where the mixed
spectrum results from the sum of the spectra corresponding
to the two kinds of noise (Li, 2013). T is the transposition op-
erator, I the identity matrix, σ 2

pl is the variance of the power-
law noise, and J(K) is the covariance matrix of the power-
law noise (K in ]0,2]). The definition of J depends on the
assumptions on the type of coloured noise (see the Supple-
ment).

We jointly estimate the functional and stochastic models in
order to produce x, based on a maximum likelihood estimator
(MLE). To recall Montillet and Bos (2019, chap. 2) for linear
models, the log-likelihood for a time series of length L can
be rewritten as follows:

ln(Lo)= −
1
2

[
L ln(2π)+ ln(det(C)) (3)

+ (x0−Az)TC−1(x0−Az)
]
.

This function must be maximized. Assuming that the co-
variance matrix C is known, it is a constant and does not
influence finding the maximum. C is here defined by Eq. (2).
The term (x0−Az) represents the observations minus the fit-
ted model, also called x in Eq. (1). Note that Az is the matrix
notation of s0. The last term can be written as xTC−1x, and
it is a quadratic function, weighted by the inverse of matrix
C. To select the geophysical model, and therefore estimate
the associated parameters, one needs to carefully consider
the location of the GNSS stations and the surrounding geo-
dynamics. The model of s0 is discussed in the Supplement,
together with the software used to carry out the maximiza-
tion of ln(Lo). The value of L is here at least 9 years (3285
observations) in order to be able to properly model the long-
range dependencies associated with the coloured noise and
to detect slow transient signals according to He et al. (2019).

In the modelling of the GNSS time series, a strong as-
sumption is the so-called Gauss–Markov hypothesis (e.g.
Montillet and Bos, 2019, chap. 2) which states that the noise
is Gaussian distributed. In order to keep applying the Gauss–
Markov assumption on the noise observations of geodetic
time series, we assume that the mean of the coloured noise
is µC(t), which slowly varies with time. We then rule out
the occurrence of specific events of a large amplitude, such
as aggregations or bursts of spikes (i.e. intermittency), which
could invalidate such an assumption (see the Supplement for
more information).

Moreover, if the probability density function of the noise
is Gaussian or has a different density function with a fi-
nite value of variance, its fractal properties can be described
by the Hurst parameter (H ). The authors in Montillet et al.
(2013) use the fBm in order to model the statistical properties
of the residual time series. The essential features of this pro-
cess are its self-similar behaviour, meaning that magnified
and rescaled versions of the process appear statistically iden-
tical to the original, together with its non-stationary property,

implying a never-ending growth in variance with time (Man-
delbrot et al., 1968). Previous studies (e.g. Mandelbrot et al.,
1968; Eke et al., 2002) showed that H is directly connected
with K by the following relation:

K = 2H − 1. (4)

With this definition, flicker noise corresponds to K is 1 or H
is 1, a random walk to K is 2 or H is 1.5, and white noise
to K is 0 (H is 0.5). Note that Eq. (4) is established for the
fractional Gaussian noise according to Eke et al. (2002). The
random walk and the flicker noise are then classified as the
long-term dependency phenomena (Montillet et al., 2013).

Long-memory processes are modelled with a specific class
of autoregressive moving average (ARMA) models called
FARIMA by allowing for non-integer differentiation. A com-
prehensive literature on the application of FARIMA can
be found in financial analysis (Granger and Joyeux, 1980;
Panas, 2001) and in geodesy (Li et al., 2000; Montillet and
Yu, 2015; Montillet and Bos, 2019). This model can gen-
erate long-memory processes based on different values of
the fractional index d (Granger and Joyeux, 1980). When
d is 0, it is an ARMA process exhibiting a short memory;
when −0.5≤ d < 0 the FARIMA process is said to exhibit
intermediate memory or anti-persistence (Pipiras and Taqqu,
2017). This is very similar to the description of H in the
fBm. In the Supplement, we recall the relationship between
FARIMA, ARMA, and fBm.

2.2 α stable random variable and the Lévy α–stable
distribution

The fBm and the fractional Lévy distribution are well known
in statistics (Samorodnitsky and Taqqu, 1994) and in finan-
cial analysis (Panas, 2001; Wooldridge, 2010). The fractional
Lévy distribution can model the Lévy processes and, in par-
ticular, the general family of α stable Lévy processes, which
can be self-similar and stationary (Samorodnitsky and Taqqu,
1994). Let us recall the definition of a stable random variable.

A random variable X is stable if and only if X
d
=

aZ+ b, where 0< α ≤ 2, −1≤ β ≤ 1, a 6= 0, b ∈ R and
Z is a random variable with characteristic function φ(u)=
E{exp(iuZ)} =

∫
∞

−∞
exp(iuz)F (z)dz (Nolan, 2018, chap. 1,

definition 1.6). F(z) is the distribution function of Z. E{.}
is the expectation operator. The characteristic function is as
follows:

φ(u)=

{
exp(−|u|α[1− iβ tan πα

2 (sgn(u))]), if α 6= 1
exp(−|u|[1+ iβ 2

π
sgn(u)]), if α = 1,

(5)

where sgn(.) is the signum function, α is the characteristic
exponent which measures the thickness of the tails of these
distributions (the smaller the values of α, the thicker the tails
of distribution), and β ∈ [−1,1] is the symmetry parameter
which sets the skewness of the distribution. In general, no
closed-form expression exists for these distributions, except
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for the Gaussian (α is 2), Pearson (α is 0.5 and β is −1) and
Cauchy (α is 1 and β is 0) distributions.

Now, restricting the focus to our case study, we assume
that if the stochastic process exhibits a self-similar property,
then it can be modelled by the fBm. Following Weron et al.
(2005), the most commonly used extension of the fBm to the
α–stable case is the fractional Lévy stable motion (fLsm).
The fLsm is H self-similar and has stationary increments,
withH being the Hurst parameter described before. Both the
fBm and the fLsm follow an integral representation, with dif-
ferent properties of their kernel (see the Supplement). The re-
lationship between the fLsm reduces to the fBm when α = 2.
IfH = 1/α, we obtain the Lévy α–stable motion which is an
extension of the Brownian motion to the α–stable case. Note
that the Lévy α–stable motion belongs to the Lévy processes.

2.3 The residual time series modelled as a sum of three
stochastic processes

The residual time series is now modelled as a sum of three
stochastic processes, namely it is the sum of a white noise, a
coloured noise, and a third process. It is a similar approach
to that used in previous works (Langbein, 2008; Davis et al.,
2012; Langbein and Svarc, 2019; He et al., 2019) which look
at the presence of a random-walk component in the stochastic
model, hence adding a third covariance matrix in Eq. (2).
We postulate that this unknown stochastic process belongs
to the Lévy processes, which is classified into the following
three types depending on the assumptions of the underlying
process:

1. Gaussian Lévy – the Lévy process is a Gaussian
Lévy process if the process follows the properties
of a pure Brownian motion, which is also called a
Wiener process (identity variance matrix, zero-mean,
and stationary-independent increment; Haykin, 2002;
Wooldridge, 2010). This is the special case of the fLsm
and fBm with H = 1/2. The residual time series is as-
sumed to contain mostly short-term correlations mod-
elled with an ARMA process. The residual time series
should be modelled with a multivariate Gaussian distri-
bution.

2. Fractional Lévy – the residual time series exhibits self-
similarity with possible long-term correlations. The
fractional Lévy process is described by the model of
the fLsm for the specific case reduced to the fBm. The
long-term correlation process is mostly due to the pres-
ence of coloured noise (He et al., 2017). As explained
in Montillet and Yu (2015), the ratio between the am-
plitudes of the coloured and white noise components
determines which stochastic model of the residual time
series should be the most suitable between the FARIMA
and ARMA processes. However, the Gauss–Markov as-
sumption is still valid; therefore, the residual time series

should be modelled with a multivariate Gaussian distri-
bution.

3. Stable Lévy – the Lévy process is a Lévy α–stable mo-
tion (not reduced to the fBm case). The Gauss–Markov
assumption does not hold anymore. The distribution of
the residual time series is potentially skewed, not sym-
metric, and with possibly heavy tails; hence, modelling
with a Lévy α–stable distribution is undertaken. With
the relationship between the Lévy α–stable motion, the
fBm, and the FARIMA, we assume that the stochas-
tic properties of the residual time series should be de-
scribed with the FARIMA, especially in the presence of
large-amplitude coloured noise.

In the application to geodetic time series, the third case oc-
curs mainly due to a misfit between the selected (stochastic
and functional) model and the observations. Therefore, the
residual time series withholds some remaining unmodelled
geophysical signals or unfiltered large outliers which can po-
tentially undermine the Gauss–Markov assumption (e.g. the
presence of heavy tails in the distribution of the residual time
series). For example, if small jumps (or Markov jumps), out-
liers, or other unknown processes are present, it results in a
distribution of the residual time series that is not symmetric
and with heavy tails. The functional model describing those
jumps is a Heaviside step function (Herring et al., 2016; He
et al., 2017), as shown in the Appendix A. In order to assume
a Lévy α–stable motion as the underlying stochastic model in
the geodetic time series, we restrict our assumption to small,
undetectable offsets, modelling them potentially as a random
walk.

2.4 The N -step method

To recall Sect. 2.1, let us describe the functional model and
the stochastic noise model, as described in Eq. (2), as a
functional interpretation called F(θ1) and G(θ2). The func-
tional model is the modelled geophysical signal, whereas the
stochastic noise model described using the covariance matrix
in Eq. (2) is G(θ2). We define θ1 = [a,b,(cj ,dj )j={1,N}] and
θ2 = [awh,bpl,K] as the vector parameters for the functional
and stochastic noise model, respectively. For simplification,
we have not included the estimation of possible offsets in the
time series in the functional model (see the Appendix A for
the discussion). Also, awh and bpl are the amplitude of the
white and power-law noise, respectively.

Furthermore, our method is based on varying the length
of the time series, resulting in the variations in the stochas-
tic and functional models, which should allow classifying
the type of Lévy process. The variations in the length of the
time series should take into account that the coloured noise
is a non-stationary signal (around the mean – see the Supple-
ment), and thus the properties (i.e. bpl, K) vary non-linearly.
However, varying the length of the time series over several
years is not realistic, taking into account that real time series
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can record undetectable transient signals, undocumented off-
sets, and other non-deterministic signals unlikely to be mod-
elled precisely (Montillet et al., 2015). That is why we re-
strain the variations in the time series length to 1 year.

Let us call the geodetic time series s1 = [s(t1), . . ., s(tL)],
s2 = [s(t1), . . ., s(tL+1)], and sN = [s(t1), . . ., s(tL+N )] at the
first, second, and N th variation, respectively. The N samples
are 1 year in this example, and for simplification, we add
only 1 sample at each step. That is not realistic, but the sole
purpose is for this to be a pedagogical example. According to
the functional notation above, the GNSS observations s and
the estimated stochastic noise and functional models ŝ are as
follows:

s = F(θ1)+G(θ2)

ŝ = F(θ̂1)+G(θ̂2). (6)

Let us describe the method for the first, second, and N th
step as follows:

first step

s1 = [s(t1), . . ., s(tL)] (Time Series)

[θ̂1]1, [θ̂2]1 = argmax
θ1,θ2

{s1− (F(θ1)+G(θ2))} (7)

ŝ1 = F([θ̂1]1)+G([θ̂2]1) (Estimated model)

1s1 = s1−F([θ̂1]1) (residual T. S.)

' G([θ̂2]1)+ ε1;

second step

s2 = [s(t1), . . ., s(tL+1)] (Time Series)

[θ̂1]2, [θ̂2]2 = argmax
θ1,θ2

{s2− (F(θ1)+G(θ2))} (8)

ŝ2 = F([θ̂1]2)+G([θ̂2]2) (Estimated model)

1s2 = s2−F([θ̂1]2) (residual T. S.)

' G([θ̂2]2)+ ε2;

N th step

sN = [s(t1), . . ., s(tL+N )] (Time Series)

[θ̂1]N , [θ̂2]N = argmax
θ1,θ2

{sN − (F(θ1)+G(θ2))} (9)

ŝN = F([θ̂1]N )+G([θ̂2]N ) (Estimated model)

1sN = sN −F([θ̂1]N ) (residual T. S.)

' G([θ̂2]N )+ εN ,

where .̂ corresponds to the estimated vector or observations.
[.]j means the j th iteration of the estimated quantity. 1sj
is the residual time series at the j th step. εj (with j in
[1,2, . . .,N ]) is the unmodelled signals and stochastic pro-
cesses at the j th step. Note that the methodology requires the
estimation of the parameters of the functional and stochastic

noise models [θ̂1]j , [θ̂2]j via MLE, as described in Sect. 2.1
in the maximization of ln(Lo) in Eq. (3) (see also the Hector
software; Bos et al., 2013, in the Supplement).

To recall the assumptions in Sect. 2.3, the residual time
series 1sN is modelled as a sum of three stochastic pro-
cesses corresponding to the white noise, coloured noise, and
a Lévy process. Using N iterations/steps and our statistical
inferences on the Lévy processes (i.e. Gaussian Lévy, frac-
tional Lévy, and stable Lévy), we make several assumptions
on the estimated parameters and selected stochastic models
in order to characterize the third process. Table 1 summarizes
these assumptions. We use specific mathematical symbols to
differentiate between them. , means the equality in terms of
distribution. ', ∼, and 6= are related to the variations in the
estimated parameters of the stochastic model associated with
the first and the N th step. The symbol ' means that there
are few differences (less than 3 %) between the estimated pa-
rameters of the stochastic noise model associated with the
first and the N th iteration. The symbol ∼ means that we al-
low bigger differences up to 20 %. With much larger values,
we use the symbol 6=. The variation in the estimated stochas-
tic noise parameters [θ̂2]j between the first and the j th step
is calculated using the sum of the difference in absolute value
between the estimates (e.g. between the first and j + 1 step,
||[θ̂2]1−[θ̂2]j+1||). We deduce a percentage of the variations
based on the sum in absolute value of the estimates [θ̂2]1.

Furthermore, the fitting of the ARMA(p,q) and
FARIMA(p,d,q) models to the residual time series is
carried out by maximum likelihood, following Sowell
(1991). The model orders p and q vary within the interval
[0,5]. Also, the selection of the model which best fits
the residual time series is performed by minimizing the
Bayesian information criterion (BIC), following Montillet
and Yu (2015). Finally, one can wonder if the anxiety in the
model selection (ARMA and FARIMA) in the presence of
heavy-tails can modify the performance of the BIC. This
topic is currently debated in the statistical community (e.g.
Panahi, 2016). Large tails should be detected in the fitting
of the Lévy α–stable distribution. Various methods exist to
estimate the parameters of this distribution (Koutrouvelis,
1980); however, we use the maximum-likelihood method
of Nikias and Shao (1995). Due to the direct relationship
between the index α and H recalled in Sect. 2.1, we assume
that the amplitude of the coloured noise is higher than that
of the white noise; therefore, the FARIMA should be chosen
de facto over the ARMA model.

3 Lévy processes applied to geodetic time series
analysis

This section deals with the application of the N -step algo-
rithm to simulated and real time series. This approach should
verify our statistical inferences formulated in Sect. 2.3. Note
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Table 1. Assumptions on the functional model and the stochastic parameters estimated via N iterations (see N -step method) to characterize
the type of Lévy processes within the geodetic time series. The symbols and notations are explained in Sect. 2.4.

Type of Process Gaussian Lévy Fractional Lévy Stable Lévy

Mathematical G([θ̂2]1)' G([θ̂2]N ) G([θ̂2]1)∼ G([θ̂2]N ) G([θ̂2]1) 6= G([θ̂2]N )

Assumptions F([θ̂1]1)' F([θ̂1]N ) F([θ̂1]1)∼ F([θ̂1]N ) F([θ̂1]1) 6= F([θ̂1]N )

(Distribution) 1s, Gaussian Gaussian Lévy α–stable

Model to characterize ARMA(p,q) ARMA(p,q) or FARIMA(p,d,q)
processes FARIMA(p,d,q)

that the simulations of the GNSS time series are comprehen-
sively explained in the Supplement.

3.1 Application to simulated and real time series

We have restrained our simulations to the stochastic model
corresponding to the flicker noise (with white noise – FN+
WN) and power-law noise (with white noise – PL+WN). In
addition to simplifying our study, we have preliminarily ap-
plied the method based on the Akaike information criterion
developed in He et al. (2019) on the real time series to select
the optimal stochastic noise model. Therefore, we have se-
lected real time series with stochastic models FN+WN and
PL+WN. We are not going to develop this topic further in
this study, but readers can refer to He et al. (2019).

3.1.1 Simulated time series

We simulate a 10-year long time series, fixing awh to 1.6 mm.
The tectonic parameters a vary between [1,3]mmyr−1 and b
is 0. The seasonal signal with only the first harmonic (c1,e1)

is (0.4,0.2)mmyr−1. According to Table 1, we vary the am-
plitude of coloured noise bcl in the following three scenarios:

A. low value (i.e. bcl < 0.1mmyr−K/4),

B. intermediate value (i.e. 1mmyr−K/4 > bcl >

0.1mmyr−K/4), and

C. high value (i.e. 1mmyr−K/4 < bcl < 4mmyr−K/4).

Note that, in scenario C, the process is an unlikely zero-mean
stationary. Also, it is mentioned when K is 1 (flicker noise)
or 1.5 (power-law noise) in the simulations of the coloured
noise.

Scenarios A, B, and C in Fig. 1 display the results when
averaging over 50 time series. The variations are in steps of
0,0.3,0.5,0.7,0.8, and 1 year (see x axes). We show both the
variations in the stochastic and functional models. The y axes
display the variations in the models in terms of percentage,
as discussed in the previous section.

The first result, which is common to all three figures,
is that the variations in terms of variance in the functional
model increases faster than for the results associated with the
stochastic model. Previous studies have shown that there is a

part of the noise amplitude absorbed in the functional model
(Williams, 2003; Montillet et al., 2015). In our scenario, the
estimation of the linear trend may fit partially into the power-
law noise; hence, reducing the variations in the stochastic
noise model. This effect can be amplified with higher spectral
indexes (Montillet and Bos, 2019). Now, Fig. 1 shows that,
over 1 year, the variations in the stochastic and functional
models are less than 4 % (on average) for small-amplitude
coloured noise, whereas when increasing the coloured noise
amplitude the variations increase quickly (e.g. more than
20 % for the large coloured noise amplitude corresponding to
the scenario C) . We assume that part of the large variations
in the coloured noise are wrongly absorbed in the estimation
of the functional model.

Now, Table 2 shows the standard deviation of the dif-
ference (mean square error) between the ARMA/FARIMA
model and the residuals (i.e. 1sj in Eq. 7). We do not dis-
play any mean because the fits of the models are done on
the zero-mean residuals. Note that the value is averaged over
50 simulations, together with the variations in the length of
the time series described above. Table 2 also displays the
average correlation between the distribution of the residu-
als and the normal or Lévy α–stable distribution. In agree-
ment with the theory, we can see that the ARMA model
fits residuals with small-amplitude coloured noise (bcl) well,
whereas with the increase in bcl the FARIMA model fits bet-
ter than the ARMA model. Looking at Table 3 in terms of
correlation, the Lévy α–stable distribution fits as well as the
normal distribution as long as the distribution of the resid-
uals is Gaussian without large tails or asymmetry. That is
why the Anderson–Darling test accepts the two distributions
when the residual time series is Gaussian distributed with-
out tails. In Sect. 2, we emphasized that the family of Lévy
α–stable distributions includes the normal distribution with
specific values for the parameters of the characteristic func-
tion (see Eq. 5). Thus, the results show that, for the ampli-
tude of coloured noise corresponding to scenario B (i.e. In-
termediate – in Tables 2 and 3), the two distributions show
similar results. However, scenario C can potentially gener-
ate some aggregation processes in the simulated time series
and introduce an asymmetry or large tails in the distribution
of the residuals; therefore, it emphasizes that the family of
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Figure 1. Percentage of variations in the estimated parameters included in the stochastic and functional models when varying the length of
the time series. The letters A, B, and C refer to the various scenarios with different coloured noise amplitudes.

Table 2. Statistics on the error when fitting the ARMA and FARIMA model to the residual time series following the three scenarios.

Error K Case A Case B Case C
(mm) bcl < 0.1mmyr−K/4 1mmyr−K/4 > bcl > 0.1mmyr−K/4 1mmyr−K/4 < bcl < 3mmyr−K/4

ARMA
1.0 1.44± 0.01 1.74± 0.01 1.89± 0.04
1.5 1.46± 0.01 1.76± 0.04 1.95± 0.05

FARIMA
1.0 1.91± 0.02 1.85± 0.02 1.46± 0.02
1.5 1.89± 0.01 1.75± 0.03 1.59± 0.05

Lévy α–stable distributions performs the best in modelling
the residuals’ distribution. To further support this result, we
have added the Anderson–Darling test (AD) (Anderson and
Darling, 1952) in order to test for the large tails in the dis-
tribution of the residuals in Table 3. However, we acknowl-
edge that the (Pearson) correlation coefficient could be bi-
ased due to the inherent normalized sum constraint between
the distributions estimated directly from the data. Therefore,
in this instance the AD test should be more reliable. The re-
sults displayed in Table 2 give the probability of not rejecting
the null hypothesis. Following our previous development, we
have used the normal and the Lévy α–stable distributions as
null hypotheses. The results show that this test detects mostly
large tails for scenario C, which corresponds to when the
family of Lévy α–stable distributions perform better than the
normal distribution.

Finally, those three scenarios support the theory where,
in the case of small-amplitude coloured noise, the stochas-
tic noise properties are dominated by the Gaussian noise
and, hence, define a third process as a Gaussian Lévy. How-
ever, the increase in the coloured noise amplitude shows that

it is much more difficult to discriminate between the frac-
tional Lévy and the stable Lévy. The results indicate that
the third process can be modelled as a stable Lévy pro-
cess when mostly the FARIMA fits the residuals due to
large-amplitude long-memory processes and, hence, creates
a heavy-tail distribution. This result is restrictive for the ap-
plication to geodetic time series.

3.1.2 Real time series

We process the daily position time series of the three GNSS
stations, namely DRAO, ASCO, and ALBH retrieved from
the SOPAC and PANGA websites. The functional model in-
cludes the tectonic rate, the first and second harmonic of the
seasonal signal, and the occurrence time of the offsets. This
occurrence time is obtained from the log file of each sta-
tion. However, ALBH is known to record slow-slip events
from the Cascadia subduction zone (Melbourne et al., 2005).
Thus, we include the offsets provided by the Pacific North-
west Geodetic Array (Miller et al., 1998). In this scenario,
we do not know which stochastic model could fit the best the
observations. Thus, we use the following two models: the
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Table 3. Correlation between the distribution of the residuals and the normal (corr. normal) distribution or the Lévy α–stable distribution
(corr. Lévy) and the Anderson–Darling test (AD) following scenarios A, B, and C. The result of the AD test is the probability over the 50
trials of not rejecting the null hypothesis. Lévy or normal means the type of distribution used as the null hypothesis.

Corr. (0− 1) K Case A Case B Case C
bcl < 0.1mmyr−K/4 1mmyr−K/4 > bcl > 0.1mmyr−K/4 1mmyr−K/4 < bcl < 3mmyr−K/4

Corr. normal 1.0 0.93± 0.04 0.92± 0.06 0.92± 0.04
1.5 0.92± 0.04 0.91± 0.04 0.91± 0.05

Corr. Lévy 1.0 0.92± 0.05 0.94± 0.04 0.96± 0.03
1.5 0.93± 0.03 0.94± 0.03 0.95± 0.03

AD test (normal) 1.0 0.98± 0.01 0.96± 0.01 0.94± 0.03
1.5 0.97± 0.01 0.96± 0.02 0.93± 0.04

AD test (Lévy) 1.0 0.97± 0.02 0.97± 0.01 0.97± 0.03
1.5 0.98± 0.01 0.97± 0.02 0.98± 0.02

PL+WN together with the FN+WN (see the Supplement
for the display of the time series and the fitting of the distri-
butions).

Similar to the previous section, Fig. 2 displays the per-
centage of variations in the stochastic and functional models
averaged over the eastern and northern coordinates of each
station. Because the up coordinate contains much more noise
than the eastern and northern coordinates (Williams et al.,
2004; Montillet et al., 2013), it amplifies the variation in both
stochastic and functional models.

Looking at Fig. 2, the first result is that for all the stations,
and there is a strong dependence on the selected noise model.
When selecting the power-law noise over the flicker noise
model, there is an additional variable to estimate (i.e. the
power-law noise exponent, K , in Eq. 4) within the stochastic
noise model. This dependence is already discussed in previ-
ous studies (He et al., 2017, 2019).

The second result is the large variations in the functional
model compared with the stochastic model. To recall the
simulation results, the functional model partially absorbs the
variations in the noise, i.e. the tectonic rate partially fits into
the power-law noise. In addition, to some extent at ASCO,
the sudden increase in the functional model variations at
0.5 year may be explained by the absorption of some of the
noise with the second harmonic of the seasonal signal.

When comparing the variations in the stochastic and func-
tional models with amplitude below 20 % for DRAO and
ASCO, the results agree with the definition of the fractional
Lévy process defined in Table 1 as third process modelling
the residuals of the eastern and northern components. The
variations in the functional model associated with ALBH are
much larger than the other two stations, especially for the
PL+WN model, with variations of up to 50 %. Those large
variations can be explained due to the slow-slip events and
the difficulty in modelling the post-seismic relaxations be-
tween two consecutive events (He et al., 2019).

Furthermore, Table 4 displays the statistics on the error
when fitting the ARMA and FARIMA models to the residu-
als estimated with the PL+WN stochastic noise model. Fig-

ure 3 shows the time series ASCO for the eastern coordinate
using the full time series (for more results, see the Supple-
ment). The FARIMA and ARMA models perform closely
for all three stations. The large value for the up coordinate
is due to the amplitude of the noise that is much larger for
this coordinate than for the eastern and northern components.
In terms of correlating the distribution of the residuals with
the normal and the Lévy α–stable distribution, the correlation
value is approximately the same for all stations, which indi-
cates that the distribution of the residuals are Gaussian with
the absence of large tails. The Anderson–Darling test also
confirms this result when the non-rejection of the null hy-
pothesis is the same for the two distributions. Those results
further support the selection of the fractional Lévy process as
the third stochastic process. However, the study of real time
series also underlines the difficulty in statistically character-
izing this third stochastic process. Note that the Anderson–
Darling test shows also that there are some variations for the
up coordinate where the Lévy α–stable distribution is only
selected. As discussed above, the noise on the up coordinate
is much larger than in the other coordinates; therefore, it may
create small tails.

3.2 Discussion on the limits of modelling with Lévy
processes

In Montillet and Yu (2015), it was assumed that the infinite
variance in the residual time series comes from large tails of
the distribution (i.e. heavy tails), generated by a large am-
plitude of coloured noise, outliers, and other remaining geo-
physical signals. The same study implied that the values of
the noise variance should be bounded to exclude extreme val-
ues. This is an important assumption when deciding whether
or not (symmetric) Lévy α–stable distributions can be used
to model any geodetic time series. This section investigates
how the variance due to residual tectonic rate or seasonal sig-
nal evolves with the length of the residual time series (i.e. L
observations).
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Figure 2. Percentage of variations in the estimated parameters included in the stochastic and functional models when varying the length of
the daily position GNSS time series corresponding to the stations DRAO, ASCO, and ALBH. The statistics are estimated over the eastern
and northern coordinates.

Table 4. Statistics on the error when fitting the ARMA and FARIMA model to the residual time series for each coordinate of the stations
ALBH, DRAO and ASCO based on the PL+WN stochastic noise model. Correlation between the distribution of the residuals and the normal
(corr. normal) and the Lévy α–stable distributions (corr. Lévy). The last column is the Anderson–Darling test. Lévy or normal mean the type
of distribution used as the null hypothesis (1 not rejected; 0 rejected).

ARMA (err. in mm) FARIMA (err. in mm) Corr. normal Corr. Lévy AD test (Lévy) AD test (normal)

DRAO

East 1.07± 0.01 1.10± 0.07 0.94 0.97 1 1
North 1.02± 0.02 1.01± 0.01 0.96 0.96 1 1
Up 2.32± 0.21 2.15± 0.30 0.97 0.98 1 1

ASCO

East 0.77± 0.01 0.77± 0.06 0.98 0.97 1 1
North 0.84± 0.03 0.73± 0.03 0.97 0.96 1 1
Up 2.71± 0.12 2.34± 0.17 0.92 0.96 1 0

ALBH

East 0.97± 0.06 0.87± 0.06 0.98 0.98 1 1
North 1.54± 0.03 1.06± 0.14 0.97 0.98 1 1
Up 4.36± 0.17 4.08± 0.25 0.92 0.95 1 0

To recall Sect. 2.1 and the assumption on the noise proper-
ties, let us develop the closed-form expressions for the mean
and variance of the residual time series. The residual time
series is 1s1 = [1s1(t1), . . .,1s1(tL)], as defined in Eq. (7).
The mean 〈1s1(L)〉 and variance σ 2(L) are computed over
L observations (i.e. considering the Lth observation defined
in time as tL = Ldt , with the sampling time dt being 1 for
simplification and without taking into account any data gaps
in order to have a continuous time series). Based on Papoulis
and Unnikrishna Pillai (2002), one can estimate 〈1s1(L)〉 in

the cases of a remaining linear trend such as the following:

1s1(ti)= arti + br+ n(ti)

〈1s1(L)〉 =
1
L

L∑
i=1
(arti + br+ n(ti))

= br+ ar
(L+ 1)

2
+µC

' ar
L

2
+µC, (10)
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Figure 3. GNSS time series for the ASCO station (eastern coordinate) with the PL+WN model. (a) The time series together with the
functional model, (b) the power-spectrum, (c) residual time series with Lévy α–stable distribution, (d) cumulative density function residual
time series, and Lévy α–stable distribution (Corr. Lévy= 0.98). (e) Residual time series with normal distribution and (f) cumulative density
function of the residual time series and normal distribution (corr. Norm.= 0.97).

where ar and br are the amplitude and the intercept of the re-
maining tectonic rate. The subscript r designates the residual
of a geophysical signal in the remainder.' is the approxima-
tion for L� 1. The variance σ 2(L) is the following:

σ 2(L) =
1
L

L∑
i=1
(1s1(ti)−〈1s1(L)〉)

2

= a2
r
(L+ 1)(2L+ 1)

6
− a2

r
(L+ 1)2

4
+ b2

r

+
2ar

L
Cross(ar,n)+ σ

2
n (L)−µC(µC+ ar(L+ 1))

'
a2

r L
2

12
+ σ 2

n (L)+ b
2
r −µCarL, (11)

where Cross(ar,n) is the cross term between arti and the
noise term n(ti). Now, if we assume that the remaining sea-
sonal signal Sr(t) is a pseudo-periodic function at frequen-

cies similar to the seasonal signal, then it takes the form
Sr(t)=

∑N
j=1(cr,j cos(dj t)+ er,j sin(dj t)). Thus, we can do

the same estimation as above in the case of a remaining
pseudo-periodic component with the residual time series,
such as in the following:

1s1(ti)= Sr(ti)+ n(ti)

〈1s1(L)〉 =
1
L

L∑
i=1
(Sr(ti)+ n(ti))

' δ+µC, (12)

where δ is the average of the remaining seasonal signal. It is
assumed to be independent of L and bounded as a periodic
function. The variance is the following:

σ 2(L) =
1
L

L∑
i=1

N∑
j=1

c2
r,j cos(dj t)2
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+ e2
r,j sin(dj t)2+ σ 2

n (L)

+
2
L

Cross(Sr,n)−〈1s1(L)〉
2

' σ 2
n (L)+

N∑
j=1

c2
r,j + e

2
r,j − (δ+µC)

2, (13)

with Cross(Sr,n) being the cross term between Sr(t) and
n(t). For all the cross terms, we assume that the determinis-
tic signals and the noise are completely uncorrelated, which
is valid with white Gaussian noise (e.g. signal processing;
Papoulis and Unnikrishna Pillai, 2002). As previously dis-
cussed in Sect. 2.1, the coloured noise is characterized by
long-memory processes, hence producing non-zero covari-
ance with residual signals. Due to the varying amplitude of
the coloured noise in geodetic time series with mixed spec-
tra, the assumption of uncorrelated components is currently
debated within the community (Herring et al., 2016; He et
al., 2017). Therefore, recent works have introduced a random
component together with a deterministic signal, namely non-
linear rate (Wang et al., 2016; Dmitrieva et al., 2017) and
non-deterministic seasonal signal (Davis et al., 2012; Chen
et al., 2015; Klos et al., 2018). Thus, strictly speaking, the
estimate σ 2 should be seen as an upper bound.

The closed-form solution of the variance σ 2(L) shows that
the variance is unbounded in the case of a residual linear
trend. If this residual trend originates from various sources
not well described in the functional and stochastic model (i.e.
undetected jumps and small-amplitude random-walk com-
ponent) of the geodetic time series, the amplitude of this
trend should be rather small (a < 1 mmyr−1) when consid-
ering the length of GNSS time series available until now
(L < 30 years). Unless this non-linear residual trend has a
large amplitude, a correction of the functional model must be
done a posteriori due to possible anxiety between the mod-
els and the observations. The same remarks can be applied to
the variance in the remaining seasonal signal where a large
amplitude would imply a misfit with the functional model.
Thus, we expect a rather small amplitude of the coefficients
cr,j and er,j (e.g. cr,j ∼ 0.1 mm to er,j ∼ 0.001 mm). Also,
in the Appendix A, we have developed a similar formula to
take into account undetected offsets, where we show that the
variance is also bounded. In this case, a large value would
mean that one or several large offsets have not been included
in the functional model.

4 Conclusions

We have investigated the statistical assumptions behind us-
ing the fBm and the family of Lévy α–stable distributions
in order to model the stochastic processes within the resid-
ual GNSS time series. We model the residual time series as a
sum of three stochastic processes. The first two processes are
defined from the stochastic model and assumptions on the

noise properties of the geodetic time series. The third pro-
cess is assumed to belong to the Lévy processes. We then
distinguish between three cases. In the case of a residual time
series containing only short-term processes, the process is a
Gaussian Lévy process. In the presence of long-term correla-
tions and self-similarity properties, fractional Lévy processes
can be seen as an alternative model to using the fBm. Due
to the linear relationship between the Hurst parameter and
the fractional parameter of the FARIMA, it is likely that the
FARIMA can fit the residual time series under specific condi-
tions (i.e. amplitude of the coloured noise). The third case is
the stable Lévy process, with the presence of long-term cor-
relations, high-amplitude aggregation processes, or random
walk.

In order to check our model, we have simulated mixed
spectra time series with various levels of coloured noise. We
have then developed an N -step methodology, based on vary-
ing the length of the time series, to study the variations in
the stochastic and functional models and also to model the
distribution of the residuals. The results emphasize the diffi-
culty in separating the fractional Lévy process and the stable
Lévy process mainly due to the absorption of the variations
in stochastic processes by the functional model, unless the
distribution of the residuals exhibits heavy tails.

The discussion on the limits of modelling the stochastic
properties of the residuals with the stable Lévy process un-
derlines that the infinite variance property can only be satis-
fied in the case of heavy-tailed distributions resulting from
(1) the presence of a large-amplitude random walk (e.g. tem-
poral aggregation in financial time series), (2) an important
misfit between the models (i.e. functional and stochastic) and
the observations, which means that there is anxiety in the
choice of the functional model (e.g. unmodelled large jumps,
large outliers). With longer and longer time series, one may
be able to statistically characterize the third stochastic pro-
cess more precisely. Finally, future work should investigate
the autoregressive conditional heteroscedasticity (ARCH)
model applied to GNSS time series in order to model dif-
ferently the stochastic properties (e.g. non-stationary beyond
the mean).

https://doi.org/10.5194/npg-28-121-2021 Nonlin. Processes Geophys., 28, 121–134, 2021



132 J.-P. Montillet et al.: Application of Lévy processes in modelling (geodetic) time series

Appendix A: Estimation of the variance in the presence
of offsets

Here, we model the offsets in the time series as Heavi-
side step functions according to He et al. (2017). Following
Sect. 3.2, the residual time series in presence of remaining
offsets can be written as follows:

1s1(ti)=

ng∑
k=1

gkH(ti − Tk)+ n(ti), (A1)

where H is the Heaviside step function, gk is the amplitude
of the offset, Tk is the time of occurrence of the offset, ng is
the number of offsets, and n is the noise. One can estimate
the average over L observations as follows:

〈1s1(L)〉 =
1
L

∑L

i=1

(∑ng
k=1

gkH(ti − Tk)
)
+µC(t)

=
1
L

∑ng
k=1gkH(tL− Tk)+µC(t).

(A2)

µC(t) is the mean of the coloured noise, slowly varying in
time (see Sect. 2.1). The variance is the following:

σ 2(L) =
1
L

∑L

i=1

(
ng∑
k=1

gkH(ti − Tk)+ n(ti)−〈1s1(L)〉

)2

' σ 2
n (L)+

1
L

(
ng∑
k=1

gkH(tL− Tk)

)2

− (〈1s1(L)〉)
2.

(A3)

In the presence of small (undetectable) offsets (gk <
1mm), we can further assume that 〈1s1(L)〉 ∼ µC(t) and
σ 2(L)∼ σ 2

n (L)−µ
2
C(t). For multiple, large, uncorrected off-

sets (i.e. noticeable above the noise floor), the variance can
be large, but the distribution of the residual time series should
look like multiple Gaussian distributions overlapping each
other and correspond to the segments of the time series de-
fined by those noticeable offsets. This case is not taken into
account in our assumptions summarized in Table 1 because it
supposes that there is a large anxiety about the chosen func-
tional model (i.e. obviously missing some large, noticeable
offsets well above the noise floor). For a comprehensive dis-
cussion about offset detection, we invite readers to refer to
Gazeaux et al. (2013) and He et al. (2017).
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