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Abstract. Climate change is expressed as a climate system
transiting from the initial state to a new state in a short time.
The period between the initial state and the new state is de-
fined as the transition process, which is the key part for con-
necting the two states. By using a piece-wise function, the
transition process is stated approximately (Mudelsee, 2000).
However, the dynamic processes are not included in the
piece-wise function. Thus, we proposed a method (Yan et
al., 2015, 2016) to fit the transition process by using a con-
tinuous function. In this paper, this method is further devel-
oped for predicting the uncompleted transition process based
on the dynamic characteristics of the continuous function.
We introduce this prediction method in detail and apply it to
three ideal time sequences and the Pacific Decadal Oscilla-
tion (PDO). The PDO is a long-lasting El Niño-like pattern
of Pacific climate variability (Barnett et al., 1999; Newman
et al., 2016). A new quantitative relationship during the tran-
sition process has been revealed, and it explores a nonlinear
relationship between the linear trend and the amplitude (dif-
ference) between the initial state and the end state. As the
transition process begins, the initial state and the linear trend
are estimated. Then, according to the relationship, the end
state and end moment of the uncompleted transition process
are predicted.

1 Introduction

A system transiting from one stable state to another in a short
period is called abrupt change (Charney and DeVore, 1979;
Lorenz, 1963, 1976). The abrupt change system has two or
more states (Goldblatt et al., 2006; Alexander et al., 2012);
the system swings between these states that are also called
equilibrium states in physics. This phenomena is verified in
many fields, including biology (Nozaki, 2001), ecology (Os-
terkamp et al., 2001), climatology (Thom, 1972; Overpeck
and Cole, 2006; Yang et al., 2013a, b), brain science (Sher-
man et al., 1981), etc. The cusp catastrophe has been widely
detected in climatology. Many researchers studied the char-
acteristics and early warning signals of the cusp catastro-
phe (Lenton, 2012; Pierini, 2012; Livina et al., 2012). The
latest observed climate change event was a global warning
hiatus (Amaya et al., 2018; Kosaka and Xie, 2013; Yang
et al, 2017). In Thom’s research (1972), seven different
kinds of abrupt changes were mentioned. Over the last sev-
eral decades, many methods have been proposed to iden-
tify different kinds of abrupt change (Li et al., 1996), such
as the moving t test, Cramer’s (Wei, 1999), Mann–Kendall
(MK; Goossens and Berger, 1986), Fisher (Cabezas and Fath,
2002), etc. It is noticed that most abrupt change detection
methods suggest that the abrupt change is around a turning
point. The significant difference between the average values
of the two sequences on both two sides of the turning point
is defined as the index for measuring the abrupt change. It
is difficult for these kinds of methods to detect the transition
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period of the abrupt change, and it is difficult to identify the
abrupt change that occurs at the end of sequence.

Mudelsee (2000) studied the abrupt change in a time se-
quence and illustrated that abrupt change has a duration
which can be quantitatively described with a piece-wise
(ramp) function. We developed the detection method by us-
ing a continuous function to replace the ramp function (Yan
et al., 2014, 2015). The new method can confine the begin-
ning and ending points of abrupt change, and it quantitatively
describes the process of abrupt climate change, and three pa-
rameters are introduced. A quantitative relationship among
the parameters is revealed (Yan et al., 2015). The relationship
could be used to predict the end moment (state) if the system
had left the original state but not yet reached to the new state,
which is defined as an uncompleted transition process.

In this paper, three ideal time sequences are tested to study
the prediction method. The prediction method is also applied
to study the climate transition process of the PDO, which is
an important signal that reveals climatic variability on the
decadal timescale (Mantua et al., 1997; Barnett et al., 1999;
Zhang et al., 1997; Yang et al., 2004). Previous studies (Lu
et al., 2013; Trenberth and Hurrell, 1994) have indicated
that there have been many abrupt changes in the PDO over
the past 100 years. Most researches mentioned the climate
changes happened in the 1940s and 1970s. During the 1940s,
the PDO transited from a high state to a low state, while dur-
ing the 1970s it did the opposite. All of these changes and
their processes were studied in our previous research (Yan
et al., 2015, 2016). The climate transition processes were
explored clearly. However, we still cannot know when the
transition processes finish their increasing or decreasing to a
stable state once the transition process has begun. We have
developed a new method to predict the end state and the end
moment of a transition process based on the quantitative re-
lationship.

2 Methods

It is necessary to describe the transition process quantita-
tively before the prediction of the uncompleted climate tran-
sition process. The detection method by using the logistic
model to obtain a transition process is introduced in Sect. 2.1.
On the basis of the detection method, the prediction method
for studying the uncompleted transition process is further de-
veloped in Sect. 2.2.

2.1 The detection method of the transition process

The real time sequence changes abruptly as shown in Fig. 1a,
and the system jumps to a high state in point C. If the period
around point C is observed on a shorter timescale (as shown
in Fig. 1b), a transition period is obtained, and it is a part
of the original time sequence. In fact, many abrupt changes
could be considered to be a transition period with a more de-

tailed view. The transition period was expressed with a ramp
function in Mudelsee’s research (2000), as shown in Fig. 1c,
and the time sequence is divided into three segments, includ-
ing two equilibrium states and one increasing state. The ramp
function is as follows:

xt =


x1 t ≤ t1

x1+ (t − t1)(x2− x1)/(t2− t1) t1 < t ≤ t2

x2 t > t2

, (1)

where t represents time, and xt represents the system state.
Before t1 and after t2, the system stays in the two equilib-
rium states, namely x1 and x2. Between t1 and t2, the sys-
tem’s states are a straight line. It is noted that the climate
system should be smooth and continuous; it is even the sam-
pling sequence that makes it is discrete. We used a continu-
ous function to express this transition period approximately,
and we also created a novel method for detecting the transi-
tion period (Yan et al., 2015). As shown in Fig. 1d, the tran-
sition process is consistent with the continuous evolution of
the logistic model, which was created to describe the evolu-
tion of population model (May, 1976). The modified logistic
model with two changeable equilibrium states is expressed
as Eq. (2), in which x represents variable of system state, as
follows:
dx
dt
= k(x− u)(v− x). (2)

Parameters u and v represent the two equilibrium states, re-
spectively. Parameter u represents the initial state, and pa-
rameter v represents the end state. Parameter k represents the
switching between different states, and it is defined as the in-
stability parameter. As shown in Fig. 2a, parameters u and v
are fixed, and setting k as 0.4 (the dash gray line), the sys-
tem, increasing to the new state, uses a shorter time than that
setting k as 0.3 (the black line). It is noted that if k < 0 (as
v = 1.0, u= 2.0 and k =−0.4), the system decreases from
state 2.0 to state 1.0 as the gray line. This states that if the
absolute value of k is relatively large, then the transition time
of the system is shorter; that is, the more unstable it is (Yan
et al., 2016). If parameter k is set large enough, the system
collapses and becomes chaotic, as shown in Fig. 2b.

In Eq. (2), the first derivative of the state variable to time
is given, and it is regarded as velocity. The acceleration d2x

dt2
of the state variable is expressed as the derivative of velocity
to time, as shown in Eq. (3). The acceleration of the sys-
tem is from the external force f (x), which is expressed as
f (x)=m d2x

dt2 . Assuming that the coefficient m is 1, the gen-
eralized potential energy (Benzi et al., 1982) is expressed as
the integral of the generalized force to the state, as shown in
Eq. (4), as follows:

f (x)=
d2x

dt2

=
d[k(x− u)(v− x)]

dt
=

d(−kx2
+ k(u+ v)x− kuv]

dt
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Figure 1. Transition process of abrupt change in a real time sequence and an ideal time sequence. (a) The Pacific Decadal Oscillation
(PDO) time sequence during 1920–1970. (b) The PDO time sequence during 1940–1945. (c) The transition process presented by piece-wise
function. (d) The transition process presented by continuous function.

Table 1. The parameters of ideal models.

Situations α χ h0 h |h0−h|/h

S1 0.20 21.64E−2 12.99E−4 12.69E−4 2.36 %
S2 0.25 22.76E−2 9.10E−4 8.90E−4 2.25 %
S3 0.15 20.18E−2 32.27E−4 32.72E−4 1.38 %

= [−2kx+ k(v+ u)]
dx
dt

= 2k2
[x− (u+ v)/2](x− u)(x− v)

= k2
[2x3
− 2(u+ v)x2

+

(
u2
+ v2
+ 4uv

)
x (3)

− (u+ v)uv],

V (x)=−

x∫
0

f (x)dx

=−

x∫
0

k2[2x3
− 2(u+ v)x2

+

(
u2
+ v2
+ 4uv

)
x

− (u+ v)uv
]
dx

=
k2

2

[
x4
− 2(u+ v)x3

+

(
u2
+ v2
+ 4uv

)
x2

− 2(u+ v)uvx
]
. (4)

According to Thom’s theory (1972), the generalized poten-
tial energy of the system described by a quartic function
would exhibit a cusp catastrophe in which the system jumps
abruptly from one state to a new state.

In Fig. 2c, the potential energy of Eq. (4) is verified as hav-
ing two states with the lowest energy, and both of them are
stable. This bistable structure is common in the climate sys-
tem (Goldblatt et al., 2006). Therefore, Eq. (2) can be used
to describe the abrupt change system, and the parameters of
Eq. (2) represent different key factors of the transition pe-
riod during abrupt change. In order to obtain the values of
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Figure 2. (a) The transition processes of the system swinging between different stable states since the parameters are different. (b) The
system stays in unstable states. (c) The generalized potential energy function of the system performs differently since the parameters are
different. (d) Different segments of the transition process in the ideal time sequence.

Figure 3. The relationship among the parameters α, β, χ and h. (a) Diagonal section of parameter χ in (b) (gray line). (b) Parameter χ with
location parameters α and β. (c) Points A and B stay in different positions in the three situations marked as S1, S2 and S3, and the dashed
lines connect the two points.
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Figure 4. The schematic diagram of the prediction method.

the parameters, the time sequence is divided into three seg-
ments. The first and the third segment represent the two equi-
librium states, while the second segment represents the tran-
sition process. During the transition process, we define a new
parameter h to represent the ratio of system state change to
time, and it is called the linear trend. As Eq. (5) shows, the
linear trend h can be expressed by two points on the curve,
approximately where the two points are A (xa , ta) and B (xb,
tb), which are displayed in Fig. 2d, as follows:

h=
xa − xb

ta − tb
. (5)

In Eq. (6), the values of parameters v and u are calculated.
The value of parameter h can be calculated by the regression
method (Huang, 1990; Yang et al., 2013a) based on the time
sequence of the second segment, where i and xi denote the
time and the system state, and ī and x̄i are their averages,
respectively. Variables n1, n2 and n3 represent the lengths of
the first, the second and the third segment, respectively.
v =

∑n1
i=1xi/n1

u=
∑n
i=n1+n2+1xi/n3

h=
∑n1+n2
i=n1+1 ī · x̄i/

∑n1+n2
i=n1+1 ī

2.

(6)

The points A (xa , ta) and B (xb, tb) are also on the curve;
thus, we are going to calculate the solution of Eq. (2). Equa-
tion (2) is rewritten as Eq. (7), and both sides of the Eq. (7)
are integrated as Eq. (8), as follows:

dt =
dx

k(x− u)(v− x)
, (7)

t∫
t0

dt =

x∫
x0

1
k(u− v)

(
1

x− u
−

1
x− v

)
dx

⇒ t |tt0 =
1

k(u− v)
ln
(
x− v

x− u

)∣∣∣∣x
x0

⇒ t =
1

k(u− v)
ln
(
x− v

x− u
·
x0− u

x0− v

)
+ t0, (8)

where the variables t0 and x0 represent the initial time and
the initial state, respectively. The transition process has been
assumed to be linear; thus, we define location parameters α
and β as α = xa−v

u−v
,β =

xb−v
u−v

, and xa and xb are expressed
as follows:{
xa = α(u− v)+ v

xb = β(u− v)+ v.
(9)

Substituting Eqs. (8) and (9) into Eq. (7), we have the follow-
ing:

h=
xb− xa

tb− ta
=

(β −α)(u− v)

1
k(u−v)

(
ln
(
xb−v
xb−u

)
− ln

(
xa−v
xa−u

))
= k(u− v)2

(β −α)

ln β(α−1)
α(β−1)

. (10)

It is noted that the rightmost part is only related to parameters
α and β; then, let it be χ . Then, the relationship of Eq. (10)
is rewritten as Eq. (11), as follows:

h= k(u− v)2χ. (11)

The difference between the initial state v and the end state u
and u−v, is called as the amplitude of change. In order to de-
termine the value of parameter χ , the relationship among χ ,
α and β is displayed in Fig. 3b. The dashed line in Fig. 3a
is the profile of the diagonal in Fig. 3b, which represents
that the sum of α and β is one. Parameter χ changes lit-
tle when the location parameter varies in a certain range, as
marked with warm color in Fig. 3b. It means that the closer
the points (A and B) are to the middle point, the more sig-
nificant the linear feature is. Then, the process between point
A and point B can represent the whole transition process,
as shown in Fig. 3c. It is noted that the transition process is
symmetrical about the middle point approximately. Thus, we
assume that point A and point B are symmetrical about the
middle point, and the sum of α and β is one. The change in
parameter χ is only related to parameter α (or parameter β),
as shown in the diagonals in Fig. 3b (also in Fig. 3a). Pa-
rameter χ changes little when parameter α is about 0.2 or
larger. In Fig. 3c, three different situations are carried out to
study the influence of parameter α on parameter χ . In each
situation, points (A and B) are set to be different positions,
and their parameters were calculated, respectively, in Table 1.
The parameters α are set as 0.20, 0.25 and 0.15, respectively,
in three different situations marked with S1, S2 and S3. For
S2 and S3, both of the percentages of α that are changing to
S1 are 25 %, while the percentages of χ that are changing are
only 5.15 % and 6.76 %, respectively, which means the per-
centage change in χ is much less than α. In addition, linear
trends of these three ideal models are calculated according to
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Figure 5. The ideal time sequence constructed by the logistic model and random numbers. The x axis represents time, and the y axis
represents variable x′t . (a) Completed transition process with 500 moments, uncompleted transition processes (the gray lines) and their
prediction results (the blue lines) with (b) 240 moments, (c) 250 moments and (d) 260 moments. The light gray lines are the original entire
ideal time sequences.

Table 2. Parameters v and h have been obtained with different sub-
sequences.

Length of Start moment v h

subsequence (year, month) (month−1)

10a 2011.06 −0.45 1.054
20a 2011.06 −0.03 1.054
30a 2007.11 0.36 0.227
40a 2007.11 0.41 0.227

the points and by regression method, which is marked as h0
in Table 1. The linear trends are also calculated by the values
of point A and point B with Eq. (5), which is marked as h in
Table 1. It is noted that although the positions of points are
different, the trend obtained according to the points is almost
the same as that obtained by the regression method. The er-
ror percentages are 2.36 %, 2.25 % and 1.38 %, respectively,
which means that we do not have to know the exact positions
of point A and B (the values of parameters α and β). We can
approximate the value of χ . Thus, in the following sections,
parameter α is set as 0.2, and parameter χ is 0.2164.

2.2 The prediction method of the transition process

Equation (11) shows the quantitative relationship among the
linear trend, instability parameter and amplitude of change.
There is a linear relationship between the linear trend and
instability parameter, and there is a quadratic function rela-
tionship between linear trend and amplitude of change. We
revealed this quantitative relationship based on sea surface
temperature (Yan et al., 2016). According to this relation-
ship, we are going to develop a new method for predicting the
transition process which has not been completed. A brief de-
scription about the new method is shown with the schematic
diagram in Fig. 4. The red line represents the period which
has been experienced, while the gray line represents the pe-
riod which has not been experienced. Based on the system
states which are far away from the original state, a quasi-
linear extension of the transition process is established as
dashed line. Then, the parameters v and h are obtained by
Eq. (6). The instability parameter k represents the stability of
abrupt changes in the system, which means that it is related to
the system. Its threshold can be estimated by historical data.
The parameter u is predicted by Eq. (11), and the end mo-
ment can be determined according to the definition of linear
trend h.

In order to test the prediction method, an ideal time se-
quence is constructed by using Eq. (12), which is the sum of
the logistic model and random numbers, where ηt represents
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Figure 6. Identification of the PDO time sequence and instability parameter k with different subsequence lengths. (a) The histogram rep-
resents the PDO time sequence (left y axis), and the green dots indicate the value of parameter k when the subsequence is 20 years (right
y axis), where the x axis represents time in year. (b) The start moments of transition processes with different subsequence lengths (the red
dots represent increasing processes, and blue dots represent decreasing changes, with deeper colors representing higher values). The green
line shows that the value of the subsequence is 20 years. The x axis represents the start moment of abrupt change in year, and the y axis
represents the subsequence length in years.

the random number, as follows:{
xt = xt−1+ kt (xt − u)(v− xt )

x′t = xt + ηt .
(12)

As seen in Fig. 5, an entire time sequence with 500 moments
is shown in Fig. 5a and three other time sequences with dif-
ferent lengths are shown in Fig. 5b, c and d, respectively. The
parameters v, u and k of the logistic model are set as −1.0,
2.0 and 0.1 for the ideal time sequence, and the random num-
ber is limited to 0–1. The parameters v and h are obtained by
the regression method before making the prediction. It has
to be noted that in this ideal time sequence there is just one

abrupt change, which means that we have no way of obtain-
ing the value of the parameter k by counting other abrupt
changes. Thus parameter k is given directly, and the predic-
tion of the end state (moment) is drawn in Fig. 5b, c and
d. For the entire time sequence, there are 500 moments, as
shown in Fig. 5a. In Fig. 5b, only 240 moments are given, and
the other moments are unknown. Then, we obtain parameters
v and h by the regression method. The parameter u is calcu-
lated with Eq. (6). The blue line represents the prediction re-
sult. The transition process would end in moment 342, with
the end state value of 2.92. In Fig. 5c, the end moment and
end state are predicted to be 356 and 2.65, respectively, when
the time sequence is given 250 moments. In Fig. 5d, the time
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Figure 7. Statistical results of instability parameters for different
subsequences lengths. The x axis is the value of parameter k, and
the y axis is the statistical frequency for the subsequence length of
10a, 20a, 30a, 40a, 50a and 60a.

sequence is given 260 moments. The end moment and end
state are predicted to be 359 and 2.58, respectively. The pre-
dicted end moment and the predicted end state are basically
consistent with the original time sequences. However, the av-
erage absolute prediction errors of the three time sequences
are 0.37, 0.27 and 0.26, respectively. When the length of the
sequence is 240, the prediction state is overestimated, and the
average absolute prediction error is 0.37. With the length of
the system experiencing expansion, the prediction error de-
creases. The prediction states are very close to the original
states when the length is 260. Therefore, in the actual pre-
diction, we hope that the transition process has been experi-
enced for a long enough time, which will help us to predict
accurately.

3 Results

In order to test the validity of this prediction method in a
real climate system, we apply this method to predict the
uncompleted transition process of the PDO. The PDO in-
dex data used are from website of the National Oceanic and
Atmosphere Administration (NOAA; https://psl.noaa.gov/
gcos_wgsp/Timeseries/Data/pdo.long.data, last access: Oc-
tober 2020). The time period from January 1900 to Novem-
ber 2015 is studied as the training data, and the time period
from December 2015 to April 2017 is used as the test data.
During the following research, a transition process starting

from 2011 is studied. According to the prediction method,
several parameters have to be determined in advance. We first
determine parameter k.

3.1 Threshold of parameter k

Parameter k characterizes the stability of the system during
climate change, which means that we can estimate the value
of parameter k by counting all abrupt changes of the PDO in-
dex. The histogram in Fig. 6a shows the PDO time sequence
from January 1900 to November 2015, and it shows that the
PDO went through several transition processes. The green
dots in Fig. 6a are parameter k when the subsequence length
takes 20 years. In the early 1940s and late 1970s, there were
two main transitions of the PDO. The absolute value of the
parameter k is large, which means that the system is much
more unstable during these two transition processes. In the
1940s, the PDO transits from a positive phase to a nega-
tive phase and k < 0, whereas the situation in the 1970s is
the opposite. Figure 6b shows more kvalues corresponding
to the different subsequence lengths (as indicated by y axis,
the variation range of the subsequence is 15–60 years, with
an interval of 1 year). The x axis represents the start mo-
ment, and the locations of the dots indicate the start moments
for the corresponding subsequence lengths. In particular, the
blue dots represent parameter k as being negative, and the red
dots represent it as being positive. There are more dots when
the subsequence is short. This is because, when the length of
subsequence is short, the amplitude is also often small, which
leads to more transition processes being detected. When the
length of the subsequence reaches or exceeds 50 years, the
transition processes mainly begin in the 1940s and 1970s.
Such climate changes are also investigated in the previous
research (Shi et al., 2014). The transition processes in these
two periods correspond to large k values, which means that
these two transition processes are more unstable than others.
The small figure in Fig. 7a shows that the k values (marked
with green dots) are more than 100 during 1960–1970 when
the length of subsequence is 20 years. The frequencies of pa-
rameter k values, when the length of subsequence are 10, 20,
20, 40, 50 and 60 years, respectively, are displayed in Fig. 7.
It is noted that some of the values of parameter k are so large
that their frequencies are almost zero, which makes counting
them unnecessary. The frequencies of the k values which be-
long to−10 to 10 are shown in Fig. 7. By considering the fre-
quency which is bigger than 5 % as a peak, there is only one
peak when the length of subsequence is 10 years. Most of the
k values are concentrated around zero, which means that the
transition processes detected are stable. For the situations in
which the lengths of subsequences are 20 and 30 years, there
is mainly one peak, and it is near zero. When the lengths
of subsequences are more than 30 years, there are mainly
two peaks. One is near zero, and another is much less than
zero. Thus, the much more unstable transition processes are
detected when the lengths of subsequences are large. From
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Figure 8. The PDO time sequences and the detection of parameters v and h when the subsequence was set as (a) 10 years, (b) 20 years,
(c) 30 years and (d) 40 years. The gray lines represent the PDO time sequence. The horizontal dashed lines represent initial states, the sloped
dashed lines represent the linear trend lines of the transition process and the vertical dotted lines represent the start moment.

Figure 9. The values of the parameters v and k of two transition processes with different lengths of the subsequence. The black stars represent
the values of parameter h, and the colorful short bars represent the values of parameter v. The colored bar represents years of the subsequence
length from 10 to 60 in intervals of one.

the perspective of the k threshold values, the k values in the
range of [−10, 10] account for 63.90 %, 70.64 %, 77.00 %,
90.05 %, 93.69 % and 89.90 % of all k values for which
the lengths of the subsequences are 10, 20, 30, 40, 50 and
60 years, respectively. They are 55.64 %, 67.52 %, 73.99 %,
83.45 %, 85.46 % and 84.82 % for the range of [−5, 5] and
35.64 %, 62.22 %, 59.36 %, 68.28 %, 66.25 % and 47.55 %

for the range of (−2, 2). In the following studies, the k val-
ues are mainly considered to be in the range of [−2, 2].

3.2 Values of the initial state v and linear trend h

We use the method proposed in Sect. 2.2 to analyze the tran-
sition processes of the PDO. With different lengths of sub-
sequences, three climate changes are detected to start from

https://doi.org/10.5194/npg-27-489-2020 Nonlin. Processes Geophys., 27, 489–500, 2020
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Figure 10. Variation end state and end moment, with the initial state
parameter v (horizontal ordinate) and instability parameter k (verti-
cal coordinate). The red line on the right-hand side shows the prob-
ability distribution of instability parameter k.

1976, 2007 and 2011, respectively. In Fig. 8, the transition
processes starting from 2007 and 2011 are shown, while the
transition process starting from 1976 has not been shown.
In Table 2, parameters v and h are obtained by regression
method for the transition processes starting from 2007 and
2011. When the length of subsequence is 10 or 20 years,
only the transition process starting from 2011 is detected, as
shown in Fig. 8a and b. The parameter v is calculated with
the sequence before 2011. Then, the linear trend parameter h
is calculated with the segment after 2011. For the transition
process starting from 2011, the values of initial state were
detected to be −0.45 and −0.03 when the length of subse-
quence is 10 or 20 years, respectively, and both the linear
trends are 1.054 month−1. When the lengths of subsequences
are set as 30 and 40 years, the transition process begins in
2007, as shown in Fig. 8c and d, and the values of the initial
state are 0.36 and 0.41, respectively, with an linear trend of
0.227 month−1. When we detect the transition process in a
subsequence, the percentile threshold method (Huang, 1990)
is used. Then, a transition process in the subsequence is de-
tected (Yan et al., 2015, 2016). The change with the largest
amplitude will be detected. The start moment of the transi-
tion process is identified to be 2011, as shown in Table 2.

In Fig. 8, it is noted that the PDO time sequence is leaving
the stable state from the start moment. The transition process
occurs over a period of time, which is called the transition
process. When the transition process has not finished, it ap-
pears to be increasing. In order to detect whether there are
other transition processes, we changed the length of the sub-
sequences to yearly intervals. That is, the subsequence length
is set as 10, 11, 12, . . . , up to 60 years. Then, the initial state
v and the linear trend h of these transition processes are ob-
tained, as shown in Fig. 9. When the subsequence length is
set at less than approximately 40 years, the transition pro-

cesses are detected only twice. One began in 2007, and the
other began in 2011. The value of parameter h is nearly un-
changeable for each transition process, while the value of pa-
rameter v changes when the length of the subsequence is dif-
ferent. In particular, the transition process starting from 2007
is detected for the subsequences of about 30–40 years, and
the value of parameter v is in the range of [0.28, 0.45]. The
transition process starting from 2011 is detected for subse-
quences of about 10–30 years, and the value of parameter v
increases as the length of the subsequence increases, whereas
the variation range in parameter v is [−0.48, 0.12], which is
significantly different from the situation of the transition pro-
cess starting from 2007.

3.3 Prediction of the uncompleted transition process
beginning in 2011

After the threshold ranges for parameters k, v and h are de-
termined according to the quantitative relationship, we can
calculate the end state and the end moment of the transition
process. Using the transition process in 2011 as an exam-
ple, we study the end state and end moment for the PDO
index transition process. According to the research results
that are presented in Sects. 3.1 and 3.2, the parameter is
h= 1.054month−1 in this transition process, and the thresh-
old range of parameter k is determined to be [0, 2]. The range
of parameter v is determined to be [−0.48, 0.12], and the
variation situation of parameter u and end moment with pa-
rameters k and v are shown in Fig. 10. The results indicate
that the threshold range of parameter u for the ending state
is [1, 7], and the time range of the ending moment is [2013,
2017]. According to the probability of parameter k, the end
moment of this transition process is about 2015, and after
that time, the sequence stops increasing, approaching a sta-
ble state with value of 1.6.

In Fig. 11, a sketch map is displayed to briefly explain how
the prediction method works. The PDO time sequence is dis-
played as a black line. The period during 2006–2011 is de-
tected as the initial state, and a transition process is increas-
ing from this initial state. It is possible to know whether the
increasing process has been completed or not. Based on the
linear regression method, the initial state and the linear trend
are obtained and are shown as purple dashed lines. Then, by
the method proposed in Sect. 2.2, all possible end states of
this transition process are obtained with Eq. (9), as shown
in Fig. 10, and the most likely end state is marked as a green
dashed line. Unlike the uncompleted transition process of the
ideal experiment, the transition process is completed in about
2015 since we detected the PDO change in 2016. This transi-
tion process started from 2011 and ended in 2015. The initial
moment and the end moment are marked as black dashed
lines. However, we are still not sure whether the PDO fin-
ished this transition process completely or not for it appears
at the end of the sequence. Many statistical methods are not
accurate for detecting both ends of the sequence. Thus, the

Nonlin. Processes Geophys., 27, 489–500, 2020 https://doi.org/10.5194/npg-27-489-2020



P. Yan et al.: A method for predicting the uncompleted climate transition process 499

Figure 11. Prediction of the PDO index. The gray line represents the PDO index before 2015, the blue line represents the PDO index after
2015, the gray dashed line represents the start moment and end moment, the purple dashed lines represent the initial state and the linear trend
line and the green line represents the prediction end state.

real PDO sequence during 2016–2017 is added to the end of
the PDO time sequence. The PDO value from 2015 to 2017
is almost unchanged, which is consistent with the predicted
result.

4 Conclusion and discussion

A novel method had been proposed for identifying the tran-
sition process of climate change in our previous research. By
defining the initial state parameter v, linear trend parameter
h, end state parameter u and instability parameter k, a quan-
titative relationship among these parameters was revealed.
Based on the relationship, we developed a method for study-
ing uncompleted transition processes. The method is applied
to predict ideal time sequences and the PDO time sequence.
In the ideal experiments, three different time sequences with
different lengths were constructed. Based on the initial state
and the linear trend which the system experienced and the
given parameter, the end state and end moment of the tran-
sition process are predicted. The prediction result matches
the ideal time sequence well. For the PDO time sequence,
a transition process beginning in 2011 was taken to test the
prediction method. The end moment of this transition pro-
cess was predicted to be 2015, which is consistent with the
real time sequence.

In this prediction method, the quantitative relationship
among the parameters characterizing the transition process
is vital. According to the segment of the transition process
which has occurred, we determine the parameters and pre-
dict the end moment and the end state. In fact, this is also
an extrapolation method. It is noted that the uncompleted cli-
mate change we studied is closed to the end of the sequence.
Due to the lack of enough data, it is difficult to study the end
of time sequence by using other statistical methods.

Data availability. We analyzed the transition process of the PDO
using data from the National Oceanic and Atmospheric Admin-
istration (NOAA), available at: https://psl.noaa.gov/gcos_wgsp/
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