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Abstract. Dynamical models of various centres have shown
in recent years seasonal prediction skill of the North Atlantic
Oscillation (NAO). By filtering the ensemble members on
the basis of statistical predictors, known as subsampling, it is
possible to achieve even higher prediction skill. In this study
the aim is to design a generalisation of the subsampling ap-
proach and establish it as a post-processing procedure.

Instead of selecting discrete ensemble members for each
year, as the subsampling approach does, the distributions of
ensembles and statistical predictors are combined to create
a probabilistic prediction of the winter NAO. By compar-
ing the combined statistical–dynamical prediction with the
predictions of its single components, it can be shown that it
achieves similar results to the statistical prediction. At the
same time it can be shown that, unlike the statistical predic-
tion, the combined prediction has fewer years where it per-
forms worse than the dynamical prediction.

By applying the gained distributions to other meteorolog-
ical variables, like geopotential height, precipitation and sur-
face temperature, it can be shown that evaluating predic-
tion skill depends highly on the chosen metric. Besides the
common anomaly correlation (ACC) this study also presents
scores based on the Earth mover’s distance (EMD) and the
integrated quadratic distance (IQD), which are designed to
evaluate skills of probabilistic predictions. It shows that by
evaluating the predictions for each year separately compared
to applying a metric to all years at the same time, like
correlation-based metrics, leads to different interpretations of
the analysis.

1 Introduction

Seasonal prediction of the North Atlantic Oscillation (NAO)
is a challenge. During the year the NAO describes a high
portion of the explained variability of the pressure field over
the North Atlantic region and with it has a high influence
on European weather. While the winter NAO (WNAO) is a
dominant factor in changes in the storm tracks over the North
Atlantic (Hurrell, 1995), the summer NAO (SNAO) is associ-
ated with precipitation and temperature differences between
Scandinavia and the Mediterranean (Folland et al., 2009).

Predicting the WNAO on the seasonal scale is a long-
standing aim of the community (Doblas-Reyes et al., 2003;
Müller et al., 2005; Scaife et al., 2014) and various current
seasonal prediction systems have demonstrated limited sig-
nificant correlation skill for the WNAO (Butler et al., 2016).
Dobrynin et al. (2018) have shown that by combining sta-
tistical and dynamical predictions, a much higher significant
correlation skill is achievable. This paper applies an ensem-
ble subsampling algorithm, which bases selection of ensem-
ble members on their closeness to statistical predictors. The
selected ensembles are then used to create a new sub-selected
ensemble mean, which has for the NAO index, but also for
many other variables and regions, a better prediction skill
than the ensemble mean of all ensemble members.

Statistical–dynamical predictions based on different
strategies are common in many fields in geoscience. Gleeson
(1970) developed a framework for the dynamical evolution
of statistical distributions in phase space with applications to
meteorological fields. Vecchi et al. (2011) apply a combined
statistical–dynamical approach by using an emulator based
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on dynamical forecasts to create seasonal hurricane predic-
tion. Roulston and Smith (2003) developed a “best member”
concept, which uses verification statistics to dress a dynam-
ical ensemble prediction. Statistical post-processing proce-
dures to enhance forecast skill by dynamical models are ap-
plied in various ways in atmospheric science (Williams et al.,
2014). Especially Bayesian model averaging (Raftery et al.,
2005), which creates weights for ensemble members based
on their performance in a training period, has been well es-
tablished.

The focus of this paper is to implement the subsampling al-
gorithm as a probabilistic post-processing procedure, demon-
strated for the seasonal prediction of the WNAO. In contrast
to Dobrynin et al. (2018), which worked with deterministic
ensemble members, it interprets ensemble members and the
statistical predictors as values with uncertainties. The com-
bination of statistical and dynamical models does not happen
by selecting the ensemble members directly, but by com-
binations of probability density functions to create a new
probabilistic forecast. This approach allows us to evaluate
a prediction skill not only for a long time series, but also
for each individual year. We use for this two newly devel-
oped skill scores, the 1D-continuous-EMD score and the
1D-continuous-IQD score, based on the Earth mover’s dis-
tance (EMD) and the integrated quadratic distance (IQD).
The WNAO has a severe influence on various meteorolog-
ical fields over the European continent. Therefore, we also
use the probabilistic information of the prediction to create
a weighted mean of the ensemble members, which creates
a better hindcast skill for important meteorological variables
like surface temperature and precipitation.

2 Data and model

To demonstrate the procedure we use the seasonal predic-
tion system based on the MPI-ESM (Dobrynin et al., 2018)
with a model resolution of T63/L95 (200 km/1.875◦, 95 ver-
tical layers) in the atmosphere and T0.4/L40 (40 km/0.4◦,
40 vertical layers) in the ocean (also known as mixed res-
olution, MR). As described by Baehr et al. (2015), we ini-
tialise in each November between 1982 and 2017 a 30 en-
semble member hindcast from an assimilation run based
on assimilated reanalysis/observations in the atmospheric,
oceanic and sea-ice components. As an observational refer-
ence we use the ERA-Interim reanalysis (Dee et al., 2011).
For the observations and the hindcasts the NAO is calcu-
lated by an empirical orthogonal function (EOF) analysis
(Glowienka-Hense, 1990). For the WNAO we calculate the
mean sea-level pressure field for December, January and
February and calculate the EOF of the North Atlantic sec-
tor limited by 20–80◦ N and 70◦W–40◦ E.

Figure 1. Seasonal prediction of the WNAO. Single dynamical
models (black) initialised in November predicting the DJF-NAO
(red).

3 Methodology

3.1 Seasonal prediction of the WNAO

The seasonal prediction of the WNAO for the period of 1982
to 2017 is shown in Fig. 1. Every dot represents one WNAO
value of one ensemble member, which has also available the
full meteorological and oceanographical fields during the as-
sociated winter period. These hindcast predictions for the
WNAO have a large spread, covering the range of the ob-
servations given by the reanalysis, but do not give indication
of a specific NAO value 2 to 4 months ahead. As a general
skill measure the community applies correlation skills. Those
measures have indicated in recent years significant hindcast
skill for several different prediction systems (Butler et al.,
2016).

3.2 Statistical–dynamical prediction

Our approach will be applied to every single year indepen-
dently. As an example we choose the year 2010, which shows
an extreme negative WNAO value. The first step is to gener-
ate one probability density function (pdf) for each ensem-
ble member prediction (ei) of the WNAO value, which is
generated by a 2000-member bootstrap of the EOF fields
(Wang et al., 2014). In the bootstrap the first EOF field is re-
calculated by resampling the mean sea-level pressure fields
from each year. To create from these predictions a pdf for
all ensemble members (E), mixture modelling (Schölzel and
Hense, 2011) at discrete NAO index values is applied:

E(v)=
∑
i∈I

ei(v). (1)

Here, v corresponds to each value of the discretised NAO
values and I to the indices of the ensemble members. The
chosen resolution for the discretised NAO values is 0.01 and,
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after creating the sum of all single-member pdfs, the overall
pdf E is normalised. For 2010 the results are shown in Fig. 2.
As expected from Fig. 1, the dynamical model prediction has
a very broad pdf equating to a low signal.

To sharpen the prediction we introduce literature-backed
physical statistical predictors. As predictors (pi) we use
those defined by Dobrynin et al. (2018): sea-surface tem-
perature in the Northern Hemisphere, Arctic sea-ice vol-
ume, Siberian snow cover and stratospheric temperature at
100 hPa. All predictors and their influence on the WNAO
have been discussed in the paper. For the physical validity
of a prediction the selection of the correct predictors is es-
sential and has to be adapted to any newly analysed phenom-
ena individually. Each predictor makes a prediction from the
climatic state taken from the ERA-Interim reanalysis (Dee
et al., 2011) before the initialisation of the dynamical model
for a WNAO value in the following winter. For the predic-
tors a normalised index over the hindcast period is calculated
by forming the mean over the significantly correlated areas
between the physical field and the WNAO index. It has been
shown by a real forecast test in Dobrynin et al. (2018) that
this approach is usable also in cases where the predictor is
only formed with past information instead of the whole hind-
cast period.

We treat the predictors pi like the ensemble members be-
fore and apply an empirical mixture modelling. For the year
2010 the results are shown in Fig. 3. Due to the limited num-
ber of predictors compared to the ensemble members, and in
the shown case also due to their alignment, the resulting sta-
tistical prediction pdf (P) is much sharper than the dynamical
model prediction.

To create a combined prediction the two pdfs (E and P)
are after normalisation multiplied at each of the discretised
NAO values:

M(v)= E(v) ·P(v). (2)

After another normalisation the final combined prediction M
creates the statistical–dynamical prediction for the seasonal
NAO prediction in the specific year. The pdfs of the observa-
tions (O) are determined by the same bootstrapping mech-
anism as the one applied for the hindcasts. The result for
the year 2010 is shown in Fig. 4. The pdf of the combined
prediction is close to the one of the statistical predictions,
but shows differences where there is additional information
from the dynamical model prediction. Therefore, the com-
bined prediction shows a clearer signal than the dynamical
model prediction, which does not give any indication of a
specific NAO value at all.

3.3 NAO evaluation

To evaluate the performance of the three different predictions
(E , P and M) and compare the predictions with the obser-
vation, we use two different scores based on the same for-
mulation. The first is based on the Earth mover’s distance

(Rubner et al., 2001). The one-dimensional EMD (Düsterhus
and Hense, 2012) can be derived by

DEMD(f,g)=
1
nb

nb∑
i=1

|F(vi)−G(vi)| , (3)

where f and g are two pdfs and F and G the associated
cumulative distribution functions (cdfs). nb describe in this
case the number of discretised values vi of the cdfs.

The second is the IQD, which is defined in its discrete for-
mulation as (Thorarinsdottir et al., 2013)

DIQD(f,g)=
1
nb

nb∑
i=1

(F (vi)−G(vi))
2. (4)

It must be mentioned that the IQD is similar to the continu-
ous ranked probability score (CRPS) but is defined for non-
deterministic observations. As a consequence, while CRPS
needs to have a point observation, the IQD can take into ac-
count the full uncertainty distribution of an observation.

We define the scores for both metrics by comparing the
pdfs of the model prediction (M), the observations (O) and
the climatology (C). It is calculated for any prediction A by

q(A,O)= 1−
D(A,O)

D(C,O)
. (5)

When D is DEMD we call the score the 1D-continuous-EMD
score, and when we apply DIQD it is the 1D-continuous-IQD
score.

In the case of a perfect prediction the score becomes 1, a
model prediction equal to a climatology 0 and negative for a
worse prediction than the climatology. Since the NAO index
is normalised for mean and standard deviation, we use as cli-
matology a standard normal distribution N (0,1). It is impor-
tant to note here that Thorarinsdottir et al. (2013) compared
the two metrics (EMD as area validation metric). While the
EMD is a metric measuring the distance between the pdfs, it
is in contrast to the IQD not a proper divergence measure. As
a consequence, the EMD prefers, unlike the IQD, underdis-
persed model simulations. In the following we will demon-
strate the effect that the choice of the two different metrics
has on the evaluation.

To estimate uncertainties, we use 500 randomly selected
uniformly distributed weightings of the ensemble members
between 1 and 0 and create with those a pdf for the scores.

3.4 Variable field evaluation

To estimate the post-processed variable field, we calculate a
weighted mean of the meteorological variable fields, where
the field of each individual member is weighted by a co-
efficient ci . The weighting coefficients ci are estimated by
weighting the predictions A (each of E , M and P) with each
of the pdfs of the ensemble members (ei):

cA,i =

∑
v

ei(v) ·A(v). (6)
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Figure 2. Dynamical prediction of the WNAO for 2010. Single models (grey) as pdfs of their bootstrapped uncertainties. From this the
overall model prediction (black) is created by empirical mixture modelling.

Figure 3. Statistical prediction of the WNAO for 2010. Single predictors (light blue) as pdfs of their bootstrapped uncertainties. From this
the statistical prediction (pink) is created by empirical mixture modelling.

Weighting each ensemble member with its associated coef-
ficient cA,i and calculating the weighted mean of the atmo-
spheric fields of the individual ensembles then generate the
model prediction for the specified field and prediction.

For evaluation of the meteorological variable fields, we ap-
ply three different strategies. The first is the anomaly corre-
lation coefficient (ACC), a common measure of skill in sea-
sonal predictions. The second and third approaches are to use
the 1D-continuous-EMD and 1D-continuous-IQD scores at
every grid point. As a climatology all observational values
for the investigated time frame are chosen. The observation
in each year is a single value with 100 % as a weight. In the
case of the weights for the ensemble member, each value of
the variable at the grid point gets weighted with the relative
weight cA,i given by the three different predictions. With this
approach it is possible to calculate the 1D-continuous-EMD
and 1D-continuous-IQD scores for each of the three different
predictions. In Sect. 4.2.2 the relative positioning between
two predictions is shown. Significances are here determined
by DelSole and Tippett (2016), which determines the skill
significances by comparisons to random walks.

4 Results

4.1 Evaluating the seasonal NAO prediction

In a next step we evaluate the yearly performance of the
WNAO prediction of the three different predictions (E , P
and M) with the 1D-continuous-EMD and 1D-continuous-

IQD scores. Figure 5 shows that the results of the combined
(M) and statistical (P) predictions are clearly better per-
forming than the dynamical model results (E). In most years,
the combined and statistical predictions demonstrate skill for
the 1D-continuous-EMD score compared to a climatological
prediction over the whole uncertainty range. The dynamical
model prediction has less variability over the years in skill
than the other two predictions and in only a few years is
able to reach the average skill of the combined prediction.
The median and interquartile range of the summed-up pre-
diction skill for all evaluated years for the combined predic-
tion (0.39 [0.21;0.60]) is higher compared to the dynamical
(0.12 [0.01;0.22]) and statistical (0.37 [0.17;0.56]) predic-
tions. There is only one year (2003) with a strong discrep-
ancy of the combined and statistical predictions and a clearly
negative score. For 1D-continuous-IQD the results are less
clear. In this case the median of the combined prediction
is much closer to the dynamical prediction than the statis-
tical prediction. The uncertainty range for the combined and
statistical predictions also increases relative to the dynam-
ical prediction, which can be explained by their sharpness.
To better evaluate the performance of each prediction with
respect to the other predictions, we determine the relative
ranking of the median of each prediction in each year for
both scores. The rankings are counted for the whole hind-
cast period and the results displayed in Table 1. For the 1D-
continuous-EMD score the dynamical prediction has in only
a few years a better prediction skill than the other two predic-
tions. In the majority of the years its prediction skill is lower
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Figure 4. Sequence of the post-processing procedure for the WNAO in 2010. Combining dynamical (black) and statistical (pink) predictions
to a combined prediction (blue) and comparing it to the observations (red).

than both other predictions. Looking at the best prediction
for each year, the statistical and combined predictions are on
equal terms. Nevertheless, the combined prediction is much
more unlikely to be the worst of the three predictions in a
year, while the statistical prediction takes much more often
the third rank. These results show that the combined predic-
tion is closer to the statistical rather than dynamical predic-
tion. In case the combined prediction is not the best one, it is
in almost all cases better than one of the two. As such it offers
a smoothing of the prediction skill, preventing many worse
predictions. In the case of the 1D-continuous-IQD score, the
result differs clearly. Here the dynamical prediction is much
more competitive. It shares almost equally with the statistical
prediction first place, while the statistical prediction hardly
changes its statistics of positions. As a consequence the com-
bined prediction is much more often in last place. Still, it is
the prediction with the most middle places of the three pre-
dictions, stressing the argument that the combined prediction
is a mixture of the other two.

4.2 Analysis of atmospheric variable fields

4.2.1 Climatological analysis

In the following we investigate three different atmospheric
variable fields: surface temperature, total precipitation and
500 hPa geopotential height. In Fig. 6 the results are shown
for the winter (DJF) season with the ACC. For the winter
surface temperature, the main areas of significant hindcast
skill of the combined prediction can be found over large
parts of the North Atlantic and in a band reaching from
northern France to eastern Europe, sparing northern Scan-
dinavia and the Mediterranean. These results are compara-
ble to those shown by Dobrynin et al. (2018). Comparing
it to the dynamical prediction shows that the main signif-
icant increase in skill can be found over western Europe,
with a general non-significant increase over the whole con-
tinent. Some significant increase in prediction skill can also
be found in the Labrador Sea, while a significant decrease
is located over Greenland. The comparison to the statistical
prediction shows only small differences. The areas shown as

significant have to be assumed to be random and an artefact
of the bootstrapping approach.

The total precipitation has significant positive hindcast
skill north of the British Isles, east of the Baltic Sea, in the
Mediterranean and between the Canaries and the Azores.
Compared to the dynamical prediction the area east of the
Baltic Sea and the Mediterranean has significantly increased
skill, while again compared to the statistical prediction not
much change is detectable. Finally, for the geopotential
height, the hindcast skill for the combined prediction is found
in areas over the Iberian Peninsula, between the Canaries
and the Azores and between the British Isles and Green-
land. Compared to the dynamical prediction, some increase
in hindcast skill can be found over southern Scandinavia and
the east of Greenland. In the comparison to the statistical
prediction the combined prediction shows significantly lower
hindcast skill in areas over Greenland and the British Isles.
This can be explained by the conditioning of the statistical
prediction on the NAO directly, while the dynamic compo-
nent of the statistical dynamical prediction decreases the skill
in the main influence areas of the NAO.

The analysis shows that there exist changes between the
dynamical and combined predictions. Generally, the hindcast
skill of the combined prediction is very close to the one of the
statistical prediction.

4.2.2 Analysing single years

In a next step, the same atmospheric fields are compared with
the 1D-continuous-EMD score (Fig. 7). To prevent influ-
ences of biases and trends, the data are grid-point-wise nor-
malised and de-trended. Again the analysis shows the relative
positioning of two predictions. For the surface temperature in
winter the difference between the dynamical and combined
prediction is only significant in small patches distributed over
the North Atlantic. Generally, no clear patterns can be identi-
fied. Especially the large significant areas determined by the
ACC before do not show any significance with this score. The
significant area in the ACC over western Europe has some
increased values in favour of the combined predictions, but
is not significant. In the comparison between the statistical
and dynamical predictions the increases and decreases are
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Figure 5. Yearly comparison of the WNAO scores for dynamical (black), statistical (pink) and combined (blue) predictions. Each vertical
bar represents the 5 % to 95 % bootstrapped 1D-continuous-EMD score (above) and 1D-continuous-IQD score (below). The filled parts of
these bars are the 25th to 75th quartiles and the small vertical lines the associated median. The long vertical lines are the averaged yearly
scores for the different predictions.

Table 1. Count of years of relative positioning of the three different predictions using the median of the 1D-continuous-EMD score.

EMD IQD

rank dynamical statistical combination dynamical statistical combination

1 5 17 14 13 16 7
2 5 10 21 7 12 17
3 26 9 1 16 8 12
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Figure 6. ACC results for the WNAO for three different atmospheric variables: surface temperature (a, b, c), total precipitation (d, e, f) and
geopotential height (g, h, i). Shown are the combined prediction (a, d, g), the difference between the combined and dynamical predictions (b,
e, h) and the difference between the combined and statistical predictions (c, f, i). Black dots indicate significances estimated by a 500-sample
bootstrap.

consistent with what has been seen for the dynamical predic-
tion compared to the combined prediction. This consistency
shows that the statistical model plays a dominating role in the
combination. Better hindcast skill for the combined predic-
tion compared to the statistical prediction can be identified in
the west of the Mediterranean.

For the total precipitation the only significant change is a
stretch north of Scandinavia. Also for the other comparisons
for this variable the changes are small and do not show a con-
sistent pattern. This is different for the geopotential height,
where large areas in the north-eastern Atlantic and north of
Scandinavia are significantly better represented in the com-
bined prediction rather than the dynamical prediction. Both
areas are not identified in the equivalent comparison with the
anomaly correlation. The comparison of the statistical pre-

diction compared to the dynamical prediction shows very
similar patterns. The last comparison shows that the combi-
nation has areas between the Canaries and the Azores, where
it is significantly higher, while in large areas of western Eu-
rope it has consistently better skill but does not show signifi-
cantly better skill.

This analysis shows that the three predictions do not have
in all cases a clear relative ranking towards each other. Gen-
erally the results are very patchy, and apart from the north of
Scandinavia, no consistency can be seen.

In the case of the analysis of the 1D-continuous-IQD score
(Fig. 8), the comparison between the statistical and combined
models shows, in terms of significant areas, comparable re-
sults to the one seen in Fig. 7. When the two predictions
are compared to the dynamic prediction, the latter performs
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Figure 7. Relative positioning of the predictions of the variable fields on the basis of the 1D-continuous-EMD score. Shown is the number
of years in which the first named prediction has a better score than the second named prediction. Compared are the combined and model
predictions (a, d, g), statistical and dynamical predictions (b, e, h) and combined and statistical predictions (c, f, i). Significances are
determined by a comparison towards a random walk at a confidence level of 0.05. Variables are positioned as in Fig. 6.

much better with this score than with the 1D-continuous-
EMD score. While the general pattern of the areas stays the
same, the dynamic prediction is in most areas the best predic-
tion. Comparing the combined and statistical models shows
remarkably similar results to the 1D-continuous-EMD score.
All these results are consistent with the results we have seen
in Sect. 4.1 for the single time series.

5 Discussion and conclusion

This paper shows a post-processing procedure, generalis-
ing the newly established subsampling procedure by Do-
brynin et al. (2018). By not only selecting single ensemble
members, but also utilising their uncertainty ranges, a much
better understanding of the reason for its success is possi-

ble. As seen in Sect. 3.2 the better prediction skill for the
NAO by the combination of the statistical and dynamical
model compared to the unprocessed dynamical prediction
results from the sharper prediction of the statistical predic-
tion. As by construction the different statistical predictions
are highly connected towards the target value, in this case
NAO, the predictor-driven predictions result in higher skill.
Furthermore, advantages of using this post-processing ap-
proach compared to the pure subsampling are the availabil-
ity of non-parametric uncertainties for the predictions and
the possibility of weighting the different ensemble members
for the analysis of variable fields with unequal weights. As
such especially outliers can therefore be much better han-
dled, without giving them too high of a weight within the
analysis.
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Figure 8. Relative positioning of the predictions of the variable fields on the basis of the 1D-continuous-IQD score. As Fig. 7 but calculated
with the 1D-continuous-IQD.

Compared to the statistical prediction, the combined pre-
diction achieves similar results for the NAO prediction. In a
three-way comparison together with the dynamical predic-
tion we have shown that it generally does not show more
skill than the statistical prediction, but it observes less neg-
ative outliers in skill. Nevertheless, in the case of the atmo-
spheric variable predictions, the prediction based on predic-
tors is not entirely a statistical prediction. The construction
of weighting the ensemble members leads to a statistical–
dynamical prediction as well, where the weight of the dy-
namical model is less pronounced. As such, the skill be-
tween the two dynamical–statistical predictions is more sim-
ilar in this case than the NAO prediction itself. We have seen
that the two categories of scores show the hindcast skill of
the different forecasts from a different perspective. The 1D-
continuous-EMD and 1D-continuous-IQD scores allow us to
effectively evaluate the skill of two probabilistic results, like

observations and predictions. The scores have similar char-
acteristics like the RMSE in cases of undetected trends, dif-
ferent variability of different forecasts or a bias. In the case of
this study it is noted that the combined prediction is sharper
than the dynamical prediction for each year’s prediction, but
also varies more from year to year. Also compared to the cor-
relation, the two presented scores can decompose the skill in
a consistent way for every single year.

As each year is compared to the climatology, a value
close to the climatology can have a huge influence by cre-
ating substantive negative scores. To prevent this, the appli-
cation of other references, like uniform distributions over the
whole measurement range, can be an appropriate alternative.
Comparing the results of the 1D-continuous-EMD and 1D-
continuous-IQD scores shows that the latter infers a much
harder penalty for mispredictions. While the EMD metric
uses a linear distance measure, the IQD divergence increases
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the distance by the square in Eq. (4). Discussion and com-
parison of the properties of two measures have been done by
Thorarinsdottir et al. (2013). In the practical implementation
done in this paper we have seen that the IQD tends to prefer
a non-informative prediction over a wrong sharp prediction,
while the EMD is more tolerant of wrong prediction in order
to achieve a better score.

Evaluating the skill on a yearly basis and taking a look at
the relative positioning the approach allow for a paradigm
change as also described by DelSole and Tippett (2016). By
counting the years in which one prediction is better than an-
other, a single outlier cannot drive the whole verification re-
sult as it can do for correlations or RMSE. It also answers a
typical question in forecast verification in a much more ap-
propriate way: how sure can we be that a single prediction
is better than another? The evaluation procedure presented
here is able to quantify this answer for non-parametric pre-
dictions.

The ACC is well used in the literature, and its main dis-
advantages are parametric assumptions in the interpretation
of its results. We have seen that there are considerable dif-
ferences when all years are evaluated at the same time, as is
done in a correlation-based score or the evaluation based on
evaluating single years. Correlations can be misleading and
show skill where there is not necessarily a good argument for
it as it is prone to outliers. These discussions are well known
when correlation-like measures are compared with distance-
like measures, like the RMSE. Further progress in the cre-
ation of appropriate skill evaluation is therefore necessary. It
is noted that while we show in this analysis only the results
for the winter season, the results for the summer season are
comparable.

The methodology and verification techniques shown in
this analysis are widely applicable within predictions of
many different phenomena. This is especially valid in the
case of non-parametric datasets like in the analysis of ex-
tremes. The statistical–dynamical approach as illustrated
here delivers consistent improved results compared to one
of its components. Seen as a post-processing step, it forms
a useful step to condition predictions on a physical basis in
order to reduce noise and intensify the signal. Using non-
parametric approaches in the analysis offers a more appro-
priate path to verify predictions in general.
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