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Abstract. With numerical weather prediction ensembles un-
able to produce sufficiently calibrated forecasts, statistical
post-processing is needed to correct deterministic and prob-
abilistic biases. Over the past decades, a number of meth-
ods addressing this issue have been proposed, with ensemble
model output statistics (EMOS) and Bayesian model averag-
ing (BMA) among the most popular. They are able to pro-
duce skillful deterministic and probabilistic forecasts for a
wide range of applications. These methods are usually ap-
plied to the newest model run as soon as it has finished, be-
fore the entire forecast trajectory is issued. RAFT (rapid ad-
justment of forecast trajectories), a recently proposed novel
approach, aims to improve these forecasts even further, uti-
lizing the error correlation patterns between lead times. As
soon as the first forecasts are verified, we start updating the
remainder of the trajectory based on the newly gathered er-
ror information. As RAFT works particularly well in con-
junction with other post-processing methods like EMOS and
techniques designed to reconstruct the multivariate depen-
dency structure like ensemble copula coupling (ECC), we
look to identify the optimal combination of these methods.
In our study, we apply multi-stage post-processing to wind
speed forecasts from the UK Met Office’s convective-scale
MOGREPS-UK ensemble and analyze results for short-
range forecasts at a number of sites in the UK and the Re-
public of Ireland.

1 Introduction

Numerical weather prediction (NWP) is an inherently un-
certain process, and even with present-day computational
resources, ensembles can not produce perfect forecasts
(Buizza, 2018). Statistical post-processing methods have
been successfully applied to address these deficiencies, aim-
ing to resolve a multitude of issues. Two important proper-
ties of probabilistic forecasts are calibration and sharpness
(Gneiting et al., 2007). Calibration is the statistical consis-
tency between the forecasts and the observations, and sharp-
ness refers to the amount of predictive uncertainty and thus
the extent of information contained in the forecast. Usually,
NWP ensembles lack calibration, as they can not consider
all sources of atmospheric uncertainty, but they are quite
sharp. The main goal of any statistical post-processing pro-
cess should therefore be to maximize the forecast’s sharp-
ness, subject to it being calibrated (Gneiting et al., 2007).

Well-established techniques like ensemble model output
statistics (EMOS; e.g., Gneiting et al., 2005) or Bayesian
model averaging (BMA; e.g., Raftery et al., 2005) are now
available for a number of weather variables; for an overview,
see Wilks (2018). They measure the ensemble’s performance
over a training period, either consisting of a rolling window
of a few weeks or a longer, fixed period of time, and then
apply a statistical correction to the newest NWP model run.
The updated forecasts are usually in the form of a predic-
tive probability distribution, as close to perfect calibration as
possible. As EMOS has been proven to work well for our
data set, the MOGREPS-UK ensemble produced by the UK
Met Office, and is computationally more efficient, we prefer
it over BMA.
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During the application of some of the methods mentioned
above, any physical, spatial and temporal dependency struc-
ture from the NWP model is lost and additional effort is
needed to restore these patterns (Schefzik and Möller, 2018).
In some cases, parametric models can be developed (e.g.,
Schuhen et al., 2012; Feldmann et al., 2015); however, if
this is not feasible, techniques like ensemble copula coupling
(ECC; Schefzik et al., 2013) and the Schaake shuffle (Clark
et al., 2004) provide a non-parametric approach based on re-
ordering samples from the calibrated predictive distributions.
In this study, we choose ECC over the Schaake shuffle, as it
does not require any additional historical data.

Recently, Schuhen et al. (2020) proposed a new kind of
post-processing method, rapid adjustment of forecast trajec-
tories (RAFT), designed to minimize forecast errors on-the-
fly. Instead of running once, like EMOS or BMA, between
the NWP model run finishing and the publication or deliv-
ery of the forecasts, it is applied repeatedly at every lead
time step. RAFT works in concert with conventional post-
processing techniques and utilizes the error information from
the part of a forecast trajectory where observations are al-
ready available in order to improve the mean forecast skill for
the rest of the trajectory. This means that, e.g., any system-
atic forecast error in a model run that was not picked up by
the standard post-processing can now be corrected quickly,
once it is recorded. In this way, older forecasts become more
valuable and typically outperform the first few forecasts of a
new model run. While Schuhen et al. (2020) adjust the deter-
ministic mean forecast only, we will show in this paper how
RAFT can also be used to adjust the predictive variance. In
general, RAFT applies to any kind of forecast scenario, from
the short range to seasonal forecasting, as long as there is suf-
ficient correlation between the errors at different lead times.

With an abundance of post-processing methods available,
the question arises in which order they should be employed.
Li et al. (2019) look at this problem in the context of
generator-based post-processing (GPP; Chen and Brissette,
2014), producing discrete, auto-correlated time series, and
dependence reconstruction methods like ECC. When work-
ing with EMOS, it should generally be run first in order to
remove large-scale calibration errors and provide a skillful
baseline forecast. However, it is not obvious how to com-
bine ECC and RAFT. Therefore it is our aim to find the
optimal order of operation for these three post-processing
methods, each designed to achieve a different objective. The
combinations of post-processing methods will be applied to
site-specific instantaneous wind speed forecasts produced by
the high-resolution MOGREPS-UK ensemble and will be as-
sessed using multiple univariate and multivariate verification
tools.

The remainder of this paper is organized as follows. In
Sect. 2, we introduce the data set used in this study. Section 3
describes the individual post-processing methods, including
the new RAFT approach, and Sect. 4 outlines the set of ver-
ification metrics which we apply to determine the forecast

performance. In Sect. 5, we illustrate how the different tech-
niques work by means of an example forecast and present re-
sults for the selected combinations of post-processing meth-
ods. We conclude with a discussion in Sect. 6.

2 Data

The 10 m instantaneous wind speed forecast data used in this
study were produced by the UK Met Office’s limited-area en-
semble MOGREPS-UK (Hagelin et al., 2017). MOGREPS-
UK is based on the convection-permitting NWP model UKV,
but with a lower resolution of 2.2 km. Until March 2016,
the global ensemble MOGREPS-G produced both initial and
boundary conditions for MOGREPS-UK; subsequently per-
turbations from the global ensemble were combined with
UKV analysis increments to generate the initial conditions.

We use data from all model versions between Jan-
uary 2014 and June 2016, during which the ensemble was
initialized four times a day and consisted of 12 members,
one control and 11 perturbed forecasts. Here, we only look
at the model run started at 15:00 UTC, as it was observed
in Schuhen et al. (2020) that all four runs behave somewhat
similarly in terms of predictability. Forecasts are produced
for every hour up to 36 h, covering the short range.

For both estimation and evaluation, SYNOP observations
from 152 sites in the British Isles are used (see Fig. 1). To
match the observation locations, the forecasts were interpo-
lated from the model grid and subjected to Met Office post-
processing in order to correct for local effects and differences
between the model and the location’s orography. We separate
our data set into two parts: the first 12 months are used for es-
timating the RAFT coefficients and the remaining 18 months
for evaluating the post-processing techniques.

3 Post-processing methods

In this paper, several post-processing methods are used in
various combinations. They all fulfill different purposes:
EMOS functions as a baseline for producing calibrated and
sharp probabilistic forecasts, ECC transfers the physical de-
pendency structure of the ensemble to the EMOS forecasts
and RAFT continually improves the EMOS deterministic
forecasts after they have been issued, based on previously
unavailable information.

3.1 Ensemble model output statistics

In a first step, all forecasts are post-processed with EMOS,
sometimes also called non-homogeneous regression, in or-
der to correct deterministic and probabilistic biases the raw
ensemble might suffer from. These deficiencies are a result
of the limits of ensemble forecasting in general, as, e.g.,
the ensemble members can only represent a small subset of
the multitude of all possible or probable states of the atmo-
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Figure 1. Map of the British Isles with the 152 observation loca-
tions used in this study. The sites are divided into three categories,
coastal, inland and mountain sites, depending on their location and
altitude. The black square marks The Cairnwell, a mountainous site
in the Scottish Highlands.

sphere at any given point in time. Thorarinsdottir and Gneit-
ing (2010) propose an application of the EMOS method for
wind speed forecasts based on truncated Gaussian distribu-
tions, although they study maximum instead of instantaneous
wind speed.

As we will see in Sect. 5, this approach (here called
gEMOS) produces nearly calibrated forecasts, but they are
still slightly underdispersive. For this reason, we investi-
gate a second variant of EMOS introduced by Scheuerer and
Möller (2015), logEMOS, where the predictive distributions
are truncated logistic. Due to its heavier tails, the logistic dis-
tribution can provide a better fit to the instantaneous wind
speed data at hand. Further case studies including various
versions of EMOS have shown that sharp and calibrated fore-
casts can be produced for a number of different NWP ensem-
bles (e.g., Feldmann et al., 2015; Scheuerer and Büermann,
2014; Kann et al., 2009).

LetX1, . . .,X12 denote an ensemble forecast valid at a spe-
cific time and location and Y be the corresponding observed
wind speed. Then we model the gEMOS forecast as a trun-
cated Gaussian distribution with cut-off at zero, in order to

account for the non-negativity of the wind speed values:

Y |X1, . . .,X12 ∼N+
(
µ,σ 2

)
. (1)

Due to the truncation, the negative part of the distribution is
cut off and a corresponding probability mass added to the
positive part. This means that the parameter µ here is not
the mean of the distribution, but the location parameter, and
σ 2 is the scale parameter. Using the ensemble mean X =
1

12
∑12
i=1Xi and variance S2

=
1

12
∑12
i=1
(
Xi −X

)2
as predic-

tors for the EMOS parameters µ and σ 2, we define the fol-
lowing equations:

µ= a+ b2
·X, (2)

σ 2
= c2
+ d2
· S2. (3)

The coefficients b, c and d are squared in order to sim-
plify interpretability and to make sure that the scale parame-
ter is positive. Minimum score estimation is a versatile way
to obtain parameter estimates in such a setting (Dawid et al.,
2016). The proper score we want to optimize is the continu-
ous ranked probability score (CRPS; Matheson and Winkler,
1976; Gneiting and Raftery, 2007), which addresses both im-
portant forecast properties, sharpness and calibration (for de-
tails, see Sect. 4). We process all locations and lead times
separately, equivalent to the local EMOS approach in Tho-
rarinsdottir and Gneiting (2010), and the training data con-
sist of a rolling period of 40 d. In practice, this means that
the training period contains forecast–observation pairs from
the last 40 d preceding the start of the model run, valid at the
same lead time and location.

In the case of logEMOS, we substitute the truncated Gaus-
sian distribution in Eq. (1) with a truncated logistic distribu-
tion:

Y |X1, . . .,X12 ∼ L+ (µ,s) , (4)

where µ is again the location parameter and s =
√

3σ 2 ·π−1

the scale. The location parameter µ and variance σ 2 are
linked to the ensemble statistics in the same way as in
Eq. (2). Scheuerer and Möller (2015) provide a closed form
of the CRPS for a truncated logistic distribution, meaning
that gEMOS and logEMOS are comparable in terms of com-
putational cost and complexity. We found parameter estima-
tion to be more stable when applying EMOS to wind speed in
knots as compared to meters per second. The ensemble mem-
bers are treated as exchangeable, in that we use the ensemble
mean as a predictor for the EMOS location parameter. This
results in more robust parameters and faster computation.

3.2 Ensemble copula coupling

While EMOS is particularly adept at calibrating ensemble
forecast, the ensemble’s rank structure is lost in the process.
To restore the physical dependencies between forecasts at
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different lead times, we employ ECC (e.g., Schefzik et al.,
2013). This method makes use of the original ensemble’s
multivariate dependency information and transfers it to the
new, calibrated forecasts.

First, we draw samples from the univariate EMOS distri-
butions. There are several options, but Schefzik et al. (2013)
(as a consequence of the discussion in Bröcker, 2012) rec-
ommend using equidistant quantiles, as they best preserve
the calibration of the univariate forecasts. Then we reorder
the quantiles according to the order statistic of the ensemble
members. Thus, for each ensemble member Xi at any given
forecast lead time l = 1, . . .,36, we note its rank among the
other ensemble members X(l)1 , . . .,X

(l)
12 . We obtain a permu-

tation τl of the numbers 1, . . .,12 such that

X
(l)
τl(1) ≤X

(l)
τl(2) ≤ . . .≤X

(l)
τl(12). (5)

Any ties are resolved at random. Then we apply τl to the
EMOS quantiles X̃(l)1 , . . ., X̃

(l)
12 and reorder the individual en-

semble members so that we obtain a multivariate ensemble[
X̃
(1)
τl(1), . . ., X̃

(36)
τl(1)

]
, . . .,

[
X̃
(1)
τl(12), . . ., X̃

(36)
τl(12)

]
. (6)

The new ensemble has the same univariate properties as
the original EMOS quantiles, as only the order of the ensem-
ble members has changed. However, when we evaluate it us-
ing multivariate scores and verification tools, we can see the
benefit of ECC. It is a computationally efficient and straight-
forward method to preserve spatial and temporal features of
the NWP model. ECC has been used in a variety of atmo-
spheric and hydrological forecasting scenarios, e.g., Schuhen
et al. (2012), Hemri et al. (2015) and Ben Bouallègue et al.
(2016).

3.3 Rapid adjustment of forecast trajectories

RAFT is a new technique that can be used in conjunction
with established approaches like EMOS and ECC. However,
it operates on a different timescale. While EMOS and ECC
are applied once when the NWP model run has finished,
RAFT continually updates the forecast after it has been is-
sued, using information from the part of the forecast tra-
jectory that has already realized. Essentially, RAFT applies
to any weather variable; therefore, we do not have to make
many alterations to the method for temperature described in
Schuhen et al. (2020). We treat all locations separately, as the
local error characteristics vary greatly.

In this paper, there are two different RAFT concepts
used: we call the standard method that adjusts the EMOS
mean RAFTm, while RAFTens applies to individual ensem-
ble members drawn from the EMOS distribution. RAFTm
therefore can only improve the deterministic forecast skill,
whereas RAFTens provides an adjusted empirical distribution
spanned by the ensemble. Both RAFT variants are based on
the correlation between observed forecast errors at different
lead times. We define the error et,l at a particular lead time l,

generated from a model run started at time t , as the difference
between the forecast and the observation yt+l :

et,l = yt+l −mt,l, (7)

e
(i)
t,l = yt+l − x

(i)
t,l , i = 1, . . .,12. (8)

Equation (7) refers to the RAFTm approach, where mt,l is
the mean of the EMOS distribution. For RAFTens, we need
to calculate the error for every ensemble member x(i)t,l (Eq. 8).
To obtain the mean of the truncated Gaussian distribution
from the location and scale parameters µ and σ 2, we use the
following relationship:

m= µ+ σ ·ϕ
(
−
µ

σ

)
·

(
1−8

(
−
µ

σ

))−1
. (9)

The functions ϕ and 8 here denote the density and cumula-
tive distribution function of the standard Gaussian distribu-
tion, respectively. Similarly, the mean of the truncated logis-
tic distribution is

m= s · log
(

1+ exp
(µ
s

))
·

(
1−3

(
−
µ

s

))−1
, (10)

where µ is the location parameter, s the scale and 3 the cu-
mulative distribution function (CDF) of the standard logistic
distribution.

From the forecast errors et,l and e(i)t,l , we generate the Pear-
son correlation coefficient matrix to establish the relationship
between the 36 lead times. In the RAFTens case this means
looking at the correlation matrices of each ensemble member
separately. The left column in Fig. 2 shows the gEMOS error
correlation matrix for the weather station on The Cairnwell
mountain in the Scottish Highlands. The top plot refers to
RAFTm, while the bottom illustrates the correlation for one
member of the RAFTens ensemble. All correlations shown
are statistically significant at the 90 % level. There is a good
correlation between a sizable number of lead times, which
makes it possible to define an adjustment period for each lead
time, telling us at what point in time to begin with the RAFT
adjustments. While the adjustment period applies, we know
that a previously observed error et,l∗ at lead time l∗ < l gives
us reliable information about the future error et,l .

The RAFT model used to obtain the estimated future er-
ror êt,l at l = 1, . . .,36 is based on linear regression with the
observed error et,l∗ as predictor:

êt,l = α̂+ β̂ · et,l∗ + ε, (11)

where the random error term ε is normally distributed with
mean zero. The regression coefficients α̂ and β̂ are de-
termined using least squares. Once we have estimated the
RAFT regression coefficients for every possible combination
of lead times l and l∗, we can establish the length p of the
individual adjustment periods by looking at those combina-
tions where the estimate of the coefficient β̂ is significantly
greater than zero, meaning that et,l∗ is likely to provide useful
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Figure 2. (a) Correlation matrix of the EMOS mean error at The Cairnwell. Only correlations significant at the 90 % level are shown.
(b) Length of the RAFTm adjustment period for each lead time. (c) As (a) but for the error of an ensemble member drawn from the EMOS
predictive distribution. (d) Length of the RAFTens adjustment period for each lead time.

information for the prediction of et,l . In order to account for
potential limitations in real-time availability of observations,
the RAFT adjustments performed at a certain lead time l− 1
for any lead time greater than or equal to l use the observa-
tion recorded at l− 2. For the first few lead times of a model
run, where no previous error can be computed, the predictors
in Eq. (11) are based on the forecasts from the model run
initialized 24 h earlier.

The algorithm for determining the adjustment period cor-
responds to the one described in Schuhen et al. (2020). In
general, it can be applied to any weather variable with errors
on a continuous scale. However, it is somewhat arbitrary and
can certainly be optimized for individual forecasting scenar-
ios. The algorithm is run once, based on the fixed estimation
data set. We proceed as follows.

1. Estimate the regression coefficients in Eq. (11) for all
predictors et,l∗ with l∗ in [l− 23; l− 2]. If any l∗ are

negative, we use l∗+ 24 as predictors instead, so that
lead time 23 is followed by lead time 0,1,2, . . ..

2. a. Find the earliest l∗ in [l− 11; l− 2], such that the
coefficient β̂ is significantly different from zero at
the 90 % level for each lead time l∗+ 1, . . ., l− 2.
Denote the result as lp.

b. If there is no result in the previous step, find the
earliest l∗ in [l− 19; l− 12], such that β̂ is signifi-
cantly different from zero at the 95 % level for each
lead time l∗+ 1, . . ., l− 12. Denote the result as lp.

c. If there is no result in the previous step, find the
earliest l∗ in [l− 23; l− 20], such that β̂ is signifi-
cantly different from zero at the 99 % level for each
lead time l∗+ 1, . . ., l− 20. Denote the result as lp.

3. After running the first two steps for all lead times, de-
termine the length of the adjustment period p.

a. If Step 2 has yielded a result for lp, set p = l− lp.
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b. If Step 2 has not yielded a result, set p equal to the
average of the adjustment period length values for
the neighboring lead times l− 1 and l+ 1.

c. If there is still no valid value for p, set it to p = 22.
This corresponds to the longest possible adjustment
period.

Figure 2b and d show the adjustment periods for the
RAFTm (top) and RAFTens (bottom) versions at The Cairn-
well. For the ensemble method, the algorithm results in a
good approximation of the correlation pattern in panel (c),
but the values of p seem to jump back and forth with increas-
ing lead time. In the case of the EMOS mean, the values of p
are more consistent across the lead times, but do not neces-
sarily correspond as well to the respective correlation matrix
pattern in panel (a).

Finding the optimal adjustment periods concludes the esti-
mation part of RAFT. The actual adjustment of the predicted
forecast error happens in real time once the current model
run has finished and the forecasts have been issued. For lead
time l, the adjustment starts at l−p+1, using the observation
recorded at l−p, and then continues hourly until l− 1. The
smaller the gap between l and the time the observation was
recorded, the greater the value of the error information and
therefore the larger the gain in forecast skill.

In practice, we calculate the observed error according to
Eq. (7), plug it into Eq. (11) with the appropriate coefficients
α̂ and β̂ and obtain the predictive error êt,l . Then we can
add this forecast to the EMOS mean mt,l for RAFTm or the
ensemble member x(i)t,l , i = 1, . . .,12 drawn from the EMOS
distribution for RAFTens:

m̂t,l =mt,l + êt,l, (12)

x̂
(i)
t,l = x

(i)
t,l + êt,l . (13)

Any values of m̂t,l and x̂
(i)
t,l that become negative during

this process are set to zero in order to account for the non-
negativity of wind speed. While we can use the RAFT-
adjusted mean m̂t,l as a deterministic forecast, the corre-
sponding location parameter µ̂t,l is needed to evaluate the
full distribution. For this purpose, we solve Eqs. (9) and (10)
numerically for µ. This approach can be quite unstable and
has to be done carefully so that the resulting distribution is
valid. We then combine the new location parameter with the
unchanged EMOS variance and thus obtain a predictive dis-
tribution. In the case of RAFTens, the ensemble members
span a discrete distribution. Therefore, we here adjust not
only the deterministic forecast, but also simultaneously the
spread of the distribution in an adaptive and flow-dependent
way.

4 Evaluation methods

There is a multitude of evaluation methods available to assess
both deterministic and probabilistic forecast skill (see, e.g.,

Thorarinsdottir and Schuhen, 2018). In addition to looking at
univariate verification results, we also want to determine the
benefit of various combinations of post-processing methods
in a multivariate sense.

Proper scoring rules (Gneiting and Raftery, 2007) are use-
ful tools that assign a numerical value to the quality of a fore-
cast and always judge the optimal forecast to have the best
score. Usually, they are averaged over a number of forecast
cases n. In the deterministic case, the root-mean-square er-
ror (RMSE) gives an indication about the forecast accuracy
of the mean forecast, be it the mean of a distribution or an
ensemble mean. It is defined as

RMSE(F,y)=

√√√√1
n

n∑
i=1

(mean(F )− y)2, (14)

where y is the verifying observation corresponding to the
predictive distribution F .

To evaluate probabilistic forecasts, the CRPS (Matheson
and Winkler, 1976) is an obvious choice. Given the score’s
robustness, it is often used for parameter estimation, as in
the two EMOS variants gEMOS and logEMOS described in
Sect. 3.1. A closed form of the CRPS for the truncated Gaus-
sian was derived by Thorarinsdottir and Gneiting (2010) as

CRPS
(
N+

(
µ,σ 2

)
,y
)
= σ ·8

(µ
σ

)−2
[
y−µ

σ
8
(µ
σ

)
{

28
(
y−µ

σ

)
+8

(µ
σ

)
− 2

}
(15)

+2ϕ
(
y−µ

σ

)
8
(µ
σ

)
−

1
√
π
8
(√

2
µ

σ

)]
, (16)

where 8 is the CDF and ϕ the PDF (probability density
function) of a standard normal distribution. For the trun-
cated logarithmic distribution, a closed form is also available
(Scheuerer and Möller, 2015):

CRPS
(
L+ (µ,s) ,y

)
= (y−µ)

(
2py − 1−p0

1−p0

)
(17)

+ s
[
log(1−p0)

−
1+ 2log

(
1−py

)
+ 2py logit

(
py
)

1−p0

−
p2

0 log(p0)

(1−p0)
2

]
. (18)

Here, logit(·) is the logit function and p0 =3
(
−µs−1) and

py =3
(
(y−µ)s−1) are values of the CDF of the truncated

logistic distribution 3. To be able to compare all types of
forecasts in a fair way, we draw random samples X1, . . .,X12
from every continuous predictive distribution and evaluate
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them using the ensemble version of the CRPS:

CRPSens (X1, . . .,X12;y)=
1

12

12∑
i=1

|Xi − y| −
1

2 · 122

12∑
i=1

12∑
j=1

∣∣Xi −Xj ∣∣ . (19)

Furthermore, we want to assess the level of calibration in
a forecast separately, as it is important to prefer the sharpest
forecast subject to calibration (Gneiting et al., 2007). To this
end, we check the verification rank histogram (Anderson,
1996; Hamill and Colucci, 1997; Talagrand et al., 1997),
where we find the ranks of the observation within the fore-
cast ensemble for each forecast case and plot them as a his-
togram. A ∩-shaped histogram points towards overdispersed
forecast distributions, while a ∪ shape means that the fore-
casts do not exhibit enough spread. For perfect calibration,
a flat histogram is a necessary condition, although not suffi-
cient (Hamill, 2001).

The direct equivalent of the CRPS for multivariate fore-
casts, the energy score (Gneiting and Raftery, 2007), is de-
fined as

ES(F,y)= EF ‖X− y‖−
1
2
EFEF

∥∥X−X′
∥∥ , (20)

where X and X′ are independent random vectors drawn from
the multivariate distribution F , y is the observation vector
and ‖.‖ is the Euclidean norm. If we replace the absolute
value in Eq. (19) with the Euclidean norm, we obtain an anal-
ogous version of the energy score for ensemble member vec-
tors. It is also possible to evaluate deterministic forecasts in
multiple dimensions using the Euclidean error, which we de-
rive from the energy score by replacing the distribution F
with a point measure:

EE(F,y)= ‖medF− y‖ . (21)

The multivariate point forecast medF is the spatial median,
computed numerically using R package ICSNP (Nordhausen
et al., 2015). It minimizes the sum of the Euclidean distances
to the ensemble members.

While the energy score is generally more sensitive to er-
rors in the predictive mean (Pinson and Tastu, 2013), the
variogram score proposed by Scheuerer and Hamill (2015)
is better at identifying whether the correlation between the
components is correct. In addition to following the authors’
recommendation and setting the score’s order p to 0.5, we
assign equal weights to all lead times. The variogram score
then becomes

VS(F,y)=
36∑
i=1

36∑
j=1

(∥∥yi − yj∥∥p −EF
∥∥Xi −Xj∥∥p)2, (22)

where yi and yj are the ith and j th components of the obser-
vation vector and Xi and Xj components of a random vector
distributed according to F .

Finally, there are several possibilities to check multivari-
ate calibration, like the multivariate rank histogram (Gneiting
et al., 2008), the band depth histogram and the average rank
histogram (both Thorarinsdottir et al., 2016). We choose to
use the latter in this case, as it is less prone to give misleading
results than the multivariate rank histogram and more easily
interpretable than the band depth histogram. First, a so-called
prerank is calculated, corresponding to the average univariate
rank of the vector components:

ρS (u)=
1
36

36∑
i=1

rankS (ui) , (23)

with rankS (ui) being the rank of the ith component of a vec-
tor u within the combined set of ensemble member and ob-
servation vectors S = {x1, . . .,x12,y}. Then the multivariate
average rank is the rank of the observation prerank in the set
{ρS (x1) , . . .,ρS (x12) ,ρS (y)}. The interpretation of the av-
erage rank histogram mirrors that of the univariate rank his-
togram, and errors in the correlation structure present them-
selves in the same way as dispersion errors in the marginal
distributions (Thorarinsdottir and Schuhen, 2018). Visualiza-
tion of the histograms is taken from Barnes et al. (2019).

5 Results

It is the purpose of this paper to investigate whether there is
a preferred order in applying three different kinds of post-
processing methods. In particular, it will be important to see
whether ECC should be run once, like EMOS, subsequent
to the end of the NWP model run, or whether it should be
continuously applied every time the RAFT adjustment oc-
curs. Therefore, there are two combinations of methods to be
tested: EMOS + RAFTm + ECC, where RAFT is applied to
the EMOS mean only, and EMOS+ ECC+ RAFTens, where
we adjust the EMOS/ECC ensemble members and thus at the
same time the prediction of uncertainty. As we are interested
in a comprehensive assessment of the individual combina-
tions’ performance, all scores, whether univariate or multi-
variate, are of equal importance.

5.1 Example forecast

First, we take a look at an example forecast to illustrate how
the different RAFT variants work. Figure 3 shows different
forecasts issued from the 15:00 UTC model run on 30 Octo-
ber 2015 at The Cairnwell, Scotland. Panels (a) and (c) depict
the gEMOS + ECC + RAFTens forecasts, where the mean
and prediction interval are obtained by the 12 samples drawn
from the EMOS distribution. In panels (b) and (d), we have
gEMOS+RAFTm forecasts, with the mean being the RAFT-
adjusted mean of the EMOS distribution and the variance the
unchanged EMOS predictive variance. Here, we show two
different stages in the RAFT adjustment cycle for each com-
bination of post-processing methods. For the top plots, we
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Figure 3. Example forecast at The Cairnwell initialized at 15:00 UTC on 30 October 2015 for the next 36 h. The red line corresponds to
the RAFT mean forecast, with the shaded area being the 84.6% prediction interval. The verifying observation is indicated by the blue line
and the vertical line refers to the current point in time during the RAFT adjustment cycle. (a) Snapshot of the gEMOS + ECC + RAFTens
forecast taken after RAFT has been applied to the gEMOS + ECC samples once. The prediction interval is spanned by the individually
corrected ensemble members. (b) Snapshot of the gEMOS+ RAFTm forecast taken after RAFT has been applied to the gEMOS mean once.
The prediction interval is based on the gEMOS variance. (c) Same as (a), but RAFT has been applied hourly until the last iteration at t + 35.
(d) Same as (b), but RAFT has been applied hourly until the last iteration at t + 35.

only apply RAFT once at time t+1. This means that all fore-
casts in the trajectory have been adjusted using the error of
the t+24 forecast from the model run initialized 24 h earlier,
as long as their corresponding adjustment period allows it.
The bottom plots are the results of running the whole RAFT
adjustment cycle until the last installment at t + 35. Conse-
quently, all forecasts have been corrected with the observed
error measured 2 h earlier and are the most short-term and
therefore optimal RAFT forecasts.

In this weather situation, both mean forecasts initially un-
derpredict the wind speed for roughly 12 h starting from
lead time 10, corresponding to the time between 01:00 and
13:00 UTC. A further period of underprediction occurs to-
wards the end of the trajectory, from lead time 28. RAFT
is able to recognize these problems quickly and corrects the
underprediction quite well, as can be observed in the bottom
two panels. However, as the observations are quite jumpy, the
sign of the forecast error changes frequently during the ad-
justment process and the RAFT mean trajectory thus can also

exhibit more jumpiness than the initial EMOS mean. This
could be addressed by, e.g., adding additional predictors to
the RAFT linear regression model in Eq. (11).

There are only minor differences in the mean forecasts be-
tween the two post-processing method combinations, while
their main difference lies in the derivation of the predictive
variance. We can see that the size of the prediction interval
for gEMOS + ECC + RAFTens changes considerably be-
tween the first and last RAFT adjustments. This is of course
because the ensemble, and therefore the prediction interval
spanned by its members, is continuously updated and ad-
justed in a flow-dependent manner. For example, at the end of
the trajectory the ensemble spread in Fig. 3c is much smaller
than in Fig. 3d. In the case of gEMOS + RAFTm, the vari-
ance is not changed by RAFT and remains at the value orig-
inally estimated by EMOS.
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Figure 4. RMSE over lead time for gEMOS (red solid line) and logEMOS (red dashed line) mean forecasts, as well as their RAFTm
adjustments (blue solid and blue dashed lines, respectively). The scores are averaged over all model runs and sites in the evaluation set.
(a) RAFT is only carried out until the adjustment at t + 15. (b) RAFT is carried out until its last iteration at t + 35.

Table 1. Univariate and multivariate mean scores for different post-processing method combinations, using the final RAFT adjustments 1 h
before valid time. Bold numbers denote the best score in each column. All score differences are significant at the 95 % level, apart from the
ones marked with an asterisk, where the pairwise differences between the versions using gEMOS and logEMOS are not significant.

RMSE CRPS Euclidean error Energy score Variogram score

Raw ensemble 3.670 2.116 19.207 15.132 847

gEMOS 3.056 1.618 16.539 13.000 956
logEMOS 3.070 1.622 16.589 13.028 957

gEMOS + ECC 3.056 1.618 16.549 12.312 812
logEMOS + ECC 3.070 1.622 16.607 12.356 815

gEMOS + RAFTm 2.713∗ 1.445 15.045 11.943 899
logEMOS + RAFTm 2.714∗ 1.443 15.029 11.913 897

gEMOS + RAFTm + ECC 2.713∗ 1.445 15.049 11.175 784∗
logEMOS + RAFTm ECC 2.714∗ 1.443 15.033 11.165 784∗

gEMOS + ECC + RAFTens 2.708∗ 1.483 15.024∗ 11.164∗ 786
logEMOS + ECC + RAFTens 2.709∗ 1.482 15.023∗ 11.166∗ 787

5.2 Choice of EMOS model

As we tested two versions of EMOS using two different
distributions to model the future wind speed observations,
we are interested in which of these, if any, performs better.
Initially, we compare the deterministic forecast skill of the
EMOS mean and how it is improved by RAFT. In Fig. 4, the

RMSE of the gEMOS and logEMOS mean, averaged over all
sites and model runs, is shown. Both methods perform very
similarly, but gEMOS seems to have a slight advantage over-
all, apart from the first 3 h and the last hour. There is a small
increase in the RMSE for logEMOS at lead time 23, which
is most certainly due to issues in finding the minimum CRPS
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Figure 5. Verification rank histograms for different forecasting methods, aggregated over all sites, model runs and lead times. RAFT his-
tograms are based on the final adjustment for each lead time.

Figure 6. Average rank histogram for different combinations of post-processing methods. Data points are aggregated over all sites, model
runs and lead times. All RAFT forecasts have been adjusted using the observation measured 2 h earlier.

during the EMOS parameter estimation, where all lead times
are handled separately.

The ranking of the two EMOS variants is preserved when
applying RAFTm to the EMOS mean forecast. Figure 4a
shows the RAFT RMSE if we stopped adjusting the forecasts
at t+15. This means that all forecasts left of the vertical line
have been updated using the observation made 2 h earlier,
and all forecasts to the right of the line are adjusted using the
most recent information available at t+15, i.e., the observed
error at t + 14. However, this only applies to those forecasts
where lead time 14 lies in the respective adjustment periods.
For all other forecasts, the scores for EMOS and RAFT co-
incide. It is noticeable that the forecast skill improves sig-
nificantly as soon as we have information about the error in
the current model run at t + 3. The score remains at about
the same level until t + 16, when it starts to deteriorate, but
RAFT still has an advantage over the EMOS forecasts for an-
other 10 h. In reality, however, we would run RAFT until the
end of the forecast cycle, which is shown in Fig. 4b. Here,
we can see a consistent improvement, especially at large lead
times. We also see that the forecasts at lead times 25–26 have

more skill than the ones at lead times 1–2, which leads to the
conclusion that forecasts from a 24 h old model run are for
a couple of hours more skillful than the forecast from the
newest run.

The first column in Table 1 confirms these results. Here,
the scores have been aggregated over all lead times, model
runs and sites. In this table only scores for RAFT forecasts
that have been adjusted 1 h previously are shown, i.e., the op-
timal forecasts. We test the significance of score differences
by applying a permutation test based on resampling, as de-
scribed in Heinrich et al. (2019) and Möller et al. (2013).
Both EMOS methods increase the deterministic skill con-
siderably when compared to the raw ensemble and then are
further improved by applying RAFTm. While the RMSE
for gEMOS is significantly better than for logEMOS, which
we also see in the CRPS, there is almost no difference in
the gEMOS + RAFTm and logEMOS + RAFTm scores. In
terms of the CRPS, logEMOS + RAFTm has a slight advan-
tage, with the difference being significant at the 95 % level.

To confirm that the EMOS forecasts are indeed calibrated,
we look at the verification rank histograms in Fig. 5a. While
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Figure 7. Mean CRPS, energy score and variogram score for every
step in the RAFTm and RAFTens process. Scores are averaged over
all lead times, sites and model runs.

the raw ensemble is very underdispersive, as expected, both
gEMOS and logEMOS forecasts are nearly calibrated. Both
gEMOS and logEMOS histograms are again very similar, so
we compute the coverage of the 84.6% prediction interval
created by 12 ensemble members. From the results we see
that logEMOS, with a value of 85.18%, is much closer to
the nominal value than gEMOS with 80.56% and therefore
better calibrated. Figure 5b shows the histograms after we
apply RAFTm. Whereas the EMOS variance was on average
slightly too small before, it is now a little too big, indicated
by the small hump in the middle. This is due to the fact that
we do not adjust the variance in this process, but the deter-
ministic skill improves greatly. There is almost no difference
in the two histograms, which is also evident in the coverage
of the prediction interval, with values of 83.80% and 83.44%
for gEMOS and logEMOS, respectively.

In conclusion, there is little difference in the overall per-
formance of the two EMOS variants. While logEMOS has
the advantage of being slightly better calibrated, gEMOS
shows better scores. After applying RAFT, the two methods
are essentially equal. In the following we will therefore only
present results from one of the two EMOS versions.

5.3 Predictive performance for combinations of
post-processing techniques

The main focus of this study is to find out in which order
EMOS, RAFT and ECC should be combined. For RAFT,
we employ two different approaches: RAFTm, where the ad-
justments are only applied to the EMOS mean and are then
combined with the EMOS variance to obtain a full predic-
tive distribution, and RAFTens, where we adjust individual
ensemble members and consequently both mean and spread.
In the latter case, ECC is only run once when EMOS has fin-
ished; in the first, it has to be applied at every RAFT step
for the remaining lead times in the forecast run. Therefore
the required computing resources depend on the ratio of en-
semble members to lead times. In this study, the EMOS +
RAFTm + ECC combination takes about 33% more time to
compute than EMOS+ ECC+ RAFTens; however, both are,
with only a few seconds per model run and site, computa-
tionally very sparse.

When we compare Figure 5b and c, it is obvious that the
EMOS + ECC + RAFTens combination produces forecasts
which are slightly less calibrated than EMOS + RAFTm
forecasts. In fact, the level of calibration deteriorates from
the baseline EMOS methods. This also can be deduced from
the CRPS values in Table 1, where EMOS + RAFTm clearly
performs better. The RMSE for both methods is quite sim-
ilar, so that we can ascribe the discrepancy in the CRPS to
the different levels of calibration. Both methods improve the
EMOS baseline forecast considerably. In the case of EMOS
+ RAFTm, we know this improvement in forecast skill is
only due to the adjusted mean forecast, which simultaneously
results in better calibrated predictive distributions.

As we are interested not only in the univariate perfor-
mance, but also in the multidimensional dependencies be-
tween the lead times of a forecast trajectory, we look at sev-
eral multivariate scores (Table 1). The Euclidean error agrees
with the univariate RMSE that the best deterministic result
can be achieved by applying RAFT last. ECC seems not to
have any effect on the scores, which can be expected, as we
are only rearranging ensemble members and do not neces-
sarily change the multivariate median. The energy score is
a measure for the overall skill, but is also more sensitive to
errors in the mean forecast. This is the reason why RAFTm
manages to improve the energy score as compared to EMOS
+ ECC, while the variogram score deteriorates. Note that
both scores are reduced when we reintroduce the tempo-
ral correlation structure by applying ECC to the EMOS +
RAFTm forecasts. Although the energy and variogram scores
for EMOS+ ECC+RAFTens and EMOS+RAFTm + ECC
are very close, the two scores prefer different post-processing
method combinations. While the energy score judges the
method to be the best where we apply ECC first, which also
has the best RMSE and Euclidean error, the variogram score
assigns the lowest value to the better calibrated EMOS +
RAFTm + ECC. The almost identical variogram scores sug-
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Figure 8. (a) CRPS of gEMOS+ RAFTm forecasts against the CRPS of gEMOS forecasts for individual sites. (b) Energy scores of gEMOS
+ RAFTm forecasts against energy scores of gEMOS + ECC forecasts for individual sites. (c) Variogram scores of gEMOS + RAFTm +
ECC forecasts against variogram scores of gEMOS + ECC forecasts for individual sites. The scores are averaged over all lead times and
model runs. RAFT forecasts are taken from the final iteration. Filled symbols denote that the score on the y axis is lower than the one on the
x axis; empty symbols denote the opposite.

gest that RAFTens manages to preserve the multivariate cor-
relation structure throughout its multiple iterations.

The average rank histograms in Fig. 6 confirm that without
applying ECC, the EMOS and EMOS + RAFTm forecasts
are very uncalibrated. Both the EMOS + ECC and EMOS +
ECC + RAFTens combinations show a ∪-like shape, which
can be interpreted as either a too strong correlation or under-
dispersion. From the band depth histogram (not shown; see
Thorarinsdottir et al., 2016) we can conclude that the latter is
the case here, as was also seen in the univariate histograms.
On the other hand, the EMOS + RAFTm + ECC forecast
ranks form a hump-like histogram. This is due to the corre-
lation between the components being too weak, again con-
firmed by the band depth histogram.

In order to investigate further the optimal order of oper-
ation when applying multiple post-processing methods, we
look at how the scores develop with every step in the RAFT
process. While the scores in Table 1 are computed using the
final RAFT installment at t + 35, where all forecasts have
been adjusted using the observation made 2 h earlier, Fig. 7
shows the CRPS, energy score and variogram score com-
puted at each RAFT iteration for the gEMOS + ECC +
RAFTens and gEMOS + RAFTm + ECC forecasts. From
Fig. 7a, it is clear that EMOS + RAFTm + ECC performs
best in terms of the CRPS, with the gap between the two com-
binations widening with increasing number of RAFT adjust-
ments. As we have also seen that the RAFTm version is better
calibrated than the RAFTens one, this means that the CRPS
here puts more weight on the calibration being correct than
on the slightly better deterministic forecast (see the RMSE in
Table 1) in the RAFTens case. This is surprising, given that
the CRPS and its multivariate equivalent, the energy score,

are usually more sensitive to the error in the forecast mean
(see Fig. 4 in Friederichs and Thorarinsdottir, 2012, and Pin-
son and Tastu, 2013).

While the CRPS results show a clear pattern, it is not as
straightforward for the energy score. The mean score de-
creases with every RAFT adjustment, as expected, but there
is no discernible difference in the performance of the two
post-processing method combinations. The most complex
picture emerges in the case of the variogram score, where
the ranking of the two combinations actually switches around
RAFT iteration 24. The variogram score is better at detect-
ing incorrect correlation structures than the energy score, so
one possible explanation would be that EMOS + ECC +
RAFTens is initially good at retaining the appropriate corre-
lations, but that ability weakens over time. Conversely, ECC
is applied after every iteration of RAFTm, which might ex-
plain the better variogram scores towards the end of the pro-
cess. However, we have observed in Fig. 6 that the correlation
structure at the last iteration is still too weak. It should also
be noted that the variogram score for EMOS + RAFTm +

ECC deteriorates slightly at the beginning.
Finally, we want to investigate the homogeneity of the

scores across the different locations and highlight some in-
teresting results for particular sites. In Fig. 8a, we see that
RAFTm improves the CRPS for all sites as compared to the
EMOS baseline. That means that the method where the vari-
ance is not adjusted increases the deterministic and proba-
bilistic forecast skill at all sites. As we have seen from the
univariate histograms in Fig. 5, even the calibration is im-
proved. Figure 8b shows how a reduction in the mean er-
ror can have a large effect on the energy score. At 37 sites,
the energy score for gEMOS + RAFTm is actually lower
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than the one for gEMOS + ECC. The former forecasts are
lacking any form of temporal coherency among lead times,
so here the deterministic improvement exceeds any benefit
from reintroducing the ensemble’s correlation information.
Judging from Fig. 8c, a case can be made for a site-specific
RAFT approach. The mean variogram score for the gEMOS
+ RAFTm + ECC forecasts at The Cairnwell, Scotland, is
higher than the score for gEMOS + ECC, meaning that we
are not able to make any improvements by applying RAFTm
and that there are local effects not resolved by the RAFT
model.

6 Conclusions

Our goal was to find out in which order post-processing
methods pertaining to different stages in the forecasting pro-
cess should be applied. We look at three techniques, each
with a different objective. EMOS is a versatile method aim-
ing to calibrate ensemble output as soon as the model run is
finished, based on the ensemble’s performance over the last
40 d. There are two candidates for wind speed calibration:
gEMOS uses a model based on truncated Gaussian distribu-
tions and logEMOS a model based on truncated logarithmic
distributions. It turns out that both models produce very sim-
ilar results, with gEMOS having slightly better scores and
logEMOS being a little closer to perfect calibration. There-
fore it is advisable to test both methods for the data set at
hand and to check which distribution gives a better fit.

The second technique, ECC, restores the multivariate de-
pendency structure present in the ensemble forecasts to the
EMOS predictions. While conceptually and computationally
easy to implement, the success of ECC relies on the NWP
model getting the physical, spatial and temporal correlations
between the components right. Making use of the part of a
forecast trajectory that has already been verified, RAFT is
based on the concept that an observed error will provide in-
formation about the expected error at not-yet-realized lead
times. It can be applied either to the forecast mean only
(RAFTm) or to a set of ensemble members (RAFTens) in or-
der to adjust both predictive mean and variance.

In essence, there are two feasible options when combining
these three methods: EMOS + ECC + RAFTens and EMOS
+ RAFTm + ECC. Overall, their performance might be very
similar, but there are subtle differences which can lead to pre-
ferring one method over the other. The EMOS + RAFTm +

ECC variant produces a lower CRPS and has better univariate
calibration, although this is most likely a feature of this fore-
casting system only, where the EMOS forecasts are under-
dispersive. Naturally, the RAFTens adjusted predictive vari-
ance becomes smaller with every RAFT step, as predictabil-
ity usually increases with a shrinking forecast horizon. This,
however, leads to the respective distributions still being un-
derdispersed and not able to counterbalance the deficit of the
EMOS forecasts.

If multivariate coherency is of particular importance, e.g.,
to create plausible forecast scenarios, the EMOS + ECC +
RAFTens turns out to be the better choice, as is beats its alter-
native in terms of the energy score, the Euclidean error and
also the RMSE, while there is only very little difference in
the variogram score. It is also more versatile and should be
preferred for NWP ensembles exhibiting very different cali-
bration characteristics than MOGREPS-UK.

Therefore, it is necessary to study every forecasting sce-
nario closely, monitor how calibration methods like EMOS
affect the forecast skill and identify potentially remaining
deficiencies. As a rule of thumb, it can be said that the post-
processing method designed to address one’s particular area
of interest, whether univariate or multivariate, should be ap-
plied first. So far, we do not adapt RAFT to optimize fore-
casts at individual sites. A model tailored to specific local
characteristics could involve changing the algorithm for find-
ing the adjustment period or adding suitable predictors to
the linear model. Also, particular attention should be paid
to whether the focus lies on a specific subset of lead times
or whether the forecasts have to be irrevocably issued at a
certain point in time, as the ranking of methods can change
during the RAFT process.
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