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Abstract. Many practical applications of statistical post-
processing methods for ensemble weather forecasts require
accurate modeling of spatial, temporal, and inter-variable de-
pendencies. Over the past years, a variety of approaches has
been proposed to address this need. We provide a compre-
hensive review and comparison of state-of-the-art methods
for multivariate ensemble post-processing. We focus on gen-
erally applicable two-step approaches where ensemble pre-
dictions are first post-processed separately in each margin
and multivariate dependencies are restored via copula func-
tions in a second step. The comparisons are based on simula-
tion studies tailored to mimic challenges occurring in practi-
cal applications and allow ready interpretation of the effects
of different types of misspecifications in the mean, variance,
and covariance structure of the ensemble forecasts on the per-
formance of the post-processing methods. Overall, we find
that the Schaake shuffle provides a compelling benchmark
that is difficult to outperform, whereas the forecast quality
of parametric copula approaches and variants of ensemble
copula coupling strongly depend on the misspecifications at
hand.

1 Introduction

Despite continued improvements, ensemble weather fore-
casts often exhibit systematic errors that require correc-
tion via statistical post-processing methods. Such calibra-
tion approaches have been developed for a wealth of weather
variables and specific applications. The employed statistical
techniques include parametric distributional regression mod-
els (Gneiting et al., 2005; Raftery et al., 2005) as well as
nonparametric approaches (Taillardat et al., 2016) and semi-
parametric methods based on modern machine learning tech-
niques (Rasp and Lerch, 2018). We refer to Vannitsem et al.
(2018) and Vannitsem et al. (2020) for a general overview
and review.

While many of the developments have been focused on
univariate methods, many practical applications require one
to accurately capture spatial, temporal, or inter-variable de-
pendencies (Schefzik et al., 2013). Important examples in-
clude hydrological applications (Scheuerer et al., 2017), air
traffic management (Chaloulos and Lygeros, 2007), and en-
ergy forecasting (Pinson and Messner, 2018). Such depen-
dencies are present in the raw ensemble predictions but are
lost if standard univariate post-processing methods are ap-
plied separately in each margin.

Over the past years, a variety of multivariate post-
processing methods has been proposed; see Schefzik and
Möller (2018) for a recent overview. Those can roughly be
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categorized into two groups of approaches. The first strat-
egy aims to directly model the joint distribution by fitting a
specific multivariate probability distribution. This approach
is mostly used in low-dimensional settings or if a specific
structure can be chosen for the application at hand. Examples
include multivariate models for temperatures across space
(Feldmann et al., 2015), for wind vectors (Schuhen et al.,
2012; Lang et al., 2019), and joint models for temperature
and wind speed (Baran and Möller, 2015, 2017).

The second group of approaches proceeds in a two-step
strategy. In a first step, univariate post-processing methods
are applied independently in all dimensions, and samples are
generated from the obtained probability distributions. In a
second step, the multivariate dependencies are restored by
re-arranging the univariate sample values with respect to the
rank order structure of a specific multivariate dependence
template. Mathematically, this corresponds to the applica-
tion of a (parametric or non-parametric) copula. Examples
include ensemble copula coupling (Schefzik et al., 2013), the
Schaake shuffle (Clark et al., 2004), and the Gaussian copula
approach (Möller et al., 2013).1

Here, we focus on this second strategy, which is more
generally applicable in cases where no specific assumptions
about the parametric structure can be made or where the di-
mensionality of the forecasting problem is too high to be han-
dled by fully parametric methods. The overarching goal of
this paper is to provide a systematic comparison of state-of-
the-art methods for multivariate ensemble post-processing.
In particular, our comparative evaluation includes recently
proposed extensions of the popular ensemble copula cou-
pling approach (Hu et al., 2016; Ben Bouallègue et al., 2016).
We propose three simulation settings which are tailored to
mimic different situations and challenges that arise in appli-
cations of post-processing methods. In contrast to case stud-
ies based on real-world datasets, simulation studies allow one
to specifically tailor the multivariate properties of the ensem-
ble forecasts and observations and to readily interpret the ef-
fects of different types of misspecifications on the forecast
performance of the various post-processing methods. Simu-
lation studies have been frequently applied to analyze model
properties and to compare modeling approaches and verifi-
cation tools in the context of statistical post-processing; see,
e.g., Williams et al. (2014), Thorarinsdottir et al. (2016),
Wilks (2017), and Allen et al. (2019).

The remainder is organized as follows. Univariate and
multivariate post-processing methods are introduced in
Sect. 2. Section 3 provides descriptions of the three sim-
ulation settings, with results discussed in Sect. 4. The pa-

1An alternative post-processing approach that allows one to pre-
serve multivariate dependencies is the member-by-member method
proposed by Van Schaeybroeck and Vannitsem (2015). Schefzik
(2017) demonstrates that member-by-member post-processing can
be interpreted as a specific variant of ensemble copula coupling and
can thus be seen as belonging to this group of methods.

per closes with a discussion in Sect. 5. Technical details on
specific probability distributions and multivariate evaluation
methods are deferred to the Appendix. Additional results are
available in the Supplement. R (R Core Team, 2019) code
with replication material and implementations of all methods
is available from https://github.com/slerch/multiv_pp (last
access: 10 June 2020).

2 Post-processing of ensemble forecasts

We focus on multivariate ensemble post-processing ap-
proaches which are based on a combination of univariate
post-processing models with copulas. The general two-step
strategy of these methods is to first apply univariate post-
processing to the ensemble forecasts for each margin (i.e.,
weather variable, location, and prediction horizon) sepa-
rately. Then, in a second step, a suitably chosen copula is
applied to the univariately post-processed forecasts in order
to obtain the desired multivariate post-processing, taking ac-
count of dependence patterns.

A copula is a multivariate cumulative distribution func-
tion (CDF) with standard uniform univariate marginal dis-
tributions (Nelsen, 2006). The underlying theoretical back-
ground of the above procedure is given by Sklar’s theorem
(Sklar, 1959), which states that a multivariate CDFH (this is
what we desire) can be decomposed into a copula function C
modeling the dependence structures (this is what needs to be
specified) and its marginal univariate CDFs F1, . . .,Fd (this
is what is obtained by the univariate post-processing) as fol-
lows:

H(x1, . . .,xd)= C(F1(x1), . . .,Fd(xd))

for x1, . . .,xd ∈ R. In the approaches considered here, the
copula C is chosen to be either the non-parametric empirical
copula induced by a pre-specified dependence template (in
the ensemble copula coupling method and variants thereof as
well as in the Schaake shuffle) or the parametric Gaussian
copula (in the Gaussian copula approach). A Gaussian cop-
ula is a particularly convenient parametric model, as apart
from the marginal distributions it only requires estimation of
the correlation matrix of the multivariate distribution. Under
a Gaussian copula the multivariate CDF H takes the form

H(x1, . . .,xd |6)=8d
(
8−1(F1(x1)), . . .,8

−1(Fd (xd )) |6
)
, (1)

with 8d( · |6) denoting the CDF of a d-dimensional normal
distribution with mean zero and correlation matrix 6 and
8−1 denoting the quantile function of the univariate standard
normal distribution.

To describe the considered methods in more detail in what
follows, let X1, . . .,Xm ∈ Rd denote unprocessed ensemble
forecasts from m members, whereXi := (X

(1)
i , . . .,X

(d)
i ) for

i = 1, . . .,m, and let y := (y(1), . . .,y(d)) ∈ Rd be the corre-
sponding verifying observation. We will use l = 1, . . .,d to
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denote a multi-index that may summarize a fixed weather
variable, location, and prediction horizon in practical appli-
cations to real-world datasets.

2.1 Step 1: univariate post-processing

In a first step, univariate post-processing methods are ap-
plied to each margin l = 1, . . .,d separately. Prominent
state-of-the-art univariate post-processing approaches in-
clude Bayesian model averaging (Raftery et al., 2005) and
ensemble model output statistics (EMOS; Gneiting et al.,
2005). In the EMOS approach, which is employed through-
out this paper, a non-homogeneous distributional regression
model

y(l)|X
(l)
1 , . . .,X

(l)
m ∼ F

(l)
θ

(
y(l)|θ (l)

)
is fitted, where F (l)θ is a suitably chosen parametric distribu-
tion with parameters θ (l) := g(X(l)1 , . . .,X

(l)
m ) that depend on

the unprocessed ensemble forecast through a link function
g(·).

The choice of F (l)θ is in practice mainly determined by the
weather variable being considered in the margin l. For in-
stance, when F (l)θ can be assumed to be Gaussian with mean
µ and variance σ 2, such as for temperature or pressure, one
may set

F
(l)
θ =N (µ,σ 2), where(µ,σ 2) := (a0+ a1X,b0+ b1S

2)

= g(X
(l)
1 , . . .,X

(l)
m ) (2)

if the ensemble members are exchangeable, with X and S2

denoting the empirical mean and variance of the ensem-
ble predictions X(l)1 , . . .,X

(l)
m , respectively. The coefficients

a0,a1,b0 and b1 are then derived via suitable estimation tech-
niques using training data consisting of past ensemble fore-
casts and observations (Gneiting et al., 2005).

2.2 Step 2: incorporating dependence structures using
copulas to obtain multivariate post-processing

When applying univariate post-processing for each margin
separately, multivariate (i.e., inter-variable, spatial, and/or
temporal) dependencies across the margins are lost. These
dependencies are restored in a second step. Here, we consider
five different approaches to do so. An overview of selected
key features is provided in Table 1. For further discussion of
advantages and shortcomings, as well as comparisons of sub-
sets of these methods, see, e.g., Schefzik et al. (2013); Wilks
(2015). In the following we use z to denote univariate quan-
tities in the individual dimensions. Z in bold print is used to
represent vector-valued quantities, and Z in normal print is
used for components thereof.

2.2.1 Assumption of independence (EMOS-Q)

Instead of modeling the desired dependencies in any way,
omitting the second step corresponds to assuming indepen-

dence across the margins. To that end, a univariate sample
x̂
(l)
1 , . . ., x̂

(l)
m is generated in each margin by drawing from the

post-processed forecast distribution F
(l)
θ , l = 1, . . .,d . The

univariate samples are then simply combined into a corre-
sponding vector. Following Schefzik et al. (2013), we use
equidistant quantiles of F (l)θ at levels 1

m+1 , . . .,
m
m+1 to gener-

ate the sample and denote this approach by EMOS-Q.

2.2.2 Ensemble copula coupling (ECC)

The basic ensemble copula coupling (ECC) approach pro-
posed by Schefzik et al. (2013) proceeds as follows.

1. A sample x̂(l)1 , . . ., x̂
(l)
m , where we assume x̂(l)1 ≤ . . .≤

x̂
(l)
m to simplify notation, of the same size m as the un-

processed ensemble is drawn from each post-processed
predictive marginal distribution F (l)θ , l = 1, . . .,d .

2. The sampled values are rearranged in the rank order
structure of the raw ensemble; i.e., the permutation σl
of the set {1, . . .,m} defined by σl(i)= rank(X(l)i ), with
possible ties resolved at random, is applied to the post-
processed sample from the first step in order to obtain
the final ECC ensemble X̃(l)1 , . . ., X̃

(l)
m via

X̃
(l)
i = x̂

(l)
σl(i)

,

where i = 1, . . .,m and l = 1, . . .,d .

Depending on the specific sampling procedure in Step 1, we
here distinguish the following different ECC variants.

– ECC-R. The sample x̂(l)1 , . . ., x̂
(l)
m is randomly drawn

from F
(l)
θ (and subsequently arranged in ascending or-

der).

– ECC-Q. The sample is constructed using equidistant
quantiles of F (l)θ at levels 1

m+1 , . . .,
m
m+1 :

x̂
(l)
1 := (F

(l)
θ )
−1
(

1
m+ 1

)
, . . ., x̂(l)m := (F

(l)
θ )
−1
(

m

m+ 1

)
.

– ECC-S (Hu et al., 2016). First, random numbers
u1, . . .,um, where ui ∼ U( i−1

m
, i
m
] for i = 1, . . .,m, are

drawn, with U(a,b] denoting the uniform distribution
on the interval (a,b]. Then, x̂(l)i is set to the quantile of
F
(l)
θ at level ui :

x̂
(l)
1 := (F

(l)
θ )
−1(u1), . . ., x̂

(l)
m := (F

(l)
θ )
−1(um).

Besides the above sampling schemes, Schefzik et al. (2013)
propose an alternative transformation approach referred to as
ECC-T. This variant is in particular appealing for theoret-
ical considerations, as it provides a link between the ECC
notion and member-by-member post-processing approaches
(Schefzik, 2017). However, as it may involve additional mod-
eling steps, ECC-T is not as generic as the other schemes and
thus not explicitly considered here.

https://doi.org/10.5194/npg-27-349-2020 Nonlin. Processes Geophys., 27, 349–371, 2020



352 S. Lerch et al.: Comparison of multivariate post-processing methods

Table 1. Overview of selected key characteristics of the multivariate post-processing methods considered in this paper.

Method Dependence Flow-dependent Size of resulting Univariate Involves
template copula structure multivariate ensemble sampling randomness

EMOS-Q assumes independence – arbitrary equidistant no
ECC-R raw ensemble yes m random yes (sampling)
ECC-Q raw ensemble yes m equidistant no
ECC-S raw ensemble yes m stratified yes (sampling)
dECC raw ensemble & yes m equidistant no

forecast errors
SSh observations no arbitrary equidistant yes (selection of training cases)
GCA observations no arbitrary random yes (sampling)

2.2.3 Dual ensemble copula coupling (dECC)

Dual ECC (dECC) is an extension of ECC which aims at
combining the structure of the unprocessed ensemble with a
component accounting for the forecast error autocorrelation
structure (Ben Bouallègue et al., 2016), proceeding as fol-
lows.

1. ECC-Q is applied in order to obtain reordered ensem-
ble forecasts X̃1, . . .,X̃m, with X̃i := (X̃

(1)
i , . . ., X̃

(d)
i )

for i = 1, . . .,m.

2. A transformation based on an estimate of the error au-
tocorrelation 6̂e is applied to the bias-corrected post-
processed forecast in order to obtain correction terms
c1, . . .,cm. Precisely, ci := (6̂e)

1
2 · (X̃i −Xi) for i =

1, . . .,m.

3. An adjusted ensemble X̆1, . . .,X̆m is derived via X̆i :=
Xi + ci for i = 1, . . .,m.

4. ECC-Q is applied again, but now performing the re-
ordering with respect to the rank order structure of the
adjusted ensemble from Step 3 used as a modified de-
pendence template.

2.2.4 Schaake shuffle (SSh)

The Schaake shuffle (SSh) proceeds like ECC-Q, but re-
orders the sampled values in the rank order structure of m
past observations (Clark et al., 2004) and not with respect to
the unprocessed ensemble forecasts. For a better comparison
with (d)ECC, the size of SSh ensemble is restricted to equal
that of the unprocessed ensemble here. However, in principle,
the SSh ensemble may have an arbitrary size, provided that
sufficiently many past observations are available to build the
dependence template. Extensions of SSh that select past ob-
servations based on similarity are available (Schefzik, 2016;
Scheuerer et al., 2017) but not explicitly considered here as
their implementation is not straightforward and may involve
additional modeling choices specific to the situation at hand.

The reordering-based methods considered thus far can be
interpreted as non-parametric, empirical copula approaches.

In particular, in the setting of Sklar’s theorem, C is taken to
be the empirical copula induced by the corresponding depen-
dence template, i.e., the unprocessed ensemble forecasts in
the case of ECC, the adjusted ensemble in the case of dECC,
and the past observations in the case of SSh.

2.2.5 Gaussian copula approach (GCA)

By contrast, in the Gaussian copula approach (GCA) pro-
posed by Pinson and Girard (2012) and Möller et al. (2013),
the copula C is taken to be the parametric Gaussian copula.
GCA can be traced back to similar ideas from earlier work in
spatial statistics (e.g., Berrocal et al., 2008) and proceeds as
follows.

1. A set of past observations y1, . . .,yK , with yk =

(y
(1)
k , . . .,y

(d)
k ), is transformed into latent standard

Gaussian observations ỹ1, . . ., ỹK by setting

ỹ
(l)
k =8

−1
(
F
(l)
θ (y

(l)
k )
)

(3)

for k = 1, . . .,K and l = 1, . . .,d , where F
(l)
θ is the

marginal distribution obtained by univariate post-
processing. The index k = 1, . . .,K here refers to a
training set of past observations.

2. An empirical (or parametric) (d × d) correlation matrix
6̂ of the d-dimensional normal distribution in Eq. (1) is
estimated from ỹ1, . . ., ỹK .

3. Multivariate random samples Z1, . . .,Zm ∼Nd(0,6̂)
are drawn, where Nd(0, 6̂) denotes a d-dimensional
normal distribution with mean vector 0 := (0, . . .,0) and
estimated correlation matrix 6̂ from Step 2 and Zi :=
(Z

(1)
i , . . .,Z

(d)
i ) for i = 1, . . .,m.

4. Final GCA post-processed ensemble forecast
X∗1, . . .,X

∗
m, with X∗i := (X

∗(1)
i , . . .,X

∗(d)
i ) for

i = 1, . . .,m, is obtained via

X
∗(l)
i :=

(
F
(l)
θ

)−1(
8(Z

(l)
i )
)

(4)
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for i = 1, . . .,m and l = 1, . . .,d , with 8 denoting the
CDF of the univariate standard normal distribution.
While the size of the resulting ensemble may in prin-
ciple be arbitrary, it is here set to the size m of the raw
ensemble.

3 Simulation settings

We consider several simulation settings to highlight differ-
ent aspects and provide a broad comparison of the effects
of potential misspecifications of the ensemble predictions on
the performance of the various multivariate post-processing
methods. The general setup of all simulation settings is as
follows.

An initial training set of pairs of simulated ensemble
forecasts and observations of size ninit is generated. Post-
processed forecasts are then computed and evaluated over a
test set of size ntest. Therefore, n := ninit+ntest iterations are
performed in total for all simulation settings. In the follow-
ing, we set m= 50,ninit = 500,ntest = 1000 throughout.

To describe the individual settings in more detail, we here
begin by first identifying the general structure of the steps
that are performed in all settings. For each iteration t in both
training and test sets (i.e., t = 1, . . .,n), multivariate forecasts
and observations are generated.

(S1) Generate multivariate observations and ensemble fore-
casts.

For all iterations t in the test set (i.e., t = ninit+ 1, . . .,n),
the following steps are carried out.

(S2) Apply univariate post-processing separately in each di-
mension.2

(S3) Apply multivariate post-processing methods.

(S4) Compute univariate and multivariate measures of fore-
cast performance on the test set.

Unless indicated otherwise, all simulation draws are inde-
pendent across iterations. To simplify notation, we will thus
typically omit the simulation iteration index t in the follow-
ing.

To quantify simulation uncertainty, the above procedure is
repeated 100 times for each tuning parameter combination in
each setting. In the interest of brevity, we omit ECC-R, which
did show substantially worse results in initial tests (see also
Schefzik et al., 2013). In the following, the individual simu-
lation settings are described in detail, and specific implemen-
tation choices are discussed.

2With the exception of Setting 3, the estimation of univariate
post-processing models utilizes the initial training set only. Setting
3 covers the possibly more realistic case of variations across repeti-
tions of the experiment.

3.1 Setting 1: multivariate Gaussian distribution

As a starting point we first consider a simulation model
where observations and ensemble forecasts are drawn from
multivariate Gaussian distributions.3 This setting may for ex-
ample apply in the case of temperature forecasts at multiple
locations considered simultaneously. The simplicity of this
model allows one to readily interpret misspecifications in the
mean, variance, and covariance structures.

(S1) For iterations t = 1, . . .,n, independent and identically
distributed samples of observations and ensemble fore-
casts are generated as follows.

– Observation: y ∼Nd(µ0,6
0), where

µ0 = (0, . . .,0) ∈ Rd , and 60
i,j = ρ

|i−j |

0 , for
i,j = 1, . . .,d .

– Ensemble forecasts: X1, . . .,Xm
iid
∼Nd(µ,6),

where µ= (ε, l. . .,ε) ∈ Rd , and 6i,j = σ ρ
|i−j |,

for i,j = 1, . . .,d .

The parameters ε and σ introduce a bias and a misspec-
ified variance in the marginal distributions of the en-
semble forecasts. These systematic errors are kept con-
stant across dimensions 1, . . .,d . The parameters ρ0 and
ρ control the autoregressive structure of the correlation
matrix of the observations and ensemble forecasts. Set-
ting ρ0 6= ρ introduces misspecifications of the correla-
tion structure of the ensemble forecasts.

(S2) As described in Sect. 2.1, univariate post-processing is
applied independently in each dimension 1, . . .,d . Here,
we employ the standard Gaussian EMOS model (2)
proposed by Gneiting et al. (2005). The EMOS coef-
ficients a0,a1,b0,b1 are estimated by minimizing the
mean continuous ranked probability score (CRPS; see
Appendix B) over the training set consisting of the ninit
initial iterations and are then used to produce out-of-
sample forecasts for the ntest iterations in the test set.

(S3) Next, the multivariate post-processing methods de-
scribed in Sect. 2.2 are applied. Implementation details
for the individual methods are as follows.

– For dECC, the estimate of the error autocorrelation
6̂e is obtained from the ninit initial training itera-
tions to compute the required correction terms for
the test set.

– To obtain the dependence template for SSh, m past
observations are randomly selected from all itera-
tions preceding the current iteration t .

3Wilks (2017) considers a similar setting in the context of mul-
tivariate calibration assessment which we here extend towards mul-
tivariate ensemble post-processing.
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– The correlation matrix 6 required for GCA is esti-
mated by the empirical correlation matrix based on
all iterations preceding the current iteration t .

– The verification results for all methods that require
random sampling (ECC-S, SSh, GCA) are averaged
over 10 independent repetitions for each iteration
t = ninit+ 1, . . .,n in the test set.

The multivariate Gaussian setting is implemented for d =
5 and all combinations of ε ∈ {0,1,3},σ 2

∈ {0.5,1,2,5},
and ρ,ρ0 ∈ {0.1,0.25,0.5,0.75,0.9}. As indicated above,
the simulation experiment is repeated 100 times for each of
the 300 parameter combinations. If the setting from above
is interpreted as a multivariate model for temperatures at
multiple locations, observations from the extant literature on
post-processing suggest that, typically, values of σ < 1 and
ρ > ρ0 would be expected in real-world datasets.

A variant of Setting 1 based on a multivariate truncated
Gaussian distribution has also been investigated. Apart from
a slightly worse performance of GCA, the results are similar
to those of Setting 1. We thus refer to Sect. S5 of the Supple-
ment, where details on the simulation setting and results are
provided.

3.2 Setting 2: multivariate censored extreme value
distribution

To investigate alternative marginal distributions employed
in post-processing applications, we further consider a sim-
ulation setting based on a censored version of the general-
ized extreme value (GEV) distribution. The GEV distribu-
tion was introduced by Jenkinson (1955) among others, com-
bining three different types of extreme value distributions.
It has been widely used for modeling extremal climatolog-
ical events such as flood peaks (e.g., Morrison and Smith,
2002) or extreme precipitation (e.g., Feng et al., 2007). In
the context of post-processing, GEV distributions have for
example been applied for modeling wind speed in Lerch and
Thorarinsdottir (2013). Here, we consider multivariate obser-
vations and forecasts with marginal distributions given by a
left-censored version of the GEV distribution which was pro-
posed by Scheuerer (2014) in the context of post-processing
ensemble forecasts of precipitation amounts.

(S1) For iterations t = 1, . . .,n samples of observations and
ensemble forecasts are generated as follows. For l =
1, . . .,d , the marginal distributions are GEV distribu-
tions left-censored at 0,

F
(l)
θ = GEV0(µ,σ,ξ),

where the distribution parameters µ (location), σ
(scale), and ξ (shape) are identical across dimensions
l = 1, . . .,d . Details on the left-censored GEV distri-
bution are provided in Appendix A. Misspecifications
of the marginal ensemble predictions are obtained by

choosing different GEV parameters for observations
(µ0,σ0,ξ0) and forecasts (µ,σ,ξ ). Combined misspec-
ifications of the three parameters result in more com-
plex deviations of mean and variance (on the univariate
level) compared to Setting 1. Typically there is a joint
influence of the GEV parameters on mean and disper-
sion properties of the distribution. In order to exploit the
complex behavior a variety of parameter combinations
for observations and ensemble forecasts were consid-
ered.

To generate multivariate observations y =

(y(1), . . .,y(d)) and ensemble predictions Xi =

(X
(1)
i , . . .,X

(d)
i ), i = 1, . . .,m, the so-called NORTA

(normal to anything) approach is chosen; see Cario
and Nelson (1997) and Chen (2001). This method
allows one to generate realizations of a random
vector z= (z(1), . . .,z(d)), with specified marginal
distribution functions F

(l)
θ , l = 1, . . .,d , and a given

correlation matrix R= (Corr(z(k),z(l)))dk,l=1. The
NORTA procedure consists of three steps. In a first
step a vector v = (v(1), . . .,v(d)) is generated from
Nd(0,R∗) for a correlation matrix R∗. In a second
step, u(l) =8(v(l)) is computed, where 8 denotes the
CDF of the standard normal distribution. In a third
step, z(l) =

(
F
(l)
θ

)−1
(u(l)) is derived for l = 1, . . .,d ,

where
(
F
(l)
θ

)−1
is the inverse of F (l)θ . The correlation

matrix R∗ is chosen in a such a way that the z(l) have
the desired target correlation matrix R. Naturally,
the specification of R∗ is the most involved part of
this procedure. Here, we use the retrospective ap-
proximation algorithm implemented in the R package
NORTARA (Su, 2014). The NORTARA package infre-
quently produced error and warnings, which were not
present for alternative starting values of the random
number generator. Following the previous simulation
settings the target correlation matrix R is chosen as
Ri,j = ρ

|i−j | for −1< ρ < 1 and i,j = 1, . . .,d .

(S2) To separately post-process the univariate ensemble fore-
casts, we employ the EMOS method for quantitative
precipitation based on the left-censored GEV distribu-
tion proposed by Scheuerer (2014). To that end we as-
sume −0.278< ξ < 0.5, such that the mean ν and the
variance of the non-censored GEV distribution exist,
and

ν =

{
µ+ σ

0(1−ξ)−1
ξ

, ξ 6= 0

µ+ σγ, ξ = 0
,

where 0 denotes the gamma function and γ is the
Euler–Mascheroni constant. See Appendix A for com-
ments on mean and variance of the left-censored GEV.
Following Scheuerer (2014), the parameters (ν,σ,ξ ) are
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Table 2. Different simulation scenarios for Setting 2.

µ0 ξ0 σ0 µ ξ σ

A 0.0 −0.1 1.0 1.0 0.0 0.2
B 0.0 −0.1 1.0 0.0 0.0 2.0
C 1.0 0.3 1.0 0.0 0.0 2.0
D 0.0 0.0 1.0 0.0 0.0 1.0

linked to the ensemble predictions via

g(X
(l)
1 , . . .,X

(l)
m )=

(
a0+ a1X

(l)
+ a2X

(l)

z ,b0+ b1MD(l)X ,ξ
)
.

Here, X
(l)

and X
(l)

z are the arithmetic mean and the
fraction of zero values of the ensemble predictions
X
(l)
1 , . . .,X

(l)
m , respectively, while MD(l)X denotes the

mean absolute difference of the ensemble predictions,
i.e.,

MD(l)X =
1
m2

m∑
i=1

m∑
j=1

∣∣∣X(l)i −X(l)j ∣∣∣ .
The shape parameter ξ is not linked to the ensemble pre-
dictions, but is estimated along with the EMOS coeffi-
cients a0, a1, a2, b0, and b1. As in Scheuerer (2014),
the link function refers to the parameter ν instead of
µ, since it is argued that for fixed ν an increase in σ
can be interpreted more naturally as an increase in un-
certainty. An implementation in R is available in the
ensembleMOS package (Yuen et al., 2018). For our
simulation, this package was not directly invoked, but
the respective functions were used as a template. As
described in Sect. 2.1, univariate post-processing is ap-
plied independently in each dimension l = 1, . . .,d . The
EMOS coefficients are estimated as described above
over the training set consisting of the ninit initial iter-
ations and are then used to produce out-of-sample fore-
casts for the ntest iterations in the test set.

(S3) Identical to (S3) of Setting 1, except for GCA, where
we proceed differently to account for the point mass at
zero. The latent standard Gaussian observations ỹ(l)k are
generated by ỹ(l)k =8

−1(u), where u is a randomly cho-
sen value in the interval (0,F (l)θ (0)) in case y(l)k = 0 and
u= F

(l)
θ (y

(l)
k ) in case y(l)k > 0.

The multivariate censored extreme value setting is imple-
mented for d = 4 and four different scenarios summarized in
Table 2. The choice of dimension is motivated by the fact that
preliminary analyses had revealed a heavy increase in com-
putation time and numerical problems for values of d greater
than 4. In each scenario the GEV0 distribution parameters for
the observations are chosen according to (µ0,ξ0,σ0), while
the parameters for the ensemble predictions are chosen ac-
cording to (µ,ξ,σ ). In both cases, the correlation matrix R

from above is invoked with different choices of ρ0 and ρ
from the set {0.25,0.5,0.75}, giving a total of 4× 9= 36
scenarios. Note that according to Scheuerer (2014) there is
a positive probability for zero to occur when either ξ ≤ 0 or
ξ > 0 and µ < σ/ξ . The scenarios from Table 2 are chosen
in such a way that either one of these two conditions is met.

The scenarios from Table 2 were not chosen to mimic real-
life situations in the first place, but to emulate pronounced
differences in distributions and account for a variety of mis-
specification types. In future research a more detailed and
data-based study of the properties of the GEV0 in ensem-
ble post-processing of precipitation is planned, which might
give further insight into the correspondence (and interplay)
of the GEV0 parameters to typically occurring situations for
precipitation.

3.3 Setting 3: multivariate Gaussian distribution with
changes over time

In the preceding simulation settings, the misspecifications
of the ensemble forecasts were kept constant over the iter-
ations t = 1, . . .,n within the simulation experiments. How-
ever, forecast errors of real-world ensemble predictions often
exhibit systematic changes over time, for example due to sea-
sonal effects or differences in flow-dependent predictability
due to variations of large-scale atmospheric conditions. Here,
we modify the multivariate Gaussian simulation setting from
Sect. 3.1 to introduce changes in the mean, variance, and co-
variance structure of the multivariate distributions of obser-
vations and ensemble forecasts. In analogy to practical appli-
cations of multivariate post-processing, the ensemble predic-
tions and observations may be interpreted as multivariate in
terms of location or prediction horizon, with changes in the
misspecification properties over time.

(S1) For iterations t = 1, . . .,n, independent samples of ob-
servations and ensemble forecasts are generated as fol-
lows.

– Observation: y ∼Nd(µ0,6
0), where µ0 =

sin
(

2πt
n

)
+ (0, . . .,0)T ∈ Fd . To obtain the corre-

lation matrix 60, let Ri,j = ρ
|i−j |

0 + sin
(

2πt
n

)
, for

i,j = 1, . . .,d and S0 = RRT . The covariance ma-
trix S0 is scaled into the corresponding correlation
matrix 60 using the R function cov2cor().

– Ensemble forecasts: X1, . . .,Xm
iid
∼Nd(µ,6),

where µ= sin
(

2πt
n

)
+ (ε, . . .,ε)T ∈ Fd . To

obtain the correlation matrix 6 we pro-
ceed as for the observations; however, we set
Ri,j = ρ

|i−j |
+ sin

(
2πt
n

)
, for i,j = 1, . . .,d (i.e.,

ρ0 is replaced by ρ).

In contrast to Setting 1, the misspecifications in the
mean and correlation structure now include a periodic
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component. The above setup will be denoted by Setting
3A.

Following a suggestion from an anonymous reviewer,
we further consider a variant which we refer to as Set-
ting 3B. For iterations t = 1, . . .,nwe generate indepen-
dent samples of observations and ensemble forecasts as
follows.

– Observation: y ∼Nd(µ0,6
0(t)), where µ0 =

(0, . . .,0)T ∈ Fd . To obtain a correlation matrix
6(t) that varies over iterations, we set 60

i,j (t)=

ρ
|i−j |

0 (t), for i,j = 1, . . .,d , where the correlation
parameter ρ0(t) varies over iterations according to

ρ0(t)= ρ0 ·
(

1−
a

2

)
+ ρ0 ·

(a
2

)
sin
(

2πt
n

)
for a ∈ (0,1). The lag-1 correlations thus oscillate
between ρ0 and ρ0 · (1− a).

– Ensemble forecasts: X1, . . .,Xm
iid
∼Nd(µ,6(t)),

where µ= (ε, . . .,ε)T ∈ Fd . Similarly to the ob-
servations, we set 6i,j (t)= σρ|i−j |(t), for i,j =
1, . . .,d , where

ρ(t)= ρ ·
(

1−
a

2

)
+ ρ ·

(a
2

)
sin
(

2πt
n

)
,

with a from above. The correlations for the ensem-
ble member forecasts thus oscillate between ρ and
ρ · (1− a).

Settings 3A and 3B differ in the variations of the mean
and covariance structure over time. For both, we pro-
ceed as follows.

(S2) As in Setting 1, we employ the standard Gaussian
EMOS model (2). However, to account for the changes
over iterations we now utilize a rolling window con-
sisting of pairs of ensemble forecasts and observations
from the 100 iterations preceding t as a training set to
obtain estimates of the EMOS coefficients. See Lang
et al. (2020) for a detailed discussion of alternative ap-
proaches to incorporate time dependence in the estima-
tion of post-processing models.

(S3) The application of the multivariate post-processing
methods is identical to the approach taken in Setting
1. Note that we deliberately follow the naive standard
implementations (see Sect. 2.2) here to highlight some
potential issues of the Schaake shuffle in this context.

Setting 3A is implemented for d = 5,ε = 1 and all combi-
nations of ρ,ρ0 ∈ {0.1,0.25,0.5,0.75,0.9}. For Setting 3B,
we investigate separate sets of low (ρ0 = 0.25), medium
(ρ0 = 0.5), and high (ρ0 = 0.75) true correlation, with cor-
responding choices of ρ with low (ρ ∈ {0.2,0.25,0.3}),

medium (ρ ∈ {0.4,0.45,0.5,0.55,0.6}), and high (ρ ∈
{0.7,0.75,0.8}) values, respectively. Further, values of d =
5,ε = 1,σ ∈ {0.5,1,5}, and a ∈ {0.2,0.5,0.7} are consid-
ered for each of these sets. As before simulation experiments
are repeated 100 times for each of the parameter combina-
tions.

4 Results

In the following, we focus on comparisons of the relative
predictive performance of the different multivariate post-
processing methods and apply proper scoring rules for fore-
cast evaluation. In particular, we use the energy score (ES;
Gneiting et al., 2008) and variogram score of order 1 (VS;
Scheuerer and Hamill, 2015) to evaluate multivariate forecast
performance. Diebold–Mariano (DM; Diebold and Mariano,
1995) tests are applied to assess the statistical significance
of the score differences between models. Details on forecast
evaluation based on proper scoring rules and DM tests are
provided in Appendix B. Note that proper scoring rules are
often used in the form of skill scores to investigate relative
improvements in predictive performance in the meteorologi-
cal literature. Here, we instead follow suggestions of Ziel and
Berk (2019), who argue that the use of DM tests is of crucial
importance to appropriately discriminate between multivari-
ate models.

While our focus here is on multivariate performance, we
briefly demonstrate that the univariate post-processing mod-
els applied in the different simulation settings usually work
as intended.

4.1 Univariate performance

The univariate predictive performance of the raw ensemble
forecasts in terms of the CRPS is improved by the appli-
cation of univariate post-processing methods across all pa-
rameter choices in all simulation settings. The magnitude of
the relative improvements by post-processing depends on the
chosen simulation parameters: exemplary results are shown
in Fig. 1. The results for Setting 2 are omitted as they vary
more and strongly depend on the simulation parameters.

ECC-Q does not change the marginal distributions; the
univariate forecasts are thus identical to solely applying uni-
variate post-processing methods in the margins separately,
without accounting for dependencies. We will later refer to
this as EMOS-Q. Note that for ECC-S and SSh differences
in the univariate forecast distributions compared to those of
ECC-Q may arise from randomly sampling the quantile lev-
els in ECC-S and from random fluctuations due to the 10
random repetitions that were performed to account for the
simulation uncertainty of those methods. However, we found
the effects on the univariate results to be negligible and omit
ECC-S, dECC, and SSh from Fig. 1.
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Figure 1. Summaries of DM test statistic values based on the CRPS. ECC-Q forecasts are used as a reference model such that positive values
of the test statistic indicate improvements over ECC-Q and negative values indicate deterioration of forecast skill. Boxplots summarize results
from multiple parameter combinations for the simulation settings, with potential restrictions on the simulation parameters indicated in the
plot title. For example, boxplots in the first panel summarize simulation results from all parameter combinations of Setting 1 (and the 100
Monte Carlo repetitions each) subject to ε = 1. The horizontal gray stripe indicates the acceptance region of the two-sided DM test under the
null hypothesis of equal predictive performance at a level of 0.05.

For the simulation parameter values summarized there,
univariate post-processing works as intended with statisti-
cally significant improvements over the raw ensemble fore-
casts. Note that for GCA the univariate marginal distributions
are modified due to the transformation step in Eq. (4). While
the quantile forecasts of ECC-Q are close to optimal in terms
of the CRPS (Bröcker, 2012), (randomly sampled) univari-
ate GCA forecasts do not possess this property, resulting in
worse univariate performance compared to all other methods.

4.2 Multivariate performance

We now compare the multivariate performance of the differ-
ent post-processing approaches presented in Sect. 2.2. Mul-
tivariate forecasts obtained by only applying the univariate
post-processing methods without accounting for dependen-
cies (denoted by EMOS-Q) as well as the raw ensemble pre-
dictions (ENS) are usually significantly worse and will be
omitted in most comparisons below unless indicated other-
wise. Additional figures with results for all parameter com-
binations in all settings are provided in the Supplement.

4.2.1 Setting 1: multivariate Gaussian distribution

The tuning parameter ε governing the bias in the mean vec-
tor of the ensemble forecasts only has very limited effects on
the relative performance of the multivariate post-processing
methods. To retain focus we restrict our attention to ε = 1.
Figure 2 shows results in terms of the ES for two different
choices of σ , using multivariate forecasts of ECC-Q as the
reference method. For visual clarity, we omit parameter com-
binations where either ρ ∈ {0.1,0.9} or ρ0 ∈ {0.1,0.9}. Cor-
responding results are available in the Supplement. Note that
the relative forecast performance of all approaches except for

dECC generally does not depend on σ . We thus proceed to
discuss the remaining approaches first and dECC last.

If the correlation structure of the unprocessed ensemble
forecasts is correctly specified (i.e., ρ = ρ0), no significant
differences can be detected between ECC-Q, ECC-S, and
SSh. In contrast, GCA (and dECC for larger values of σ ) per-
forms substantially worse. The worse performance of GCA
might be due to the larger forecast errors in the univariate
margins; see Sect. 4.1.

In the cases with misspecifications in the correlation struc-
ture (i.e., ρ 6= ρ0), larger differences can be detected among
all the methods. Notably, SSh never performs substantially
worse than ECC-Q and is always among the best perform-
ing approaches. This is not surprising as the only drawback
of SSh in the present context and under the chosen imple-
mentation details is the underlying assumption of time in-
variance of the correlation structure, which will be revisited
in Setting 3. The larger the absolute difference between ρ
and ρ0, the greater the improvement of SSh relative to ECC-
Q. This is due to the fact that it becomes more and more
beneficial to learn the dependence template from past obser-
vations rather than the raw ensemble, the less information the
ensemble provides about the true dependence structure. GCA
also tends to outperform ECC-Q if the differences between ρ
and ρ0 are large; however, GCA always performs worse than
SSh and shows significantly worse performance than ECC-Q
if the misspecifications in the ensemble are not too large (i.e.,
if ρ and ρ0 are equal or similar).

The relative performance of ECC-S depends on the or-
dering of ρ and ρ0. If ρ > ρ0, ECC-S significantly outper-
forms ECC-Q; however, if ρ < ρ0 significant ES differences
in favor of ECC-Q can be detected. For dECC, the perfor-
mance further depends on the misspecification of the vari-
ance structure in the marginal distributions. If ρ > ρ0, the
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Figure 2. Summaries of DM test statistic values based on the ES for Setting 1 with ε = 1, and σ = 0.5 (a) and σ =
√

5 (b). ECC-Q forecasts
are used as a reference model such that positive values of the test statistic indicate improvements over ECC-Q and negative values indicate
deterioration of forecast skill. Boxplots summarize results of the 100 Monte Carlo repetitions of each individual experiment. The horizontal
gray stripe indicates the acceptance region of the two-sided DM test under the null hypothesis of equal predictive performance at a level of
0.05. Simulation parameter choices where the correlation structure of the raw ensemble is correctly specified (ρ = ρ0) are surrounded by
black boxes.
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Figure 3. As Fig. 2 but summarizing results in terms of the VS.
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DM test statistic values move from positive (improvement
over ECC-Q) to negative (deterioration compared to ECC-Q)
values for increasing σ . By contrast, if ρ < ρ0 the values of
the test statistic instead change from negative to positive for
increasing σ . The differences are mostly statistically signif-
icant and indicate the largest relative improvements among
all methods in cases of the largest possible differences be-
tween ρ and ρ0. However, note that for some of those param-
eter combinations with small ρ and large ρ0, even EMOS-Q
can outperform ECC-Q and ECC-S. In these situations, the
raw ensemble forecasts contain very little information about
the dependence structure, and the ES can be improved by
assuming independence instead of learning the dependence
template from the ensemble.

Results in terms of the VS are shown in Fig. 3. Most of
the conclusions from the results in terms of the ES extend
directly to comparisons based on the VS. SSh consistently
remains among the best performing methods and provides
significant improvements over ECC-Q unless ρ = ρ0; how-
ever, alternative approaches here outperform SSh more often.
Notably, the relative performance of GCA is consistently bet-
ter in terms of the VS than in terms of the ES. For example,
the differences between GCA and SSh appear to generally
be negligible, and GCA does not perform worse than ECC-
Q for any of the simulation parameter combinations. These
differences between the results for GCA in terms of ES and
VS may be explained by the greater sensitivity of the VS to
misspecifications in the correlation structure, whereas the ES
shows a stronger dependence on the mean vector.

For ECC-S and dECC, the general dependence on values
of ρ, ρ0, and σ (for dECC) is similar to the results for the
ES, but the magnitude of both positive as well as negative
differences to all other methods is increased. For example,
it is now possible to find parameter combinations where ei-
ther ECC-S or dECC (or both) substantially outperform both
GCA and SSh.

The role of ensemble size m

To assess the effect of the ensemble size m on the results,
additional simulations have been performed with the simula-
tion parameters from Fig. 2 but with ensemble sizes between
5 and 100. Corresponding figures are provided in the Supple-
ment. Overall, the relative ranking of the different methods
is only very rarely affected by changes in the ensemble size.
The relative differences in terms of the ES between ECC-Q
and ECC-S and between ECC-Q and GCA become increas-
ingly negligible with increasing ensemble size. Further, SSh
shows improved predictive performance for larger numbers
of ensemble members for ρ0 < ρ in the case of the ES and
for ρ0 > ρ in the case of the VS. The relative performance
of dECC is strongly affected by changes in m for large mis-
specifications in the correlation parameters. A positive effect
of larger numbers of members relative to ECC-Q in terms of
both scoring rules can be detected for ρ0 > ρ when σ < 1

and for ρ0 < ρ when σ > 1. In both cases, the corresponding
effects are negative if the misspecification in σ is reversed.

The role of dimension d

Additional simulations were further performed with dimen-
sions d between 2 and 50 and the simulation parameters from
above. In the interest of brevity, we refer to the Supplement
for corresponding figures. In terms of the ES, the results
for ECC-S are largely not affected by changes in dimen-
sion, whereas the relative performance of ECC-S improves
with increasing d, and minor improvements over ECC-Q can
be detected even for correctly specified correlation parame-
ters for high dimensions. For GCA, a marked deterioration
of relative skill can be observed in terms of the ES, which
can likely be attributed to the sampling effects discussed
above. In terms of the VS, GCA partly shows the best rela-
tive performance among all methods for dimensions between
10 and 20 and performs worse in higher dimensions. The rel-
ative differences in predictive performance in favor of SSh
are more pronounced in larger dimensions, in particular in
cases with large misspecification of the correlation parame-
ters. Changes in the relative performance of dECC in terms
of both scoring rules for increasing numbers of dimensions
are similar to those observed for increasing numbers of en-
semble members.

4.2.2 Setting 2: multivariate censored GEV
distributions

The four considered scenarios in Table 2 constitute different
types of deviation of the ensemble from the observation prop-
erties. Results for Scenario B are given below in Fig. 4, while
the corresponding figures for Scenarios A, C, and D can be
found in Sect. S2.1. As the GEV0 distribution yields extreme
outliers much more frequently than the Gaussian distribution
in Setting 1, all figures (here and in the Supplement) show
only those values that are within the 1.5× interquartile range,
so that the overall comparison of the boxplots does not suffer
from single extreme outliers.

– In Scenario B the location is correctly specified, but
scale and shape are misspecified such that ensemble
forecasts have both larger scale and shape, resulting in
a heavier right tail and slightly higher point masses at
zero. This scenario is taken as a reference among the
four considered ones and shown in Fig. 4. Additional
figures with results for the remaining scenarios are pro-
vided in the Supplement. Multivariate post-processing
improves considerably upon the raw ensemble. ECC-Q
is outperformed by SSh and GCA only when the ab-
solute difference between ρ0 and ρ becomes larger. As
before, this is likely caused by the use of past observa-
tions to determine the dependence template by GCA and
SSh, which proves beneficial in comparison to ECC-Q
in cases of a highly incorrect correlation structure in the
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Figure 4. Summaries of DM test statistic values based on the ES (a) and the VS (b) for Setting 2, Scenario B from Table 2, based on m= 50
ensemble members. ECC-Q forecasts are used as a reference model such that positive values of the test statistic indicate improvements over
ECC-Q and negative values indicate deterioration of forecast skill. Boxplots summarize results of the 100 Monte Carlo repetitions of each
individual experiment. The horizontal gray stripe indicates the acceptance region of the two-sided DM test under the null hypothesis of equal
predictive performance at a level of 0.05.
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ensemble. For correctly specified correlations (panels
on the main diagonal in Fig. 4), the relative performance
of the methods does not depend on the actual value of
correlation.

– In Scenario A the observation location parameter is
shifted from 0 to a positive value for the ensemble,
the observation scale is larger, and the shape is smaller
than in the ensemble. Therefore, the ensemble forecasts
come from a distribution with smaller spread than the
observations, which is also centered away from 0 and
has lower point mass at 0. In comparison to Scenario
B there are more outliers, especially for ECC-S. In the
case of correctly specified correlations, the performance
of the methods also does not depend on the actual value
of correlation as in Scenario B. Notably, EMOS-Q here
performs mostly similar to the ensemble, while in the
other three scenarios it typically performs worse than
the ensemble if ρ > ρ0.

– In Scenario C the observation location is larger, the
scale smaller, and the shape larger than in the ensem-
ble distribution. This results in an observation distribu-
tion with a much heavier right tail and a much larger
point mass at 0 compared to the ensemble distribution.
Here, post-processing models frequently offer no or
only slight improvements over the raw ensemble. While
ECC-Q does not always outperform the raw ensem-
ble forecasts, SSh still shows improved forecast perfor-
mance. As in the other scenarios, in the case of correctly
specified correlations, the performance of the methods
does not depend on the actual value of correlation.

– In Scenario D all univariate distribution parameters are
correctly specified. Therefore, the main differences in
performance are imposed by the different misspecifi-
cations of the correlation structure. The main differ-
ence compared to the other scenarios is given by the
markedly worse effects of not accounting for multivari-
ate dependencies during post-processing (EMOS-Q).

In general, the methods perform differently across the
four scenarios, but for most situations multivariate post-
processing improves upon univariate post-processing with-
out accounting for dependencies. Furthermore, SSh reveals a
good performance in all four scenarios when ρ0 differs con-
siderably from ρ. The performance of SSh has a tendency
to improve further when the observation correlation is larger
than the ensemble correlation. Within each of the four sce-
narios, the performance of the methods is nearly identical
in cases where the correlation is correctly specified. In other
words, as long as the ensemble forecasts correctly represent
the correlation of the observations, the actual value of the
correlation does not have an impact on the performance of
a multivariate post-processing method. Above-described ob-
servations can be found in terms of both the ES and the VS.

In addition to the scenarios from Table 2, further scenario
variations were considered for ρ0 = 0.75 and ρ = 0.25, that
is, for the case where ensemble correlation is too low com-
pared to the observations. Figure 5 shows the situation where
the observation location parameter is larger, the scale smaller,
but the shape also smaller than in the ensemble forecasts.
This contrasts with the situation in Scenario C. While in C
the observations were heavier tailed with higher point mass
at 0, here it is the other way round (the ensemble distribu-
tion is heavier tailed with higher point mass at 0). In accor-
dance with Scenarios A, B, and C (where there are parameter
misspecifications in the ensemble compared to the observa-
tions), EMOS-Q performs better than the raw ensemble and
also better than dECC (as in B and C), while SSh and GCA
perform best. However, in contrast to results in terms of the
ES, GCA exhibits an even better performance compared to
the other models in terms of the VS. This indicates that the
VS is better able to account for the correctly specified (or by
post-processing improved) correlation structure than the ES.

The role of ensemble size m

To assess the effect of the ensemble size m, additional sim-
ulations have been performed for each of the four scenar-
ios in Table 2 with ensemble sizes between 5 and 100. Cor-
responding comparative figures comparing ensemble sizes
m= 5, 20, 50, and 100 for Scenarios A, B, C, and D are
provided in Sect. S2.2. Overall, the size of the ensemble only
has a minor effect on the relative performance of the mul-
tivariate methods apart from GCA, which strongly benefits
from an increasing number of members across all four sce-
narios, specifically with regard to ES. This improvement is
likely due to the sampling issues discussed above and is less
pronounced in terms of the VS. As in Setting 1 the rela-
tive differences between ECC-Q and ECC-S in terms of the
ES become increasingly negligible with increasing ensem-
ble size in all considered scenarios (especially for ρ0 = ρ).
This phenomenon is also less pronounced for the VS. In con-
trast to the methods using the dependence information, the
performance of EMOS-Q (not accounting for dependence)
compared to ECC-Q becomes increasingly worse for an in-
creasing number of members when measured by ES. For VS,
the influence of the number of members on EMOS-Q is only
small. Interestingly, the difference in performance of the raw
ensemble for an increasing number of members is negligible
in case the misspecification is only minor and ES is consid-
ered. In case there is no misspecification (Scenario D), the
raw ensemble can slightly benefit from an increasing number
of members. Similarly to the effect for ECC-Q, when mea-
suring performance with VS, the effect on the raw ensemble
is negligible. Further, it can be observed that the difference of
the results between varying numbers of members is smallest
for ρ0 = ρ.
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Figure 5. As Fig. 4 but based on ES and VS for (µ0,ξ0,σ0)= (2.0,−0.1,1.0), and (µ,ξ,σ )= (0.0,0.0,2.0), where ρ0 = 0.75 and ρ = 0.25,
and ensemble size m= 50

4.2.3 Setting 3: multivariate Gaussian distribution with
changes over iterations

Figure 6 shows results in terms of ES and VS for Setting
3A. We again only show results for ρ,ρ0 ∈ {0.25,0.5,0.75}
and refer to the Supplement for further results. The most no-
table differences compared to Setting 1 are that the different
ECC variants here significantly outperform GCA and SSh
not only for ensemble forecasts with correctly specified cor-
relation structure, but also for small deviations of ρ from ρ0.
Significant ES differences in favor of SSh are only obtained
for large absolute differences of ρ and ρ0. Similar observa-
tions hold for GCA which, however, generally exhibits worse
performance compared to SSh. The ES differences among
the ECC variants are only minor and usually not statistically
significant.

Similar conclusions apply for the VS; however, GCA gen-
erally performs better than SSh, and ECC-S provides signif-
icantly worse forecasts compared to the other ECC variants
for ρ < ρ0.

Results for Setting 3B are shown in Fig. 7. Note that the
columns here show different values of ρ and the row refers to
a specific value of a. Similar to Setting 3A, we observe that
in terms of the ES, dECC and ECC-S do not show significant
differences in performance compared to ECC-Q, whereas
GCA and SSh here perform worse for all parameter com-
binations. In terms of the VS, GCA now also performs worse
than ECC-Q for all correlation parameters, whereas signifi-
cantly negative and positive differences of ECC-S and dECC
compared to ECC-Q can be detected for ρ < ρ0 and ρ > ρ0,
respectively. Additional results for varying values of σ and
a and sets of low or medium correlations are provided in
the Supplement. The results generally do not depend on the
choice of σ . Results for low and medium correlation param-
eter values are characterized by less substantial differences
between the methods. In particular, it is only rarely possible

to detect significant differences when comparing ECC-Q and
SSh, and GCA only performs significantly worse in terms
of the ES. Further, there exist more parameter combinations
with improvements by ECC-S and dECC. However, note that
due to the setup of Setting 3B, the variations over time in both
observations and ensemble predictions will be much smaller
than for high correlation parameter values. Within a fixed set
of correlation parameters, the relative differences between
the methods become more pronounced with increasing val-
ues of a.

Note that the main focus in both variants of Setting 3
was to demonstrate that in (potentially more realistic) set-
tings with changes over time, naive implementations of the
Schaake shuffle can perform worse than ECC variants. How-
ever, similarity-based implementations of the Schaake shuf-
fle (Schefzik, 2016; Scheuerer et al., 2017) are available and
may be able to alleviate this issue.

5 Discussion and conclusion

State-of-the-art methods for multivariate ensemble post-
processing were compared in simulation settings which
aimed to mimic different situations and challenges occur-
ring in practical applications. Across all settings, the Schaake
shuffle constitutes a powerful benchmark method that proves
difficult to outperform, except for naive implementations in
the presence of structural change (for example, time-varying
correlation structures considered in Setting 3). By contrast to
SSh, the Gaussian copula approach typically only provides
improvements over variants of ensemble copula coupling if
the parametric assumption of a Gaussian copula is satisfied
or if forecast performance is evaluated with the variogram
score. Results in terms of the CRPS further highlight an ad-
ditional potential disadvantage in that the univariate forecast
errors are larger compared to the competitors.
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Figure 6. Summaries of DM test statistic values based on the ES (a) and the VS (b) for Setting 3A with ε = 1 and σ = 1. ECC-Q forecasts
are used as a reference model such that positive values of the test statistic indicate improvements over ECC-Q and negative values indicate
deterioration of forecast skill. Boxplots summarize results of the 100 Monte Carlo repetitions of each individual experiment. The horizontal
gray stripe indicates the acceptance region of the two-sided DM test under the null hypothesis of equal predictive performance at a level of
0.05. Simulation parameter choices where the correlation structure of the raw ensemble is correctly specified (ρ = ρ0) are surrounded by
black boxes.
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Figure 7. Summaries of DM test statistic values based on the ES (a) and the VS (b) for Setting 3B for σ = 1 and high values of ρ,ρ0. ECC-Q
forecasts are used as a reference model such that positive values of the test statistic indicate improvements over ECC-Q and negative values
indicate deterioration of forecast skill. Boxplots summarize results of the 100 Monte Carlo repetitions of each individual experiment. The
horizontal gray stripe indicates the acceptance region of the two-sided DM test under the null hypothesis of equal predictive performance at a
level of 0.05. Simulation parameter choices where the correlation structure of the raw ensemble is correctly specified (ρ = ρ0) are surrounded
by black boxes.

Not surprisingly, variants of ensemble copula coupling
typically perform the better the more informative the en-
semble forecasts are about the true multivariate dependence
structure. A particular advantage compared to standard im-
plementations of SSh and GCA illustrated in Setting 3 may
be given by the ability to account for flow-dependent differ-
ences in the multivariate dependence structure if those are (at
least approximately) present in the ensemble predictions, but
not in a randomly selected subset of past observations.

There is no consistently best method across all simula-
tion settings and potential misspecifications among the dif-
ferent ECC variants investigated here (ECC-Q, ECC-S, and
dECC). ECC-Q provides a reasonable benchmark model and
will rarely yield the worst forecasts among all ECC variants.
Significant improvements over ECC-Q may be obtained by
ECC-S and dECC in specific situations, including specific
combinations of ensemble size and dimension. For example,
dECC sometimes works well for underdispersive ensembles
where the correlation is too low, whereas ECC-S may work
better if the ensemble is underdispersive and the correlation

is too strong. However, the results will strongly depend on
the exact misspecification of the variance–covariance struc-
ture of the ensemble as well as the performance measure cho-
sen for multivariate evaluation.

In light of the presented results it seems to be generally
advisable to first test the Schaake shuffle along with ECC-
Q. If structural assumptions about specific misspecifications
of the ensemble predictions seem appropriate, extensions by
other variants of ECC or GCA might provide improvements.
However, it should be noted that the results for real-world en-
semble prediction systems may be influenced by many addi-
tional factors and may differ when considering station-based
or grid-based post-processing methods. The computational
costs of all presented methods are not only negligible in com-
parison to the generation of the raw ensemble forecasts, but
also compared to the univariate post-processing as no numer-
ical optimization is required. It may thus be generally advis-
able to compare multiple multivariate post-processing meth-
ods for the specific dataset and application at hand.
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The simulation settings considered here provide several
avenues for further generalization and analysis. For exam-
ple, a comparison of forecast quality in terms of multivari-
ate calibration (Thorarinsdottir et al., 2016; Wilks, 2017) is
left for future work. Further, the autoregressive structure of
the correlations across dimensions may be extended towards
more complex correlation functions; see, e.g., Thorarinsdot-
tir et al. (2016, Sect. 4.2). While we only considered mul-
tivariate methods based on a two-step procedure combin-
ing univariate post-processing and dependence modeling via
copulas, an extension of the comparison to parametric ap-
proaches along the lines of Feldmann et al. (2015) and Baran
and Möller (2015) presents another starting point for future
work. Note that within the specific choices for Setting 1, the
spatial EMOS approach of Feldmann et al. (2015) can be
seen as a special case of GCA.

We have limited our investigation to simulation studies
only as those settings allow one to readily assess the effects
of different types of misspecifications of the various multi-
variate properties of ensemble forecasts and observations and
may thus help to guide implementations of multivariate post-
processing. Further, they are able to provide a more complete
picture of the effects of different types of misspecifications
on the performance of the different methods than those that
may be observed in practical applications. Nonetheless, an
important aspect for future work is to complement the com-
parison of multivariate post-processing methods by studies
based on real-world datasets of ensemble forecasts and ob-
servations, extending existing comparisons of subsets of the
methods considered here (e.g., Schefzik et al., 2013; Wilks,
2015). However, the variety of application scenarios, meth-
ods, and implementation choices likely requires large-scale
efforts, ideally based on standardized benchmark datasets.
A possible intermediate step might be given by the use of
simulated datasets obtained via stochastic weather generators
(see, e.g., Wilks and Wilby, 1999) which may provide arbi-
trarily large datasets with possibly more realistic properties
than the simple settings considered here.

A different perspective on the results presented here con-
cerns the evaluation of multivariate probabilistic forecasts.
In recent work Ziel and Berk (2019) argue that the use of
Diebold–Mariano tests is of crucial importance for appro-
priately assessing the discrimination ability of multivariate
proper scoring rules and find that the ES might not have
as bad a discrimination ability as indicated by earlier re-
search. The simulation settings and comparisons of mul-
tivariate post-processing methods considered here may be
seen as additional simulation studies for assessing the dis-
crimination ability of multivariate proper scoring rules. In
particular, the results in Sect. 4 are in line with the findings
of Ziel and Berk (2019) in that the ES does not exhibit in-
ferior discrimination ability compared to the VS. Nonethe-
less, the ranking of the different multivariate post-processing
methods strongly depends on the proper scoring rule used for
evaluation, and further research on multivariate verification
is required to address open questions, improve mathemati-
cal understanding, and guide model comparisons in applied
work.
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Appendix A: Details on the left-censored generalized
extreme value (GEV) distribution

When the GEV distribution is left-censored at zero, its cu-
mulative distribution function can be written as

F(y)=

{
e−t (y), y ≥ 0

0, y < 0
, where

t (y)=

{(
1+ ξ

( y−µ
σ

))−1/ξ
, ξ 6= 0

e−(y−µ)/σ , ξ = 0

for y ∈Y, where Y= [µ− σ/ξ,∞) when ξ > 0, Y=
(−∞,∞)when ξ = 0, and Y= (−∞,µ−σ/ξ ]when ξ < 0.
This describes a three-parameter distribution family, where
µ ∈ R, σ > 0, and ξ ∈ R are location, scale, and shape of the
non-censored GEV distribution, respectively.

A1 Expectation and variance

Let Y be a random variable distributed according to GEV and
censored at zero to the left. From the law of total expectation,

E(g(Y ))= P(Y = 0)E(g(Y )|Y = 0)

+P(Y > 0)E(g(Y )|Y > 0),

where the second term in the sum is given by

E(g(Y )I{Y>0})=

∞∫
0

g(y)fY (y)dy.

Here, I denotes the indicator function, g is any function of Y
such that g(Y ) is a random variable, and fY is the probability
density function (PDF) of the non-censored GEV. By noting
that E(Y |Y = 0)= E(Y 2

|Y = 0)= 0, expectation and vari-
ance of the left-censored GEV can be computed from the two
integrals

∫
∞

0 yfY (y)dy and
∫
∞

0 y2fY (y)dy, the former ex-
isting when ξ < 1 and the latter existing when ξ < 0.5. Both
integrals are not derived analytically here, but evaluated by
numerical integration. In contrast to the non-censored GEV
distribution, the variance of the left-censored version also de-
pends on the parameter µ, since different choices of µ lead
to different left-censored CDFs which are not merely distin-
guished by location. Therefore µ is a location parameter for
the non-censored GEV, but not for the left-censored version.

Appendix B: Evaluating probabilistic forecasts

B1 Proper scoring rules

The comparative evaluation of probabilistic forecasts is usu-
ally based on proper scoring rules. A proper scoring rule is a
function

S : F ×�→ F ,

which assigns a numerical score S(F,y) to a pair of a fore-
cast distribution F ∈ F and a realizing observation y ∈�.
Here, F denotes a class of probability distributions supported
on �. The forecast distribution F may come in the form of a
predictive CDF, a PDF, or a discrete sample as in the case of
ensemble predictions. A scoring rule is called proper if

EGS(G,Y )≤ EGS(F,Y )

for all F,G ∈ F and strictly proper if equality holds only
if F =G. See Gneiting and Raftery (2007) for a review of
proper scoring rules from a statistical perspective.

The most popular example of a univariate (i.e., �⊂ F)
proper scoring rule in the environmental sciences is given by
the continuous ranked probability score (CRPS),

CRPS(F,y)=
∫
�

(F (z)− I{z ≥ y})2dz.

Over the past years a growing interest in multivariate
proper scoring rules has accompanied the proliferation of
multivariate probabilistic forecasting methods in applications
across disciplines. The definition of proper scoring rules
from above straightforwardly extends towards multivariate
settings (i.e.,�⊂ Fd ). A variety of multivariate proper scor-
ing rules has been proposed over the past years, usually fo-
cused on cases where multivariate probabilistic forecasts are
given as samples from the forecast distributions.

To introduce multivariate scoring rules, let
y = (y(1), . . .,y(d)) ∈�⊂ Fd and let F denote a forecast
distribution on Fd given by m discrete samples X1, . . .,Xm
from F with Xi = (X

(1)
i , . . .,X

(d)
i ) ∈ Fd , i = 1, . . .,m.

Important examples of multivariate proper scoring rules
include the energy score (ES; Gneiting et al., 2008),

ES(F,y)=
1
m

m∑
i=1
‖Xi − y‖−

1
2m2

m∑
i=1

m∑
j=1
‖Xi −Xj‖,

where ‖ · ‖ is the Euclidean norm on Rd , and the variogram
score of order p (VSp; Scheuerer and Hamill, 2015),

VSp(F,y)=
d∑
i=1

d∑
j=1

wi,j

(∣∣∣y(i)− y(j)∣∣∣p − 1
m

m∑
k=1

∣∣∣X(i)k −X(j)k ∣∣∣p)2

.

Here, wi,j is a non-negative weight that allows one to em-
phasize or down-weight pairs of component combinations,
and p is the order of the variogram score. Following sugges-
tions of Scheuerer and Hamill (2015), we considered p = 0.5
and p = 1. As none of the simulation settings indicated any
substantial differences, we set p = 1 throughout and denote
VS1(F,y) by VS(F,y). Since the generic multivariate struc-
ture of the simulation settings does not impose any mean-
ingful structure in pairs of components, we focus on the un-
weighted versions of the variogram score. Several weighting
schemes have been tested but did not lead to any substantially
different conclusions.
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We utilize implementations provided in the R package
scoringRules (Jordan et al., 2019) to compute univari-
ate and multivariate scoring rules for forecast evaluation and
post-processing model estimation.

B2 Diebold–Mariano tests

Statistical tests of equal predictive performance are fre-
quently used to assess the statistical significance of observed
score differences between models. We focus on Diebold–
Mariano (DM; Diebold and Mariano, 1995) tests which are
widely used in the econometric literature due to their ability
to account for temporal dependencies. For applications in the
context of post-processing, see, e.g., Baran and Lerch (2016).

For a (univariate or multivariate) proper scoring rule S and
sets of two competing probabilistic forecasts Fi and Gi , i =
1, . . .,ntest over a test set, the test statistic of the DM test is
given by

T DM
ntest
=
√
ntest

S(F,y)− S(G,y)

σ̂
, (B1)

where S(F,y)= 1
ntest

∑ntest
i=1S(Fi,yi) and S(G,y)=

1
ntest

∑ntest
i=1S(Gi,yi) denote the mean score values of F

and G over the test set of size ntest, respectively. In Eq. (B1),
σ̂ denotes an estimator of the asymptotic standard deviation
of the sequence of score differences of F and G. Positive
values of T DM

ntest
indicate a superior performance of G,

whereas negative values indicate a superior performance of
F .

Under standard regularity assumptions and the null hy-
pothesis of equal predictive performance, T DM

ntest
asymptoti-

cally follows a standard normal distribution which allows one
to assess the statistical significance of differences in predic-
tive performance. We utilize implementations of DM tests
provided in the R package forecast (Hyndman and Khan-
dakar, 2008).
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