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S3.1. Geophysical model and ML Estimator

Following Section 2.1 in order to obtain the residual time series x(t) (t the epoch), we subtract the functional model s0(t)
from the GNSS observations s(t) (see Eq. (1)). The functional model of the geophysical signals is based on the polynomial
trigonometric method (Li et al. , 2000; Williams , 2003; Tregoning and Watson , 2009).

s0(t) = at+ b+

N∑
j=1

(cj cos(djt) + ej sin(djt)) (S1.1)5

with s0(t) the sum of the tectonic rate (with coefficient a and b) and the seasonal signal (sum of cos and sin functions with
coefficients cj and ej). Note that dj is equal to 2πj/N , and N can be equal up to 7 (He et al. , 2017). One can also add a
Heaviside step function at time ti in order to estimate the amplitude of an offsets (see appendix). It should be emphasised
that the geophysical model is selected based on the surrounding geodynamical activity around the GNSS stations (Montillet
and Bos , 2019). Finally, the residual signal is considered to be the remaining geophysical signals (i.e. seasonal component10
and tectonic rate) not completely estimated due to the mismodelling of the stochastic properties of the time series and other
small amplitude (i.e. sub-millimeter) short-time duration transient signals (i.e. local signals, subsidence, ... ) (Bos et al. , 2013;
Montillet et al. , 2015; Herring et al. , 2016; He et al. , 2017).

In this study, the Hector software is used to estimate jointly the functional and stochastic models in order to produce the
residual time series as described in Section 2.4. The software is based on a maximum likelihood estimator (MLE). To recall15
Eq. (3), the log-likelihood for a time series of length L is :

ln(Lo) =−1

2

[
L ln(2π) + ln(det(C)) + (s−Az)TC−1(s−Az)

]
(S1.2)

The covariance matrix C is assumed to be known. The term (s−Az) represents the observations minus the fitted model.
(Az) is the matrix notation of s0(t). The last term is a quadratic function, weighted by the inverse of matrix C.

Now let us compute the derivative of ln(Lo):20

d ln(Lo)

dz
= ATC−1s−ATC−1(Az) (S1.3)

The minimum of ln(Lo) occurs when this derivative is zero. Thus:

ATC−1(Az) = ATC−1s → z =
(
ATC−1A

)−1
ATC−1s (S1.4)

This is the weighted least-squares equation to estimate the parameters z. Most derivations of this equation focus on the
minimisation of the quadratic cost function. However, here we highlight the fact that for observations that contain Gaussian25
multivariate noise, the weighted least-squares estimator is a maximum likelihood estimator (MLE). Therefore, the Hector
software estimates the functional and stochastic parameters via the MLE. Note that in our case C is not a constant, because we
assume that the time series contain white and coloured noise. In fact C is equal to the covariance matrix E{nTn} in Section
2.1. Thus, the expression of C changes depending on the selection of the stochastic noise model (i.e. Flicker + White noise,
Power-law + white noise) discussed in Section 2. Further assumptions (i.e. matrix computation) to increase the computational30
speed can be found in (Bos et al. , 2013) and (Montillet and Bos , 2019). Finally, the Gaussian multivariate noise model (or
Gauss-Markov assumption ) holds with the additional assumption that the coloured noise is slowly varying which means that
1/ the noise is non-stationary around the mean, and 2/ no intermittency in the time series, i.e. no events creating short high
bursts or sudden large deviations for the mean.
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S3.2. Relationship between the FARIMA, ARMA and fBm35

Following Granger and Joyeux (1980), Panas (2001) and Pipiras and Taqqu (2017), a time series (e.g., x) follows an FARIMA
(p,d,q) process if it can be defined by

Ψp(Z)x(t) = Θk(Z)(1−Z)−db(t)

Ψp(Z) = 1− a1 ∗Z − a2 ∗Z2− ...− ap ∗Zp

Θq(Z) = 1 + b1 ∗Z + b2 ∗Z2 + ...+ bk ∗Zq40

(1−Z)−d =

∞∑
j=0

Γ(j+ d)

Γ(j+ 1)Γ(d)
∗Zj (S1.5)

where E{b} equal zero and σ2
b <∞. Z is the backshift operator applied to x (t) and b (t), respectively. The properties of the

FARIMA model are presented by Granger and Joyeux (1980): i) if the roots of Φp(Z) and Θq(Z) are outside the unit circle
and d < |0.5|, then x is both stationary and invertible; ii) if 0< d < 0.5 the FARIMA model is capable of generating stationary
series which are persistent. In this case the process displays long-memory characteristics, with an algebraic autocorrelation45
decay to zero; iii) if d≥ 0.5 the process is non-stationary ; iv) when d equal to 0 it is an ARMA process exhibiting short
memory; v) when −0.5≤ d < 0 the FARIMA process is said to exhibit intermediate memory or anti-persistence. This is very
similar to the description of the Hurst parameter in the fBm model. Note that one can underline the relationship between d and
H such as H = d+ 0.5, well-known in financial time series analysis in the presence of aggregation processes (Panas , 2001).
The fBm can be defined by its integral representation (see previous section) or the aggregation of fractional Gaussian noise50
(Taqqu et al. , 1995).

S3.3. fBm and fLsm: integral representation and discussion

The fractional Brownian motion (fBm) {BH(t)}t≥0 has the integral representation:

BH(t) =

∞∫
−∞

(
(t−u)

H− 1
2

+ − (−u)
H− 1

2
+

)
dB(u) (S1.6)

where x+ =max(x,0) and B(u) is a Brownian motion (Bm). It is H-self-similar with stationary increments and it is the55
only Gaussian process with such properties for 0<H < 1 (Samorodnitsky and Taqqu , 1994). It is worth mentioning that a
damped version of the fBm exists and known as the Matérn process, defined having a sloped spectrum that matches fBm at
high frequencies and taking on a constant value in the vicinity of zero frequency (Lilly et al. , 2017). However, this process is
out of the scope of this study.

From Weron et al. (2005), the fractional Lévy stable motion (fLsm) can be defined with the process {ZHα (t)} (with t in R)60
by the following integral representation:

ZHα (t) =

∞∫
−∞

(
(t−u)

H− 1
α

+ − (−u)
H− 1

α
+

)
dZα(u)

=

∞∫
−∞

ft(u)dZα(u) (S1.7)

whereZα(u) is a symmetric Lévy-stable motion (Lsm). The integral is well defined for 0<H < 1 and 0< α≤ 2 as a weighted
average of the Lévy stable motion Zα(u) over the infinite past with the weight given by the above integral kernel denoted by65
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ft(u). The process ZHα (t) is H-self-similar and has stationary increments. H-self-similarity follows from the above integral
representation and the fact that the kernel ft(u) is r-self-similar with r =H − 1/α, when the integrator Zα(u) is 1/α-self-
similar. This implies the following important relation:

H = r+ 1/α (S1.8)

The representation of fLsm in Eq. (S1.7) is similar to the representation (S1.6) of the fractional Brownian motion. Therefore70
fLsm reduces to the fractional Brownian motion if one sets α= 2. When we put H = 1/α we obtain the Lévy α-stable motion
which is an extension of the Brownian motion to the α-stable case. At the contrary to the Gaussian case (α= 2) the Lévy
α-stable motion (0< α < 2) is not the only 1/α-self-similar Lévy α-stable process with stationary increments. This is true
for 0< α < 1 only (Weron et al. , 2005). Note that this definition of the Fractional Lévy process is different from Benassi
et al. (2004), which is not a self-similar process. Finally, another type of processes worth mentioning is the Cauchy-class of75
processes, which consist of the stationary Gaussian random processes defined by a correlation function which depends on the
Hurst parameter which can be seen as the generalization of some stochastic models (Gneiting and Schlather , 2004).

S3.4. Some Considerations on the Simulations of the Mixed Noise in the GNSS time Series

This section recalls one way to simulate the coloured noise in the GNSS time series following Montillet and Bos (2019).
Granger and Joyeux (1980) and Hosking (1981) demonstrated that power-law noise can be achieved using fractional differ-80
encing of Gaussian noise:

(1−B)−K/2v = w (S1.9)

where B is the backward-shift operator (Bvi = vi−1) and v a vector with independent and identically distributed (IID)
Gaussian noise. Hosking and Granger used the parameter d for the fraction −K/2 which is more concise when one focuses on
the fractional differencing aspect. However, in Geodesy the spectral index K is used in the equations. Hosking’s definition of85
the fractional differencing is:

(1−B)−K/2 =

∞∑
i=0

(
−K/2
i

)
(−B)i

= 1− K

2
B− 1

2

K

2
(1− K

2
)B2 + . . .

=

∞∑
i=0

hi (S1.10)

The coefficients hi can be viewed as a filter that is applied to the independent white noise. These coefficients can be conve-
niently computed using the following recurrence relation (Kasdin , 1995):

h0 = 1

hi = (i− K

2
− 1)

hi−1
i

for i > 0 (S1.11)90

One can see that for increasing i, the fraction (i−K/2− 1)/i is slightly less than 1. Thus, the coefficients hi only decrease
very slowly to zero. This implies that the current noise value wi depends on many previous values of v. In other words, the
noise has a long-memory. Eq. (S1.11) also shows that when the spectral index K = 0, then all coefficients hi are zero except
for h0. This implies that there is no temporal correlation between the noise values. One normally assumes that vi = 0 for i < 0.
With this assumption, the unit covariance between wk and wl with l > k is:95

C(wk,wl) =

k∑
i=0

hihi+(l−k) (S1.12)
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Since K = 0 produces an identity matrix, the associated white noise covariance matrix is represented by the unit matrix
I . The general power-law covariance matrix is represented by matrix J following Williams (2003). It is a widely used
combination of noise models to describe the noise in GNSS time series (Williams et al. , 2004). Besides the parameters of
the linear model (i.e. the functional model), maximum likelihood estimation can be used to also estimate the parameters K,100
σpl and σwn. This approach has been implemented various software packages including Hector (Bos et al. , 2013).

We assumed that vi = 0 for i < 0 which corresponds to no noise before the first observation. This is an important assumption
that has been introduced for a practical reason. For a spectral index K smaller than −1, the noise becomes non-stationary.
Most GNSS time series contain flicker noise which is just non-stationary. Using the assumption of zero noise before the first
observation, the covariance matrix slowly grows over time but always remains finite.105

S3.5. Additional Tables and Figures

Table S6.1. Statistics on the Error when fitting the ARMA and FARIMA model to the residual time series for each coordinate of the stations
ALBH , DRAO and ASCO based on the FN +WN stochastic noise model. Correlation between the distribution of the residuals and the
Normal (Corr. Normal ) and the Lévy α-stable distributions (Corr. Lévy ). The last column is the Anderson-Darling test. [Lévy ] or [Normal
] means the type of distribution uses as the null hypothesis (1 not rejected, 0 rejected).

DRAO (err. in mm) ARMA (err. in mm) FARIMA Corr. Normal Corr. Lévy AD test [Lévy ] AD test [Normal ]
East 1.07 ± 0.01 1.00 ± 0.02 0.95 0.95 1 1
North 1.02 ± 0.02 1.32 ± 0.07 0.96 0.98 1 1
Up 2.33 ± 0.18 2.20 ± 0.32 0.94 0.96 1 1

ASCO
East 0.77 ± 0.01 0.75 ± 0.07 0.95 0.96 1 1
North 0.85 ± 0.03 0.74 ± 0.05 0.94 0.96 1 1
Up 2.18 ± 0.14 2.51 ± 0.21 0.93 0.94 1 1

ALBH
East 0.97 ± 0.04 0.86 ± 0.06 0.95 0.95 1 1
North 1.52 ± 0.08 1.08 ± 0.10 0.96 0.95 1 1
Up 3.83 ± 0.21 3.32 ± 0.15 0.93 0.95 1 0
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Figure S5.1. Percentage of variations of the estimated parameters included in the stochastic and functional models when varying the length
of the daily position GNSS time series corresponding to the stationsDRAO,ASCO andALBH . The statistics are estimated over the East,
North and Up coordinates
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Figure S5.2. GNSS time series for the DRAO station (North coordinate) with the FN +WN model. A/ the time series together with the
functional model, B/ the power-spectrum, C/ Residual time series with Lévy α-stable distribution, D/ cumulative density function residual
time series and Lévy α-stable distribution (Corr. Lévy = 0.98), E/ Residual time series with Normal distribution, F/ cumulative density
function of the residual time series and Normal distribution (Corr. Norm. = 0.96).
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Figure S5.3. GNSS time series for the ALBH station (East coordinate) with the PL+WN model. A/ the time series together with the
functional model, B/ the power-spectrum, C/ Residual time series with Lévy α-stable distribution, D/ cumulative density function residual
time series and Lévy α-stable distribution (Corr. Lévy = 0.98), E/ Residual time series with Normal distribution, F/ cumulative density
function of the residual time series and Normal distribution (Corr. Norm. = 0.98).
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Figure S5.4. GNSS time series for DRAO (Up coordinate) with the PL+WN model. A/ the time series together with the functional
model, B/ the power-spectrum, C/ Residual time series with Lévy α-stable distribution, D/ cumulative density function residual time series
and Lévy α-stable distribution(Corr. Lévy = 0.98), E/ Residual time series with Normal distribution, F/ cumulative density function of the
residual time series and Normal distribution(Corr. Norm. = 0.97).
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