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Abstract. The auroral oval boundary represents an important
physical process with implications for the ionosphere and
magnetosphere. An automatic auroral oval boundary predic-
tion method based on deep learning in this paper is applied
to study the variation of the auroral oval boundary associ-
ated with different space physical parameters. We construct
an auroral oval boundary dataset to train our proposed model,
which consists of 184 416 auroral oval boundary points ex-
tracted from 3842 images captured by the Ultraviolet Im-
ager (UVI) of the Polar satellite and its corresponding 18
space physical parameters selected from the OMNI dataset
from December 1996 to March 1997. Furthermore, several
statistical experiments and correlation analysis experiments
are performed based on our dataset to explore the relation-
ship between space physical parameters and the location of
the auroral oval boundary. The experiment results show that
the prediction model based on the deep learning method can
estimate the auroral oval boundary efficiently, and different
space physical parameters have different effects on the au-
roral oval boundary, especially the interplanetary magnetic
field (IMF), geomagnetic indexes, and solar wind parame-
ters.

1 Introduction

An auroral oval is a circular belt of auroral emission around
magnetic poles (Loomis, 1890; Akasofu, 1964). The auro-
ral oval poleward and equatorward boundaries are related
to geophysical parameters, which can indicate for the cou-
pling process among the solar wind, ionosphere, and mag-
netosphere, for example, the polar cap ionosphere, which

is considered an area of the opening magnetic field inside
the auroral oval poleward boundary. This area is closely re-
lated to energetic particle entrance from the heliosphere to
the earth’s atmosphere. So, the segmentation and prediction
for the auroral oval boundary are very significant for study-
ing certain physical events.

In the past few decades, scholars have conducted exten-
sive research on the relationship between the location of the
auroral oval boundary and space physical parameters (Niu et
al., 2015). In early research, Feldstein proposed that the po-
sition of the auroral oval boundary is correlated with the Q
index of magnetic activity on the nightside of the earth (Feld-
stein and Starkov, 1967). Starkov and Holzworth stated that
the inner and outer boundaries of the auroral oval can change
with geomagnetic indexes and the interplanetary magnetic
field (IMF) (Holzworth and Meng, 1975; Holzworth and
Meng, 1984; Starkov, 1994a). The conclusions in this paper
are based on mathematical statistics. Therefore, Starkov de-
signed some simple formulas to describe the relationships be-
tween the specific physical parameter and different types of
auroras. Variations of the sizes of the polar cap, auroral oval,
and diffuse aurora were regarded as three independent func-
tion variables of the AL index (Starkov, 1994b). Since then,
many scholars have explored the connections between dif-
ferent physical parameters and the auroral oval boundary or
other auroral events. Carbary constructed a Kp-related model
of the auroral oval boundary by binning Ultraviolet Imager
(UVI) images from different months (Carbary, 2005). To de-
scribe the particle precipitation characteristics, Zhang and
Paxton proposed a Kp-dependent model of the mean energy
and energy flux precipitating electrons in the auroral oval
(Zhang and Paxton, 2008). Sigernes et al. used a Kp-based
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function to calculate the size and position of the auroral oval
and compared the Kp-dependent model with methods pro-
posed by Zhang and Starkov to explain the superiority of
his proposed model (Sigernes et al., 2011). Milan proposed a
model based on average protons and electrons of auroral im-
ages from 3 years observed by the IMAGE spacecraft. The
experiment demonstrated that Kp, solar wind parameters in-
cluding solar wind velocity, density, and pressure, IMF mag-
nitude, and orientation have an effect on the intensity and
shape of the auroral oval (Milan, 2010). Since 2010, there
have been more and more new methods to construct a con-
nection between the position of the auroral oval boundary
and space physical parameters with the development of ma-
chine learning. Hu and Yang used the segmentation results
of the auroral oval obtained from the UVI on the Polar satel-
lite to build a connection between the positions of the auroral
oval boundary and the auroral electrojet (AE) index, the IMF,
and solar wind parameters by using a multiple regression
method (Hu et al., 2017; Yang et al., 2016). Ding presented
a C-means clustering algorithm based on fuzzy local infor-
mation to extract the auroral oval poleward and equatorward
boundaries from merged images with filled gaps captured
from both GUVI and SSUSI (Ding et al., 2017). However,
the position of the auroral oval boundary is not determined
by one space physical parameter; those methods mentioned
above only used one or several space physical parameters to
explore the relationship between space physical parameters
and the auroral oval boundary. We cannot determine whether
other space physical parameters can influence the location or
size of the auroral oval, and we also do not know whether
the mapping relationship between space physical parameters
and the auroral oval boundary is linear or non-linear.

As we know, machine learning has been applied to many
fields, including the medical, traffic, space physics, and other
interdisciplinary fields. Recently, deep learning models have
led to a series of breakthroughs in image classification, object
detection, image recognition, and other fields. Conventional
machine learning methods have some limitations for process-
ing complex data, especially in the space physics field. There
are no suitable internal features, such as shape and colour.
Therefore, many effective machine learning methods cannot
obtain satisfactory performance on processing space physics
data, while deep learning methods are representation learning
methods with multiple levels of representation. They have
turned out to be very good at discovering intricate structures
in high-dimensional data and multimodal data (LeCun et al.,
2015).

In this paper, a new automatic auroral oval boundary pre-
diction model is proposed based on a deep learning method.
The experiment results show that the model proposed in this
paper can predict the auroral oval boundary accurately by
using space physical parameters and the location of the au-
roral oval boundary at the previous moment. In addition, we
explore the effect of every space physical parameter on the
auroral oval boundary. The rest of this paper is organized as

follows. Section 2 describes our proposed algorithm in detail.
The experiment analysis and discussion are given in Sect. 3,
including dataset construction, subjective and objective eval-
uation, the selection of model parameters, and the discussion
about the influence of every space physical parameter on the
auroral oval boundary. Finally, we draw several conclusions
in Sect. 4.

2 Prediction of the auroral oval boundary based on the
deep learning method

The flowchart of the auroral oval boundary prediction model
is shown in Fig. 1. There are two major steps in our proposed
model, pre-training on our dataset and online prediction. In
the training phase, auroral oval images are usually affected
by heavy noise and other interferences. So, the auroral oval
boundary is blurred, and it is difficult to find from the back-
ground. Compared with other image segmentation methods,
maximal similarity-based region merging (MRSM) (Liu et
al., 2013) can eliminate the cumbersome process of adjust-
ing parameters and has better segmentation accuracy. We use
MRSM firstly to extract positions of the auroral oval bound-
ary. The centre of the auroral oval spatial distribution in
the magnetic local time–magnetic latitude coordinate (MLT–
MLAT) is located in the geomagnetic pole. The magnetic lat-
itude of the auroral oval usually ranged from 57.5 to 73.5◦

according to the statistical studies on previous work (King
and Papitashvili, 2014). In order to unify the distribution of
the auroral oval boundary, the coordinates of those extracted
boundary points are transformed into the MLT–MLAT coor-
dinate secondly. Finally, these transformed boundary points
and their corresponding space physical parameters were in-
put into the deep learning network to train our prediction
model. In the testing phase, we can obtain the corresponding
boundary points of the auroral oval by sending those space
physical parameters and the positions of auroral oval bound-
ary points at the previous moment to our well-trained net-
work.

The deep learning network is constructed by a two-layer
restricted Boltzmann machine (RBM) network (Hinton et al.,
2006; Yu and Deng, 2011) and a radial basis function (RBF)
network (Łukaszyk, 2004). The computational processing of
the RBM and RBF is illustrated by Eqs. (1)–(4). In the train-
ing phase, the inputs of the RBM network are 18 space physi-
cal parameters from the OMNI dataset and coordinate values
of the auroral oval poleward and equatorward boundaries ex-
tracted from segmented UVI images with MRSM. They can
be represented as X = [x1x2, . . .,xm]

T , where m is the num-
ber of network nodes. The first layer of the RBM network is
denoted as θ1 =

{
wi1j1 ,ai1 ,bj1

}
, where wi1j1 is the weight

between the visible unit i1 and the hidden unit j1, ai1 is the
bias of the visible unit i1, and bj1 is the bias of the hidden unit
j1. The hidden layer of the first layer in the RBM network is
the visible layer of the second layer in the RBM network,
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Figure 1. The flowchart of the auroral oval boundary prediction model based on deep learning.

which is denoted as θ2 =
{
wj1j2 ,aj1 ,bj2

}
, where wj1j2 is the

weight between the visible unit j1 and the hidden unit j2, aj1

is the bias of the visible unit j1, and bj2 is the bias of the
hidden unit j2. The output of the first layer of the RBM net-
work is denoted as Y1 = [y11,y12. . .y1n]

T , where n denotes
the node number of the first layer in the RBM network.

y1j1 =

∑m

i=1
xi1wi1j1 + bj1j1 = 1,2, . . .n (1)

The output of the second layer of the RBM network is de-
noted as Y2 =

[
y21,y22, . . .,y2c

]T , where c denotes the node
number of the second layer in the RBM network.

y2j2 =

∑n

j=1
xj1wj1j2 + bj2j2 = 1,2, . . .c (2)

Finally, since contrastive divergence (CD) (Hinton, 2002) is
an approximation of the log-likelihood gradient which has
been found to be a successful update rule for training an
RBM, we can obtain a well-trained RBM network by CD.

The function of the RBF network can make the output of
the RBM network infinitely approximate to the coordinate
values of the auroral oval boundary by a radial basis function.
The input of the RBF network is the output of the second
layer in the RBM network. The output of the RBF network
is represented as Y =

[
y1,y2, . . .,yd

]T , where d denotes the
number of the output layer nodes. wj3o is the weight between
the hidden unit j3 and the output node o. l is the number of
the radial basis function. ϕj3 is the j th radial basis function
and cj3 is the centre of the j th radial basis function. σj3 is the

centre width of the radial basis function.

yo =
∑l

j3=1
wj3oϕj3(||Y2− cj3 ||)o= 1,2, . . .d (3)

ϕj3(||Y2− cj3 ||)= exp
(
−
||Y2− cj3 ||

2

σ 2
j3

)
j3 = 1,2, . . .l (4)

3 Experiments and results analysis

3.1 Dataset construction and evaluation criteria

The auroral oval images used in this paper are captured by
the UVI, which is a 2-D snapshot-type camera on the Po-
lar satellite. The UVI on the Polar satellite acquired more
than several million images during its entire mission. As of
April 2008, it is no longer active. There was no effective ob-
servation after 2000, because the Polar satellite changed its
view after 2000. In order to balance the relationship between
spatial resolution and global coverage, the spatial resolution
of the UVI is 30 km at apogee, the charge-coupled device
(CCD) array onboard has 224× 220 pixels, and the single-
pixel spatial resolution is 0.0036 and 0.04◦ in the two di-
rections respectively. The unilluminated edges of CCD are
discarded, which results in the frame size of an auroral oval
image being 200 by 228 pixels and the frame rate being
37 s. There are four band sensors aboard the satellite usually.
UVI images in our dataset are derived from a Lyman–Brige–
Hopfield long band (160–180 mm). In our experiments, each
auroral oval image is divided into 24 magnetic regions cen-
tered on the geomagnetic pole according to magnetic local
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Figure 2. The schematic of extracting auroral boundary points.

Table 1. Space physical parameters selected from the OMNI
dataset.

Parameter name Units

Bx nT
By nT
Bz nT
Flow speed (Vp) km s−1

Proton density (Np) n cc−1

Temperature K
Flow pressure (Pdyn) nPa
Electric field Mv m−1

Plasma beta –
Alfvén Mach number –
AE index –
AL index –
AU index –
SYM-D index –
SYM-H index –
ASY-D index –
ASY-H index –
Polar cap index –

time (MLT). As shown in Fig. 2, the intersection points be-
tween the auroral oval boundary and division line are ex-
tracted. We extracted 48 boundary points from one auroral
oval image. The poleward and equatorward boundary points
are marked as a red triangle and a red circle respectively.

The space physical parameters were downloaded from the
NASA OMNI dataset with a different time resolution. It is
common knowledge that the IMF, solar wind parameters, and
geomagnetic indexes have a time resolution of 1 min, and the
other space physical parameters maybe have a higher time
resolution. According to the effect derived from other cir-
cumstantial factors, such as the time to traverse the magneto-

sphere and Alfven wave, not all the response times of auroral
events are equal to their propagation time. We align the time
of all space physical parameters with the time of UVI im-
ages in our dataset to avoid the problem of different time res-
olution between space physical parameters and auroral oval
images. In the OMNI dataset, we selected 18 space physical
parameters, including the common parameters, which have
been verified as being related to the position of the auroral
oval boundary (Holzworth and Meng, 1975; Starkov, 1994a,
b; Milan et al., 2010; Hu et al., 2017) and some unfamil-
iar parameters which are never discussed in previous works.
Therefore, our dataset includes 184 416 auroral oval bound-
ary points extracted from 3842 UVI images and its corre-
sponding values of 18 space physical parameters. Table 1
shows the 18 space physical parameters which we used in
this paper.

In order to evaluate the precision of predicted auroral oval
boundary points by our model, we use the common met-
ric MAE (mean absolute error) to assess the error between
predicted auroral oval boundary points and real auroral oval
boundary points. The MAE can be defined as Eq. (5).

MAE=
1

24

∑24
i=1

(
1
k

∑k

j=1
|F
ij

MLAT− S
ij

MLAT|

)
(5)

S
ij

MLAT represents the MLAT of the jth test sample at the jth
MLT region obtained from the segmented image, and F ijMLAT
indicates the MLAT of the jth test sample in the ith MLT re-
gion acquired by our prediction model. k is the total number
of test samples.

3.2 Parameter set-up of the deep learning network

Since the effectiveness of the prediction model is influenced
by the number of hidden layer nodes in the RBM network
(Hinton, 2012) and the training error of the RBF network,
we build two experiments to find the most suitable param-
eters for our network. For both experiments, space physi-
cal parameters and positions of poleward and equatorward
boundary points in 24 MLT regions of 3000 UVI images are
selected as training samples, and the rest are regarded as test
samples. In experiment 1, the training error of the RBF net-
work is set to 4 magnetic latitudes and the numbers of hidden
layer nodes in the RBM network are 32, 64, 96, and 128 re-
spectively. We use the average MAE with 100 experiments
to verify the stability of our model, because training samples
and test samples were divided by a random number. The cor-
responding MAE is shown in Fig. 3a. From Fig. 3a, MAE
reaches the smallest value when the number of hidden layer
nodes is set to 32. In experiment 2, the number of hidden
layer nodes is set to 32 according to the results in experi-
ment 1. There often has been an overfitting problem when
we train a neural network (Krizhevsky et al., 2012). Over-
fitting can be interpreted as a phenomenon where the model
performs well on the training set and unsatisfactorily on the
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Table 2. The MAE values of different methods.

Methods BP Yang’s ours

Poleward boundary 2.20 2.01 1.69
Equatorward boundary 2.19 1.91 1.51

test set. We set different training errors to avoid the overfit-
ting problem. So, the training error of the RBF network is
set to 2, 4, 6, and 8 magnetic latitudes empirically. The cor-
responding MAE is shown in Fig. 3b, and MAE reaches the
minimum when the training error of the RBF network is 4
magnetic latitudes. From the two experiment results above,
we set the number of hidden layer nodes in the RBM net-
work and the training error of the RBF network to 32 and 4
respectively as the optimal parameters of the deep learning
network in the following experiments.

To demonstrate the availability of our proposed model, we
compared the proposed model with a back-propagation (BP)
network (Rumelhart, 1986) and Yang’s model (Yang et al.,
2016). The subjective prediction results obtained by the three
methods are shown in Fig. 4; circles and squares stand for
poleward boundary points and equatorward boundary points
which are obtained from the segmented image, and “+” and
“×” marks represent poleward boundary points and equator-
ward boundary points respectively which are obtained from
our prediction model. Although these three methods have
similar prediction results in most areas on the auroral oval
boundary, it is obvious that our method can obtain more
accurate boundaries than the other two compared methods,
marked by blue rectangles and red rectangles in Fig. 4. In
more detail, the results of the BP model and our model are
shown in Fig. 4a and b respectively; we can clearly see that
the distances between auroral oval boundary points predicted
by our method and real auroral oval boundary points are
smaller than the distances between the BP model’s results
and real auroral oval boundary points in red rectangle areas.
From Fig. 4a and c, our prediction points are closer to real au-
roral oval boundary points compared with Yang’s prediction
points in blue rectangle areas. Meanwhile, the MAE values
of different methods are shown in Table 2. From this table,
our method has the smallest MAE not only on the poleward
boundary, bur also on the equatorward boundary, because our
model can extract more useful information and features from
auroral oval images than the other two models. As a conse-
quence, we can draw the conclusion that the proposed model
in this paper is more suitable for predicting the auroral oval
boundary.

3.3 The influence of space physical parameters on the
auroral oval boundary

As we know, the location of the auroral oval boundary is af-
fected by a variety of space physical parameters. Variations
of the auroral oval boundary in different MLT sectors are

related to different space physical parameters. For the sake
of exploring the influence of space physical parameters on
the poleward and equatorward boundaries specifically, the
boundary points are further processed as follows (Hu et al.,
2017). Firstly, all poleward and equatorward boundary points
are divided into 24 subsets of poleward and equatorward
boundary points according to 24 MLT sectors. Secondly, in
every MLT subset, we sort boundary data with respect to
the values of all the space physical parameters and divide
boundary data into 10 groups evenly. In order to observe the
variation tendency of each parameter in different MLT sec-
tors clearly, in every MLT sector, the relationship between
each space physical parameter and the location of the au-
roral oval boundary was represented as a quadratic equa-
tion based on the principles of the least square conic fitting
(Fitzgibbon et al., 1999). Then, we calculate the locations of
poleward and equatorward boundary points for each space
physical parameter using this function. Finally, we use the
boundary data calculated by the quadratic equation to dis-
cuss the influence of space physical parameters on the auro-
ral oval boundary. In this section, we build three statistical
experiments to discuss how the IMF, solar wind parameters,
and geomagnetic indexes influence the auroral oval bound-
ary, an auroral oval boundary prediction experiment by in-
putting every single space physical parameter to explore the
relationship between the auroral oval boundary and 18 space
physical parameters, and a correlation analysis experiment is
constructed to study the connection between a combination
of different space physical parameters and the auroral oval
boundary.

3.3.1 Experiment 1. Influence of different IMF
components on the auroral oval boundary

The IMF can affect the auroral oval boundary through dif-
ferent space processes. In this experiment, the responses of
different IMF components to the auroral oval boundary are
shown in Fig. 5. The different colour and shape markers rep-
resent different MLT sectors. The vertical error bars represent
one-eighth of the standard deviation from the mean value of
the auroral oval boundary position, and the horizontal error
bars represent the standard deviation from the mean value
of the different IMF components in all of the binned data.
Therefore, the length of the vertical error bar is fixed and the
length of the horizontal error bar is changeable because of
the different standard deviation in all of the binned data.

From Fig. 5, we can see that the poleward and equator-
ward boundaries in each MLT sector show a step-by-step
poleward displacement with the increase in the IMF Bz com-
ponent. It has been widely accepted that IMF Bz controls
the energy coupling between the solar wind and the magne-
tosphere (Cho et al., 2010; Makita et al., 1983). During a
period of a southward IMF (Bz < 0), poleward motion of the
auroral oval boundary is due to a higher reconnection rate
in the process of dayside reconnection. However, most pole-
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Figure 3. (a) The MAE values of the different hidden layer nodes. (b) The MAE values of the different training errors.

Figure 4. The different subjective results based on different methods. (a) The subjective results predicted by our method, (b) the subjective
results predicted by the BP network, and (c) the subjective results predicted by the Yang et al. (2016) method.

ward motion of the auroral oval boundary occurred during
a northward IMF (Bz > 0). Under northward IMF (Bz > 0)
conditions, poleward activity of the auroral oval boundary
was often related to the IMF By component (Xing et al.,
2013). The poleward and equatorward boundaries at 09:00–
15:00 MLT show a gradually poleward displacement with the
rise of the IMF By component, and the poleward and equa-
torward boundaries at 18:00–06:00 MLT gradually approach
the pole with the decrease in the absolute IMF By component
from Fig. 5. This statistical discovery proves previous studies
on the IMF By component. For example, Karlson’s obser-
vations suggested that the IMF By component is related to
prenoon–postnoon asymmetry of poleward activity (Karlson
et al., 1996), and it is well known that ionospheric convec-
tion is mainly controlled by the IMF Bz and By components
(Cowley and Lockwood, 1992; Huang et al., 2000), which
implies the prenoon–postnoon asymmetry of poleward activ-
ity is similar to the procedure of ionospheric plasma convec-

tion. Both space activities mentioned above are affected by
the variety of IMF By component (Provan et al., 1999). The
poleward and equatorward boundaries at 21:00–06:00 MLT
show a gradually poleward motion with the ascent of the IMF
Bx component observed from Fig. 5, which is consistent with
IMF By and Bz.

3.3.2 Experiment 2. Influence of different solar wind
parameters on the auroral oval boundary

For the sake of finding the variation trend of the auroral oval
boundary with the change in solar wind parameters, includ-
ing solar wind density (Np), solar wind speed (Vp), and so-
lar wind dynamic pressure (Pdyn) respectively, experiment 2
is performed. Figure 6 shows the response of different solar
wind parameters on the auroral oval boundary.

From Fig. 6, both the poleward and equatorward bound-
aries shrink at 21:00–06:00 MLT when the value of Np rises.
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Figure 5. Responses of the magnetic latitudes of the poleward (a, b, c) and equatorward (d, e, f) boundaries to Bx , By , and Bz respectively
at 00:30, 00:60, 00:90, 12:00, 15:00, 18:00, 21:00, and 24:00 MLT.

Figure 6. Responses of the magnetic latitudes of the poleward (a, b, c) and equatorward (d, e, f) boundaries toNp , Pdyn, and Vp respectively
at 00:30, 00:60, 00:90, 12:00, 15:00, 18:00, 21:00, and 24:00 MLT.

Meanwhile, the poleward and equatorward boundaries at
09:00–18:00 MLT gradually approach the Equator when the
value of Np rises. In addition, we can draw the follow-
ing conclusions: the poleward and equatorward boundaries
at 03:00–18:00 MLT extend to the Equator clearly with the
increase in Pdyn, and the equatorward boundary at 21:00–
24:00 MLT has a poleward motion with the increase in Pdyn.
There is an obvious poleward motion in the nightside sec-

tor impacted by the increasing Pdyn and Np according to the
conclusions above. We can make a coincident inference with
previous studies, for example, poleward displacement of the
auroral oval boundary along with the increasing Pdyn, which
results from the shrunken polar cap (Cho et al., 2010). By
extension, there must have been some dependencies between
the varying size of the polar cap and nightside reconnec-
tion (Boudouridis et al., 2003). Compared with the change
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in the auroral oval boundary in the nightside sector, both the
poleward and equatorward boundaries are enlarged when the
values of Pdyn and Np rise, which is observed from Fig. 6.
Previous explorations and simulations have shown that en-
larged Pdyn can enhance ionospheric potential and the corre-
sponding field-direction current intensity, which can lead to
an increase in global auroral activity intensity. Meanwhile,
the position of the auroral oval boundary will extend to low
latitudes (Peng et al., 2011). From Fig. 6, a distinct equa-
torward movement appears with an increase in Vp at 24:00–
06:00 MLT for both the poleward boundary and the equator-
ward boundary. This changing pattern of Vp and the auroral
oval boundary which we illustrate above is consistent with
Hu’s study in 2017 (Hu et al., 2017).

3.3.3 Experiment 3. Influence of geomagnetic indexes
on the auroral oval boundary

In this experiment, the average tendency of the poleward and
equatorward boundaries influenced by geomagnetic indexes
(AE, AL, AU) is shown in Fig. 7.

As we can see from Fig. 7, in every MLT sector, the pole-
ward and equatorward boundaries move to low magnetic lat-
itude with the ascending AE and AU indexes, while the pole-
ward and equatorward boundaries extend to high magnetic
latitude with the ascent of the AL index. The AE index is of-
ten used to characterize the strength of substorm activity in
the magnetosphere. Therefore, it can be considered that the
auroral oval extends to the Equator due to the enhanced sub-
storm activity. Furthermore, the amount of energy enters the
magnetotail along with the strengthening of substorm activ-
ity. This means that the AE index will increase when energy
in the magnetotail is released through a substorm, which is
coincident with our findings about AE from Fig. 7.

3.3.4 Experiment 4. Influence of all 18 space physical
parameters on the auroral oval boundary

As we know, most of the studies on how the space phys-
ical parameters affect the auroral oval boundary focus on
solar wind parameters, geomagnetic indexes, and IMF com-
ponents. There have been lots of corresponding conclusions
about the influence of those space physical parameters on
the auroral oval boundary up to now. Nonetheless, how the
other space physical parameters not mentioned above affect
the auroral oval location has not been addressed. In order to
further explore the variation of the auroral oval boundary in-
fluenced by different space physical parameters, experiment
4 is performed. In experiment 4, we send one physical pa-
rameter selected from Table 1 at the present moment and
the coordinates of auroral oval boundary points at the pre-
vious moment to our prediction model, and the outputs of
our model are 48 coordinate values of auroral oval boundary
points and the MAE between real boundaries and predicted
boundaries. The MAE values of poleward and equatorward

Table 3. The MAE influenced by different space physical parame-
ters. The bigger MAE values in both the poleward and equatorward
boundaries were written in bold font compared with others. The val-
ues written in bold font representing its corresponding space phys-
ical parameters had more influence on poleward and equatorward
boundaries.

Parameter name MAE (poleward/equatorward)

Bx 1.6222/1.4448
By 1.6134/1.4462
Bz 1.6139/1.4476
Flow speed (Vp) 1.6117/1.4485
Proton density (Np) 1.6285/1.4451
Temperature 1.6129/1.4458
Flow pressure (Pdyn) 1.6242/1.4463
Electric field 1.6113/1.4430
Plasma beta 1.6118/1.4435
Alfven Mach number 1.6193/1.4473
AE index 1.6183/1.4562
AL index 1.6325/1.4668
AU index 1.6117/1.4517
SYM-D index 1.6187/1.4500
SYM-H index 1.6197/1.4581
ASY-D index 1.6137/1.4550
ASY-H index 1.6079/1.4500
Polar cap index 1.6120/1.4512

boundaries influenced by different space physical parameters
are given in Table 3. We can infer the response of the auroral
oval boundary to 18 space physical parameters through the
different MAE values of these space physical parameters.

The MAE values of the boundary positions are 1.6076 and
1.4545 respectively when we only use boundary positions at
the previous moment to predict poleward and equatorward
boundaries. We take this MAE as standard, called S-MAE.
Compared with the S-MAE, we can see that the MAE in-
creases about 1.9 % for the poleward boundary by adding any
one space physical parameter to the input of our model from
Table 3. Meanwhile, the value of MAE for the equatorward
boundary is between −0.7 % and 0.7 %. Although different
space physical parameters have different influences on the
auroral oval boundary, compared to other space physical pa-
rameters in Table 3, the MAE of the auroral oval boundary
can display the greatest impact when AL, Bx , Np, and Pdyn
are used as the inputs of our model respectively, which sug-
gests that these four space physical parameters mentioned
above have a great influence on the position of the auroral
oval boundary.

3.3.5 Experiment 5. Correlation analysis of all 18 space
physical parameters

In order to analyse the influence of space physical parame-
ters on the auroral oval efficiently, we not only consider the
effect of each space physical parameter on the auroral oval
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Figure 7. Response of the magnetic latitude of poleward (a, b, c) and equatorward (b, e, f) boundaries to AE, AU, and AL respectively at
00:30, 00:60, 00:90, 12:00, 15:00, 18:00, 21:00, and 24:00 MLT.

Table 4. The Pearson correlation coefficient of all 18 space physical
parameters from December 1996 to March 1997.

Parameter name Correlation coefficient

Vp-Np −0.5970
Vp-SYM-H −0.5120
Np-Pdyn 0.7662
Np-SYM-H 0.5584
AE-AL −0.9437
AE-AU 0.7139
AE-PC 0.8067
AL-PC −0.7079
AU-PC 0.6924

boundary, but also take the effect on the auroral oval bound-
ary with different combinations of space physical parameters
into account in experiment 5. As a result, we first calculate
the correlations of all 18 space physical parameters using the
Pearson correlation coefficient, which is a statistical value
that reflects the degree of linear correlation between two vari-
ables. The Pearson correlation coefficient of two variables
(XY ) equals the covariance of the two variables (XY ) di-
vided by the product of their standard deviations (σXσY ).
The formula of the Pearson correlation coefficient can be rep-
resented as Eq. (6), and the Pearson correlation coefficients
of all 18 space physical parameters are given in Table 4. The
process of experiment 5 is similar to experiment 4 and the
MAE values of different space physical parameter combina-
tions are given in Table 5.

ρX,Y =
cov(X,Y )
σXσY

=
E [(X−µX)(Y −µY )]

σXσY
(6)

The MAE values of the poleward and equatorward bound-
aries by using three components of IMF and auroral oval
boundary positions which were acquired at the last moment
as the input of the proposed model are 1.6313 and 1.4759
respectively in Table 5. The MAE values of the three compo-
nents of the IMF combination are bigger than S-MAE. When
the input of our model includes Bx , By , and Bz, it is ob-
vious that the MAE values of the poleward and equatorward
boundaries both have significant increases compared with the
MAE values of the poleward and equatorward boundaries by
inputting any IMF components into our model, which sug-
gests that the three components of the IMF have a similar
influence on the auroral oval boundary. Previous investiga-
tions illustrated that the auroral oval boundary is connected
with the variation of IMF Bx , By , and Bz (Huang et al., 2000;
Provan et al., 1999). Our experiment results also demonstrate
that the auroral oval boundary should be related to the three
components of the IMF. When the northward or southward
IMF directions are inputted into the proposed model, the
MAE values have marked changes in both the poleward and
equatorward boundaries. Nevertheless, we can observe the
more evident increase in MAE in the equatorward bound-
aries compared with the MAE of the poleward boundaries
by using the northward IMF direction as the input of our
model. Meanwhile, there was an opposite result under the
southward IMF direction condition. The variations of MAE
in the poleward boundaries are bigger than those of the equa-
torward boundaries when the input of our model is in the
southward IMF direction. Therefore, we can know that the
northward IMF direction has a great influence on the equa-
torward boundaries, and the southward IMF direction has a
significant effect on the poleward boundaries.
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Table 5. The MAE influenced by different combinations of space
physical parameters.

Parameter name MAE (poleward/equatorward)

IMF 1.6313/1.4759
IMF (Bz > 0) 1.6365/1.7595
IMF (Bz < 0) 1.7163/1.6193
Solar wind index 1.6495/1.4877
Geomagnetic index 1.6569/1.5124
AE, AU, AL, PC 1.6734/1.5272
Vp , Np , Pdyn, SYM-H 1.6611/1.4919

We can see that AE has a strong positive correlation with
AU and PC and that AL has a strong negative correlation with
AE, AU, and PC from Table 4. The linear correlation coef-
ficient between AE and AL is −0.9437, which verified that
the AL index has the opposite effect on the auroral boundary
compared with the AE index. In contrast, the impact of the
AU index on the auroral boundary is similar to the impact of
the AE index on the auroral boundary because of the strong
positive correlation between AE and AU. Those conclusions
mentioned above are consistent with the conclusions of sta-
tistical experiment 3. In addition, the correlation coefficient
between AE and PC is 0.8067, which implies PC should have
a homologous trend with AE in every MLT section. Figure 8
shows the response of the poleward and equatorward bound-
aries to PC respectively. The PC index can serve as an indica-
tor of auroral electrojet activity. Vennerstrøm found that PC
is sensitive to electrojet activity and substorm intensifications
of the westward electrojet in the midnight or post-midnight
sectors (Vennerstrøm et al., 1991). This conclusion matches
what we found about the impact of PC on the auroral oval
boundary in Fig. 8. When the input of our model only in-
cluded the three geomagnetic indices (AE, AL, AU) and the
auroral oval boundary positions at the previous moment, the
MAE values of the equatorward and poleward boundaries are
1.6569 and 1.5124 respectively from Table 5. We can clearly
know that the MAE values of the poleward and equatorward
boundaries are both enlarged compared with S-MAE. As a
result, we can draw the conclusion that the three geomag-
netic indexes strengthen each other’s effect when the combi-
nation of the three geomagnetic indexes is inputted into our
model. Beyond that, in Table 5, when AE, AU, AL, and PC
are used as the input of our model, the MAE values of pole-
ward and equatorward boundaries are 1.6734 and 1.5275 re-
spectively, which shows that the combinations of those pa-
rameters have an important influence on the location of the
auroral oval boundary.

According to Table 4, there was an obvious correlation
among the following space physical parameters. For the solar
wind parameters, Vp and Np are positive correlations, while
Np and Pdyn are negative correlations, and the three param-
eters are all related to SYM-H. Firstly, we can obtain a sim-

Figure 8. Response of the magnetic latitude of poleward (a) and
equatorward (b) boundaries to PC at 00:30, 00:60, 00:90, 12:00,
15:00, 18:00, 21:00, and 24:00 MLT.

Table 6. The MAE influenced by different combinations of space
physical parameters.

Parameter name MAE
(poleward/

equatorward)

Bx , By 1.6145/1.5003
Bx , Vp , SYM-H 1.6359/1.5129
Bx , By , Vp , SYM-H 1.6118/1.5056
Bx , By , Vp , Pdyn, PC 1.6242/1.5084
Bx , By , Np , AU, SYM-H 1.6154/1.5181
Bx , By , Vp , Np , SYM-H, PC 1.6324/1.5017
Bz, Vp , Pdyn, AE, AU, AL, SYM-H 1.6282/1.5125
Bx , By , Bz, Vp , Np , Pdyn, AE, AU 1.6149/1.5044
Bx , By , Bz, Vp , Np , Pdyn, AE, AU, PC 1.6994/1.5028
Bx , By , Bz, Vp , Np , Pdyn, AL, AU, SYM-H, PC 1.6771/1.5716
Bx , By , Bz, Vp , Np , Pdyn, AE, AL, AU, SYM-H, PC 1.6669/1.5743

ilar inference on the three geomagnetic indices to solar wind
parameters (Vp, Np, Pdyn) according to the MAE values of
the three solar wind parameter combinations from Table 5
and the strong correlation between them. In other words, the
three solar wind parameters also strengthen each other’s ef-
fect on the auroral oval boundary when the combinations of
them are sent into our model. Secondly, when Np, Vp, Pdyn,
and SYM-H are input into our model, the MAE values of the
auroral oval boundaries are 1.6611 and 1.4919 poleward and
equatorward respectively in Table 5, which is bigger than the
MAE values of the auroral oval boundaries when the inputs
are Np, Vp, and Pdyn. So, we can conclude that the combi-
nations of these four parameters strengthen the mutual influ-
ence on the location of the auroral oval boundary. According
to the statistics from Table 6, the physical variables that ap-
pear most frequently are Bx , By , Vp, and SYM-H. When the
inputs of our model are the combination of these four vari-
ables or the combination of Bx and By , the MAE of the au-
roral oval boundary reaches its minimum, which proves that
these four parameters have a great influence on the location
of the auroral oval boundary.
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As a summary, it can be seen that these space physical
parameters, which include Bx , By , Vp, and SYM-H, play a
crucial role in determining the location of the auroral oval
boundary based on the above conclusions.

4 Conclusions

In this paper, we establish a model to measure the rela-
tionship between space physical parameters from the OMNI
dataset on the NASA website and poleward and equatorward
auroral oval boundaries based on a deep learning network.
Our model overcomes some drawbacks in this field, such
as some prediction methods based on statistics and a few
space physical parameters. Those methods are not very suit-
able for the complex and changeable space physical data. For
our model, the inputs are 18 space physical parameters and
the 48 coordinates value of auroral oval boundary points at
the previous moment, and we can obtain positions of pole-
ward and equatorward boundaries at 24 MLTs from our well-
trained model. At last, our experiment results show that the
model proposed in this paper can better reflect the relation-
ship between space physical parameters and an auroral oval
boundary. Therefore, it should be useful to predict the po-
sition of an auroral oval boundary. In addition, we analyse
the effect of all 18 space physical parameters on the loca-
tion of an auroral oval boundary based on several statistical
and prediction experiments. It can be shown that different pa-
rameters have different effects on the auroral oval boundary
from our experiments. Some space physical parameters, Bx ,
By , Vp, and SYM-H, have a great influence on the position
of the auroral oval boundary.
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