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Abstract. Analysing palaeoclimate proxy time series using
windowed recurrence network analysis (wRNA) has been
shown to provide valuable information on past climate vari-
ability. In turn, it has also been found that the robustness
of the obtained results differs among proxies from differ-
ent palaeoclimate archives. To systematically test the suit-
ability of wRNA for studying different types of palaeocli-
mate proxy time series, we use the framework of forward
proxy modelling. For this, we create artificial input time se-
ries with different properties and compare the areawise sig-
nificant anomalies detected using wRNA of the input and the
model output time series. Also, taking into account results
for general filtering of different time series, we find that the
variability of the network transitivity is altered for stochastic
input time series while being rather robust for deterministic
input. In terms of significant anomalies of the network tran-
sitivity, we observe that these anomalies may be missed by
proxies from tree and lake archives after the non-linear filter-
ing by the corresponding proxy system models. For proxies
from speleothems, we additionally observe falsely identified
significant anomalies that are not present in the input time
series. Finally, for proxies from ice cores, the wRNA results
show the best correspondence to those for the input data. Our
results contribute to improve the interpretation of windowed
recurrence network analysis results obtained from real-world
palaeoclimate time series.

1 Introduction

Palaeoclimate proxy time series from archives such as trees,
lakes, speleothems, or ice cores play an important role in past
climate reconstructions (Bradley, 2015). Apart from infor-
mation on climatic boundary conditions such as local and
global mean temperatures and precipitation sums, the analy-
sis of the proxy time series using non-linear methods offers
the possibility of studying dynamical anomalies in past cli-
mate variability (Marwan et al., 2002, 2003; Trauth et al.,
2003; Marwan et al., 2009; Donner et al., 2010b; Franke and
Donner, 2017). Due to the limitations of palaeoclimate proxy
time series in terms of non-uniform sampling of the data
points, uncertainties in dating and measurement, the contam-
ination with noise, and the often non-unique interpretation of
the climate signal within the proxy, not all methods are suit-
able for gaining reliable information from all data (Goswami
et al., 2018; Lekscha and Donner, 2018).

Windowed recurrence network analysis (wRNA) has al-
ready been successfully used to detect dynamical anomalies
in time series from different palaeoclimate archives (Donges
et al., 2011a, b; Eroglu et al., 2016; Lekscha and Donner,
2018). But it has also been observed that this method of-
ten yields high numbers of false positive significant points
and that not all palaeoclimate archives give equally robust
results. In order to improve the interpretation of results ob-
tained with wRNA for real-world time series, we here sys-
tematically test the suitability of the approach for analysing
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palaeoclimate data from different types of archives by em-
ploying proxy system models.

Proxy system models are forward models that simulate the
formation of a palaeoclimate proxy based on the systemic
understanding of that proxy (Evans et al., 2013). That is,
given the climate input variables, the proxy system model
outputs a proxy time series. We here use intermediate com-
plexity models for tree ring width, branched glycerol dialkyl
glycerol tetraethers in lake sediments, and the isotopic com-
position of speleothems and ice cores (Tolwinski-Ward et al.,
2011; Dee et al., 2015, 2018). We first create artificial climate
input time series with different properties. In particular, we
consider two stochastic processes, Gaussian white noise and
an autoregressive process of order 1, and two non-stationary
time series from the paradigmatic Rössler and Lorenz sys-
tems. Additionally, we use climate input from the Last Mil-
lennium Reanalysis project as an estimate of realistic past
climate variability (Hakim et al., 2016; Tardif et al., 2019).
We then compare the input and the model output with re-
spect to the properties of the time series and the results of
wRNA. To quantify significant dynamical anomalies, we use
an areawise significance test that was recently introduced for
wRNA (Lekscha and Donner, 2019).

With this work, we want to contribute to a better under-
standing and an improved interpretation of results obtained
with wRNA for palaeoclimate applications. We first intro-
duce our analysis framework in Sect. 2, the proxy system
models in Sect. 3, and the input time series in Sect. 4. Then,
we show and discuss the results of the wRNA for the differ-
ent input and model output time series in Sect. 5 before we
present our main conclusions in Sect. 6. Additional informa-
tion and figures are included in the Supplement accompany-
ing this paper.

2 Analysis framework

2.1 Phase space reconstruction

The first step when analysing data using recurrence-based
approaches is to reconstruct the higher-dimensional phase
space of the system from the measured univariate time series
x(t) with observations made at times {ti}Ni=1. For this, we
use uniform time delay embedding (Takens, 1980; Packard
et al., 1980) which relates the higher-dimensional coordi-
nates of the system’s phase space to delayed versions of the
measured, univariate time series

x(ti)→ x(ti)= {x(ti),x(ti − τ), . . .,x(ti − (m− 1)τ )} . (1)

Here, m denotes the embedding dimension and τ is the em-
bedding delay. The embedding theorem of Takens guaran-
tees that, when choosing the embedding dimension larger
than twice the box-counting dimension of the original attrac-
tor, the reconstructed and original systems’ attractors are re-
lated by a smooth one-to-one coordinate transformation with

smooth inverse, independent of the choice of the delay (Tak-
ens, 1980). That is, analysing the dynamics in the recon-
structed phase space can give information on the original
system dynamics. Still, this theorem only provides a suffi-
cient condition for the embedding dimension, while lower-
dimensional embeddings may also give useful information
about the system’s dynamics.

In practical applications, however, the box-counting di-
mension of the original attractor is usually unknown and the
data are finite and subject to noise such that the choice of the
embedding parameters plays an important role in the quality
of the phase space reconstruction. In particular, the embed-
ding dimension can be estimated using the method of false
nearest neighbours (Kennel et al., 1992), while the first zero
of the autocorrelation function or the first minimum of the
mutual information can serve as an estimate for a suitable
embedding delay (Abarbanel et al., 1993; Fraser and Swin-
ney, 1986; Kantz and Schreiber, 2004). We here use an em-
bedding dimension of m= 3 as a compromise between the
number of available data points and the minimum number
of independent coordinates as indicated by the false nearest
neighbour criterion. To estimate the embedding delay, we use
the first zero of the global lagged autocorrelation function.

2.2 Windowed recurrence network analysis

We analyse the embedded time series x(t) by means of win-
dowed recurrence network analysis (wRNA), using a slid-
ing window approach and dividing the embedded time series
into windows of width W with mutual offset dW . For each
of those N ′ = (N − (m− 1)τ −W)/dW windows, we con-
struct a network from the time series by identifying the dif-
ferent xi = x(ti) as nodes of the network and drawing a link
between two nodes xi and xj if they are mutually closer in
phase space than some threshold ε. For this purpose, we mea-
sure the distances in phase space using the maximum norm,

‖x‖∞ = max
k=1,...,m

{
x(k)

}
, (2)

which has, due to its particularly simple form when calcu-
lated in Euclidean space, been widely used in recurrence-
based analyses. Then, the resulting recurrence network can
be described by its adjacency matrix A with entries

Ai,j (ε)= θ
(
ε−‖xi − xj‖

)
− δi,j , (3)

where θ(·) is the Heaviside function and the delta function
δi,j excludes self-loops in the network. Here, we select the
threshold adaptively by choosing a fixed edge density ρ =
0.05. This means, for every window, we choose the threshold
ε such that a fraction ρ of all possible links in the network
are realised (corresponding to the 100ρ% mutually closest
pairs of state vectors).

From the adjacency matrix, we can estimate various net-
work properties. In the course of this work, we will restrict
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ourselves to the network transitivity

T =
∑
v,i,jAv,iAi,jAj,v∑
v,i,jAv,iAj,v

, (4)

which gives the probability that two randomly chosen neigh-
bours of a randomly chosen node are mutually connected.
Network transitivity is particularly well suited for detect-
ing dynamical anomalies in non-stationary time series, since
this network measure has been shown to be closely related
to the dimensionality of the system dynamics, in particu-
lar, when using the maximum norm to measure distances in
phase space (Donner et al., 2010a, 2011b). Specifically, the
quantity logT / log(3/4) then corresponds to a generalised
fractal dimension (Donner et al., 2011a). Thus, low values of
the network transitivity can be related to higher-dimensional
dynamics and vice versa.

For the analysis performed here, we repeat the wRNA for
different values of the window width W ∈ [100,300] with
step size 1W = 1 in order to check the robustness of the re-
sults for this analysis parameter. Thus, the resulting values
of the network transitivity can be stored in some matrix Q
which is of size NW×N

′, with NW being the number of
window widths for which the analysis has been performed
and N ′ being the number of windows into which the original
time series is divided. We choose the offset of the windowed
analysis to be always dW = 1.

2.3 Significance testing and confidence levels

In order to identify dynamical anomalies from the resulting
network transitivity, we first perform a pointwise significance
test using random shuffling surrogates. That is, for every win-
dow width W , we randomly draw Ns = 1000 times W em-
bedded state vectors from x(t) and calculate the network
transitivity of this set of W state vectors. We then take the
empirical 2.5th and 97.5th percentiles from the Ns realisa-
tions to obtain a two-sided confidence interval of spw = 95 %.
All transitivity values of the original analysis results that fall
outside this interval are considered to show pointwise sig-
nificant anomalies; that is, the null hypothesis of the corre-
sponding values of transitivity resulting from random data
with the same amplitude distribution as the original data is
rejected. The result of this pointwise significance test can be
summarised in the binary significance matrix Spw of the same
size as the matrix of the transitivity results Q. The entries of
Spw equal one if the corresponding value of the transitivity
has been found to be pointwise significant, and zero other-
wise.

As intrinsic correlations of the analysis results in both
the time domain (due to the short offset dW ) and the win-
dow width domain can lead to patches of false positives in
the pointwise significance matrix, we additionally perform
an areawise significance test (Lekscha and Donner, 2019;
Maraun et al., 2007). A pointwise significant point is de-
fined as areawise significant if all neighbouring points within

a given rectangle are also pointwise significant, i.e. if the
pointwise significant point lies within a patch of pointwise
significant points that is larger than this rectangle. The side
lengths of the rectangle depend on the intrinsic correlations
of a chosen null model that are estimated as described in de-
tail in Lekscha and Donner (2019).

Here, we employ a data-adaptive null model using itera-
tive amplitude-adjusted Fourier transform surrogates of the
original time series (Schreiber and Schmitz, 2000). That is,
we test whether the same analysis results could have been
obtained from data with the same amplitude distribution and
linear correlation structure as the original data but that are
otherwise random, i.e. originate from linear stochastic pro-
cesses with prescribed correlations.

3 Proxy system models

Forward modelling of palaeoclimate proxies offers the pos-
sibility of gaining insights into the underlying processes that
influence the sensitivity of a given proxy to climate variations
and can thus be used to investigate characteristic properties
of time series of different palaeoclimate archives and their
implications for further analyses. We here use four models
for typical proxies from tree rings, lake sediments, ice cores
and speleothems, respectively, in order to test how well dy-
namical anomalies can be identified when applying wRNA
to time series originating from those archives.

Generally, a proxy system model can be divided into an
environment, a sensor, an archive and an observation sub-
model (Evans et al., 2013). The environment model can be
used to model the environmental factors that the archive is
sensitive to using the climatic input variables. The sensor
model then describes how the archive reacts to the environ-
ment, and the archive model accounts for how this reaction
is written into the archive. Finally, an observation model can
be used to simulate uncertainties in dating or measurements.
Here, depending on the archive, we use different combina-
tions of the environment and sensor and archive sub-models,
while neglecting possible dating and measurement uncertain-
ties. In the following, we will give a brief overview of the
model structures and parameters. A full description of the
models can be found in the corresponding references.

3.1 Tree rings

Tree rings are one of the most important archives for palaeo-
climate reconstructions of the last millennium (Bradley,
2015; St. George, 2014; St. George and Esper, 2019). To
model the tree ring width as a function of time at a par-
ticular site, we use the intermediate-complexity Vaganov-
Shashkin-Lite (VS-Lite) model (Tolwinski-Ward et al.,
2011). This is a reduced version of the full Vaganov–
Shashkin model (Vaganov et al., 2006) and requires monthly
input data of temperature T and either precipitation P
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or soil moisture M . Additional model parameters are
thresholds for temperature and soil moisture below which
growth is not possible and above which growth is optimal
(T1,M1,T2,M2), the latitude of the site 8, and integration
start and end months I0 and If that set the period over which
climate is responsible for growth in a given year.

If precipitation is given, the leaky bucket model (Huang
et al., 1996) is used as an environment model to calculate
the soil moisture M(t) based on the water balance in soil.
This model requires additional parameters such as the ini-
tial moisture content of the soilM0, minimum and maximum
soil moisture content Mmin,max, runoff parameters m, α and
µ and the root depth dr. The sensor model for the tree ring
width then basically relies on the principle of limiting fac-
tors (Fritts, 1976); that is, it assumes that tree ring growth is
limited by the resource that is the scarcest for optimal grow-
ing conditions, i.e. in this case, the temperature or the soil
moisture. A temperature-based growth response is calculated
as

gT (t)=


0 if T (t) < T1,
T (t)−T1
T2−T1

if T1 ≤ T (t)≤ T2,

1 if T (t) > T2,

(5)

and similarly, a growth response gM(t) is calculated for soil
moisture. In addition, a third insolation-based growth re-
sponse gE(t) is calculated based on the mean of the nor-
malised lengths of the day for each month. The total growth
response g(t) of the tree to the climatic input is then given
as the minimum of the temperature- and moisture-based
growth responses modulated by the insolation-based growth
response,

g(t)= gE(t)min {gT (t),gM(t)} . (6)

To obtain the annual growth response from those monthly
data, the model integrates the growth response g(t) over
those months that are specified as the start and end months
I0 and If . Finally, the annually resolved time series of tree
ring width anomalies is obtained by normalising the annual
growth response to zero mean and unit variance.

It should be noted that this model does not take into ac-
count juvenile tree growth. Real tree ring width data are of
course subject to juvenile growth and the effect is usually
subtracted from the measured data. Problems arising from
this are thus disregarded in the model, which we will further
address when discussing the results for the model.

To set the model parameters to realistic values, we use an
exemplary real-world data set of a local tree ring width in-
dex chronology from eastern Canada (54.2◦ N, 70.3◦W) that
was previously used for regional summer temperature recon-
struction (Gennaretti et al., 2014). The quality of this data set
with respect to data homogeneity, sample replication, growth
coherence, chronology development, and climate signal has
been ranked high (Esper et al., 2016). Regional average an-
nual temperature is about −3.8 ◦C, with average maximum

temperatures of 16 ◦C in July and minimum temperatures of
−23 ◦C in January. The average annual precipitation sum is
693 mm, with a monthly minimum of about 30 mm in Febru-
ary/March and a maximum of about 100 mm in September.
This information has been used in order to choose the mean
and standard deviations of the climatic input variables and
their annual cycles. An overview of the climate input and
also the model parameters is given in Table 1. To determine
the threshold parameters, we used the Bayesian parameter
estimation as suggested in Tolwinski-Ward et al. (2013). The
parameters for the leaky bucket model are chosen as recom-
mended in Tolwinski-Ward et al. (2011).

3.2 Lake sediments

Records from lake sediments are available from many re-
gions worldwide and can provide information about past
temperatures and precipitation, depending on the regional
boundary conditions and measured proxy (Cohen, 2003). We
here model branched glycerol dialkyl glycerol tetraethers
(brGDGTs) from lacustrine archives that have been related
to air temperatures by using one of the sensor models pro-
vided in the PRYSM v2.0 framework (Dee et al., 2018). For
this, as model input, a time series of mean annual air temper-
ature T is required.

BrGDGTs are produced by bacteria, and their degree of
cyclisation and methylation has been related to soil tem-
peratures, lake pH, and also to mean annual air tempera-
tures (Weijers et al., 2007; De Jonge et al., 2014; Russell
et al., 2018). The degree of methylation is quantified by a
methylation of the branched tetraether (MBT) index. The
sensor model employs the MBT′5ME index that only uses 5-
methyl isomers. In particular, the calibration of Russell et al.
(2018) is used, in which the mean annual air temperature is
related to the MBT′5ME index via the equation

MBT′5ME = (T + 1.21)/32.42. (7)

The archive model then accounts for bioturbation and mixing
of the sediments using the TURBO2 model (Trauth, 2013).
TURBO2 models the benthic mixing effects on individual
sediment particles by assuming that in a mixed layer of a
specified thickness on top of a sediment core, instantaneous
mixing of the sediment particles occurs, while the rest of the
core is not affected by the mixing. In addition to the time se-
ries of the sensor model output, the archive model requires
three further input parameters, the abundance of the signal
carrier over time (abu), the mixed-layer thickness over time
(mxl), and the number of fossil foraminifera on which the
proxy signal is measured (numb). The model then returns
time series of original and bioturbated abundances and corre-
sponding proxy signatures for the original and a second vir-
tual species that is required to keep the total abundance of all
species constant over time. The bioturbated proxy signatures
of the first species are then used as a final proxy for the mean
annual air temperature.
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Table 1. Climatic input variables and model parameters for the tree ring width model as derived from the eastern Canada data (Gennaretti
et al., 2014).

variable description value

Tm mean temperature at site −3.8◦C
Pm mean annual precipitation sum 693 mm
8 latitude of site 54.2◦ N
I0,f integration period influencing growth [1,12]
T1,2 temperature thresholds for growth [5.8,17]◦C
M1,2 soil moisture thresholds for growth [0.032,0.24]
Mmin,max minimum/maximum soil moisture content [0.01,0.76]
M0 soil moisture content at start of simulation 0.2
m runoff parameter 4.886
α runoff parameter 0.093 month−1

µ runoff parameter 5.8
dr root depth 1000 mm

Table 2. Climatic input variables and model parameters for the lake
sediment model as derived from the eastern Canada data (Gennaretti
et al., 2014).

variable description value

Tm mean temperature at site −3.8◦C
abu abundances of input species 200
mxl mixed-layer thickness 4
numb amount of measured foraminifera 10

To tune the climatic input variables, we use the climatic
setup corresponding to the one used for the tree ring archive
in eastern Canada, while for the model parameters, we use
typical values for lake sediments that are taken as a default in
the PRYSM implementation of the lake archive model (Dee
et al., 2018). In particular, it should be noted that for the
abundances of the input species and the mixed-layer thick-
ness, we use constant values over time. The climatic and
model input parameters are specified in Table 2.

3.3 Speleothems

Oxygen isotope fractions of speleothems have been shown to
provide valuable insights into past climate variability (Wong
and Breecker, 2015). We here model the isotopic compo-
sition of speleothems by using the speleothem model pre-
sented within the PRYSM framework (Dee et al., 2015).
This intermediate-complexity model is based on the model
in Partin et al. (2013) and requires the mean annual temper-
ature T and the mean of the precipitation-weighted annual
isotopic composition of the precipitation δ18OP as input. Ad-
ditionally, the groundwater residence time τgw has to be spec-
ified.

The sensor model covers processes in the karst and the
cave, while processes in the soil such as evapotranspiration
are neglected. The model filters the δ18OP signal by apply-

ing an aquifer recharge model to simulate the storage and
thus the mixing of water of different ages in the karst. This
process is parameterised by the mean transit time τgw. The
isotopic composition of the cave water is then given as the
convolution (∗) of δ18OP with the impulse response of the
aquifer recharge model g(t)= τ−1

gw exp(−tτgw) for t > 0:

δ18Od = g(t) ∗ δ18OP. (8)

Finally, to obtain the isotopic composition of the flow-
stone calcite δ18Oc, the model implements a temperature-
dependent fractionation (Wackerbarth et al., 2010):

δ18Oc =
δ18Od + 1000

1.03086
exp

(
2780
T 2

a
−

2.89
1000

)
− 1000, (9)

with the temperature Ta being the decadal average of T that
is calculated using a Butterworth filter (Zumbahlen, 2008).

The parameters for the speleothem δ18O model are tuned
by using the data of stalagmite DA from Dongge cave (Wang
et al., 2005), which is one of the most studied speleothem
data sets. Dongge cave is located in southern China (25.3◦ N,
108.1◦ E) at an elevation of 680 m, and the data could be
related to the history of the Asian monsoon of the last
9000 years. The proxy values have an average of −8.05 ‰
and the average temperature in the cave is 15.6 ◦C. The mean
of the precipitation-weighted isotopic composition of the in-
put is chosen such that the average of the model output data
equals the average of the Dongge cave proxy data. There
is no information available about the mean transit time, i.e.
the time the water has spent inside the karst before entering
the cave. We here choose to use an average transit time of 5
years, which is slightly larger than the average sampling rate
of the data (4.2 years). An overview of the input variables
and model parameters is given in Table 3.
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Table 3. Climatic input variables and model parameters for the speleothem δ18O model as derived from the Dongge cave data (Wang et al.,
2005).

variable description value

Tm mean temperature at site 15.6◦C
δ18OP mean isotopic composition of precipitation −8.05 ‰
τgw mean aquifer transit time 5 years

3.4 Ice cores

Proxy time series from ice cores have been used in a va-
riety of contexts to study past climate variability on differ-
ent timescales (Jouzel, 2013; Thompson et al., 2005). As for
the speleothem δ18O, we use the model for ice core δ18O
that is implemented and presented within the PRYSM frame-
work (Dee et al., 2015). The model requires the precipitation-
weighted mean annual isotopic composition of the precipita-
tion δ18OP as input. Additional parameters are the mean tem-
perature at the site Tm, the altitude of the glacier z, the mean
surface pressure p, the mean accumulation rate at the site A,
and the total depth of the core hmax which is given by the time
span of the observations times the average accumulation rate.

The sensor model corrects the isotopic composition of the
precipitation for the altitude of the glacier by using the rela-
tion

δ18Oice = δ
18OP+

z

100
a, (10)

with a describing the altitude effect. The archive model then
accounts for compaction and diffusion within the ice core.
First, the density of the core has to be calculated as a func-
tion of the depth of the core. For this, an adapted version
of the firn densification model by Herron and Langway is
used (Herron and Langway, 1980). From the density and the
mean temperature Tm, we can then compute the diffusion
length σ within the core as a function of the depth h (Johnsen
et al., 2000). This, in turn, is used to calculate the final proxy
time series δ18Od by convolving the isotopic signal of the ice
δ18Oice with a Gaussian kernel function with standard devia-
tion equalling the diffusion length at a given depth,

δ18Od =
1

σ
√

2π
exp

(
−h2

2σ 2

)
∗ δ18Oice, (11)

where the convolution is again denoted by the asterisk (∗).
To tune the climatic input variables and model parameters

of the ice core δ18O model, we use an exemplary real-world
data set of the Quelccaya ice cap (Thompson et al., 2013),
which is one of the most studied ice core data sets outside
the polar regions. The Quelccaya ice cap is located in the Pe-
ruvian Andes (13◦56′ S, 70◦50′W) at an altitude of 5670 m
above sea level. The average accumulation rate is 1.15 m wa-
ter equivalent per year and the mean δ18Oice is−17.9 ‰. The
average annual temperature over the last decade at the Quel-
ccaya ice cap is given as Tm =−3.99 ◦C (Yarleque et al.,

2018). An overview of the climatic input variables and the
model parameters can be found in Table 4.

4 Input data

We now introduce the data sets that we use as input for
the proxy system models. We first consider two stationary
stochastic processes, namely Gaussian white noise (GWN)
and an autoregressive process of order 1 (AR(1) process),
to evaluate whether such input can lead to the detection
of dynamical anomalies in the proxy time series. Then,
we consider non-stationary versions of the two well-known
Rössler (ROS) and Lorenz (LOR) systems. For all those pro-
cesses, time series of lengthN = 1000 are independently cre-
ated to describe temperature, precipitation and precipitation-
weighted oxygen isotope fractions as detailed below, where
the precipitation is proportional to negative temperature. Ad-
ditionally, we use data from the last millennium reanalysis
project (Hakim et al., 2016; Tardif et al., 2019). Then, as for
the tree ring width model monthly input is required, and an
annual cycle is added to the temperature and precipitation
data. The amplitude of the annual cycle is chosen accord-
ing to the climatic boundary conditions of the tree ring width
index time series from eastern Canada presented in Sect. 3.
Finally, yearly means for temperature and sums for precipita-
tion are calculated for those models that require yearly input.
The input time series are normalised to zero mean and unit
standard deviation, and for each model, the mean is adjusted
to the corresponding climatic boundary conditions.

4.1 Gaussian white noise

For the case of GWN, we draw N data points independently
at random from the probability distribution

pG(x)=
1

√
2πσ

exp
(
(x−µ)2

2σ 2

)
, (12)

where σ = 1 is the standard deviation and µ= 0 is the mean
of the distribution. We do not expect to detect significant dy-
namical anomalies from time series created in this way as the
process is stationary.
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Table 4. Climatic input variables and model parameters for the ice core δ18O model as derived from the Quelccaya ice cap data (Thompson
et al., 2013; Yarleque et al., 2018).

variable description value

δ18OP mean isotopic composition of precipitation −3.75 ‰
Tm mean temperature at site −3.99◦C
A average accumulation rate at site 1.15 m w.e. a−1

p mean surface pressure at site 1 Atm
z altitude of site 5670 m
ρ0 surface density of snow at site 300 kg m−3

a altitude effect −0.25 ‰/100 m

4.2 Autoregressive process of order 1

For the AR(1) process, we create a time series of length N
by using the relation

x(t)= αx(t − 1)+ εt , (13)

with εt a Gaussian random variable with zero mean and con-
stant standard deviation σε = 0.5. The scaling factor is given
as α = 0.7 corresponding to the approximate value that we
obtained when fitting an AR(1) process to the tree ring width
data from eastern Canada (Gennaretti et al., 2014). As an ini-
tial condition, we use x(0)= 0.3. The resulting time series
is normalised to zero mean and unit standard deviation. As
for GWN, we do not expect to detect significant dynamical
anomalies in the corresponding time series.

4.3 Non-stationary Rössler system

In a next step, we use data from a non-stationary version of
the Rössler system which exhibits non-trivial and rich cas-
cades of bifurcations despite its rather simple attractor topol-
ogy. The Rössler system is defined by the set of ordinary dif-
ferential equations (ODEs) (Rössler, 1976)

ẋ(t)=−y(t)− z(t),

ẏ(t)= x(t)+ ay(t),

ż(t)= b(t)+ z(t)(x(t)− c). (14)

It should be noted that this model is not meant to simulate
real-world climate dynamics.

We here use the two fixed parameters a = 0.2 and c = 5.7
and a time-varying parameter b(t)= b0+1b(t − t0) with
b0 = 0.02 and 1b = 0.001. We numerically solve this sys-
tem of ODEs with a temporal resolution of 1t = 0.1 for
times in the range [0,730], discard the first 300 points and
then use every seventh point of the remaining time series
of the x component to end up with a time series of length
N = 1000. As initial conditions we use x(0)= 0.5, y(0)= 0
and z(0)= 0. Again, we normalise the time series to have
zero mean and unit standard deviation. The resulting time
series and the corresponding Feigenbaum diagram of the sta-

tionary system (i.e. b = const.) are shown in the Supplement
in Fig. S1.

From the Feigenbaum diagram, it becomes clear that we
expect to detect alternating periods of lower- and higher-
dimensional dynamics in the time series. In particular, we
stress that we do not expect to detect the bifurcation points
but periods of outstandingly high- or low-dimensional dy-
namics in between them as we use random shuffling surro-
gates for the pointwise significance test.

4.4 Non-stationary Lorenz system

The Lorenz system shows a more complicated attractor
topology than the Rössler system and was originally intro-
duced as a simple toy model for atmospheric convection pro-
cesses (Lorenz, 1963). It is given by the following set of
ODEs (Lorenz, 1963):

ẋ(t)= a(y(t)− x(t)),

ẏ(t)= x(t)(b(t)− z(t))− y(t),

ż(t)= x(t)y(t)− cz(t). (15)

We here use the setting studied in Donges et al. (2011a) and
correspondingly fix the parameters a = 10.0 and c = 8/3,
while the parameter b is again varied over time as b(t)=
b0+1b(t− t0) with b0 = 160.0 and1b = 0.02. We numeri-
cally solve this system of ODEs with a temporal resolution of
1t = 0.05 for times in the range [0,500] and use every fifth
point of the x component of the system to end up with a uni-
variate time series of length N = 1000. As initial conditions
we use x(0)= 10.0, y(0)= 10.0 and z(0)= 10.0. Again, we
normalise the time series to have zero mean and unit standard
deviation.

The stationary Lorenz system has been found to exhibit a
shift from periodic to chaotic dynamics at b = 166.0 (Bar-
rio and Serrano, 2007), while for the transient system as de-
scribed above, transitions could be detected at b = 161.0 and
b = 166.5 (Donges et al., 2011a). Thus, we expect to de-
tect regimes of more periodic dynamics for b < 166.5 and
of more chaotic dynamics for b ≥ 166.5 in terms of signif-
icantly high and low values of the network transitivity, re-
spectively.
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4.5 Last millennium reanalysis data

Finally, we consider reconstructed temperature and precipita-
tion data of the years 501–2000 CE from the Last Millennium
Reanalysis project version 2 (Hakim et al., 2016; Tardif et al.,
2019), which combines information from general circulation
models and from proxy measurements using palaeoclimate
data assimilation. As no information about the isotopic com-
position of the precipitation is available, we only consider the
models for tree ring width and lake sediments with this in-
put. From the available global gridded data, we use the stan-
dardised, that is, unit-less, ensemble average time series of
temperature and precipitation from the grid points with the
coordinates closest to those for which we have calibrated the
tree and the lake model, that is, at 54◦ N, 70◦W.

5 Results

Before studying the different proxy system models, we note
that applying some general filtering techniques such as mov-
ing average filtering or exponential smoothing to the de-
scribed stochastic input time series on the one hand and the
deterministic input time series on the other hand changes the
results of the windowed recurrence network analysis in dif-
ferent ways (not shown here for brevity). For the stochas-
tic time series, the filtering mostly changes the variability of
the calculated network transitivity. In particular, filtering an
AR(1) process with moving averages produces extended and
additional areawise significant patches of high values of the
network transitivity. In turn, for deterministic input time se-
ries, the variability of the network transitivity remains rather
robust under filtering. Furthermore, the results for the net-
work transitivity remain similar when adding white noise to
the different input time series up to signal-to-noise ratios
of 10 and show increasingly different variability for lower
signal-to-noise ratios.

We then turn to the output time series of the different proxy
system models which combine linear and non-linear trans-
formations and filtering of the input time series. The differ-
ent input and model output time series and some remarks on
their properties can be found in the Supplement. Figures 1
to 5 show the resulting network transitivity over time for the
different time series. Areawise significant points indicating
anomalously low or high values of the network transitivity
are highlighted by contours.

For Gaussian white noise (Fig. 1), we observe the ex-
pected changes in the variability of the network transitivity
for stochastic input when processing the time series through
different filters. For the isotopic composition of the precip-
itation, we find a patch of areawise significant anomalously
low values of the network transitivity, which is a random arti-
fact in this particular realisation of GWN. The outputs of the
speleothem and the ice core model do not show this anomaly;
i.e. the processing through the model causes the initially sig-

nificant (false positive) points to be missed and creates an
additional patch of areawise significant network transitivity
in the case of the speleothem model.

In the case of the AR(1) process (Fig. 2), we observe an
areawise significant patch of anomalously high values of net-
work transitivity for the input temperature that is not appar-
ent in the tree ring width and lake sediment model output.
For the isotope input, we do not find any areawise signif-
icant points, while the speleothem model shows two large
and two small falsely identified significant patches of net-
work transitivity. That is, when recalling the results for the
filtering of the AR(1) process, we find that the speleothem
model seems to particularly involve a way of filtering that
produces patches of areawise significant high values of the
network transitivity, while the other models rather change the
variability of the stochastic input.

For the non-stationary Rössler system (Fig. 3), the input
time series show areawise significant patches of low network
transitivity values in the parameter range b ∈ [0.30,0.35] and
of high network transitivity for b ∈ [0.55,0.57]. The iso-
tope input has an additional small areawise significant patch
around b = 0.15. As expected for deterministic input, we ob-
serve a much better agreement of the variability of the net-
work transitivity for the input and model output time series
than for the two stochastic input and corresponding model
output time series. Still, for the tree ring and lake sediment
model, the processing through the model prevents the sig-
nificant points from being detected. The speleothem model
output only shows the small areawise significant patch at
b = 0.15 but not the others, while the output from the ice
core model displays the areawise significant patch for b ∈
[0.30,0.35].

The input time series of the non-stationary Lorenz system
(Fig. 4) exhibits a large patch of areawise significant low
values of the network transitivity for high values of b and
a small patch of areawise significant high values of the net-
work transitivity around b = 163.2. The isotope input shows
another small significant patch around b = 166.6. The result-
ing network transitivity for all proxy system model output
time series except the one from the lake model reproduces
the shift in network transitivity from higher to lower val-
ues after b = 166.5, as expected for this deterministic input.
The tree ring width model output reproduces the large and
small patches of significant values of the network transitivity
and additionally exhibits another areawise significant patch
of high transitivity values close to the small patch. In the
speleothem model output, not the low values of the network
transitivity at the end of the time series, but rather the high
values for b ∈ [162.5,166.5], are classified as areawise sig-
nificant, which might again be related to the particular filter-
ing in the speleothem model favouring areawise significant
high values of the network transitivity. The ice core model
output only shows a small patch for high values of b and low
values of the window width and misses most of the areawise
significant points apparent in the isotope input.
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Figure 1. Network transitivity (colour-coded) for GWN model input and output with an areawise significance test (contours).

Figure 2. Same as in Fig. 1 but for AR(1) model input.

For the Last Millennium Reanalysis data temperature in-
put (Fig. 5), we find a patch of areawise significant val-
ues of anomalously low values of the network transitivity
around the year 900 CE, roughly coinciding with the onset
of the European Medieval Climate Anomaly (MCA, denoted
by a vertical line at 950 CE). The other vertical lines depict
the approximate onset of the European Little Ice Age (LIA)
at 1400 CE and the onset of the industrial age at 1850 CE.
It should be noted that the timings and imprints of these
episodes are known to exhibit substantial regional differ-

ences (Franke and Donner, 2017); thus, the reference lines
are only for orientation. The model output time series do not
show any areawise significant points even though the net-
work transitivity of the model output (and particularly the
tree ring width model output) varies similarly to the net-
work transitivity of the temperature input, with higher val-
ues during the MCA and lower values during the LIA. The
MCA has often be attributed to more stable climate condi-
tions, while the LIA has often been associated with more
variable climate conditions even though this imprint has var-
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Figure 3. Same as in Fig. 1 but for non-stationary Rössler system input. The vertical lines mark the expected bifurcation points identified in
the Feigenbaum diagram in Fig. S1.

Figure 4. Same as in Fig. 1 but for non-stationary Lorenz system input. The vertical lines denote the transitions at b = 161.0 and b = 166.5
as detected in Donges et al. (2011a).

ied locally and has been mainly discussed for Europe. Thus,
given the theoretical relation between network transitivity
and the dimensionality of the system’s dynamics (Donner
et al., 2011a), we tentatively conclude that the higher values
of the network transitivity during the MCA and the lower val-
ues of the network transitivity during the LIA reflect a lower-
/higher-dimensional dynamics of the system at this partic-
ular location in terms of the complexity of temporal varia-

tions rather than just a change in variance. In terms of the
time series properties for the different periods, we indeed
additionally observe an increase in variance of the time se-
ries from the MCA to the LIA, which is very likely also re-
flected in the different recurrence networks and, thus, the re-
sulting network transitivity. We note that this non-stationarity
in variance along with the MCA–LIA transition in the Eu-
ropean/North Atlantic sector has also been reported as be-
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Figure 5. Network transitivity (colour-coded) for Last Millennium
Reanalysis input at 54◦ N, 70◦W and corresponding output with
an areawise significance test (contours). The vertical lines denote
the approximate onset dates of the Medieval Climate Anomaly, the
Little Ice Age, and the industrial age, respectively.

ing reflected in other non-linear characteristics, which have
been previously interpreted as a hallmark of some dynami-
cal anomaly (Franke and Donner, 2017; Schleussner et al.,
2015).

In order to quantify the effect of the proxy system mod-
els as non-linear filters of the input signal on the detection
of areawise significant points, Table 5 displays the fraction
of falsely identified and missed significant points in the dif-
ferent proxy models for the different input time series. We
observe that for the tree ring width model, the lacustrine sedi-
ment model, and the ice core model missed significant points
are more common than falsely identified significant points,
with the exception of the Lorenz input for the tree ring width
model. For the speleothem model, both falsely identified and
missed significant points occur. In fact, this model shows par-
ticularly high fractions of falsely identified and missed sig-
nificant points, while overall, the ice core model seems to
best reproduce the results of the input in terms of the classi-
fication of areawise significant points.

Taken together, the previous findings should raise aware-
ness in the context of future applications of wRNA to palaeo-
climate proxy time series, suggesting that interpretations of
results obtained for individual records only may not be suffi-
ciently robust for drawing substantiated conclusions. From a
practical perspective, this calls for combining different time
series from different proxies and/or archives from the same
region to obtain further climatological knowledge from such

kinds of analysis (Donges et al., 2015a; Franke and Donner,
2017).

6 Discussion and conclusions

In this paper, we have studied the suitability of windowed
recurrence network analysis (wRNA) for detecting dynam-
ical anomalies in time series from different proxy archives.
For this, we used proxy system models that simulate the for-
mation of proxy archives, such as tree rings, lake sediments,
speleothems, and ice cores, given some climatic input vari-
ables like temperature and precipitation. We created artificial
input time series with different properties and additionally
used temperature and precipitation data from the Last Mil-
lennium Reanalysis project (Hakim et al., 2016; Tardif et al.,
2019). We then processed the input time series through the
different proxy models and contrasted the results of wRNA
for the different input and model output time series.

We first compared the results of wRNA for stochastic and
deterministic input to corresponding results when filtering
the time series using moving average filtering and exponen-
tial smoothing (results not shown). We found that filtering
alters the variability of the network transitivity, with a bias
towards additional and extended patches of areawise signif-
icant high transitivity values for stochastic input. The net-
work transitivity of deterministic input seems to be rather
robust under such filtering. When processing the input time
series through the different proxy system models, these dif-
ferences for stochastic and deterministic input were also ap-
parent. In terms of areawise significant anomalies of the net-
work transitivity, we found that time series of tree ring width
and brGDGTs in lake sediments have problems with missing
areawise significant points, while the isotopic composition of
speleothems also exhibits falsely identified significant points
of high values of the network transitivity probably related
to the bias towards higher values of the network transitivity
due to the particular filtering in the model. Time series of
the isotopic composition of ice yield comparable results to
the corresponding input, but also sometimes miss significant
points.

Taken together, our results show the need for further study
of the effects of different filtering mechanisms on the re-
sults of the wRNA in order to interpret the results and draw
reliable conclusions when analysing real-world data. This
particularly concerns data from speleothems, as they have
been studied quite often using windowed recurrence analy-
sis (e.g. Donges et al., 2015a; Eroglu et al., 2016), and fil-
tering effects seem to have a non-negligible influence on the
results for this type of archive. Thus, the role of the model
parameters that control the filtering (here, the mean aquifer
transit time) should be studied in more detail and in the con-
text of the real-world applications and should be taken into
account for estimates of these parameters for the particular
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Table 5. Fraction of missed and falsely identified significant points in the different proxy models with respect to the corresponding reference
input variables.

archive reference GWN AR(1) ROS LOR LMR

tree rings temperature missed 0.000 0.056 0.012 0.003 0.004
falsely identified 0.000 0.000 0.000 0.064 0.000

lake sediments temperature missed 0.000 0.056 0.011 0.083 0.004
falsely identified 0.000 0.000 0.000 0.000 0.000

speleothems isotopes missed 0.010 0.000 0.011 0.106 –
falsely identified 0.001 0.105 0.001 0.289 –

ice cores isotopes missed 0.010 0.000 0.006 0.109 –
falsely identified 0.000 0.000 0.011 0.001 –

data to better interpret corresponding results of the network
transitivity.

Still, we want to stress that even then, providing a gen-
eral recipe for interpreting the resulting network transitivity
is hardly possible in the (palaeo)climate context. Climate-
related interpretations always vary depending on the loca-
tion and, thus, local boundary conditions have to be taken
into account. As motivated in Sect. 2, the network transitiv-
ity has been related to the dynamical regularity of the varia-
tions in the analysed time series (e.g. Donges et al., 2011b),
with higher values of the network transitivity corresponding
to less irregular variability and vice versa. This is in accor-
dance with the interpretation of the network transitivity as
an indicator of the dimensionality of the system’s dynamics.
In this regard, detected anomalies in the network transitivity
could be related to some tipping point, but do not have to be.

Future work should also include the study of alterna-
tive proxy system models within this framework. Results of
proxy system models for both the same proxies (but with
more detailed systemic understanding of the formation of the
proxies, as for example a tree ring width model accounting
for juvenile growth of the trees) and different proxy vari-
ables (in particular, for other lacustrine proxy variables) will
complement the improved understanding of the suitability of
wRNA for these types of time series and will advance the
interpretation of the corresponding results. Also, sensitivity
studies for the different model parameters are of interest to
better interpret results obtained with wRNA for a given real-
world data set. This concerns particularly the mean aquifer
transit time of the speleothem model.

For the stochastic input time series as for example the iso-
tope input of GWN, we found some areawise significant arte-
facts in single realisations. To improve the reliability of the
results for the these processes, more realisations should be
considered to confirm the results and to exclude the influence
of random artefacts. As we applied an areawise significance
test to identify dynamical anomalies, which reduces the num-
ber of false positives in the analysis results, this can also re-
duce the number of true positives and increase the number

of false negatives independent of whether considering model
input or output time series. In this regard, we also observed
that time series with stronger autocorrelations in most cases
show higher correlations for the wRNA results in the differ-
ent domains and, thus, have more restrictive bounds of the
areawise significance test (not shown).

Additionally, the study of properties of the analysed time
series can serve as a starting point to judge the suitability
of wRNA for other data to be analysed. In particular, the ef-
fect of filtering the time series with different non-linear filters
prior to the analysis as done within the different proxy system
models can and should be studied more systematically. Also,
the theory of non-linear observability might give an interest-
ing new perspective on this as the filtering can be seen as
creating a new observable, and the choice of observable has
already been shown to influence results of recurrence quan-
tification analysis and recurrence network analysis (Portes
et al., 2014, 2019). Moreover, further systematically study-
ing the relation between the autocorrelation of a time series
and the resulting network properties might yield additional
information on the role of the different archives for the re-
sults of wRNA.

Code availability. Exemplary Python code for the windowed re-
currence network analysis including the areawise significance test
is available at https://gitlab.pik-potsdam.de/lekscha/awsig (last ac-
cess: 12 March 2019). A comprehensive implementation of recur-
rence network analysis can be found in the pyunicorn open-
source Python package (Donges et al., 2015b), which can be found
at https://github.com/pik-copan/pyunicorn (last access: 10 Novem-
ber 2017).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/npg-27-261-2020-supplement.
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