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Abstract. Many applications require wind gust estimates at
very different atmospheric height levels. For example, the
renewable energy sector is interested in wind and gust pre-
dictions at the hub height of a wind power plant. However,
numerical weather prediction models typically only derive
estimates for wind gusts at the standard measurement height
of 10 m above the land surface. Here, we present a statisti-
cal post-processing method to derive a conditional distribu-
tion for hourly peak wind speed as a function of height. The
conditioning variables are taken from the COSMO-REA6 re-
gional reanalysis. The post-processing method was trained
using peak wind speed observations at five vertical levels be-
tween 10 and 250 m from the Hamburg Weather Mast. The
statistical post-processing method is based on a censored
generalized extreme value (cGEV) distribution with non-
homogeneous parameters. We use a least absolute shrinkage
and selection operator to select the most informative vari-
ables. Vertical variations of the cGEV parameters are ap-
proximated using Legendre polynomials, such that predic-
tions may be derived at any desired vertical height. Further,
the Pickands dependence function is used to assess depen-
dencies between gusts at different heights. The most impor-
tant predictors are the 10 m gust diagnostic, the barotropic
and the baroclinic mode of absolute horizontal wind speed,
the mean absolute horizontal wind at 700 hPa, the surface
pressure tendency, and the lifted index. Proper scores show
improvements of up to 60 % with respect to climatology, es-
pecially at higher vertical levels. The post-processing model
with a Legendre approximation is able to provide reliable
predictions of gusts’ statistics at non-observed intermediate
levels. The strength of dependency between gusts at differ-

ent levels is non-homogeneous and strongly modulated by
the vertical stability of the atmosphere.

1 Introduction

Severe wind events are one of the main weather hazards for
humans and economies. Extreme wind gusts cause damage to
buildings, with effects from loose flying objects to uncover-
ing complete roofs. These hazards also affect whole forests,
especially those with shallow-rooting trees such as spruce –
the most used timber in Germany. For the energy sector, wind
prediction is becoming more relevant due to the growing de-
mand in renewable energy, especially in wind power gener-
ation. A steady strong wind is most efficient for the power
production, as the power produced at wind plants is propor-
tional to the cube of the horizontal wind speed. The wind
energy plant rotors react slowly to fluctuations in wind pat-
terns; thus, they are not able to transform the higher energy
of wind gusts into electricity. On the contrary, if the shear
forces due to gusts are too strong on the rotor, they can lead
to the deactivation of the entire wind park. For a stable elec-
tricity network, large wind variations are problematic; there-
fore, forecasts need to capture these variations. The hubs of
power plants reach heights above 150 m, and their size is in-
creasing, especially in off-shore parks. Thus, for the planning
and operation of wind power plants, accurate estimates and
forecasts of wind gusts are of great value and are requested
not only near the surface but along their entire vertical extent.

Regional reanalyses provide a consistent retrospective data
set of the three-dimensional (3-D) state of the atmosphere.
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They are characterized by the fact that they incorporate ob-
servations via data assimilation into a numerical weather
prediction (NWP) model. The COSMO-REA6 regional re-
analysis (Bollmeyer et al., 2014) represents one such high-
resolution (grid spacing of about 6 km) reanalysis for Eu-
rope that is currently available for the period from 1995 to
20171 and has already provided guidance for renewable en-
ergy applications (e.g. Frank et al., 2019). Due to the short-
term nature of gusts – following World Meteorological Or-
ganization (2018) gusts are defined as the maximum of 3 s
averaged wind speeds – their direct simulation is not pos-
sible within a NWP model. Therefore, COSMO-REA6 pro-
vides a diagnostic of the expected speed of wind gusts at a
height of 10 m above the surface (Doms and Baldauf, 2011;
Doms et al., 2011). Although this estimate of the gust speed
in COSMO-REA6 provides valuable information on the ob-
served gusts (Friederichs et al., 2018), it is only given at a
height of 10 m without an uncertainty estimate. Thus, this
study is aims to develop a post-processing method for the
distribution of wind gusts at any height of a wind power plant
based on the COSMO-REA6 regional reanalysis.

Several approaches have been employed for the post-
processing of wind and wind gusts. With the aim of apply-
ing this to risk assessment for off-shore wind farms, Pat-
lakas et al. (2017) developed a deterministic post-processing
method based on Kalman filtering, and Born et al. (2012)
compared different gust estimates, including uncertainty
measures. Staid et al. (2015) proposed a Gaussian forecast
for maximum-value wind for off-shore environments, and
Messner and Pinson (2019) used an adaptive lasso vector au-
toregression for forecasting wind power generation at wind
farms. Probabilistic methods employ non-homogeneous re-
gression, e.g. Thorarinsdottir and Johnson (2012) for wind
gusts, and Lerch and Thorarinsdottir (2013), Scheuerer and
Möller (2015), or Baran and Lerch (2015) for wind speed.
Petroliagis and Pinson (2012) connected extreme winds with
the ECMWF extreme forecast index in order to generate
early wind warnings. Forecasting wind gusts based on an en-
semble prediction system was applied on winter storms from
6 years by Pantillon et al. (2018). Friederichs et al. (2009)
compared several distributions such as gamma, log-normal,
and generalized extreme value distribution (GEV) for wind
gusts as obtained from the observational network in Ger-
many. They showed that the GEV is most appropriate to reli-
ably estimate the distribution of wind gusts and is most the-
oretically consistent. Demonstrating an evaluation method
for predictive GEV distributions, Friederichs and Thorarins-
dottir (2012) developed a Bayesian GEV model for wind
gusts. Finally, post-processing for wind gusts using extreme
value theory (EVT) and accounting for spatial dependencies
was developed in Friederichs et al. (2018) and Oesting et al.
(2017).

1https://www.dwd.de/DE/klimaumwelt/klimaueberwachung/
reanalyse/reanalyse_node.html (last access: 17 April 2020)

In this study, we propose a post-processing method for the
vertical structure of wind gusts at the location of the Ham-
burg Weather Mast (Brümmer et al., 2012). The statistical
model prediction is conditioned on the state of the atmo-
sphere as given by the COSMO-REA6 reanalysis (Bollmeyer
et al., 2014). Our post-processing approach provides a pre-
dictive distribution at an arbitrary height between 10 m and
the top of the Hamburg Weather Mast, which is given in
terms of parameters of a generalized extreme value dis-
tribution (GEV). Variable selection is performed with the
least absolute shrinkage and selection operator (Tibshirani,
1996). We further investigate the bivariate dependence be-
tween gusts at different heights using the Pickands depen-
dency function.

The remainder of this article is structured as follows: in
Sect. 2, we describe the observations at the Hamburg Weather
Mast and the COSMO-REA6 regional reanalysis; Sect. 3
provides the statistical model used for the post-processing
and introduces the bivariate Pickands function; the results are
discussed in Sect. 4; and we end with a conclusion in Sect. 5.

2 Data

2.1 Hamburg Weather Mast

Our target data are hourly gusts as measured at the Ham-
burg Weather Mast. The Meteorological Institute at the Uni-
versity of Hamburg, partnered with the Max Planck Insti-
tute for Meteorology, operates the measuring site in Ham-
burg, Germany (tall mast: 53◦31′9.0′′ N, 10◦6′10.3′′ E; 10 m
mast: 53◦31′11.7′′ N, 10◦6′18.5′′ E). The wind is measured at
a 20 Hz frequency by a 3-D ultrasonic anemometer (METEK
GmbH, formerly USA-1) at heights of z=10, 50, 110, 175,
and 250 m. The raw wind data are averaged observations over
3 s (Brümmer et al., 2012) and are used to calculate hourly
gusts as the maximum of raw wind data over 1 h. The data
cover a period of 11 years from 1 January 2004 to 31 De-
cember 2014.

2.2 COSMO-REA6 regional reanalysis

The COSMO-REA6 regional reanalysis of the German
Weather Service (DWD) was developed at the Hans Ertel
Centre for Weather Research (Bollmeyer et al., 2014) and
provides the set of predictive variables. The reanalysis sys-
tem is based on the COSMO NWP model (Baldauf et al.,
2011) and covers the CORDEX EUR-11 domain with a hor-
izontal grid spacing of approximately 6 km (0.055◦). Ver-
tically, the reanalysis comprises 40 layers from the surface
to 40 hPa. The time output resolution for the 3-D fields is
1 h. The data assimilation scheme uses a continuous nudg-
ing. The Hamburg Weather Mast data are not assimilated into
COSMO-REA6. We preselect potentially informative covari-
ates over a region of 25 grid-box columns around the Ham-
burg Weather Mast location (more details in Sect. 3.3).
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3 Method

We denote the hourly gust data as Y (z, t), where z is height,
and t is time. As they represent maxima of 3 s data over a
block of 1 h, a natural distribution to represent such block
maxima is the GEV distribution. The extreme value theorem
(Fisher and Tippett, 1928; Gnedenko, 1943) proves that un-
der certain conditions the GEV is the limit distribution of the
rescaled block maxima when the block size reaches infinity.
The asymptotic cumulative distribution function (cdf) G is
defined by

G(y;µ,σ,ξ)=

{
exp

(
−
[
1+ ξ

( y−µ
σ

)]−1/ξ
)

ξ 6= 0

exp
(
−exp

[
−
( y−µ
σ

)])
ξ = 0,

(1)

on {y : 1+ ξ(y−µ)/σ > 0}, where −∞< µ<∞, σ > 0
and −∞< ξ <∞. The parameters are denoted as location
for µ, scale for σ , and shape for ξ . In real-world applica-
tions, a sensible question is whether the asymptotic limit is
already reached in samples of finite block size. In order to
avoid biases due to non-asymptotic behaviour and to concen-
trate on gusts above a certain level, we censor the data at a
given threshold u by setting Yu = u for Y < u and Yu = Y for
Y ≥ u. G(y;µ,σ,ξ) denotes the cdf of the uncensored vari-
able Y , whereas the censored GEV (cGEV) Gu represents
the cdf of Yu and is given asGu(y;µ,σ,ξ)=G(y;µ,σ,ξ) if
y ≥ u and Gu(y;µ,σ,ξ)= 0 otherwise. The respective den-
sity function has a density mass at u that represents the prob-
ability Pr(Y ≤ u)=Gu(u;µ,σ,ξ). This procedure is sim-
ilar to the censored representation of rainfall in Scheuerer
(2013) or Friederichs (2010).

3.1 Post-processing and verification

Thus, we assume that Y (z, t) follows a cGEV with
Gu(y;µ(z, t),σ (z, t),ξ(z, t)), such that the parameters
µ(z, t), σ(z, t), ξ(z, t) vary in both height and time. The tem-
poral non-homogeneity (i.e. non-stationarity) is explained
through L covariates Cl(t) assuming a linear regression ap-
proach

µ(z, t)= µ0(z)+

L∑
l=1

µl(z)Cl(t), (2)

and

σ(z, t)= exp

(
σ0(z)+

L∑
l=1

σl(z)Cl(t)

)
. (3)

The exponential inverse link function in Eq. (3) guarantees
that the scale parameter is always positive. We further as-
sume a Gumbel-type GEV with ξ = 0. The reason for this
choice is discussed later in Sect. 4. In order to be able to inter-
polate the parameters vertically, we approximate their height
dependence using a linear combination of Legendre poly-
nomials up to the order K , namely P0(η)= 1, P1(η)= η,

P2(η)= 1/2(3η2
− 1), . . . , where η ∈ [0,1] is a normalized

height equal to 1 at 250 m and 0 at 10 m. Each parameter
µl(z) and σl(z) for l = 0, . . .,L is modelled as

µl(z)=

K∑
k=0

µlkPk(η(z)), (4)

and

σl(z)=

K∑
k=0

σlkPk(η(z)). (5)

By including Eqs. (3) and (5) into the density formulation of
Gu(y;µ,σ,ξ), we obtain a likelihood function for Y at each
level z and time t .

The cGEV parameters are then inferred using a maximum
likelihood estimation (MLE) and the conditional indepen-
dence assumption. In order to avoid overfitting and to assess
sampling uncertainty, we apply a cross-validation procedure.
For each year in the time sequence, the parameter estimation
is performed on a reduced data set, where the respective year
of data is left out. Thus, we obtain one set of parameter esti-
mates for each of the 11 years that is independent of the data
of the respective year. Further, the variability of the parame-
ter estimates provides a measure of the sampling uncertainty.

The approximation using Legendre polynomials allows for
an estimation using the data at all heights simultaneously.
This post-processing model is denoted as “Legendre”. In or-
der to assess the predictability in the vertical, an additional
leave-one-out procedure is applied, where the layer to be pre-
dicted is withheld during the estimation procedure; this pro-
cedure is denoted as “leave-out”. We finally also estimate the
parameter for each level independently, denoted as “layer-
wise”, in order to quantify how well the approximation of the
vertical variation of the parameter performs using Legendre
polynomials.

As the number of covariates L should be restricted, we
perform a selection of covariates a priori using the least abso-
lute shrinkage and selection operator (LASSO), as described
in Tibshirani (1996). The LASSO penalizes non-zero regres-
sion parameters µlk and σlk . Depending on the a parameter
λ, they are forced to zero unless they are really relevant for
maximizing the likelihood. For a given log-likelihood func-
tion l(2), where the vector 2 contains all unknown parame-
ters, the LASSO approach maximizes

lλ(2)= l(2)− λ

L∑
l=1

K∑
k=0

(|µlk| + |σlk|) . (6)

The larger the λ value, the stronger the penalization, and the
more regression parameters become zero. The constant pa-
rameters µ0k and σ0k are not penalized, and a large shrink-
age parameter λ consequently results in a temporally homo-
geneous cGEV model.

The verification of the cross-validated predictive distribu-
tion is performed using proper scoring rules (Gneiting and
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Raftery, 2007). We use the quantile score (QS) for predic-
tive quantiles qτ = cGEV−1(τ ;µ,σ,ξ) of the censored data
at the probability τ given as

QSτ (qτ ,yu)=

τ (qτ − yc)Iyu≤qτ + (τ − 1)(qτ − yu)Iyu>qτ , (7)

following Friederichs and Hense (2007) and its decomposi-
tion (Bentzien and Friederichs, 2014). The observation yu is
also censored with yu = y for y ≥ u and yu = u otherwise.
We further use the Brier score (BS, Brier, 1950) and the con-
tinuous ranked probability score (CRPS, Hersbach, 2000) for
the cGEV. The CRPS is proportional to the integral of the QS
over all probabilities τ (Gneiting and Raftery, 2007) or the
BS over all thresholds (Hersbach, 2000). Skill measures are
provided as the percentage improvement of the scores with
respect to a reference forecast. Our reference is the cGEV
with constant parameters estimated using the observed gusts
at each mast level individually, referred to as climatology. All
scores are evaluated using censoring. Proper scoring rules
can be decomposed into contributions related to reliability
and resolution. We use the decomposition for the QS as de-
veloped in Bentzien and Friederichs (2014).

For the calculations, we used the R statistical program-
ming language (R Core Team, 2016) with modified routines
from the “ismev” (for estimation; Heffernan and Stephenson,
2016) and “verification” (for validation; NCAR – Research
Applications Laboratory, 2015) packages.

3.2 Residuals and spatial dependence

Residuals of the gust observations are derived using the
cross-validated cGEV parameter estimates to transform the
data to a standard GEV (e.g standard Gumbel with µ= 0,
σ = 1, ξ = 0). No censoring is applied to calculate the resid-
uals, i.e. we assume that the GEV using the fitted cGEV pa-
rameters also represent the gust values below the threshold
u. A quantile–quantile plot (Q–Q plot) is used to assess the
validity of this assumption.

Another assumption that is explicitly used in the MLE is
the conditional independence of the gust observations at the
different mast levels. Although this assumption mainly con-
cerns the uncertainty of the parameter estimates, conditional
dependence will become relevant if one would like to draw
realizations of the vertical gusts or derive aggregated mea-
sures (e.g. the probability of observing a gust at any level
of the mast). To assess the dependence of the gusts between
different height levels, we use the bivariate Pickands depen-
dence function (Pickands, 1981). The bivariate extreme value
distribution for standard Fréchet variables (µ= σ = ξ = 1)
has the following form:

G(y1,y2)= exp
(
−

(
1
y1
+

1
y2

)
A(ω)

)
, (8)

with ω = y2/(y1+ y2) and, hence, ω ∈ [0,1]. The Pickands
dependence function A(ω) describes the dependency of a

pair of random variables (Y1,Y2) with standard Fréchet mar-
gins. A non-parametric estimate ofA(ω) is given in Pickands
(1981) with

AP
m(ω)=m

[
m∑
i=1

min
(

1
y1,iω

,
1

y2,i(1−ω)

)]−1

, (9)

for m pairs of observations. Here we use a modification to
approach convexity by Hall and Tajvidi (2000):

AHT
m (ω)=m

[
m∑
i=1

min
(
y1

y1,iω
,

y2

y2,i(1−ω)

)]−1

, (10)

with yj =m(
∑m
i=11/yi,j )−1. AHT

m (ω) is used as a limiting
function. A convex and, therefore, valid Pickands depen-
dence function is given by the convex minorant AHT,c

m of
AHT
m (ω) (i.e. the largest convex function on [0,1] that has no

values exceeding AHT
m (ω)). The “evd” R package (Stephen-

son, 2018) provides the routines to estimate the function.

3.3 Preparation of covariates

We consider the following variables as covariates: the wind
gust diagnostic at 10 m (VMAX_10M), the vertical profile
of the horizontal wind speed at mast levels, the horizon-
tal (Vh_700) and vertical (W_700) wind speed at 700 hPa,
surface pressure tendency (dt P), the lifted index (LI), to-
tal water content (TWATER), atmospheric temperature at a
height of 2 m (T_2M), tendency in convective available po-
tential energy (dt CAPE), vertical shear of horizontal wind
between 6 and 1 km (Vh_SHEAR), the temporal variance of
VMAX_10M (VARt VMAX_10M), and the phase of the an-
nual cycle. For a summary of the covariates, see Table 1. All
covariates are standardized before they enter the cGEV re-
gression model.

The gust diagnostic in COSMO-REA6 is probably the
most informative variable, as it aims as an estimate of the po-
tential strength of a gust near the surface. On the one hand,
gusts are generated by turbulent deflection of upper air wind
to the surface (Brasseur, 2001) and, on the other hand, they
are generated by convective downdraughts (Nakamura et al.,
1996). The turbulent gust diagnostic in COSMO-REA6 is
given by an empirical relation to the 10 m wind velocity
and the surface drag coefficient for momentum (Schulz and
Heise, 2003; Schulz, 2008). The convective gust diagnostic
depends on the downdraught formulation in the convection
scheme (Schulz and Heise, 2003) and includes the height
and the kinetic energy of the downdraught. VMAX_10M is
the maximum of the turbulent and convective gust diagnos-
tic. The differences between the observed gusts at a height of
10 m at the Hamburg Weather Mast and the COSMO-REA6
gust diagnostics are displayed in Fig. 1. The differences have
a negative bias of about −1.03 ms−1, i.e. COSMO-REA6
slightly overestimates the strength of the gusts. The standard
deviation amounts to about 1.8 ms−1. We also include the
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Table 1. List of preselected covariates from the COSMO-REA6 reanalysis.

Acronyms Variable Description

VMAX_10M Wind gust diagnostic at 10 m Grid value
VARt VMAX_10M Temporal variance of VMAX_10M Variance of five consecutive (±2 h) grid values
Vh_EOF1 Barotropic mode of absolute horizontal

wind at lowest layers
Principal component of first eigenvector of covariance matrix from
wind time series (11 years) at lowest 300 m (six layers)

Vh_EOF2 Baroclinic mode of absolute horizontal
wind at lowest layers

Principal component of second eigenvector of covariance matrix
from wind time series (11 years) at lowest 300 m (six layers)

Meanh Vh_700 Mean absolute horizontal wind at
700 hPa

Mean of 25 mast-surrounding grid values at layer 23

SDh Vh_700 Standard deviation of absolute horizon-
tal wind at 700 hPa

Standard deviation of 25 mast-surrounding grid values at layer 23

Meanh W_700 Mean vertical wind at 700 hPa Mean of 25 mast-surrounding grid values at layer 23
SDh W_700 Standard deviation of vertical wind at

700 hPa
Standard deviation of 25 mast-surrounding grid values at layer 23

dt P Surface pressure tendency Mean difference between current and previous surface pressure
from mast-surrounding grid values

LI Lifted index Difference between the temperature at 500 hPa (layer 18) and the
temperature of an adiabatically lifted surface air parcel

TWATER Water content Water content of the mast-including grid column
dt CAPE CAPE tendency Difference between current and previous CAPE of the mast-

including grid column
Vh_SHEAR Horizontal wind shear Difference between absolute horizontal wind in 6 km (layer 17) and

1 km (layer 30)
T_2M Temperature at 2 m Grid value
AC_COS Annual cosine cycle Cosine oscillation with 1-year period
AC_SIN Annual cosine cycle Sine oscillation with 1-year period

variance of VMAX_10M over the period from 2 h before to
2 h after the respective analysis time (Vart VMAX_10M) as
a covariate.

As gusts are naturally related to mean wind speed, we
include the horizontal velocities at the station location.
COSMO-REA6 has a staggered grid, so the wind veloc-
ity is given as the absolute velocity of the centred zonal
and meridional velocities. To represent the state of the local
vertical profile of the horizontal wind velocity in a height-
independent variable, we use a principal component analysis.
A principal component analysis of the wind velocity at the
different heights reveals that most variability (about 92 %) is
explained by a mode of variability where all wind anoma-
lies have the same sign, with a slight increase in variability
at higher levels. The second mode of variability, which ex-
plains about 6 % of the total variability, represents a dipole
(i.e. baroclinic) structure with positive anomalies in the up-
per two levels and corresponding negative anomalies in the
lowest three levels. The latter mode is called the baroclinic
wind mode (Vh_EOF2), whereas the former – although not
completely barotropic – is called the barotropic wind mode
(Vh_EOF1).

An important index to capture vertical instability is the
lifted index (LI, e.g. Bott, 2016). It is defined as the differ-
ence between the temperature at 500 hPa and the temperature
of an air parcel that is adiabatically lifted up from the surface

Figure 1. Histogram of differences between observed gusts at 10 m
and the COSMO-REA6 10 m gust diagnostic.

www.nonlin-processes-geophys.net/27/239/2020/ Nonlin. Processes Geophys., 27, 239–252, 2020
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to 500 hPa. Negative values indicate a potentially unstable at-
mosphere, which could lead to convection and, hence, gusts.
If convection takes place, CAPE is consumed and a tendency
in CAPE is seen in the reanalysis data. Thus, we include the
tendency of CAPE (dt CAPE) over 1 h as a covariate. We also
use the total water content (TWATER) of the column that
includes the location of the Hamburg Weather Mast. All of
these covariates are calculated for the vertical column of the
grid point closest to the mast location.

We further include information on the atmospheric circu-
lation above the boundary layer at 700 hPa surrounding the
Hamburg Weather Mast. The wind velocities at the closest
25 grid cells are used to calculate an averaged horizontal
(Meanh Vh_700) and vertical (Meanh W_700) wind speed as
well as the respective standard deviations over that region
SDh Vh_700, and SDh W_700 respectively. Another possi-
ble indicator for gust activity is the tendency of pressure at
the surface over 1 h within the area surrounding the weather
mast. The pressure tendency dt P is again an averaged ten-
dency over the 25 nearest grid points.

The annual cycle is represented by a linear combination of
a sine and cosine function with a period of 1 year (AC_COS
and AC_SIN).

4 Results

Several decisions are needed before setting up the post-
processing approach. The first concerns the threshold for
censoring. We choose the 50 % quantile of the observations at
each level respectively, which corresponds to 5.79 ms−1 (at
a hight of 10 m), 7.40 ms−1 (at 50 m), 8.65 ms−1 (at 110 m),
9.69 ms−1 (at 175 m), and 10.54 ms−1 (at 250 m). We fur-
ther decide to fix the shape parameter ξ to zero for the two
abovementioned reasons. First, studies of wind gusts often
reveal a negative ξ for the fitted GEV (e.g. Friederichs et al.,
2009), i.e. a Weibull-type GEV with an upper end point. Any
future gust above this end point would have predictive proba-
bility zero, which would results in a very bad forecast. There-
fore, a Gumbel-type GEV reduced the risk of missing an ex-
treme gust. The second reason is the stability of the maxi-
mum likelihood optimization. The estimation of ξ introduces
large uncertainties. Particularly with a large number of pa-
rameters (i.e. covariates), the optimization procedures is of-
ten stuck in a local maximum. This is particularly critical, if
the domain of the distribution is restricted, as is the case for a
Weibull-type GEV. Finally, to approximate the vertical vari-
ation of the cGEV parameters we use the first three Legendre
polynomials P0 (constant), P1 (linear), and P2 (quadratic).
Higher-order polynomials did not provide any added value
(not shown).

4.1 Model selection

The next step is the selection of the most important predic-
tors. The variable selection is performed using the LASSO
approach including cross-validation, providing 11 sets of pe-
nalized regression coefficients. The value of λ is determined
by analysing the cross-validated LASSO path, which de-
scribes the changes in the regression parameters with respect
to λ. The LASSO approach is very sensitive to λ. We chose
λ= 0.02×m, where m is the number of observations, as a
larger λ leads to an excessive penalization, whereas a smaller
λ accepts almost all covariates as relevant. As the covariates
are standardized, the absolute value of each related coeffi-
cient is proportional to the importance of the covariate. We
select a covariate if at least one of its three Legendre coef-
ficients is consistently below or above zero for all 11 cross-
validation samples. If a covariate is selected, we allow for full
flexibility in the vertical including all three Legendre polyno-
mials, as the higher-order polynomials, in particular, are very
sensitive to the penalization.

Table 2 represents the regression coefficients obtained for
the Legendre model with the selected covariates but with-
out penalization. The parameters that resisted the penaliza-
tion are displayed using bold numbers. If no regression co-
efficient is given in Table 2, the covariate was not selected.
For the location parameterµ, the most informative covariates
are generally the barotropic wind mode (Vh_EOF1) and the
gust diagnosis (VMAX_10M). The averaged horizontal wind
(Meanh Vh_700) provides some additional information. The
pressure tendency (dt P) is similarly important, with a pos-
itive pressure tendency (e.g. a passing cold front) being re-
lated to an increase in gust activity and TWATER with a neg-
ative regression coefficient.

The influence of the covariates on σ is generally weaker
than on µ. Here, the most informative covariate is indeed
VMAX_10M, leading to an increase in σ if VMAX_10M is
large. The variance of the predictive cGEV is significantly
increased if Vart VMAX_10M is large. We discuss the in-
fluence of Vart VMAX_10M later in this section. Vh_EOF1
was not selected by the LASSO approach, but some addi-
tional information is provided by the baroclinic wind mode
(Vh_EOF2). The weak influence of AC_COS indicates a
slight increase in gust activity during summer, which is not
explained by the other covariates.

The interpretation of the role of the covariates is not
straightforward, as the selected covariates are correlated.
This is particularly the case for the 10 m gust diagnostic and
the barotropic wind mode. Therefore, the omission of one
would lead to a modified role of the other. The most impor-
tant covariates, notably the wind covariates, roughly reveal
that stronger winds results in increased µ and σ parameters
of the cGEV. Further, there is a remarkable influence of in-
tegrated water content and the pressure tendency. A positive
pressure tendency is associated with stronger wind gusts, and
one may argue that the probability of gusts is increase dur-
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Table 2. Estimates of the regression coefficients using the Legendre model with K = 2. Estimates are derived without penalization includ-
ing the selected covariates. Mean and standard deviation are derived from the 11 estimates using cross-validation. Bold text indicates the
parameters that resisted the LASSO penalization. No value is given if the variable is not included in the Legendre model.

Covariates P0(η) ∼ constant P1(η) ∼ linear P2(η) ∼ quadratic

µl0 σl0 µl1 σl1 µl2 σl2

VMAX_10M 1.23± 0.01 0.22± 0.00 −0.45± 0.01 −0.02± 0.00 0.02± 0.01 0.00± 0.00
Vart VMAX_10M 0.11± 0.00 −0.03± 0.00 0.00± 0.00
Vh_EOF1 2.16± 0.01 1.11± 0.01 −0.29± 0.00
Vh_EOF2 0.00± 0.01 0.10± 0.00 0.40± 0.01 0.03± 0.00 0.04± 0.00 0.00± 0.00
Meanh Vh_700 0.44± 0.02 0.07± 0.00 0.26± 0.01 −0.01± 0.00 −0.00± 0.00 −0.01± 0.00
SDh Vh_700
Meanh W_700
SDh W_700 0.04± 0.00 0.02± 0.00 −0.01± 0.00
dt P 0.41± 0.01 0.04± 0.00 0.09± 0.00 −0.02± 0.00 −0.06± 0.00 0.00± 0.00
LI −0.03± 0.00 0.02± 0.00 0.00± 0.00
TWATER −0.41± 0.01 0.03± 0.00 0.06± 0.00
dt CAPE
Vh_SHEAR
T_2M
AC_COS −0.34± 0.01 −0.07± 0.00 −0.06± 0.01 0.00± 0.00 0.09± 0.00 0.02± 0.00
AC_SIN 0.02± 0.01 0.01± 0.00 −0.09± 0.00 −0.01± 0.00 0.01± 0.00 0.01± 0.00

Figure 2. Diagnostics for Legendre model without VARt VMAX_10M and with a threshold of u= 5.79 ms−1 at 10 m: (a) scatter plot of
the standard Gumbel residual against observed gusts, and (b) Q–Q plot of the residuals against the standard model. Uncertainty is given in
light grey as the range of a 100-member bootstrap sample generated with blocks of 10 consecutive days.

ing the passage of a cold front. The role of TWATER is less
obvious at first. TWATER shows a pronounced annual cycle,
as the warmer atmosphere during summer has a larger water
vapour capacity. Likewise, gusts are stronger during winter
than during summer on average. The mean 10 m wind gust at
the Hamburg Weather Mast is about 6.3 ms−1 in winter and
5.78 ms−1 in summer. Thus, one should be careful interpret-
ing this result, as the negative relation between TWATER and
gustiness may only be a consequence of the annual cycle and
should not be interpreted as a causal relation.

The covariate Vart VMAX_10M was not included in
an earlier version of the Legendre model. Figure 2a

shows the residuals using the Legendre model without
Vart VMAX_10M against the observed gusts. The highest
gusts above 20 ms−1 are well captured, as the residuals are
generally small with values between −1 and 4. However,
the Q–Q plot in Fig. 2b indicates three outliers that are
not well captured by the model. The outliers correspond
to gusts of about 15 to 20 ms−1 and are therefore of rele-
vance. Two of the outliers occur on 26 August 2011. Fig-
ure 3a shows the model predictions on 26 August 2011.
The predictive quantiles are calculated using a GEV with
the Legendre estimates of the cGEV. The outliers are ob-
served at 18:00 and 20:00 CET respectively and well exceed
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Figure 3. Post-processing of gusts on 26 August 2011 at 10 m:
(a) Legendre model without VARt VMAX_10M; (b) Legendre
model. Shading indicates the predictive interquartile range, the grey
line indicates the median, and dashed lines indicate the 1 % and
99 % quantiles respectively. The observed gust are shown as circles,
and the 10 m gust diagnostic is shown as triangles.

the predictive 99 % quantiles, whereas COSMO-REA6 diag-
noses a gust of about 20 ms−1 at 19:00 CET. The observed
gusts are related to two convective storms that passed over
Hamburg. The COSMO-REA6 analysed a convective cell
over Hamburg but with incorrect timing. The adjusted pre-
diction including VARt VMAX_10M is shown in Fig. 3b.
We now see an increase in the predicted range of the gusts
such that the observed gusts are within the 99 % range of
the prediction. The Q–Q plot of the Legendre model includ-
ing VARt VMAX_10M (Fig. 4a) shows that the two outliers
on 26 August 2011 are now eliminated; however, this oc-
curs at the cost that the Legendre model now slightly over-
estimates the high quantiles. With the inclusion of the tem-
poral variability of the 10 m gust diagnostic, we improved
the post-processing model mainly by increasing the σ pa-
rameter when gustiness in the reanalysis strongly varies over
time. Thus, the role of this covariate is to account for tim-
ing errors in the reanalysis, which might be particularly large
for weather situations that favour small convective cells. This
method successfully eliminates two of the three outliers. Fig-
ure 4b shows the Q–Q plot at 110 m. The remaining outlier
is also present at a higher level, but the overestimation of the
high quantiles is much weaker than at 10 m.

4.2 Verification

The post-processing method is assessed using proper verifi-
cation skill scores. We first assess the effect of the Legendre
approximation. Figure 5a–c show skill scores of the layer-
wise model with climatology as a reference. The 99 % QSS
indicates remarkable improvements of about 45 % to 60 %
with respect to climatology. The BSS evaluates the predic-
tive probability of exceeding a threshold defined as the 99 %
quantile of the observations at each level respectively. The
respective thresholds are given in the caption of Fig. 5. The
BSS is smaller than the QSS with values ranging from about
10 % in the lowest level to 40 % at 250 m. The CRPSS ranges
between 40 % and 50 %. Ideally, an approximation of the ver-
tical variation of the cGEV parameters by Legendre polyno-
mials should not decrease the skill scores. Figure 5d–f show
the skill score of the Legendre model with the layer-wise
model as reference. The reduction in skill is not larger than
7 % and is largest in the QSS and BSS at the 10 m level. We
conclude that the Legendre model represents an appropriate
model for all layers.

The advantage of the Legendre model is the possibility to
provide predictions at levels where no observations are avail-
able. Figure 6a–c represent the skill score for the leave-out
model with climatology as a reference. All skill scores show
a strong decrease in skill at 10 and 250 m. At 10 m, the BSS
even shows negative skill. In Fig. 6d–f, the direct compar-
isons show that, except for at the lowest and highest level, the
loss in skill is only of about 10 % at the most when compared
to what is obtained with the layer-wise model. The decom-
position of the QSS of the 99 % quantiles at 10 and 110 m
shows that the loss in predictive skill is mainly due to the re-
liability term, while the resolution remains almost constant;
it also shows that the reliability is particularly bad for the
leave-out model at a height of 10 m. Thus, the interpolation
of the cGEV parameters is applicable, whereas an extrapola-
tion to the 10 and the 250 m levels fails to provide a reliable
predictive distribution.

The post-processing method aims at an improved 10 m
wind gust diagnostic. In order to compare the post-processed
gust distribution with the COSMO-REA6 gust diagnostic, we
calculate the median of a GEV using the cGEV parameters of
the layer-wise model. Figure 8 shows the histogram of differ-
ences between the observations and the mean at 10 m. Com-
pared with the gust diagnostic of COSMO-REA6 in Fig. 1,
we see an improvement as the bias almost vanishes and the
standard deviation of the differences is reduced to 1.57 ms−1.
Large differences still occur in situations where the reanaly-
sis is not able to simulate small-scale convective cells cor-
rectly in terms of timing or location.

4.3 Application and bivariate dependency

To illustrate the post-processing using the Legendre model,
we have a closer look at storm Emma between 29 February
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Figure 4. Q–Q plots for the Legendre model (a) at 10 m and (b) at 110 m with bootstrap uncertainty, as in Fig. 2.

Figure 5. Verification skill scores for the Legendre model against climatology (a–c) and against the layer-wise model (d–f). The QSS is given
for the predictive τ = 99% quantile in (a) and (d); the BSS for thresholds corresponding to the observations’ 99 % quantile (u= 14.8 m s−1

at 10 m, u= 19.26 m s−1 at 50 m, u= 21.01 m s−1 at 110 m, u= 22.55 m s−1 at 175 m, and u= 23.97 m s−1 at 250 m) in (b) and (e); and
the CRPSS in (c) and (f). For QSS and BSS, the box and whiskers represent the 100-member bootstrap sample, with the box giving the
interquartile range. The range of the whiskers is a maximum of 1.5 times the width of the box. For the CRPSS, the boxes represent the 11
cross-validated estimates.

Figure 6. Same as in Fig. 5 but for (a–c) the leave-out model against climatology and (d–f) against the layer-wise model.
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Figure 7. Decomposition of the QSS of the predictive 99 % quantile
at 10 m (black) and 110 m (grey) into scaled resolution (RES/UNC)
and scaled reliability (REL/UNC) for the layer-wise, Legendre, and
leave-out models. The crosses show the range of the 100-member
bootstrap samples. The grey dashed lines indicate the QSS. The
QSS amount is given on the upper and the right axes (grey num-
bers).

Figure 8. Histogram of differences between observed gusts at 10 m
and the GEV median prediction at 10 m.

Figure 9. Post-processing of gusts on 29 February and
1 March 2008 at 10 m. Shading indicates the predictive interquar-
tile range, the grey line indicates the median, and dashed lines indi-
cate the 1 % and 99 % quantiles respectively. The observed gust are
shown as circles, and the 10 m gust diagnostic is shown as triangles.
The vertical lines indicate times with stable (LI of 8.7 K), neutral
(LI of 2.4 K), and unstable (LI of −3.1 K) conditions.

and 1 March 2008. During Emma, we observe the largest
gusts at 10 m over the whole observation period of the Ham-
burg Weather Mast, with 28.07 ms−1 on 1 March 2008 be-
tween 12:00 and 13:00 CET. The storm hit a large region
in Europe. In Hamburg, a storm surge also flushed parts of
the city. COSMO-REA6 has difficulties precisely capturing
the evolution of the storm over Hamburg (Fig. 9). As in the
reanalysis, the post-processing approach misses the highest
gusts on Saturday, 1 March 2008, although the prediction is
provided with reasonably high uncertainties. A better pre-
diction is generated by the post-processing method on Fri-
day, 28 February 2008. By way of example, we selected 3 h
that represent differently stratified atmosphere, as indicated
by vertical lines in Fig. 9. According to Bott (2016), we
characterize the atmosphere as stable if LI ≥ 6 K, as neu-
tral if 6 K≥LI≥−2 K, and as unstable if −2 K≥LI. Fig-
ure 10 shows the corresponding vertical profiles of the pre-
dictive GEV distribution. In all cases, the median prediction
is in good agreement with the observations. On 29 Febru-
ary 2008 at 10:00 CET (stable atmosphere), the observed
gusts are within the interquartile range of the predictive GEV
and slightly below the censoring threshold. The variance of
the predictive GEV is small. On 1 March 2008 at 01:00 CET
(neutral atmosphere), the interquartile range is larger, and the
vertical variation of the gusts is also larger and well captured
by the predictive GEV. On 1 March 2008 at 04:00 CET, the
atmosphere is highly unstable. The observed gust are very
close to the median of the predictive GEV. Note that the LI
only influences the cGEV scale parameter and that the re-
gression coefficient is small (see Table 2).

Figure 10 suggests that the gusts do not vary independently
of each other. In order to investigate the height dependency,
we calculate the bivariate Pickands dependency function fol-
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Figure 10. Vertical post-processing of gusts using the Legendre model for times highlighted in Fig. 9. The grey solid lines indicate the
conditional quantiles using a GEV at probabilities 1 %, 25 %, 50 %, 75 %, and 99 %. The dotted line represents the censoring threshold.

Figure 11. Pickands dependence function of 10 and 110 m for the Legendre model (light grey) and climatology (dark grey). According the LI,
the data are classified into 53 % stable (a), 36 % neutral (b), and 11 % unstable (c) cases. Uncertainty is derived using block bootstrapping.
A horizontal line at 0.7 is displayed for visualization purpose only. The dotted lines indicate complete independence with A(ω)= 1 as well
as complete dependence.

lowing Eq. (10). Transformation to standard Fréchet is per-
formed using the parameters for the climatological cGEV
(i.e. assuming a homogeneous marginal cGEV independently
at each height) and from the Legendre model (i.e. accounting
for non-homogeneity by post-processing). Figure 11 shows
the estimated Pickands dependence function between the
gust residuals at 10 and 110 m respectively for the stable,
neutral, and unstable cases. Using homogeneous marginals,
the dependence between the gusts at the two levels is strong
and seems independent of the stability of the atmosphere.
Post-processing strongly reduces vertical dependencies in the
residuals. The weakest dependence is observed in a stable at-
mosphere, whereas dependence for the post-processed resid-
uals is almost as strong as for the climatological residuals in
an unstable atmosphere. Variation in the dependency struc-
ture is reasonable, as the more unstable the atmosphere, the
more vertical mixing is induced.

The dependence between residual gusts at 10 m and higher
levels decreased with distance in the vertical, as indicated by
the value of the Pickands dependency function at ω = 1/2 in
Fig. 12a. Again, for the climatological residuals, dependence

is strong and decreases less with distance compared with the
post-processed residuals. The decrease in dependence with
distance is largest during cases with a stable atmosphere. A
simple relation between the strength of the dependency and
the distance between layers is not given, as e.g. the depen-
dence between gusts at 110 and 250 m is stronger than be-
tween gusts at 110 and 10 m (Fig. 12b).

5 Conclusions

This study presents a post-processing approach for hourly
wind gusts at different vertical heights from observations at
the Hamburg Weather Mast. The post-processing model is
based on a conditional censored Gumbel-type GEV distribu-
tion. The censoring threshold is defined as the 50 % quantile
of the observations at each mast level respectively. The cen-
soring approach performs well and leads to a good represen-
tation of the larger gusts.

A LASSO approach is used to select the most informative
covariates. The selected variables are the COSMO-REA6
wind gust diagnostic at 10 m and its temporal variance, the
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Figure 12. Pickands dependence function at ω = 1/2 between gusts (grey) and residuals (black) at all layers as well as (a) z1 = 10 m and
(b) z1 = 110 m for stable, neutral, and unstable case, as in Fig. 11.

barotropic and baroclinic mode of absolute horizontal wind
speed, the mean absolute horizontal wind at 700 hPa, the
pressure tendency, the lifted index, and the grid column water
content. The predictive cGEV median provides an improved
gust estimate compared with the reanalysis gust diagnostic at
10 m.

Vertical variations of the cGEV parameters are approxi-
mated using the three lowest-order Legendre polynomials.
Although the best scores are obtained if the post-processing
is performed for each level independently, the unified de-
scription only results in a slight degradation of skill at the
intermediate layers. The unified description induces a small
bias at 10 m, with gusts being slightly overestimated. Extrap-
olation of the cGEV parameters towards the 10 m level and
the uppermost level generates large biases and thereby de-
grades skill. In contrast, interpolation towards intermediate
levels is very successful, as the degradation in terms of pre-
dictive skill is barely significant when excluding the model
level. Therefore, the post-processing method not only pro-
vides calibrated predictive distributions of gusts at the ob-
served levels but also at arbitrary heights of the weather mast.

Our post-processing strategy is applicable to NWP fore-
casts without relevant changes, except for the selection of the
covariates. Particularly, if applied to ensemble forecasts, ad-
ditional predictors such as the predictive uncertainty, quan-
tiles, or probabilities for threshold exceedances as derived
from the ensemble may be considered. For an example of
how to include ensemble statistics into the post-processing
approach, see Wahl (2015). In Friederichs et al. (2018), a
similar approach is applied to COSMO-DE-EPS forecasts
to predict 6-hourly maxima of 10 m wind gusts. Although
not really comparable, i.e. hourly maxima in this study but
6-hourly maxima in the above-mentioned study and a vari-

ety of covariates as predictors in this study but wind vari-
ables only in Friederichs et al. (2018), they obtain a BSS for
a 14.8 m s−1 threshold and a QSS for the 99 % quantile of
about 40 %. The forecast lead time in their study is between
12 and 18 h. This suggests that forecast errors at lead times
of about 1 d for 6-hourly maxima are small enough to obtain
reasonable skill. The respective skill scores at the 10 m level
in this study amount to about 24 % for the BSS and about
53 % for the QSS. The skill scores are comparable and sug-
gest that similar skill scores may be obtained at higher levels.

The strength of the spatial dependency of gusts is assessed
using the Pickands dependence function. The gusts at the dif-
ferent heights are highly dependent. Conditioning the gusts
on the COSMO-REA6 covariates reduces the dependency of
the residuals between heights. This reduction in dependence
is significantly modulated by the stability of the atmosphere
as given by the lifted index in the sense that an unstable at-
mosphere increases mixing and, therefore, dependency. De-
pendency is not simply a function of distance. For a full spa-
tial model description of the gusts, dependency needs to be
modelled as a function of atmospheric condition as well as
height.

The post-processing model as estimated for the Hamburg
Weather Mast should, in principle, be transferable to other
locations. This may be tested using observations from other
weather masts in the model region. However, difficulties
may arise because observations from different masts might
be processed differently or made with different instruments.
Furthermore, different topography or other local parameters
could introduce systematic biases. Moreover, at other loca-
tions, only measurements of the 10 m are available; however
it would be of interest to assess how well gust statistics that
are only based on observations at 10 m would be estimated
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at higher levels. The ultimate goal of this work would be to
provide estimates of vertical gust statistics at any location in
the COSMO-REA6 reanalysis domain.

Data availability. The wind gust observations from the Ham-
burg Weather Mast were provided by Ingo Lange from the
Meteorological Institute of the University of Hamburg (fur-
ther information and contact: https://wettermast.uni-hamburg.
de, last access: 20 April 2020). The COSMO-REA6 data
are stored at the DWD and are accessible via ftp://opendata.
dwd.de/climate_environment/REA/ (last access: 20 April 2020).
For further information, see https://www.dwd.de/DE/klimaumwelt/
klimaueberwachung/reanalyse/reanalyse_node.html (last access:
20 April 2020).
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