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Abstract. This paper gives an overview of Deutscher Wet-
terdienst’s (DWD’s) postprocessing system called Ensemble-
MOS together with its motivation and the design con-
sequences for probabilistic forecasts of extreme events
based on ensemble data. Forecasts of the ensemble systems
COSMO-D2-EPS and ECMWF-ENS are statistically opti-
mised and calibrated by Ensemble-MOS with a focus on se-
vere weather in order to support the warning decision man-
agement at DWD.

Ensemble mean and spread are used as predictors for lin-
ear and logistic multiple regressions to correct for conditional
biases. The predictands are derived from synoptic observa-
tions and include temperature, precipitation amounts, wind
gusts and many more and are statistically estimated in a com-
prehensive model output statistics (MOS) approach. Long
time series and collections of stations are used as training
data that capture a sufficient number of observed events, as
required for robust statistical modelling.

Logistic regressions are applied to probabilities that prede-
fined meteorological events occur. Details of the implemen-
tation including the selection of predictors with testing for
significance are presented. For probabilities of severe wind
gusts global logistic parameterisations are developed that de-
pend on local estimations of wind speed. In this way, robust
probability forecasts for extreme events are obtained while
local characteristics are preserved.

The problems of Ensemble-MOS, such as model changes
and consistency requirements, which occur with the opera-
tive MOS systems of the DWD are addressed.

1 Introduction

Ensemble forecasting rose with the understanding of the lim-
ited predictability of weather. This limitation is caused by
sparse and imperfect observations, approximating numerical
data assimilation and modelling, and by the chaotic phys-
ical nature of the atmosphere. The basic idea of ensemble
forecasting is to vary observations, initial and boundary con-
ditions, and physical parameterisations within their assumed
scale of uncertainty and rerun the forecast model with these
changes.

The obtained ensemble of forecasts expresses the distribu-
tion of possible weather scenarios to be expected. Probabilis-
tic forecasts can be derived from the ensemble, like forecast
errors, probabilities for special weather events, quantiles of
the distribution or even estimations of the full distribution.
The ensemble spread is often used as estimation for forecast
errors. In a perfect ensemble system the spread is statisti-
cally consistent with the forecast error of the ensemble mean
against observations (e.g. Wilks, 2011); however, it is expe-
rienced as being often too small, especially for near-surface
weather elements and short lead times. Typically, an optimal
spread–skill relationship close to 1 and its involved forecast
reliability are obtained much more easily for atmospheric
variables in higher vertical layers, e.g. 500 hPa geopotential
height, than for screen-level variables like 2 m temperature,
10 m wind speed or precipitation (e.g. Buizza et al., 2005;
Gebhardt et al., 2011; Buizza, 2018); see also Sect. 4.

In order to make best use of the probabilistic informa-
tion contained in the ensembles, e.g. by relating probabilities
for harmful weather events to economical value in cost–loss
evaluations (e.g. Wilks, 2001; Ben Bouallègue et al., 2015),
the ensemble forecasts should be calibrated to observed rel-
ative frequencies as motivated by Buizza (2018). Warning
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thresholds are the levels of probabilities at which meteoro-
logical warnings are to be issued. These thresholds may be
tailored to the public depending on categorical scores such as
probability of detection (POD) and false alarm ratio (FAR).
Statistical reliability of forecast probabilities is considered
essential for qualified threshold definitions and for automated
warning guidances.

For deterministic forecasts statistical postprocessing is
used for optimisation and interpretation. This is likewise true
for ensemble forecasts, where statistical calibration is an ad-
ditional application of postprocessing. Gneiting et al. (2007)
describe probabilistic postprocessing as a method to max-
imise the sharpness of a predictive distribution under the con-
dition of calibration (the climatologic average is calibrated
too; however, it has no sharpness and is useless as a fore-
cast). Nevertheless, optimisation is still an issue for ensemble
forecasts. In general, the systematic errors of the underlying
numerical model turn up in each forecast member and thus
are retained in the ensemble mean. Averaging only reduces
the random errors of the ensemble members.

Due to its ability to improve skill and reliability of proba-
bilistic forecasts, many different postprocessing methods ex-
ist for both single- and multi-model ensembles. There are
comprehensive multivariate systems and univariate systems
that are specific to a certain forecast element. Length of train-
ing data generally depends on the statistical method and ap-
plication; however, the availability of data is also often a se-
rious limitation. Some systems perform individual training
for different locations in order to account for local character-
istics, whilst others apply the same statistical model to col-
lections of stations or grid points. Global modelling improves
statistical sampling at the cost of orographic and climatologic
disparities.

Classical MOS systems tend to underestimate forecast er-
rors if corrections are applied to each ensemble member in-
dividually. In order to maintain forecast variability, Vannit-
sem (2009) suggests considering observation errors. Gneit-
ing et al. (2005) propose non-homogeneous Gaussian regres-
sion (NGR) that relies on Gaussian distributions. The loca-
tion and scale parameters of the Gaussian distributions corre-
spond to a linear function of the ensemble mean and ensem-
ble spread, respectively. The NGR coefficients are trained by
minimising the continuous ranked probability score (CRPS).
In Bayesian model averaging (BMA) (e.g. Raftery et al.,
2005; Möller et al., 2013) distributions of already bias-
corrected forecasts are combined as weighted averages using
kernel functions.

Many different postprocessing methods tailored to differ-
ent variables exist; only some are mentioned here. For 24-
hourly precipitation Hamill (2012) present a multimodel en-
semble postprocessing based on extended logistic regression
and 8 years of training data. Hamill et al. (2017) describe
a method to blend high-resolution multimodel ensembles
by quantile mapping with short training periods of about 2
months for 6- and 12-hourly precipitations. Postprocessing

methods specialising in wind speed have been developed as
well; e.g. Sloughter et al. (2013) use BMA in combination
with Gamma distributions. An overview of conventional uni-
variate postprocessing approaches is given in Wilks (2018).

In addition to the univariate postprocessing methods men-
tioned above, there exist also approaches to model spatio-
temporal dependence structures and hence to produce en-
sembles of forecast scenarios. This enables, for instance,
to estimate area-related probabilities. Schefzik et al. (2013)
and Schefzik and Möller (2018) use ensemble copula cou-
pling (ECC) and Schaake shuffle-based approaches in order
to generate postprocessed forecast scenarios for temperature,
precipitation and wind. Ensembles of ECC forecast scenar-
ios provide high flexibility in product generation to the con-
straint that all ensemble data are accessible.

Fewer methods focus on extreme events of precipitation
and wind gusts that are essential for automated warning sup-
port. Friederichs et al. (2018) use the tails of generalised
extreme-value distributions in order to estimate conditional
probabilities of extreme events. As extreme meteorological
events are (fortunately) rare, long time series are required to
capture a sufficiently large number of occurred events in or-
der to derive statistically significant estimations. For exam-
ple, strong precipitation events with rain amounts of more
than 15 mm h−1 are captured only about once a year at each
rain gauge within Germany. Extreme events with more than
40 and 50 mm rarely appear; nevertheless, warnings are es-
sential when they do.

With long time series, a significant portion of the data con-
sists of calm weather without relevance for warnings. It is
problematic, however, to restrict or focus training data on se-
vere events. In doing so, predictors might be selected that
are highly correlated with the selected series of severe events
but accidentally also to calm scenarios that are not contained
in the training data. In order to exclude these spurious pre-
dictors and to derive skilful statistical models, more general
training data need to be used, since otherwise overforecast-
ing presumably results and frequency bias (FB) and FAR
increase. This basically corresponds to the idea of the fore-
caster’s dilemma (see Lerch et al., 2017) that states that over-
forecasting is a promising strategy when forecasts are evalu-
ated mainly for extreme events.

The usage of probabilistic forecasts for warnings of severe
weather also influences the way the forecasts need to be eval-
uated. Also for verification, long time periods are required to
capture enough extreme and rare events to derive statistically
significant results. Verification scores like root mean square
error (RMSE) or CRPS (e.g. Hersbach, 2000; Gneiting et al.,
2005) are highly dominated by the overwhelming majority of
cases when no event occurred. Excellent but irrelevant fore-
casts of calm weather can pretend good verification results,
although the few relevant extreme cases might not be fore-
casted well. Categorical scores like POD and FAR are con-
sidered more relevant for rare and extreme cases, along with
other more complex scores like Heidke skill score (HSS) or
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equitable threat score (ETS). Also, scatter diagrams reveal
outliers and are sensitive to extreme values.

Here we present a MOS approach that has been tailored
to postprocessing ensemble forecasts for extreme and rare
events. It is named Ensemble-MOS and has been set up at
DWD in order to support warning management with proba-
bilistic forecasts of potentially harmful weather events within
AutoWARN; see Reichert et al. (2015) and Reichert (2016,
2017). Altogether 37 different warning elements exist at
DWD, including heavy rain and strong wind gusts, both at
several levels of intensity, thunderstorms, snowfall, fog, lim-
ited visibility, frost and others. Currently the ensemble sys-
tems COSMO-D2-EPS and ECMWF-ENS are statistically
optimised and calibrated using several years of training data,
but Ensemble-MOS is applicable to other ensembles in gen-
eral.

At DWD, statistically postprocessed forecasts of the en-
semble systems COSMO-D2-EPS and ECMWF-ENS and
also of the deterministic models ICON and ECMWF-IFS are
combined in a second step in order to provide a consistent
data set and a seamless transition from very short-term to
medium-range forecasts. This combined product provides a
single voice basis for the generation of warning proposals;
see Reichert et al. (2015). The combination is based on a
second MOS approach similar to the system described here;
it uses the individual statistical forecasts of the numerical
models as predictors. As a linear combination of calibrated
forecasts does not necessarily preserve calibration (e.g. Ran-
jan and Gneiting, 2010), additional constant predictors are
added to the MOS equations as a remedy. Primo (2016) and
Reichert (2017) state that automated warnings of wind gusts
based on the combined product achieve a performance that is
comparable to that of human forecasters.

The further outline of the paper is as follows: after the in-
troduction, the used observations and ensemble systems are
introduced in Sect. 2. Thereafter, Sect. 3 describes the con-
ceptual design of Ensemble-MOS with the definition of pre-
dictands and predictors and provides technical details of the
stepwise linear and logistic regressions. Especially for ex-
treme wind gusts, a global logistic regression is presented
that uses statistical forecasts of the speed of wind gusts as
predictors for probabilities of strong events. General caveats
of MOS like model changes and forecast consistency are ad-
dressed at the end of that section. The results shown here fo-
cus on wind gusts and are provided in Sect. 4. Finally, Sect. 5
provides a summary and conclusions.

2 Observations and ensemble data

Synoptic observations and model data from the ensemble
systems COSMO-D2-EPS and ECMWF-ENS are used as
training data and for current statistical forecasts. Time series
of 8 years of observations and model data have been gath-

ered for training at the time of writing. The used data are
introduced in the following.

2.1 Synoptic observations

Observations of more than 320 synoptic stations within Ger-
many and its surroundings are used as part of the training
data. For short time forecasts the latest available observations
at run time are used also as predictors for the statistical mod-
elling, which is described in more detail in Sect. 3.1.

The synoptic observations include measurements of tem-
perature, dew point, precipitation amounts, wind speed and
direction, speed of wind gusts, surface pressure, global ra-
diation, visibility, cloud coverage at several height levels,
past and present weather and many more. Past weather and
present weather also contain observations of thunderstorm,
kind of precipitation and fog amongst others. Ensemble-
MOS derives all predictands that are relevant for weather
warnings based on synoptic measurements in a comprehen-
sive approach in order to provide the corresponding statistical
forecasts. In this paper, we focus on the speeds of wind gusts
and on probabilities for severe storms.

2.2 COSMO-D2-EPS and upscaled precipitation
probabilities

The ensemble system COSMO-D2-EPS of DWD consists of
20 members of the numerical model COSMO-D2. It pro-
vides short-term weather forecasts for Germany, with runs
every 3 h (i.e. 00:00, . . ., 21:00 UTC) with forecast steps of
1 up to 27 h ahead (up to 45 h for 03:00 UTC). COSMO-D2
was upgraded from its predecessor model COSMO-DE on
15 May 2018, together with its ensemble system COSMO-
D2-EPS; the upgrade included an increase in horizontal res-
olution from 2.8 to 2.2 km and an adapted orography. De-
tailed descriptions of COSMO-DE and its ensemble system
COSMO-DE-EPS are provided in Baldauf et al. (2011), Geb-
hardt et al. (2011) and Peralta et al. (2012), respectively. For
the ensemble system initial and boundary conditions as well
as physical parameterisations are varied according to their
assumed levels of uncertainty.

For the postprocessing of COSMO-D2-EPS, 8 years of
data have been gathered, including data from the predeces-
sor system COSMO-DE-EPS, which has been available since
8 December 2010. Thus, a number of model changes and up-
dates are included in the data; impacts on statistical forecast-
ing are addressed later in Sect. 3.4. Each run of Ensemble-
MOS starts 2 h after the corresponding run of COSMO-D2-
EPS to ensure that the ensemble system has finished and the
data are available.

Forecast probabilities of meteorological events can be es-
timated as the relative frequency of the ensemble members
that show the event of interest. If the relative frequencies are
evaluated grid point by grid point, the probabilities imply that
the event occurs within areas of the sizes of the grid cells,

https://doi.org/10.5194/npg-27-473-2020 Nonlin. Processes Geophys., 27, 473–487, 2020



476 R. Hess: Statistical Postprocessing for Severe Weather

Figure 1. Rank/Talagrand histogram for 1-hourly precipitation
amounts of COSMO-DE-EPS and forecast lead time 3 h; data for
18 stations from 2011 to 2017.

which are 2.2× 2.2 km2 for COSMO-D2-EPS. It is therefore
not straightforwardly possible to compare event probabilities
of ensembles of numerical models with different grid resolu-
tions.

For near-surface elements and short lead times, the
COSMO-D2-EPS is often underdispersive and underesti-
mates forecast errors. Figure 1 shows a rank histogram for
1-hourly precipitation amounts of COSMO-DE-EPS. Too
many observations have either less or more precipitation than
all members of the ensemble. Using these relative frequen-
cies as estimations of event probabilities statistically results
in too many probabilities with values 0 and 1.

Because of the high spatial variability of precipitation, up-
scaled precipitation products are also derived from COSMO-
D2-EPS, which are relative frequencies of precipitation
events within areas of 10× 10 grid points (i.e. 22× 22 km2).
A meteorological event (e.g. that the precipitation rate ex-
ceeds a certain threshold) is considered to occur within an
area if the event occurs at at least one of its grid points.
Area probabilities are therefore estimated straightforwardly
as the relative number of ensemble members predicting the
area event, not requiring the event to take place at exactly the
same grid point for all ensemble members.

Certainly, these raw ensemble-based estimates are also af-
fected by systematic errors of the numerical model COSMO-
D2. Hess et al. (2018) observed a bias of −6.2 percentage
points for the upscaled precipitation product of COSMO-DE-
EPS for the probability that hourly precipitation rate exceeds
0.1 mm. Verification has been done against gauge-adjusted
radar observations, which is a suitable observation system
for areas.

2.3 ECMWF-ENS and TIGGE-data

The ECMWF-ENS is a global ensemble system based on the
Integrated Forecasting System (IFS) of the European Centre
for Medium-Range Weather Forecasts (ECMWF). It consists
of 50 perturbed members plus one control run and is com-
puted twice a day for 00:00 and 12:00 UTC up to 15 d ahead
(and even further with reduced resolution). Postprocessing
of Ensemble-MOS at DWD is based on the 00:00 UTC run
with forecast lead times up to 10 d in steps of 3 h. Fore-
casts of ECMWF-ENS are interpolated from their genuine
spectral resolution to a regular grid with 28 km (0.25◦) mesh
size. Data have been gathered according to the availability of
COSMO-DE/2-EPS since 8 December 2010.

TIGGE data from 2002 to 2013 (see Bougeault et al.,
2010 and Swinbank et al., 2016) of ECMWF-ENS were used
in a study to demonstrate the benefits of Ensemble-MOS
prior to unarchiving and downloading the gridded ensem-
ble data mentioned above. This study was restricted to the
available set of model variables of TIGGE (2 m temperature,
mean wind, cloud coverage and 24 h precipitation); results
are given in Sect. 4.2.

3 Postprocessing by Ensemble-MOS

The Ensemble-MOS of DWD is a model output statistics
(MOS) system specialised to postprocess the probabilistic
information of NWP ensembles. Besides calibrating prob-
abilistic forecasts, Ensemble-MOS also simultaneously op-
timises continuous variables, e.g. precipitation amounts and
the speeds of wind gusts. Moreover, statistical interpretations
also exist for meteorological elements that are not available
from numerical forecasts (e.g. thunderstorm, fog or range
of visibility). In principle, all meteorological parameters and
events that are regularly observed can be forecasted statisti-
cally. This includes temperature, dew point, wind speed and
direction, wind gusts, surface pressure, global radiation, vis-
ibility, cloud coverage at several height levels as well as the
synoptic weather with events of thunderstorm, special kinds
of precipitation, fog and more.

The basic concept of Ensemble-MOS is to use ensemble
mean, spread, and other ensemble statistics as predictors in
multiple linear and logistic regressions. The use of ensemble
products as predictors instead of processing each ensemble
member individually prevents difficulties with underdisper-
sive statistical results and underestimated errors, especially
for longer forecast horizons. Since MOS systems usually
tend to converge towards climatology due to the fading ac-
curacy of numerical models and the limited predictability of
meteorological events (e.g. Vannitsem, 2009), individually
processed members converge accordingly. Moreover, multi-
variate MOS systems perform corrections that depend on the
selected set of predictors in order to reduce conditional bi-
ases. If the postprocessing of the individual ensemble mem-
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bers uses the same set of predictors, the resulting statistical
forecasts become correlated and underdispersive also for this
reason.

Ensemble-MOS is based on a MOS system originally set
up for postprocessing deterministic forecasts of the former
global numerical model GME of DWD and of the determin-
istic, high-resolution IFS of ECMWF; see Knüpffer (1996).
Using the ensemble mean and spread as model predictors al-
lows application of the original MOS approach for determin-
istic NWP models to ensembles in a straightforward way.

For continuous variables, such as temperature, precipita-
tion amount or wind speed, deterministic Ensemble-MOS
forecasts and estimates of the associated forecast errors are
obtained by multiple linear regression. The MOS equation of
a statistical estimate ŷk with k predictors x1, . . .,xk and k+1
coefficients c0, . . .,ck of a continuous predictand y is

ŷk = c0+ c1x1+ . . .+ ckxk. (1)

For events like thunderstorms, heavy precipitation or
strong wind speed, calibration of event occurrence or thresh-
old exceedance probability is performed using multiple lo-
gistic regression. For this an estimate

ŷk =
1

1+ e−(c0+c1x1+...+ckxk)
(2)

of the predictand y is determined using a maximum likeli-
hood approach. The predictand y now is a binary variable
that is 1 in case the event was observed and 0 if not, whereas
the estimate ŷk is considered a probability that takes values
from 0 to 1. Logistic regression (e.g. Hosmer et al., 2013) is
a classical approach for probabilistic postprocessing.

Details of the implementation of linear and logistic regres-
sion are presented in Sect. 3.1 and 3.2, respectively. Espe-
cially for probabilities of strong and extreme wind gusts a
global regression is applied that is presented in Sect. 3.3. For
an introduction to MOS in general we refer to Glahn and
Lowry (1972), Wilks (2011) and Vannitsem et al. (2018).

3.1 Optimisation and interpretation by linear
regression

Ensemble-MOS derives altogether some 150 predictands
from synoptic observations (for precipitation gauge-adjusted
radar products can also be used) for statistical modelling.
For the speeds of wind gusts and for precipitation amounts
individual predictands for various reference periods (e.g. 1-
hourly, 3-hourly, 6-hourly and longer) are defined. As usual,
these predictands are modelled by individual linear regres-
sions. The resulting statistical estimates are added to the
list of available predictors for subsequent regressions dur-
ing postprocessing. They are selected as predictors especially
for probabilities that the speeds of wind gusts or precipitation
amounts exceed predefined thresholds within the correspond-
ing time frames (i.e. 1, 3 h, etc.).

In order to estimate the error of the current forecast, an
error predictand

ye = |ŷk − y| (3)

is defined as the absolute value of the residuum. The cor-
responding estimate ŷek is defined according to Eq. (1). This
error predictand can be evaluated as soon as the estimate ŷk is
available. The absolute value is preferred over the root mean
square (RMS) of the residuum, since it shows higher corre-
lations with many predictors and a better linear fitting. For
Gaussian distributions with density ϕµ,σ 2 the absolute error
e (or mean absolute deviation) of the distribution can be esti-
mated from the standard deviation σ as

e =

∞∫
−∞

|x−µ|ϕµ,σ 2(x)dx = 2

∞∫
0

x
1

√
2πσ

e
−x2

2σ2 dx

=

√
2
π
σ ≈ 0.8σ. (4)

For each predictand the most relevant predictors are se-
lected from a predefined set of independent variables by step-
wise regression. Statistical modelling is performed for each
predictand, station, season, forecast run and forecast time in-
dividually in general. For rare events, however, nine zones
with similar climatology are defined (e.g. coastal strip, north
German plain, various height zones in southern Germany,
high mountain areas) and the stations are clustered together
in order to increase the number of observed events and the
statistical significance of the training data. All stations of a
cluster are modelled together for those events.

Most potential predictors are based on forecasts of the en-
semble system, which are interpolated to the locations of the
observation sites. Additional to the model values at the near-
est grid point, the mean and standard deviation of the 6× 6
and 11× 11 surrounding grid points are also evaluated and
provided as medium- and large-scale predictors, respectively.
Moreover, extra variables are also derived from the NWP-
model fields to be used as predictors, e.g. potential tempera-
ture, various atmospheric layer thicknesses, rotation and di-
vergence of wind velocity, dew-point spread and even spe-
cial parameters, such as convective available potential energy
(CAPE) and severe weather threat index (SWEAT). These
variables are computed from the ensemble means of the re-
quired fields.

Statistical forecasts of the same variable of the last forecast
step and also of other variables of the current forecast step
can be used as well. For example, forecasts of 2 m tempera-
ture may use statistical forecasts of precipitation amounts of
the same time step as predictors. The order of the statistical
modelling and of the forecasting is relevant in such cases to
make sure the required data are available.

Further predictors are derived from the latest observations
that are available at the time when the statistical forecast
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is computed. Generally, the latest observation is an excel-
lent projection for short-term forecasts up to about 4 to 6 h,
which is therefore added to the set of available predictors.
Special care has to be taken to process these predictors for
training, however. Only those observations can be used that
are available at run time of the forecast. In case forecasts
are computed for arbitrary locations apart from observation
and training sites, these observations or persistency predic-
tors have to be processed in exactly the same way in training
and forecasting. At locations other than observation sites, the
required values need to be interpolated from the surround-
ing stations. As interpolation generally is a weighted aver-
age based on horizontal and vertical distance, it introduces
smoothing and, with it, a systematic statistical change in the
use of the observations. If the training is performed using ob-
servations at the stations and the forecasting is using interpo-
lation, the statistical forecasts can be affected. As a remedy,
Ensemble-MOS uses observations as persistence predictors
for training that are interpolated from up to five surround-
ing stations in exactly the same way as when computing the
forecast at arbitrary locations, even if an observation at the
correct location was available.

Special orographic predictors also exist, like height of sta-
tion or height difference between station and model at a spe-
cific location. In order to address model changes, indicators
or binary variables are also provided (see Sect. 3.4 for de-
tails). Altogether more than 300 independent variables are
defined, from which up to 10 predictors are selected for each
predictand during multiple regression.

During stepwise regression, the predictor with the highest
correlation with the predictand is selected first from the set
of available independent variables. Next, the linear regres-
sion with the previously chosen set of predictors is computed
and the next predictor with the highest correlation with the
residuum is selected, and so on. Selection stops if no further
predictor exists with a statistically significant correlation ac-
cording to a Student’s t-test. The level of significance of the
test is 0.18 divided by the number of available independent
variables. This division is used because of the high number
of potential predictors. With a type I error of e.g. 0.05 and a
number of 300 available predictors, 15 predictors on average
would be selected randomly without providing significant in-
formation. The value 0.18 is found to be a good compromise
in order to select a meaningful number of predictors and to
prevent overfitting in this scenario.

Table 1 lists the most important predictors for statistical
forecasts of the maximal speed of wind gusts within 1 h. The
relative weights are aggregated over 5472 equations, one for
each cluster, season, forecast run, and forecast lead time.
Note that predictors that are highly correlated usually ex-
clude each other from appearing within one equation. Only
the predictor with the highest correlation with the predictand
is selected and supplants other correlated predictors that do
not provide enough additional information according to the
t-test.

Figure 2. Probabilities of wind gusts higher than 14 ms−1 on
a regular 1 km grid over Germany; 13 h forecast lead time from
Ensemble-MOS for COSMO-DE-EPS from 29 October 2018.

The MOS equations are determined by stepwise regres-
sion for individual locations and, in case of rare events, for
clusters. In order to compute statistical forecasts on a regu-
lar grid, these equations need to be evaluated for locations
apart from the training and observation sites. In case of rare
events and cluster equations, the appropriate cluster is de-
termined for each grid point and the equation of that clus-
ter is used. The equations for individual locations are inter-
polated to the required grid point by linear interpolation of
their coefficients. In all cases, the required values of the nu-
merical model for these equations are evaluated for the exact
location. Observations that are used as persistency predictors
are interpolated from surrounding sites. In this way, gridded
forecast maps can be obtained as displayed in Fig. 2 for wind
gust probabilities (see Sect. 3.2 for probabilistic forecasts).
For computational efficiency, the forecasts are initially com-
puted on a regular grid of 20 km resolution and are down-
scaled thereafter to 1 km while taking into account the var-
ious height zones in southern Germany. The details of the
downscaling are beyond the scope of the paper.

3.2 Calibration of probabilistic forecasts by logistic
regression

Event probabilities are calibrated using logistic regression.
Equation (2) is solved using a maximum likelihood ap-
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Table 1. Predictors for statistical forecasts of the maximal speed of wind gusts within 1 h that have relative weights higher than 1 %. The
relative weights are aggregated for all stations, seasons, forecast runs, and forecast lead times. The ensemble mean of COSMO-D2-EPS is
denoted by DMO (direct model output). Parentheses within the predictor names denote time shifts. For a time shift of −30 min, denoted as
(-0:30), the predictors are interpolated based on values for the previous and current forecast hours. The required statistical forecasts have
to be evaluated in advance.

Predictor name Rel. weight Description
(%)

FF(-0:30)StF 35.7 Statistical forecast of mean wind speed in 10 m height
FX1(-1)StF 12.1 Statistical forecast of speed of wind gusts of the previous hour
VMAX_10M_LS 8.9 DMO of speed of wind gusts for a large surrounding area (mean of 11× 11 grid points)
VMAX_10M 8.6 DMO of speed of wind gusts for next model grid point
FF_850(-0:30) 4.8 DMO of wind speed in 800 hPa height
VMAX_10M_MS 4.1 DMO of speed of wind gusts for a medium surrounding area (mean of 6× 6 grid points)
Oa_D_0.5 3.2 Latest observation of the speed of wind gusts
FF_10m(-0:30) 2.8 DMO of mean wind speed in 10 m height
StFT2m_T950 1.9 Statistical forecast of temperature difference between 2 m and 950 hPa height (stability index)
Location-height 1.6 Height of station
FF_1000(-0:30) 1.1 DMO of wind speed in 1000 hPa height

proach. The likelihood function

P(y,c0, . . .ck)=

n∏
i=1

(
ŷik

)yi(
1− ŷik

)1−yi
(5)

expresses the probability that the predictand y is realised
given the estimate ŷk via the coefficients c0, . . .,ck (and by
now with fixed predictors x1, . . .,xk), with n being the time
dimension (sample size) and i the time index. The predictand
y of an event probability is binomially distributed; its time-
series values are defined as 1 in case the event was observed
and 0 if not, whereby conditional independence is assumed
in Eq. (5).

It is mathematically equivalent and computationally more
efficient to maximise the logarithm of the likelihood function

ln(P (y,c0, . . .ck))=

n∑
i=1

(
yi ln

(
ŷik

)
+

(
1− yi

)
ln
(

1− ŷik
))
. (6)

This maximisation is implemented by calling the routine
G02GBF of the NAG library in FORTRAN 90; see Numeri-
cal Algorithms Group (1990). The resulting fit of the estimate
ŷk can be evaluated by the deviance

Dk =−2ln(P (y,c0, . . .,ck)) , (7)

which is a measure analogous to the squared sum of residua
in linear regression.

The selection of predictors is again performed stepwise.
Initially, the coefficient c0 of the null model y = 1

1+e−c0 that
fits the mean of the predictand is determined and the null
deviance D0 =−2ln(P (y,c0)) is computed. The coefficient
c0 is often called the intercept. Starting from the null model
the predictor that is selected first is the one that shows the

smallest deviance D1 =−2ln(P (y,c0,c1)). The difference
D1−D0 is χ2

1 -distributed with 1 degree of freedom and is
used to check the statistical significance of the predictor.
This check replaces the t-test in linear regression and uses
the same statistical level. If the predictor shows a significant
contribution, it is accepted and further predictors are tested
based on the new model in the same way. Otherwise, the pre-
dictor is rejected and the previous fitting ŷk−1 is accepted as
the final statistical model.

As a rule of thumb, for each selected predictor in the sta-
tistical model at least 10 events need to be captured within
the observation data (one in ten rule) to find stable coeffi-
cients. For example, with only 30 events in the training set,
the number of predictors should be restricted to three. This
rule is critical especially for rare events such as extreme wind
gusts or heavy precipitation.

Since testing all candidate predictors from the set of about
300 variables by computing their deviances is very costly,
the score test (Lagrange multiplier test) is actually applied to
Ensemble-MOS. Given a fitted logistic regression with k−1
selected predictors, the predictor is chosen next as xk , which
shows the steepest gradient of the log-likelihood function
Eq. (6) in an absolute sense when introduced, normalised by
its standard deviation σxk , i.e.

1
σxk

∣∣∣∣∂ ln(P (y,c0, . . .,ck))

∂ck

∣∣∣
ck=0

∣∣∣∣=∣∣∣∣∣ n∑
i=1

(
yi − ŷik−1

) xik
σxk

∣∣∣∣∣ . (8)

This equation results from basic calculus including the iden-
tity ∂ŷk

∂ck
= ŷk(1− ŷk)xk . The right-hand side of Eq. (8) is ba-

sically the correlation of the current residuum with the new
predictor. The score test thus results in the same selection cri-
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Table 2. Parameters of fitted logistic distributions as shown in Fig. 3
for various forecast lead times h, with coefficients of logistic regres-
sions c0 and c1 and resulting means µt and standard deviations σt
for threshold t = 13.9 ms−1. Estimated uncertainties are given in
brackets.

h c0 c1 µt σt

1 −17.74 (±0.17) 1.30 (±0.01) 13.68 (±0.01) 1.40 (±0.01)
4 −13.76 (±0.11) 1.01 (±0.01) 13.66 (±0.01) 1.80 (±0.02)
7 −13.32 (±0.11) 0.98 (±0.01) 13.66 (±0.01) 1.86 (±0.02)
10 −13.00 (±0.10) 0.95 (±0.01) 13.66 (±0.01) 1.91 (±0.02)
16 −12.51 (±0.10) 0.92 (±0.01) 13.66 (±0.01) 1.98 (±0.02)

terion as applied to stepwise linear regression. Once the pre-
dictor xk is selected, the coefficients c0, . . .,ck are updated to
maximise Eq. (6).

3.3 Global logistic regression of wind gust probabilities

For extreme events, the number of observed occurrences
can still be too small to derive stable MOS equations, al-
though time series of several years have been gathered and
the stations are clustered within climatologic zones in Ger-
many. The eight warning thresholds of DWD for wind gusts
range from 12.9 m s−1 (25.0 kn, proper wind gusts) up to
38.6 ms−1 (75.0 kn, extreme gales), whereas the maximal
observed speed of wind gusts in the training data for a clus-
ter in the northern German plains is only 25.4 ms−1. Espe-
cially for probabilities of extreme wind gusts global logistic
regressions are developed that use events at the coastal strip
or at mountains in southern Germany and allow for meaning-
ful statistical forecasts of extreme events also in climatolog-
ically calm areas. The statistical forecasts of the continuous
speed of wind gusts are used for these logistic regressions
as the only predictors. They are modelled by stepwise lin-
ear regression for each station individually, as described in
Sect. 3.1. In this way, rare occurrences of extreme events are
gathered globally while concurrently a certain degree of lo-
cality is maintained.

The locally optimised and unbiased forecasts of wind gust
speeds are excellent predictors for wind gust probabilities.
The logistic regressions according to Eq. (2) with k = 1 fit
the distributions of observed wind gusts quite well, as shown
in Fig. 3 for threshold t = 13.9 ms−1 (27.0 kn) and forecast
lead times of 1 and 7 h, respectively.

The statistical modelling of wind gust probabilities is per-
formed for each threshold t individually and is described in
the following. The logistic regressions represent logistic dis-
tributions with meanµt =− c0

c1
and variance σ 2

t =
π2

3c2
1
, which

are computed for various lead times h and are listed in Ta-
ble 2.

The expectations µt are slightly smaller than the thresh-
old t = 13.9 ms−1, almost independently of lead time. The
reason is that for given statistical forecasts of wind gusts the

distribution of observations is almost Gaussian (see Fig. 4)
albeit a little left skewed with a small number of very weak
wind observations.

The standard deviations σt increase with forecast lead
time, reflecting the loss of accuracy of the statistical fore-
casts. Consequently, the graph of the cumulative distribution
function in Fig. 3 is more tilted for a forecast lead time of 7 h
than for 1 h.

Figure 5 shows fitted variances σ 2
t of the eight individual

forecast runs of Ensemble-MOS for COSMO-DE-EPS and
their mean depending on lead time. In order to reduce the
number of coefficients and to increase consistency and ro-
bustness of the forecasts, the variance σ 2

t is parameterised
depending on forecast lead time h by fitting the function

σ 2
t (h)= ct log(ath+ bt ) (9)

with its parameters at , bt , and ct for threshold t .
The fitted expectations and variances show weak depen-

dencies on the time of the day and are neglected. The logistic
regressions of wind gust probabilities thus can be expressed
for each threshold t by the mean µt and σt for all start times
of the forecasts in the same way.

Even for very rare gales of 38.6 ms−1 more than 130
events are captured using 6 years of training data when mod-
elling all stations and forecast runs together, which is suf-
ficient for logistic regression. Training for these extreme
events is based mainly on coastal and mountain stations, but
the statistical regressions are applied to less exposed loca-
tions in calmer regions as well. Small threshold probabili-
ties will be predicted for those locations in general. However,
meaningful estimations will be generated once the statistical
forecasts of local wind speed rise induced by the numerical
model.

3.4 Specific issues and caveats of MOS

Ensemble-MOS optimises and calibrates ensemble forecasts
using synoptic observations. Being a statistical method, it is
vulnerable to systematic changes in input data, since it as-
sumes that errors and characteristics of the past persist in fu-
ture. An important part of the input are observations, whose
measurement instruments sometimes change. It is recom-
mended to use quality-checked observations in order to avoid
the use of defective values for training. Especially observa-
tion sites that are automatised need to be screened. Further-
more, numerical models change with new versions and up-
dates that can affect statistical postprocessing, as further dis-
cussed in Sect. 3.4.1.

Although statistical forecasts generally improve the model
output when verified against observations, the results are
not always consistent in time, space and between the fore-
cast variables (e.g. between temperature and dew point), if
they are optimised individually. This issue is addressed in
Sect. 3.4.2.
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Figure 3. Observed cumulative distributions of wind gusts exceeding threshold 13.9 ms−1 (blue) and fit of logistic distribution (green)
depending on statistically optimised forecasts of wind gusts for forecast lead times 1 h (a) and 7 h (b). The threshold is dashed.

Figure 4. Distribution of wind gust observations from 2011 to 2016
for 178 synoptic stations for cases where statistical forecast (fit-
ted for that period) is between 21 and 25 ms−1. Lead time is 1 h.
Gaussian fit and mean of observations (green) and mean of fore-
casts (red).

3.4.1 Model changes

Statistical methods like Ensemble-MOS detect systematic er-
rors and deficiencies of NWP models during a past training
period in order to improve topical operational forecasts. Im-
plicitly it is assumed that the systematic characteristics of
the NWP models persist. Note that multiple regressions cor-
rect not only for model bias but also for conditional biases
that depend on other meteorological variables. Multiple re-
gressions are more vulnerable to model changes than simple
regressions, therefore. Systematic changes in NWP models

Figure 5. Variances σ 2
t of logistic distributions fitted to cumulative

distributions of observed wind gusts for threshold t = 13.9 ms−1

depending on forecast lead time. Individual runs of Ensemble-MOS
for COSMO-DE-EPS-MOS starting at 02:00, 05:00, . . ., 23:00 UTC
in colours, mean of all runs in black, fitted parameterisation of vari-
ances dashed in black.

can affect statistical forecasts, even if the NWP forecasts are
objectively improved as confirmed by verification. Given that
the statistical modelling provides unbiased estimations, any
systematic change in NWP-model predictors will be reflected
in biases in the statistical forecasts. The resulting biases de-
pend on the magnitudes of the changes of the predictors and
on their weights in the MOS equations.

One remedy for jumps in input data is the use of indicator
(binary) predictors. These predictors are related to the date
of the change of the NWP model and are defined as 1 before
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and 0 after. When they are selected during stepwise regres-
sion, they account for sudden jumps in the training data and
can prevent the introduction of unconditional biases in the
statistical forecasts. Conditional biases depending on other
forecast variables, however, are not corrected.

In order to process extreme and very rare events for
weather warnings, long time series of 7 years of data for
COSMO-D2-EPS have been gathered at the time of writ-
ing. Hence, the time series are subject to a number of model
changes. A significant model upgrade from COSMO-DE to
COSMO-D2, including an increase in horizontal resolution
from 2.8 to 2.2 km and an update of orography, took place
in May 2018. Since reforecasting of COSMO-D2-EPS for
more than 1 year was technically not possible, the existing
COSMO-DE-EPS database was used further and extended
with reforecasts of COSMO-D2-EPS of the year before oper-
ational introduction. However, statistical experiments using
these reforecasts of COSMO-D2-EPS (and the use of binary
predictors; see above) revealed only insignificant improve-
ments compared to training with data of COSMO-DE-EPS
only. For rare events, longer time series are considered more
important than the use of unaltered model versions.

3.4.2 Forecast consistency

As weather warnings are issued for a certain period of time
and a specified region, continuity of probabilistic forecasts in
time and space is important. It should be accepted, however,
that maps of probabilistic forecasts do not comply with deter-
ministic runs of numerical models, as probabilistic forecasts
are smoothed according to forecast uncertainty. For example,
there are hardly convective cells in probabilistic forecasts,
but rather areas exist where convection might occur with a
certain probability within a given time period.

The statistical modelling of Ensemble-MOS is carried out
for each forecast variable, forecast lead time and location in-
dependently and individual MOS equations are derived. For
rare meteorological events clusters of stations are grouped
together that are similar in climatology in order to derive in-
dividual cluster equations. This local and individual fitting
results in optimal statistical forecasts for the specific time,
location and variable as measured with the RMSE compared
to observations. However, it does not guarantee that obtained
forecast fields are consistent in space, time or between vari-
ables.

In forecast time, spurious jumps of statistical forecasts can
appear, and variables with different reference periods usu-
ally do not match. For example, the sum of 12 successive
1-hourly precipitation amounts would not equal the corre-
sponding 12-hourly amount if the latter is modelled as an in-
dividual predictand. Statistical forecasts of temperature can-
not be guaranteed to exceed those of dew point. Maps of sta-
tistical forecasts show high variability from station to station
and unwanted anomalies in case of cluster equations. Cluster
edges turn up and it may appear that there are higher wind

gusts in a valley than on a mountain nearby, in cases where
the locations are arranged in different clusters, for example.
For consistency in time and space the situation can be im-
proved by using the same equations for several lead times
and for larger clusters or by elaborate subsequent smoothing.
However, forecast quality for a given space and time will be
degraded consequently. For consistency between all forecast
variables multivariate regressions are required that model the
relevant predictands simultaneously.

From the point of view of probabilistic forecasting, how-
ever, statistical forecasts are random variables with statisti-
cal distributions, although commonly only their expectations
are considered the statistical forecast. In case forecast consis-
tency is violated from a deterministic point of view, this is not
the case if statistical errors are taken into account. The sta-
tistical forecasts remain valid as long as the probability dis-
tributions of the variables overlap. As this is a mathematical
point of view, the question remains how to communicate this
nature of probabilistic forecasts to the public or traditional
meteorologists in terms of useful and accepted products.

4 Results

Evaluation of Ensemble-MOS for COSMO-DE-EPS and
ECMWF-ENS is provided in the following. Although
Ensemble-MOS of DWD provides statistical forecasts of
many forecast variables that are relevant for warnings, evalu-
ation is focused on wind gusts for COSMO-DE-EPS and on
temperature for ECMWF-ENS in order to limit the scope of
the paper.

4.1 Evaluation of Ensemble-MOS for
COSMO-DE-EPS

Verifications of the continuous speed of wind gusts are pre-
sented in Figs. 6–8 by various scatter diagrams including
forecast means (solid line) and their standard errors (dashed
lines). Figures 6 (right) and 7 (right) show the statistical fit of
the speed of wind gusts against synoptic observations during
a training period of 6 years of Ensemble-MOS for COSMO-
DE-EPS for lead times of 1 and 6 h, respectively. The fit is
almost unbiased for all forecast speed levels. The raw ensem-
ble means show overforecasting for high wind gusts (same
figures, left) and the standard errors are considerably larger.
If no overfitting occurs, out-of-sample forecasts are expected
to behave accordingly, which is verified in Fig. 8 (right) for
a test period of 3 months (at least for wind gusts up to about
20 ms−1).

Ensemble-MOS can predict its own current forecast errors
by using error predictands according to Eq. (3). Forecasts of
the absolute errors of the speeds of wind gusts are related
to observed errors in Fig. 9 (right). The biases are small, al-
though individual observed errors are much larger than their
predictions. The absolute errors of the ensemble mean ver-

Nonlin. Processes Geophys., 27, 473–487, 2020 https://doi.org/10.5194/npg-27-473-2020



R. Hess: Statistical Postprocessing for Severe Weather 483

Figure 6. Scatter plots of ensemble means of 3 h forecasts of the speeds of wind gusts of COSMO-DE-EPS versus observations (a) and cor-
responding statistical fits of 1 h forecasts of Ensemble-MOS versus the same observations (b). Means of observations (solid) and confidence
intervals (means± standard deviations, dashed) are shown. Six years of data (2011–2016) are used; number of cases are given by histograms.

Figure 7. As Fig. 6 but for 8 h forecasts of COSMO-DE-EPS (a) and 6 h forecasts of Ensemble-MOS (b).

sus ensemble spread (normalised to absolute error) strongly
underestimate the observed errors of the ensemble mean; see
Fig. 9 (left). This is another example of underestimated dis-
persion of COSMO-DE-EPS as shown in Fig. 1 for precipi-
tation.

The statistical forecasts of the speeds of the wind gusts are
excellent predictors for the probabilities that certain warning
thresholds are exceeded. This is demonstrated by the fits of
the observed distributions by logistic regression as shown in
Fig. 3. The global logistic regression presented in Sect. 3.3

is prepared for extreme and rare events; nevertheless, it is
applicable to lower thresholds as well. The reliability dia-
gram in Fig. 10 shows well-calibrated probabilities for wind
gusts exceeding 7.7 ms−1 for a zone in the northern German
plains with calmer winds in climatology. The COSMO-DE-
EPS shows strong overforecasting in these situations.
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Figure 8. As Fig. 6 but for 3 months of data (May–July 2016) and forecasts of COSMO-DE-EPS (a) and Ensemble-MOS (b). Data of this
period were not used for training.

Figure 9. Scatter plots of 3 h forecasts of the absolute errors of COSMO-DE-EPS forecasts of wind gust speeds (estimated as ensemble
standard deviations×0.8) versus observed absolute errors of the ensemble means (a) and corresponding 1 h error forecasts of Ensemble-
MOS versus observed absolute errors of Ensemble-MOS (statistical fit of training period, b). Means of observed absolute errors (solid) and
confidence intervals (means ± standard deviations, dashed) are shown. Six years of data (2011–2016) are used.

4.2 Evaluation of Ensemble-MOS for ECMWF-ENS

In order to motivate the use of Ensemble-MOS for ECMWF-
ENS, a study has been carried out with a restricted set of
model variables of TIGGE; see Sect. 2.3. Training is based
on ensemble data and corresponding observations from 2002
to 2012, whereas statistical forecasting and verification is
performed for 2013; see Hess et al. (2015) for details.

Results for 2 m temperature forecasts are shown in Fig. 11,
which illustrates essential improvements of postprocessed
forecasts of Ensemble-MOS compared to raw ensemble out-
put. The statistical forecast (blue) not only improves the
raw ensemble mean (red), but it also outperforms the high-
resolution ECMWF-IFS (these data have not been used for
training). Also, the statistical estimation of Ensemble-MOS
of its own errors (pink) (see Sect. 3.1) is more realistic over
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Figure 10. Reliability diagram for probabilities of wind gusts ex-
ceeding 7.7 ms−1 (15.0 kn). Probabilistic forecasts of Ensemble-
MOS with a lead time of 6 h (green) and corresponding relative fre-
quencies of COSMO-DE-EPS with a lead time of 8 h (blue). Verifi-
cation is done for 3 months of data (May–July 2016) and 18 stations
in Germany at about N52◦ latitude, including Berlin for example.
Vertical lines are 5 %–95 % consistency bars according to Bröcker
and Smith (2006).

the first few days than the estimate of the ensemble mean
errors by the ensemble spread (yellow). Improvements of
ECMWF-ENS with Ensemble-MOS were also obtained for
24 h precipitation and cloud coverage.

5 Conclusions

This paper describes the Ensemble-MOS system of DWD,
which is set up to postprocess the ensemble systems
COSMO-D2-EPS and ECMWF-ENS with respect to severe
weather to support warning management. MOS in general is
a mature and sound method and, in combination with logistic
regression, it can provide optimised and calibrated statistical
forecasts. Stepwise multiple regression allows reduction of
conditional biases that depend on the meteorological situa-
tion, which is defined by the selected predictors. The setup
of Ensemble-MOS to use ensemble mean and spread as pre-
dictors is computationally efficient and simplifies forecasting
of calibrated event probabilities and error estimates on longer
forecast lead times. Ensemble-MOS is operationally applica-
ble with regard to its robustness and computational costs and
runs in trial mode in order to support warning management
at DWD.

The ensemble spread is less often detected as an important
predictor, as might be expected, however. One reason is that
the spread actually carries less information about forecast ac-
curacy than originally intended. It is often too small and too
steady to account for current forecast errors. Another reason

Figure 11. Mean absolute error (MAE) of 2 m temperature
forecast and error estimations depending on forecast lead time.
Spread (yellow): spread of ECMWF-ENS (normalised to MAE);
MAE Ensemble Mean (red): MAE of the mean of ECMWF-
ENS; MAE Ctrl (grey): MAE of the ECMWF-ENS control
run; MA EMOS (pink): Ensemble-MOS forecast of its own ab-
solute errors (see Eq. 3: estimations of MAE EMOS, blue);
MAE MOS (blue): MAE of Ensemble-MOS for ECMWF-ENS;
MAE HR (green): MAE of high-resolution ECMWF-IFS.

is that some forecast variables correlate with their own fore-
cast errors (e.g. precipitation and wind gusts). If the ensemble
spread does not provide enough independent information, it
is not selected additionally to the ensemble mean during step-
wise regression. Currently, only ensemble mean and spread
are provided as predictors for Ensemble-MOS. The imple-
mentation of various ensemble quantiles as additional pre-
dictors is technically straightforward and could improve the
exploitation of the probabilistic information of the ensemble.

Statistical forecasts of the speed of the wind gusts are ex-
cellent predictors for probabilities that given thresholds are
exceeded and are used as predictors within logistic regres-
sions. The same approach could be advantageous for proba-
bilities of heavy precipitation as well, where estimated pre-
cipitation amounts would be used as predictors.

An important further step in probabilistic forecasting is
the estimation of complete (calibrated) distributions of fore-
cast variables rather than forecasting only discrete threshold
probabilities. For wind gusts with Gaussian conditional er-
rors as shown in Fig. 4 this seems possible but certainly re-
quires additional research.

With its inherent linearity (also in the case of logistic re-
gressions, there are linear combinations of predictors only)
MOS has its restrictions in modelling but supports traceabil-
ity and robustness, which are important features in opera-
tional weather forecasting. Therefore, MOS is considered a
possible baseline for future statistical approaches based on
neural networks and machine learning that allow for more
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general statistical modelling. Many of the statistical prob-
lems will remain however, such as finding suitable reac-
tions to changes in the NWP models, (deterministic) consis-
tency and the definition of useful probabilistic products (see
Sect. 3.4.2) and the verification of rare events. In all cases,
training data are considered of utmost importance, including
the NWP-model output, as well as quality-checked historic
observations.

Data availability. COSMO-DE-EPS data and synoptic observa-
tions are stored in DWD archives and can be made accessible un-
der certain conditions. Further information is available at https:
//opendata.dwd.de (DWD, 2020). TIGGE data are available free of
charge, see https://confluence.ecmwf.int/display/TIGGE (ECMWF,
2020).
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