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Abstract. For most statistical postprocessing schemes used
to correct weather forecasts, changes to the forecast model
induce a considerable reforecasting effort. We present a new
approach based on response theory to cope with slight model
changes. In this framework, the model change is seen as
a perturbation of the original forecast model. The response
theory allows us then to evaluate the variation induced on
the parameters involved in the statistical postprocessing, pro-
vided that the magnitude of this perturbation is not too large.
This approach is studied in the context of a simple Ornstein–
Uhlenbeck model and then on a more realistic, yet simple,
quasi-geostrophic model. The analytical results for the for-
mer case help to pose the problem, while the application to
the latter provides a proof of concept and assesses the po-
tential performance of response theory in a chaotic system.
In both cases, the parameters of the statistical postprocessing
used – the Error-in-Variables Model Output Statistics (EV-
MOS) method – are appropriately corrected when facing a
model change. The potential application in an operational en-
vironment is also discussed.

1 Introduction

A generic property of the atmospheric dynamics is its sen-
sitivity to initial conditions. This implies that probabilis-
tic forecasts is necessary to adequately describe this be-
haviour (Kalnay, 2003; Wilks, 2011). Indeed, these methods
represent a way to go beyond the natural predictability bar-
rier that the chaotic atmospheric models exhibit (Vannitsem,
2017). These forecasts are at the same time subject to the im-
pact of the presence of structural uncertainties, also known

as “model errors”. Such errors degrade the forecasts as well,
and their impact needs to be mitigated.

Statistical postprocessing methods are used to correct the
operational predictions of the atmospheric models. An im-
portant family of statistical techniques used to postprocess
the forecasts are linear-regression techniques, possibly with
multiple predictors (Glahn and Lowry, 1972; Vannitsem and
Nicolis, 2008), also known as model output statistics (MOS).
This rather simple but very efficient technique can be adapted
to ensemble forecasts (e.g. Vannitsem, 2009; Johnson and
Bowler, 2009; Glahn et al., 2009; Van Schaeybroeck and
Vannitsem, 2015). One of the first approaches that was pro-
posed is called the Error-in-Variable MOS (EVMOS) method
because it takes into account the presence of errors in both
the observations and model observables (Vannitsem, 2009).

Despite their simplicity, most postprocessing schemes de-
pend on the availability of a database of past forecasts, which
allows one to train the regression algorithm by comparison
with the observations database. Operational models are how-
ever subject to frequent evolution cycles, which are needed
to improve their representation of the atmospheric processes.
Therefore, there is a continuous need to recompute forecasts
starting from past initial conditions with the latest model ver-
sion to avoid a degradation of the postprocessing schemes
due to model change. Such a recomputation of the past
forecasts are called “reforecasts” and typically requires a
huge data storage and management framework, as well as
many computational resources (Hamill, 2018). For instance,
the European Centre for Medium-range Weather Forecast
(ECMWF) and the National Weather Service (NWS) both
produce hundreds of reforecasts every week (Hamill et al.,
2013).

Published by Copernicus Publications on behalf of the European Geosciences Union & the American Geophysical Union.



308 J. Demaeyer and S. Vannitsem: Correcting for model changes in statistical postprocessing

Recent research has investigated non-homogeneous re-
gression with a time-adaptative training scheme, for which a
trade-off between large training data sets for stable estimates
and the benefit of a shorter training period for faster adapta-
tion to data changes is considered (Lang et al., 2020). These
results can help mitigate the impact of model change on post-
processing and may call into question the need for reforecast
systems. These systems do however help to better represent
rare events; they increase the size of the training data sets
and greatly improve sub-seasonal forecasts (Scheuerer and
Hamill, 2015; Hamill, 2018), which can justify their very
high cost.

The present work investigates another research direction
and considers a new technique to reduce the cost of adapting
a postprocessing scheme to a model change. This method re-
lies on the response theory for dynamical systems (Ruelle,
2009) and assumes that the model change can be written as
analytical perturbations of the model tendencies. In this con-
text, parameter modifications as well as new terms in the ten-
dencies are potential model changes.

In Sect. 2, we start by introducing the Ruelle response the-
ory that is used to adapt past postprocessing parameters to
new model versions. A didactical example of such an adapta-
tion is considered with a simple Ornstein–Uhlenbeck model
in Sect. 3. It is used to describe the methodology and the con-
cept involved. We show that obtaining a new postprocessing
scheme after a model change requires the computation of the
response of the average of the involved predictors, seen as
observables of the system. In the simple case considered, ex-
act analytical results for the response can be obtained up to
any order. The correction of the model observables and the
postprocessing parameters due to the model change only re-
quires the response-theory corrections up to the second order.

In Sect. 4, a more complex case is considered with a toy
model of atmospheric variability in the form of a two-layer
quasi-geostrophic model with an orography. We compute
the linear response of the parameters of the postprocessing
scheme for two model change experiments involving a mod-
ification of the friction and the horizontal temperature gradi-
ent of the model. The response-theory approach provides an
efficient correction of the postprocessing scheme up to a lead
time of 4 d, which matches the lead-time window where the
scheme’s correction is efficient.

In the last section, we discuss the implications that this
new method could have on operational forecast postprocess-
ing systems, as well as new research avenues.

2 Response theory

The systems used to produce the weather forecasts are typ-
ically non-linear dynamical systems whose time evolution
is governed by multi-dimensional ordinary differential equa-
tions:

ẏ = F (t,y). (1)

The generic chaotic nature of these systems for some param-
eter values implies that they are sensitive to the initial data
used to produce the forecasts. For such chaotic dynamical
systems, one can assume that a well-defined time-invariant
measure exists with which the averages are performed. How-
ever, the existence of such measures has been proved for sys-
tems that are uniformly hyperbolic, and they are called Sinai–
Ruelle–Bowen (SRB) measures (Young, 2002), but rigorous
proofs for other systems are rather difficult to obtain. A way
to proceed is then to continue as if physical systems were uni-
formly hyperbolic. This assumption is called the Gallavotti–
Cohen hypothesis (Gallavotti and Cohen, 1995a, b). With
this assumption, response theory has been successfully used
in various weather and climate-related problems (Demaeyer
and Vannitsem, 2018; Vissio and Lucarini, 2018; Lembo
et al., 2019; Bódai et al., 2020). Indeed, the systems used to
produce weather forecasts are typically not uniformly hyper-
bolic, but thanks to the aforementioned hypothesis, one can
still use what will follow and compare with the results ob-
tained with experiments.1 It is the rationale behind the formal
presentation of the linear response theory for general systems
like Eq. (1) in Ruelle (1998a). The main concepts that will be
used in this article are now introduced.

2.1 Perturbations of dynamical systems

We shall assume for simplicity that the system defined by
Eq. (1) is autonomous and given by

ẏ = F (y). (2)

In the general setting considered, let us assume that any given
probability measure converges to a unique invariant measure
ρ under the time evolution given by the Liouville equation of
Eq. (2). This measure is used to compute the average of an
arbitrary observable A (a smooth function of the state y) of
the system, which is given by

〈A〉y =

∫
ρ(dy)A(y), (3)

and assuming the ergodicity of the system, a time average
of the observable A along a trajectory of the system on its
attractor can be equivalently performed as

〈A〉y = lim
T→∞

1
T

T∫
0

dτ A(y(τ )) , (4)

where y(τ ) is a solution of Eq. (2). If a perturbation 9 of the
dynamical system is introduced in the original system at time
τ = 0 as

ẏ = F (y)+9(y), (5)

1We point the reader to recent articles dealing with the valid-
ity of the response theory for weakly hyperbolic systems and time
series (Gottwald et al., 2016; Wormell and Gottwald, 2018).
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it induces a perturbation of the observable’s average, which
at the first order is given by2

δ〈A(τ)〉y =

∫
ρ(dy0) δA

(
f τ (y0)

)
=

∫
ρ(dy0)δy(τ )

T
·∇f τ (y0)

A, (6)

where f τ is the flow of the system defined by Eq. (2) map-
ping an initial condition y0 to the system’s state at time τ
as y(τ )= f τ (y0), and the capital T represents the transpo-
sition. δy is the perturbation of the trajectory of the system
induced by the perturbation 9. This formula gives the tran-
sient response to the perturbation, and the long-time aver-
age of the integrand of Eq. (6) gives the stationary response
to the perturbation, i.e. the sensitivity δ〈A〉y of the system
observables to the perturbation (Eyink et al., 2004; Wang,
2013). The higher-order corrections δk〈A(τ)〉y can in prin-
ciple be computed as well but are quite complicated to ob-
tain for chaotic dynamical systems; see for instance Lucarini
(2009). We will show an analytically tractable case in Sect. 3.

2.2 The tangent linear model

The linear perturbation δy of the trajectories of Eq. (2) can
be computed by introducing y+ δy in Eq. (5) to get at the
first order

δ̇y =∇yF · δy+9(y), (7)

where y is the solution of Eq. (2) and ∇yF is the Jacobian
matrix evaluated along this solution. Therefore, both Eqs. (2)
and (7) have to be integrated simultaneously. In the weather
forecasting context, this latter linearised equation without
the perturbation term 9 is called the tangent linear model
of Eq. (2) (Kalnay, 2003). Here, Eq. (7) is initialised with
δy(0)= 0 and provides the linear response of the trajectory
y(τ ) to the perturbation 9. It is thus assumed that there is no
interference due to initial-condition errors in the perturbation
problem. Note however that the effects on the trajectories
of both the initial-condition perturbation and the 9 pertur-
bation can be investigated through this equation by setting
δy(0) 6= 0, although we are not aware of any study of the
response to both types of perturbations together.

The tangent model provides thus the tool through which
we will evaluate the impact of the model change on the av-
erage used by statistical postprocessing schemes. In other
words, the tangent model will allow us to take into account
the information on the model change (viewed as a pertur-
bation of the initial model) to modify the previous postpro-
cessing scheme and adapt it to the new model version. The

2When taking the gradient of a function A, the notation ∇yA

means taking the gradient at the point y, i.e. evaluating ∇yA(y).

solution to Eq. (7) with δy(0)= 0 is by

δy(τ )=

τ∫
0

dτ ′ M
(
τ − τ ′,f τ

′

(y0)
)
·9

(
f τ
′

(y0)
)
, (8)

where M is the fundamental matrix of Eq. (7) (Gaspard,
2005; Nicolis, 2016) defined as

M(τ,y)=∇yf
τ , (9)

which is the solution of the homogeneous equation Ṁ=
∇yF ·M. Using the chain rule, the response defined by
Eq. (6) is rewritten in terms of the perturbation alone:

δ〈A(τ)〉y =

τ∫
0

dτ ′
∫
ρ
(
dy0

)
9
(
f τ
′

(y0)
)T

·∇
f τ
′
(y0)

A
(
f τ (y0)

)
, (10)

where the causality of the perturbation acting on the system
and perturbing the averaged observable appears (Lucarini,
2008), since τ ′ < τ . We will also use this alternative expres-
sion throughout the article. Note that when the initial pertur-
bation δy(0) is not equal to 0, additional terms to Eqs. (8)
and (10) will appear. These will not be addressed here, but
some references to this can be found in Nicolis et al. (2009)
and Nicolis (2016).

2.3 Non-stationary response theory

Equation (6) gives the transient, non-stationary response to
the perturbation, evaluated for averages computed with the
invariant measure. However, in this work, we need to evalu-
ate the response to perturbations for averages computed with
non-stationary measures evolving in time. In that sense, it is
a “non-stationary response theory”, which is performed with
an arbitrary initial probability density. As such, all the formu-
las presented are valid if the measure being used is the mea-
sure at the time when the perturbation is introduced (τ = 0),
as shown in Appendix A. In this case, other usual formu-
las obtained through substitution, for instance to obtain an
adjoint representation of Eq. (10), should be used with care,
since the measure is no longer invariant and an extra Jacobian
term appears in the integrand.

We will thus also assume that the measures ρτ being used
are absolutely continuous with respect to the Lebesgue mea-
sure. In this case, we can write ρτ (dy)= ρτ (y)dy. We now
present the problem of model change in the framework of
postprocessing and show on a simple stochastic model3 how
response theory allows us to tackle the issue.

3Response theory is also valid for stochastic models with a
well-defined stationary measure, as shown for instance in Lucarini
(2009).
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3 A simple analytical example

In order to get a first impression of the impact of a
model change on a postprocessing scheme, we consider two
Ornstein–Uhlenbeck processes representing reality x(τ) and
a model y(τ) of reality. These processes obey the following
equations:

ẋ(τ )=−λx x(τ)+Kx +Qx ξx(τ ), (11)
ẏ(τ )=−λy y(τ)+Ky +Qy ξy(τ ), (12)

where ξx and ξy are Gaussian white-noise processes such that

〈ξx(τ )〉 = 〈ξy(τ )〉 = 0

〈ξx(τ ) ξx(τ
′)〉 = δ(τ − τ ′)

〈ξy(τ ) ξy(τ
′)〉 = δ(τ − τ ′)

〈ξx(τ ) ξy(τ
′)〉 = 0.

These are therefore uncorrelated Ornstein–Uhlenbeck
processes with noise amplitudes Qx and Qy .

We then consider a change 9y of model y(τ), possibly
improving or degrading the forecast performances as

˙̂y(τ)=−λy ŷ(τ )+Ky +Qy ξy(τ )+9y(τ ), (13)

where

9y(τ )=−κ
(
δK + δQ ξy(τ )

)
(14)

with δK =Ky −Kx and δQ=Qy −Qx . It can represent,
for example, a better parameterisation of subgrid-scale pro-
cesses or an increase of the model resolution. Note that the
best correction is obtained if κ = 1.

We have thus reality x(τ) and two different models of it:
y(τ) and ŷ(τ ). We now want to evaluate the difference be-
tween a postprocessing scheme constructed before the model
change (with the past forecasts of model y(τ)) and one con-
structed after (with the past forecasts of model ŷ(τ )).

3.1 The postprocessing method

We now consider a forecast situation where model y is ini-
tialised at time τ = 0 with a perfect observation of reality:
y(0)= x(0)= x0. We use the Error-in-Variables Model Out-
put Statistics (EVMOS) postprocessing scheme (Vannitsem,
2009) to correct the forecasts of model y based on these
initial conditions. In this context, given N past forecasts yn
and observations xn, the correction of the univariate EVMOS
postprocessing of variable x from a new forecast y(τ) is pro-
vided by the linear regression

yC(τ )= α(τ)+β(τ)y(τ ). (15)

The coefficients α and β are obtained by minimising the
functional

J (τ)=

N∑
n=1

[
{α(τ)+β(τ)yn(τ )}− xn(τ )

]2
σ 2
x (τ )+β

2(τ )σ 2
y (τ )

(16)

and are thus given by the following equations:

α(τ)= 〈x(τ)〉−β(τ) 〈y(τ)〉, (17)

β(τ)=

√
σ 2
x (τ )

σ 2
y (τ )

, (18)

where

σ 2
x (τ )=

〈(
x(τ)−〈x(τ)〉

)2〉
, (19)

σ 2
y (τ )=

〈(
y(τ)−〈y(τ)〉

)2〉
, (20)

The averages 〈·〉 are taken over an ensemble of past fore-
casts and observations. This approach has been developed
to obtain a correct climatological forecast calibration. It
constitutes a simple setting in which the impact of model
changes can be evaluated and corrected. More sophisticated
approaches can be evaluated in the future (other linear MOS
schemes, ensemble MOS, etc.).

Since we are dealing with simple analytical models here,
we can compute the theoretical values of the coefficient α
and β with an infinite ensemble of past forecasts, and the av-
eraged quantities involved in this computation are then given
by the averages of an infinite number of realisations of the
Ornstein–Uhlenbeck processes, as if we had an infinite en-
semble of past forecasts.

3.2 Averaging the Ornstein–Uhlenbeck processes

For reality x and model y, we directly get the averages (Gar-
diner, 2009)

〈x(τ)〉 = 〈x0〉e
−λx τ +

Kx

λx

(
1− e−λx τ

)
, (21)

σ 2
x (τ )= σ

2
x0
e−2λx τ +

Q2
x

2λx

(
1− e−2 λxτ

)
(22)

and

〈y(τ)〉 = 〈x0〉e
−λy τ +

Ky

λy

(
1− e−λy τ

)
, (23)

σ 2
y (τ )= σ

2
x0
e−2λy τ +

Q2
y

2λy

(
1− e−2 λyτ

)
, (24)

where we note that the model is initialised with the same
initial conditions as reality:

〈y(0)〉 = 〈x(0)〉 = 〈x0〉 , σ
2
y (0)= σ

2
x (0)= σ

2
x0
. (25)

We get the postprocessing coefficients before the model
change α(τ) and β(τ) by inserting these expressions in
Eqs. (17) and (18).
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Similarly, we get the same kind of results for model ŷ,
after model change 9y :

〈ŷ(τ )〉 = 〈x0〉e
−λy τ +

Ky − κ δK

λy

(
1− e−λy τ

)
, (26)

σ 2
ŷ
(τ )= σ 2

x0
e−2λy τ +

(Qy − κ δQ)
2

2λy

(
1− e−2 λyτ

)
. (27)

We also obtain the postprocessing coefficients after the
model change α̂(τ ) and β̂(τ ) (see also the analysis in Van-
nitsem, 2011). We can also compute the variation of the bias
α:

α̂(τ )−α(τ)= δα(τ)= β(τ) 〈y(τ)〉− β̂(τ ) 〈ŷ(τ )〉. (28)

The ratio between the parameters β is given by

β̂(τ )

β(τ)
=

√√√√σ 2
y (τ )

σ 2
ŷ
(τ )

. (29)

For τ �max(1/λx,1/λy), we note that this ratio tends to

β̂(τ )

β(τ)
≈

1
1− κ δQ/Qy

, (30)

and the difference between the biases α of the two models is
approximatively given by

δα(τ)≈−β(τ)
Ky

λy

[
1− κ δK/Ky
1− κ δQ/Qy

− 1
]
. (31)

Let us now assume that model change 9y can be consid-
ered as a perturbation of the initial model y. Using response
theory, the averages 〈ŷ〉 and σ 2

ŷ
can be estimated using the

initial model y instead of the perturbed model ŷ. In turn,
these new estimated averages give us the new postprocess-
ing scheme coefficients α̂ and β̂. We now detail the results
obtained by using this method.

3.3 Model change and response theory

After the model change, the forecasts are provided by model
ŷ, and their time evolution is given by Eq. (13). This model
can be seen as a perturbation of model y by the term 9y
given by Eq. (14). In such a case, given an observable A,
its average after the model change can then be related to its
original average by

〈A(τ)〉ŷ = 〈A(τ)〉y + δ〈A(τ)〉y + δ
2
〈A(τ)〉y + . . ., (32)

where the averages on the right-hand side are taken over the
forecasts of model y. Response theory allows us to obtain
the average over the model ŷ forecasts (the left-hand side)
based solely on the average over the model y forecasts. The
ŷ model forecasts are therefore not required to estimate the
new postprocessing scheme.

The observables depend on the lead time τ of the fore-
cast, as do the parameters α and β which determine the
postprocessing correction for every lead time. This reflects
the fact that the postprocessing problem is typically a non-
stationary initial-value problem, since the initial conditions
of the model Eqs. (12) and (13) are typically not chosen on
their respective model attractor but rather as observations4 of
reality defined by Eq. (11). As a consequence, the model av-
erages of Eq. (32) relax toward the stationary response in the
long-time limit, and the stationary response theory (Ruelle,
2009; Wang, 2013) cannot provide us their short-time relax-
ation behaviour. Instead, the Ruelle time-dependent response
theory should be used (Ruelle, 1998a). It follows that, if the
perturbation (14) is small, then the first order is given by (see
Sect. 2)

δ〈A(τ)〉y =

τ∫
0

dτ ′
∫

dx0 ρ0(x0)
〈
9y(τ

′)∇
f τ
′
(x0)

A
(
f τ (x0)

)〉
, (33)

where ρ0 is the distribution of the initial conditions (obser-
vations) used to initialise the models. ∇x is the gradient eval-
uated at the point x, and here it is the simple derivative. As
indicated by Eq. (25), in the postprocessing framework, ρ0
is taken as the stationary distribution of reality. As shown in
Appendix A, Eq. (33) can be obtained through a Kubo-type
perturbative expansion (Lucarini, 2008). We remark that this
example deals with stochastic models, due to which we have
to perform an additional averaging over the realisations of
the stochastic processes, denoted here as 〈·〉 (Lucarini, 2012).
Finally the mapping f τ which appears in Eq. (33) is the
stochastic flow

f τ (x0)= x0 e
−λyτ +

τ∫
0

dτ ′ e−λy (τ−τ
′)
[
Qy ξy(τ

′)+Ky

]
. (34)

This maps an initial condition x0 of model y to the state
f τ (x0) of a realisation of this model at the later lead time τ .
The principle of causality is thus implicit in Eq. (33), which
estimates the impact of the perturbation 9y on the subse-
quent perturbed-model time evolution by developing around
the unperturbed-model y trajectories.

Evaluating Eq. (33) and its stochastic integrals (Gardiner,
2009) gives us the variation of the averages 〈y(τ)〉 and
〈y(τ)2〉 to the perturbation 9y :

δ〈y(τ)〉y =−κ

τ∫
0

dτ ′δK e−λy (τ−τ
′)
=−

κ

λy
δK

(
1− e−λyτ

)
, (35)

4Here we consider that the observation are perfectly assimilated
in the models and that there is no observation errors. However in op-
erational setups, such errors are of course to be taken into account.
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δ〈y(τ)2〉y =−2κ δK

τ∫
0

dτ ′
[
〈x0〉e

−λy (2τ−τ ′)

+
Ky

λy
e−λy (τ−τ

′)
(
1− e−λyτ

)]

− 2κ δQQy

τ∫
0

dτ ′ e−2 λy (τ−τ ′)

=−2κ
δK

λy
〈y(τ)〉

(
1− e−λyτ

)
−
κ

λy
δQQy

(
1− e−2 λyτ

)
. (36)

Rearranging these two terms, we also get the following ex-
pression for the variation of the variance given by Eq. (24):

δσ 2
y (τ )=−

κ

λy
δQQy

(
1− e−2 λyτ

)
−
κ2

λ2
y

δK2 (1− e−λyτ )2. (37)

Note that the variation given by Eq. (35) corresponds ex-
actly to the difference between the average of the two mod-
els 〈ŷ(τ )〉− 〈y(τ)〉. On the other hand the variation given by
Eq. (37) lacks the term of order κ2 involving δQ that appears
in the difference between σ 2

ŷ
(τ ) and σ 2

y (τ ) given respectively

by Eqs. (27) and (24). Instead, another term of order κ2 and
involving δK is present, indicating that higher-order terms
of response theory need to be considered to correct it (Ru-
elle, 1998b). The second-order term is given by the expres-
sion5 (Lucarini, 2012):

δ2
〈A(τ)〉y =

τ∫
0

dτ ′
τ∫

τ ′

dτ ′′
∫

dy ρ0(x0)
〈
9y(τ

′)∇
f τ
′
(x0)

9y(τ
′′)∇

f τ
′′
(x0)
A
(
f τ (x0)

)〉
.

(38)

Applying this to the first moment of the y models directly
yields

δ2
〈y(τ)〉y = 0. (39)

On the other hand, integrating the stochastic integrals present
in this expression for the moment 〈y(τ)2〉 gives

δ2
〈y(τ)2〉y =

κ2 δK2

λ2
y

(
1− e−λyτ

)2
+
κ2 δQ2

2λy

(
1− e−2λyτ

)
, (40)

5This expression is equivalent to the second term of Eq. (1)
in Lucarini (2012) upon a time transformation. It can also be ob-
tained by explicitly computing the second-order perturbation of the
average in Eq. (A14) in Appendix A.

which corrects the κ2δK2 term in Eq. (37) and makes the
response theory up to order 2 exactly match the difference
between σ 2

ŷ
(τ ) and σ 2

y (τ ), for every lead time τ . In fact, the
subsequent orders of the response vanish due to the linear-
ity of the simple Ornstein–Uhlenbeck models, which enables
us to truncate the response Kubo-like expansion to the sec-
ond order. Finally, this shows that the (non-stationary) re-
sponse theory can be used to estimate the postprocessing
parameters after the model change based on the forecasts
of the initial model. Indeed, instead of the averages 〈ŷ(τ )〉
and σ 2

ŷ
(τ ), the approximate averages 〈y(τ)〉+ δ〈y(τ)〉y and

σ 2
y (τ )+ δσ

2
y (τ )+ δ

2σ 2
y (τ ) can be used to compute α̂ and

β̂. We emphasise that the second-order contribution had to
be considered in order to obtain the exact result. Neverthe-
less, the difference between the first- and the second-order
response is of the order κ2, which implies that for a small
perturbation (model change), the first order will generally be
a sufficiently good approximation. A more detailed deriva-
tion of the results obtained in this section can be found in the
Supplement.

In order to investigate this research avenue on a case closer
to those encountered in reality, we will now consider the
application of postprocessing and response theory to a low-
order atmospheric model displaying chaos.

4 Application to a low-order atmospheric model

A two-layer quasi-geostrophic atmospheric system on a
β plane with an orography is considered (Charney and
Straus, 1980; Reinhold and Pierrehumbert, 1982). This spec-
tral model possesses well-identified large-scale flow regimes,
such as “zonal” and “blocked” regimes. The horizontal
nondimensionalised coordinates are denoted as x and y, with
the model’s domain being defined by (0≤ x ≤ 2π

n
,0≤ y ≤

π), with n= 2Ly/Lx as the aspect ratio between its merid-
ional and zonal extents Ly and Lx . The two main fields of
this model are the 500 hPa pressure anomaly and tempera-
ture, which are proportional to the barotropic streamfunction
ψ(x, y) and the baroclinic streamfunction θ(x, y), respec-
tively. Both fields are defined in a zonally periodic channel
with no-flux boundary conditions in the meridional direction
(∂ · /∂x ≡ 0 at y = 0,π ). The fields are expanded in Fourier
modes respecting these boundary conditions:

F1(x, y)=
√

2 cos(y),

F2(x, y)= 2 cos(nx) sin(y),
F3(x, y)= 2 sin(nx) sin(y),

F4(x, y)=
√

2 cos(2y),
...

such that

∇
2Fi(x, y)=−a

2
i Fi(x, y) (41)
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with eigenvalues a2
1 = 1, a2

2 = a
2
3 = 1+n2, a2

4 = 4, . . . . We
have thus the following decomposition

ψ(x, y)=

na∑
i=1

ψi Fi(x, y), (42)

θ(x, y)=

na∑
i=1

θi Fi(x, y), (43)

where na is the number of modes of the spectral expansion.
The partial differential equations controlling the time evolu-
tion of the fields ψ(x, y) and θ(x, y) can then be projected
on the Fourier modes to finally give a set of ordinary differ-
ential equations for the coefficients ψi and θi

ẋ = F (x) , x = (ψ1, . . .,ψna ,θ1, . . .,θna) (44)

that can be solved with usual numerical integrators. All
variables are nondimensionalised. The ordinary differential
equations of the model are detailed in Appendix B.

In the version proposed by Reinhold and Pierrehumbert
using the 10 first modes beyond a certain value of the zonal
temperature gradient, the system displays chaos and makes
transitions between the blocked and zonal flow regimes em-
bedded in its global attractor. Here, we use their main nondi-
mensionalised parameters values: the friction at the interface
between the two layers kd = 0.1, the friction at the bottom
surface k′d = 0.01 and the aspect ratio of the domain n= 1.3.
The β plane lies at midlatitudes (50◦) and the Coriolis pa-
rameter f0 is set accordingly.

In the present work, the parameter hd , the Newtonian cool-
ing coefficient is fixed to 0.3 instead of the value found
in Reinhold and Pierrehumbert (which is hd = 0.045). Two
additional fields have to be specified on the domain: θ∗(x, y),
the radiative equilibrium temperature field, and h(x, y), the
topographic height field. These fields can be decomposed by
projecting them onto the eigenfunctions of the Laplacian as
before. The corresponding coefficients θ∗i and hi then allow
for writing these fields as sums of weighted eigenfunctions:

θ∗(x, y)=

na∑
i=1

θ∗i Fi(x, y), (45)

h(x, y)=

na∑
i=1

hi Fi(x, y). (46)

In the present case, we consider that the only non-zero coef-
ficients are θ∗1 = 0.2 and h2 = 0.4, meaning that the radiative
equilibrium profile is given by the zonally varying function√

2 cos(y) and the orography is made of a mountain and a
valley shaped by the function 2 cos(nx) sin(y). Again, the
value of the temperature gradient θ∗1 is larger than the one
chosen in Reinhold and Pierrehumbert (which is θ∗1 = 0.1)
to increase the chaotic variability in the system. Trajectories
of variables θ1 andψ2 are depicted in Fig. 1, for the reference
system (reality) and a model version (model 0) for which the
friction coefficient has been slightly modified.

These parameter changes induce slight modifications of
the dynamics. In particular the system possesses two distinct
weather regimes, depicted in Fig. 2a and b: one characterised
by a zonal circulation (see Fig. 2c) and another characterised
by a blocking situation (see Fig. 2d). In the former case, the
variables ψ2 and ψ3 characterising the strength of the merid-
ional anomalies are small, while in the latter case they are
large, indicating indeed a blocking situation. This is different
from the situation considered in Reinhold and Pierrehumbert
(1982), where two different blocking regimes coexist with
the zonal regime.

4.1 Postprocessing experiments

The model described above with 10 modes (na = 10) is used,
and two different postprocessing experiments are performed,
one involving the Newtonian cooling parameter hd and an-
other involving the friction parameter kd between the two at-
mospheric layers. The parameter values detailed above cor-
respond to the long-term reference (i.e. reality). A first model
is defined (model 0) which is a copy of the two-layer quasi-
geostrophic model defining reality, but the parameters hd or
kd are slightly changed; i.e. the model error of the forecast-
ing system lies in either the Newtonian cooling or the friction
parameter. Then, as in Sect. 3, a model change is imposed,
leading to another forecasting model (model 1) that can ei-
ther improve or degrade the model error by a factor κ . The
parameter variations involved in these experiments are de-
tailed in Table 1. Without a loss of generality, we consider
model changes that improve the representation of reality in
the sense that the amplitude of the model error in model 1 is
smaller than in model 0. The effect of the model change is de-
picted in Figs. 3 and 4 for the friction parameter experiment.
These figures display the mean and the standard deviation of
the model forecasts and observations coming from the ref-
erence forecasts, as a function of the lead time τ . We have
used a set of 1 million trajectories of each system to compute
these averages.

In the framework of the EVMOS postprocessing scheme,
the predictors and the predictands are the same nominal vari-
able, and no other predictors are used. In both experiments
considered, the postprocessing parameters α and β of the
EVMOS for model 0, as well as α̂ and β̂ for model 1, are
computed. The main objective here is then to estimate the
difference between the former and the latter using Ruelle re-
sponse theory. The approach in a multivariate setting is pre-
sented below.

4.2 Model change, response theory and the tangent
linear model

Let us consider again the response theory described in
Sect. 3.3 but in the general multivariate deterministic case de-
scribed in Sect. 2. In the postprocessing framework, models 0
and 1 evolve in time from a set of initial conditions taken out-
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Figure 1. Dynamics of the reference system and model 0 of the postprocessing experiment with a modification of the friction coefficient (see
Table 1) for (a) time evolution of the variable θ1 and (b) time evolution of the variable ψ2.

Table 1. The main parameters used and modified in the experiments. Model 0 and model 1 are respectively the forecast model of reality
before and after the model change.

side of their respective attractors. Response formulas found
in Ruelle’s work have to be adapted to take this into account.
One therefore has to consider the density of initial conditions
as the measure. For a system with a time-independent pertur-
bation 9(ŷ),

˙̂y = F (ŷ)+9(ŷ)= F̂ (ŷ), (47)

an observable A with average 〈A(τ)〉y at the lead time τ for
the system

ẏ = F (y) (48)

has a first-order response of

δ〈A(τ)〉y =

∫
dy0 ρ0(y0) δy(τ )

T
·∇f τ (y0)

A, (49)

where f τ is the flow of the unperturbed system given by
Eq. (48), ρ0 is the distribution of initial conditions and δy(τ )
is the solution of the equation ẏ+ δ̇y = F̂ (y+ δy), which

can be approximated at the first order by the following linear
inhomogeneous differential equation

δ̇y =∇yF · δy+9(y), (50)

where y(τ ) is the solution of the unperturbed Eq. (48) with
the initial condition y(0)= y0, and we see that the sys-
tems of Eqs. (48) and (50) have to be integrated simultane-
ously (Gaspard, 2005). The homogeneous part of Eq. (50) is
the well-known tangent linear model of the system, and here
it has to be solved with an additional boundary term which is
the perturbation itself.

Equation (49) is derived in Appendix A and can be com-
puted in the same way as the averages depicted in Figs. 3
and 4, by averaging over multiple initial conditions of the ref-
erence system. Since we initialise the unperturbed (model 0)
and perturbed systems (model 1) with the same initial condi-
tions, the initial state of the tangent model defined by Eq. (50)
is δy(0)= 0. Therefore we do not estimate the impact of the
observation or assimilation errors but rather the direct im-
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Figure 2. Attractors for the experiment with a modification of the friction coefficient: (a) two-dimensional isodensity of the attractors
estimated with a Gaussian kernel density estimator for the variables ψ2 and ψ3 and (b) two-dimensional scatterplot of the attractors for
the variables ψ2 and ψ3. The attractors of reality and model 0 are qualitatively similar, with two different parts which are indicated by
ellipses. The blue and red crosses correspond respectively to equilibrium points of the reference model (reality) and of model 0, respectively.
The dashed ellipse corresponds on average to a zonal circulation depicted in panel (c). The dash-dotted ellipse corresponds on average to a
blocking situation depicted in panel (d). In both panels (c) and (d), the underlying colour map denotes the orography in the domain, and the
contours denote the geopotential height anomaly at 500 hPa.

pact of the model errors viewed as time-independent pertur-
bations. The formulation of the problem and Eq. (50) can be
adapted to take these errors into account, as described for in-
stance by Nicolis (2016).

In what follows, we will numerically integrate Eq. (50) to
evaluate the response on the average due to the perturbation
induced by the model change. This will in turn, as in Sect. 3,
enable us to compute the postprocessing parameters for the
new model.

4.3 Main results

For each of the two experiments detailed in Table 1, we start
by obtaining 1 million observations of reality that will be
used to initialise the forecast models. For each observation,
this is done by starting model x (the reference) with a random
initial condition and running it for a very long time (100 000
nondimensionalised time units) to achieve convergence to its

global attractor. Once the observations have been obtained,
we run the reference model, model 0 and model 1 over 200
time units (corresponding to roughly 22 d) to obtain reality
and the forecasts. The systems have been integrated using
the fourth-order Runge–Kutta integration scheme with a time
step of 0.1 time units corresponding to 16.15 min. The aver-
aging over the 1 million trajectories of reality and of the fore-
casts at each lead time is used to compute the postprocess-
ing coefficients α and β of the EVMOS by using Eqs. (17)
and (18). For each predictand, the corresponding model vari-
able is used as the unique predictor.

The response-theory approximations of the averages of
model ŷ (model 1) averages are obtained by integrating the
linearised equations of model 0 along its trajectories with the
perturbation 9 as an inhomogeneous term. This is done by
integrating Eq. (50) over a lead time of 200 time units with a
zero initial condition, using the same integration scheme as
before. It gives us the integrand of Eq. (49) for each trajec-
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Figure 3. Behaviour of the averages as a function of the lead time τ in reality and the forecast models before (a) and after (b) the model
change, for the experiment with a modification of the friction coefficient (see Table 1). The variable considered is the temperature meridional
gradient θ1. The solid lines denote the mean, while the shaded areas denote the interval of 1 standard deviation.

Figure 4. Same as Fig. 3 but for the variable ψ3 of the streamfunction ψ .

tory, and the integral is then approximated as the average of
this integrand over the whole set of trajectories. The result
of this integration and averaging is shown in Figs. 5 and 6
for the first and second moment of the variable θ1. The re-
sults for other variables are available in the Supplement. The
black curve shows the moments of model 0 with the addition
of their linear response δ〈θ1〉 and δ〈θ2

1 〉 to the perturbation
9. This curve agrees well with the green curves of the model
1 moments up to a lead time of 4–5 d, showing the efficiency
of response theory. Note that in contrast to the calculation of
the averages shown in Figs. 3 and 4 and computed with 1 mil-
lion trajectories, we have here considered a limited subset of
10 000 trajectories of model 0 and its tangent to compute the
corrections to these averages. The correction of the moments
of model 1 are accurate until 4 d for both experiments. After
this critical lead time, obtaining a good accuracy requires a
huge increase in the number of forecasts and tangent model

integrations to perform the averaging. This problem is well-
known (Nicolis, 2003; Eyink et al., 2004) and is due to the
appearance of fat tails in the distribution of the perturbations
δy in the integrand of Eq. (49). As it can be seen in Fig. 7
for the perturbations on θ1, the problem worsens with the
increase of the lead time: initially the distributions are near-
Gaussian, and fat tails appear progressively. Therefore, the
number of samples of δy needed to converge to the correct
mean up to a certain precision increases exponentially as the
lead time increases. This problem has consequences on the
method used to perform the average. Indeed, to avoid rare
and unrealistic extreme responses of the system located far in
the tails of the distributions, outliers above a certain thresh-
old (set to three nondimensional units) have been removed
from the averaging.

The moments obtained by the response-theory approach
are used to compute new EVMOS postprocessing α and β
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Figure 5. Corrections of the moments of θ1 from model 0 to model 1 using the response-theory formula of Eq. (49), for the experiment with
a modification of the friction coefficient.

Figure 6. Corrections of the moments of θ1 from model 0 to model 1 using the response-theory formula of Eq. (49), for the experiment with
a modification of the Newtonian cooling coefficient.

coefficients, thanks to Eqs. (17) and (18). These corrected
coefficients for variable θ1 are shown in Fig. 8 for the ex-
periment with a modification of the Newtonian cooling co-
efficient and in panels (c) and (d) of Fig. 11 for the ex-
periment with a modification of the friction coefficient. In
Figs. 9 and 10, we compare the performances of the four
postprocessing schemes hence obtained: the postprocessing
of model 0 (red curves) and model 1 (green curves) obtained
by averaging over their trajectories (forecasts) and the post-
processing of model 1 obtained with the past model 0 fore-
casts (green + crosses) and with the response-theory ap-
proach (black × crosses). In panel (a) of Figs. 9 and 10,
the mean square error (MSE) between the trajectories of the
models and the reference trajectories is displayed by solid
curves, while the MSE between both models correction and
the reference is depicted by dash-dotted curves. The EVMOS
postprocessing is able to partly correct the forecasts, reduc-
ing the MSE until a lead time of the order of a few times

the model’s Lyapunov time (the inverse of the leading Lya-
punov exponent). After that, the MSE curves of the postpro-
cessed and uncorrected forecasts converge toward a plateau
corresponding to twice the variance of the reference solu-
tion (Vannitsem, 2009). Here, the statistical postprocessing
corrections are indeed efficient until lead times of 4–5 d, with
a skill of the corrections decreasing with the lead time. Thus
the EVMOS schemes do not become better than the origi-
nal models after roughly 4 d. Note also that even if the model
change is small, the postprocessing using the past forecasts of
model 0 (green + crosses) completely fails to correct model
1 forecasts, highlighting the need for an adaptation of the
postprocessing to the model change. In contrast, the adapta-
tion with the response-theory method (black × crosses) pro-
duces valid corrections up to 4 d later. In panels (b) and (c) of
Figs. 9 and 10, the mean and variance of the corrected fore-
casts are compared with those of the original models. Again,
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Figure 7. Histograms of the solutions δθ1(τ ) of Eq. (50) for the perturbation δy(τ ) (with θ1 being the 11th component of y) along the
trajectories of model 0, for different values of the lead time τ . The solid orange curves are fits of a Gaussian distribution function to the
different histograms. The fat-tail phenomenon described in Eyink et al. (2004) is apparent and becomes more prominent as the lead time
increases.
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Figure 8. Coefficients α and β of the postprocessing schemes of variable θ1 and their correction using the response theory, for the experiment
with a modification of the Newtonian cooling coefficient.

Figure 9. Performance of the corrections on the variable θ1 for the experiment with the modification of the friction coefficient. (a) Mean
square error (MSE) evolution between the different forecasts and their correction and reality. (b) Mean of the different trajectories (reality,
model 0 and model 1) and corrected forecasts. (c) Variance of the different trajectories and corrected forecasts.
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Figure 10. Performance of the corrections on the variable θ1 for the experiment with the modification of the Newtonian cooling coefficient.
(a) Mean square error (MSE) evolution between the different forecasts and their correction and reality. (b) Mean of the different trajectories
(reality, model 0 and model 1) and corrected forecasts. (c) Variance of the different trajectories and corrected forecasts.

the corrections obtained with response theory are efficient
until 4 d for the postprocessing schemes.

In conclusion, the correction of model 1 using the
response-theory EVMOS matches almost perfectly the score
of the “exact” EVMOS obtained with the forecasts of model
1 (dash-dotted green curve), up to a 4 d lead time. After that
lead time, the errors due to the fat tails in the response of
the first moments of the statistics induce errors in the vari-
ance needed to compute the α and β coefficients (see Eqs. 17
and 18). These coefficients therefore degrade sharply after
4 d, as shown by the solid black curve in Fig. 8 and in Fig. 11c
and d. This in turn induces a degradation of the response-
theory postprocessing scheme. Nevertheless, this limitation
of response theory is not a concern here, since after a lead
time of 4 d, the EVMOS skill improvement vanishes anyway.

5 Discussion and conclusions

Statistical postprocessing techniques used to correct numeri-
cal weather predictions (NWP) require substantial past fore-
cast and observation databases. In the case of a model
change, which frequently occurs during the normal life cycle
of an operational forecast model, one has to reforecast the en-
tire database of past forecasts (Hagedorn et al., 2008; Hamill
et al., 2008) to update the postprocessing coefficients and pa-
rameters. In the present work, we proposed a new method-
ology based on response theory to produce these new coeffi-
cients without having to reforecast. Instead, the database of
past forecasts is reused to perform integrations in the tangent
space of the model. It allows us to obtain the new postpro-
cessing coefficients as modifications of the old ones. These
new coefficients were shown to be accurate enough within
the lead-time range for which the postprocessing corrections
improve the forecast.

Figure 11 summarises the main results of this work, with
the quasi-geostrophic system described in Sect. 4, using a
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Figure 11. Comparison of the efficiency of the response-theory correction for different numbers m of trajectories used to average Eq. (49),
for the experiment of varying the friction coefficient: (a) mean square error with reality, (b) absolute difference between the response-theory
correction and the correction based on the forecast of model 1, and (c, d) postprocessing coefficients α and β. In panels (b), (c) and (d), the
higher (100 000) and the lower (20) numbers are depicted respectively by a solid black line and a dashed red line. The other cases in between
are depicted by dotted lines.

different number m of trajectories of model 0 and its tangent
model to compute the response-theory corrections. It shows
that up to a lead time of 2 d, good postprocessing scheme
coefficients are obtained even with a mere 20 integrations in
the tangent space.

Note however that in the context of this conceptual model,
good estimates of the postprocessing coefficients α and β
can be obtained by simply using a small set of reforecasts.
It is indeed enough to directly integrate the updated model
1, given by the non-linear Eq. (47), with only 20 trajectories.
So the response-theory approach in the present case cannot
really compete with the simple reforecasting method. How
this can be improved in an operational context is an impor-
tant question that should be addressed in the future. For in-
stance, we can use a simplified tangent linear model to re-
duce the computational burden, as is often used in data as-
similation (Bonavita et al., 2017). This approach could also
be implemented for short-range forecasts, say from 1 to 3 d.

The response theory is efficient because the model changes
are assumed to be small in comparison with the original pa-
rameterisation of the models. The method cannot improve
a postprocessing scheme, but it can efficiently adapt it to a
new model version. As such, the success of this method also
depends on the quality of the past postprocessing scheme.
There are situations where linear response theory is known
to fail, but statistical tests which allow for the identification
of its breakdown have been derived in Gottwald et al. (2016)
and in Wormell and Gottwald (2018). In addition, the ap-
proach presented here applies only for models for which a
tangent model is available. The model change itself has to be
provided as an analytic function, which can in some circum-
stances limit the applicability of the approach.

To test this approach, we have focused on the EVMOS sta-
tistical postprocessing method, but other methods could be
considered as well. The only requirement is that the outcome
of the minimisation of the cost function uses averages of the
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systems being considered. For instance, member-by-member
methods that correct both the mean square errors and the
spread of the ensemble while preserving the spatial corre-
lation (Van Schaeybroeck and Vannitsem, 2015) could be
considered. These methods generally use the covariance be-
tween the model forecasts and the observations as an impor-
tant piece. Response theory can also be applied here, since
this covariance can be written as an average. This will be in-
vestigated in a future work, together with the applicability of
the approach to parameters of probability distributions, as is
often used in meteorology (Vannitsem et al., 2018).

The impact of initial-condition errors has not been ad-
dressed here, since the purpose was to demonstrate the ap-
plicability of the approach in a perfectly controlled envi-
ronment. The main limiting issue of response theory in the
present context is the presence of fat tails in the distribution
of the perturbations δy in the tangent model. This implies
that beyond a certain lead time, typically 2–3 d for the syn-
optic scale, the number of trajectories of the tangent model
needed for the averages to converge increases exponentially.
This renders the approach impractical at lead times beyond
2–3 d. This is a well-known problem, which is typically due
to the trajectories passing close to the stable manifolds struc-
turing the dynamics of chaotic systems (Eyink et al., 2004),
generating an extreme response of the system to the pertur-
bations 9. This is possibly due to the exacerbated sensitivity
of these manifolds to the perturbation of the system. We see
two possibilities to overcome this issue in the case where a
long lead-time correction is needed.

– First, as suggested by Eyink et al. (2004), the problem
should be studied in other systems. It might be resolved
by itself in other systems. Indeed, in very large atmo-
spheric systems, the encounter of such manifolds might
become rare. This could be related to the chaotic hy-
pothesis (Gallavotti and Cohen, 1995a, b) which states
that large systems can be considered to behave like
Axiom-A hyperbolic systems for the physical quanti-
ties of interest, and thus Ruelle response theory (Ruelle,
2009) might get better as the dimensionality of a system
increases. This hypothesis would be interesting to test in
current state-of-the-art NWP systems.

– Secondly, another avenue would be to adapt the
techniques based on the covariant Lyapunov vectors
(CLVs) or on unstable periodic orbits (UPOs) to non-
stationary dynamics. These techniques were recently in-
troduced (Wang, 2013; Ni and Wang, 2017; Ni, 2019;
Lasagna, 2019; Lasagna et al., 2019) to deal with sta-
tionary responses of chaotic systems, i.e. the response
of a system that lies on its attractor.

The CLVs methods mentioned focus on finding an adjoint
representation (Eyink et al., 2004) of the response, while in
the present work the approach is based on forward integra-
tions (direct method). The adjoint representation allows for

easily changing the perturbation function 9 for a fixed ob-
servable A, while the direct method enables the considera-
tion of different observables while keeping the perturbation
function fixed. The adjoint representation, however, requires
one to integrate the tangent model backward in time. There-
fore, its accuracy depends on the absolute value of the small-
est Lyapunov exponent of the system, which might render its
results less well than the direct forward representation.

In conclusion, the response-theory approach developed
here is an effective method to deal with the problem of the
impact of model change on the postprocessing scheme. Its
main advantage is to be computed on the past model version
and does not require reforecasts of the full model. Its opera-
tional implementation, however, is still an open question that
should be addressed in the future.

Code availability. The quasi-geostrophic model used is called QGS
and was obtained by adapting the Python code of the MAOOAM
ocean–atmosphere model (De Cruz et al., 2016), following the
model description in Cehelsky and Tung (1987). It was recently re-
leased on Zenodo (Demaeyer and De Cruz, 2020) and is also avail-
able at https://github.com/Climdyn/qgs (last access: 18 May 2020).
The additional notebooks computing the response to model changes
and generating the figures are also provided in the Supplement.
They have been released on Zenodo as well (Demaeyer, 2020) and
are available at https://github.com/jodemaey/Postprocessing_and_
response_theory_notebooks (last access: 18 May 2020).
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Appendix A: Non-stationary response theory

We consider a perturbed autonomous dynamical system

˙̂y = F (ŷ)+9(ŷ)= F̂ (ŷ) (A1)

with a prescribed distribution of initial conditions ρ0. For the
unperturbed system

ẏ = F (y), (A2)

an observable A has the average at time τ

〈A(τ)〉y =

∫
dy0 ρ0(y0)A(f

τ (y0))

=

∫
dy ρτ (y)A(y), (A3)

where f τ is the flow of the unperturbed system given by
Eq. (A2) and where ρτ is the distribution obtained by prop-
agating the initial distribution ρ0 with the Liouville equa-
tion (Gaspard, 2005). In this section, the variation of this av-
erage due to the presence of the perturbation is evaluated as

〈A(τ)〉ŷ = 〈A(τ)〉y + δ〈A(τ)〉y + δ
2
〈A(τ)〉y + . . .. (A4)

In other words, we compute the average of A in the system
defined by Eq. (A1)

〈A(τ)〉ŷ =

∫
dy0 ρ0(y0)A(f̂

τ (y0)) (A5)

as a perturbation of the average given by Eq. (A3) for the
unperturbed system defined by Eq. (A2). Here, f̂ τ is the
flow of the perturbed system defined by Eq. (A1). In the fol-
lowing, we will derive these corrections thanks to a Kubo-
type perturbative expansion (Lucarini, 2008) that amounts to
constructing a Dyson series in the interaction picture frame-
work, where the perturbation is seen as an interaction Hamil-
tonian (Wouters and Lucarini, 2012). We start by considering
the time evolution of the observable A in Eq. (A1):

d
dτ
A
(
f̂ τ (y0)

)
= (L0+L1) A

(
f̂ τ (y0)

)
(A6)

with the operators{
L0A(y) = F (y)T ·∇yA

L1A(y) = 9(y)T ·∇yA
(A7)

and define an interaction observable as

AI (τ,y0)=50(−τ)A
(
f̂ τ (y0)

)
(A8)

with 50(τ )= exp(L0 τ). It is easy to show that the interac-
tion observable satisfies the differential equation:

d
dτ
AI (τ,y0)= LI (τ )AI (τ,y0) (A9)

with the interaction operator LI (τ )=50(−τ)L150(τ ).
The solution to this equation is

AI (τ,y0)= AI (0,y0)+

τ∫
0

ds1 LI (s1)AI (s1,y0)

= A(y0)+

τ∫
0

ds1 LI (s1)AI (s1,y0), (A10)

which can be rewritten as

A
(
f̂ τ (y0)

)
=50(τ )A(y0)

+

τ∫
0

ds150(τ − s1)L150(s1)AI (s1,y0). (A11)

Iteratively replacing the interaction observable by Eq. (A10)
finally leads to the Dyson series:

A
(
f̂ τ (y0)

)
=50(τ )A(y0)

+

τ∫
0

ds150(τ − s1)L150(s1)A(y0)

+

τ∫
0

ds1

s1∫
0

ds250(τ − s1)L150(s1− s2)

L150(s2)A(y0)+ . . ..

(A12)

Using the definitions in Eqs. (A3) and (A5), as well as the
fact that

g
(
f τ (y0)

)
=50(τ )g(y0) (A13)

for any smooth function g, we get finally a formula for the
perturbations in Eq. (A4):

〈A(τ)〉ŷ = 〈A(τ)〉y +

τ∫
0

ds1

∫
dy0 ρ0(y0)50(τ − s1)

L150(s1)A(y0)+ . . ..

(A14)

We will now focus on the first term of this expansion, but the
subsequent orders of the response can be treated in the same
way. We thus have

δ〈A(τ)〉y =

τ∫
0

ds1

∫
dy0 ρ0(y0)9

(
f τ−s1(y0)

)T
·∇f τ−s1 (y0)

A
(
f τ (y0)

)
, (A15)
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which with the change of variable s1→ t − τ ′ can be rewrit-
ten as

δ〈A(τ)〉y =

τ∫
0

dτ ′
∫

dy0 ρ0(y0)9
(
f τ
′

(y0)
)T

·∇
f τ
′
(y0)

A
(
f τ (y0)

)
(A16)

and then

δ〈A(τ)〉y =

τ∫
0

dτ ′
∫

dy0 ρ0(y0)9
(
f τ
′

(y0)
)T

·

(
∂f τ (y0)

∂f τ
′

(y0)

)T

·∇f τ (y0)
A (A17)

=

τ∫
0

dτ ′
∫

dy0 ρ0(y0)9
(
f τ
′

(y0)
)T

·M
(
τ − τ ′,f τ

′

(y0)
)T
·∇f τ (y0)

A. (A18)

M is the fundamental matrix (Gaspard, 2005; Nicolis, 2016)
of the homogeneous part of the linear differential equation

δ̇y =∇yF · δy+9(y), (A19)

where y is solution of Eq. (A2) with initial condition y0, and
we have the definition

M(t,y)=
∂f t (y)

∂y
. (A20)

Equation (A19) is the linearised approximation of Eq. (A1):

ẏ+ δ̇y = F (y+ δy)+9(y+ δy), (A21)

which provides a tool to estimate Eq. (A18). Indeed, since
the solution of Eq. (A19) can be written as

δy(τ )=

τ∫
0

dτ ′M
(
τ − τ ′,f τ

′

(y0)
)
·9

(
f τ
′

(y0)
)
, (A22)

we can write the first-order variation of the average of the
observable A in terms of these solutions:

δ〈A(τ)〉y =

∫
dy0 ρ0(y0) δy(τ )

T
·∇f τ (y0)

A. (A23)

The interpretation of this equation is that a specific averaging
of an observable over the trajectories of the linear approxima-
tion given by Eq. (A19) of the perturbed Eq. (A2) provides
the first-order response of the observable. It is the main re-
sult used to compute the new postprocessing scheme in the
present work. It is explained in detail in Sects. 3.3 and 4.2.

Appendix B: The quasi-geostrophic model equations

The ordinary differential equations of the model are given by

ψ̇i =−a
−1
i, i

na∑
j,m=1

bi, j,m
(
ψj ψm+ θj θm

)
−
a−1
i, i

2

na∑
j,m=1

gi, j,m hm
(
ψj − θj

)
−β a−1

i, i

na∑
j=1

ci, j ψj −
kd

2
(ψi − θi) , (B1)

θ̇i =−a
−1
i, i

na∑
j,m=1

bi, j,m(ψj θm+ θj ψm)

+
a−1
i, i

2

na∑
j,m=1

gi, j,m hm
(
ψj − θj

)
−β a−1

i, i

na∑
j=1

ci, j θj +
kd

2
(ψi − θi)

− 2k′d θi + a
−1
i, i ωi, (B2)

θ̇i =−

na∑
j,m=1

gi, j,mψj θm+
σ

2
ωi +hd

(
θ∗i − θi

)
, (B3)

where nondimensional parameters values and description can
be found in Table 1 and Sect. 4. β is the meridional gradient
of Coriolis parameter which has the nondimensional value of
0.21 at 50◦ of latitude (Reinhold and Pierrehumbert, 1982;
Cehelsky and Tung, 1987). The vertical velocity ωi can be
eliminated, leading to Eqs. (B2) and (B3) being reduced to
a single equation for θi . The parameter σ is the nondimen-
sional static stability of the atmosphere set typically to 0.2.
The coefficients ai, j , gi, j,m, bi, j,m and ci, j are the inner
products of the Fourier modes Fi defined in Sect. 4:

ai, j =

n

2π2

π∫
0

2π/n∫
0

Fi(x, y)∇
2Fj (x, y)dx dy =−δij a2

i , (B4)

gi, j,m =

n

2π2

π∫
0

2π/n∫
0

Fi(x, y)J
(
Fj (x, y),Fm(x, y)

)
dx dy, (B5)

bi, j,m =

n

2π2

π∫
0

2π/n∫
0

Fi(x, y)J
(
Fj (x, y),∇

2Fm(x, y)
)

dx dy, (B6)

ci, j =
n

2π2

π∫
0

2π/n∫
0

Fi(x, y)
∂

∂x
Fj (x, y)dx dy, (B7)
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where the coefficients ai are given by Eq. (41) and where J
is the Jacobian present in the advection terms defined as

J (S,G)=
∂S

∂x

∂G

∂y
−
∂S

∂y

∂G

∂x
. (B8)
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Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/npg-27-307-2020-supplement.
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