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Abstract. Statistical hypothesis tests in wavelet analysis are
methods that assess the degree to which a wavelet quantity
(e.g., power and coherence) exceeds background noise. Com-
monly, a point-wise approach is adopted in which a wavelet
quantity at every point in a wavelet spectrum is individually
compared to the critical level of the point-wise test. How-
ever, because adjacent wavelet coefficients are correlated and
wavelet spectra often contain many wavelet quantities, the
point-wise test can produce many false positive results that
occur in clusters or patches. To circumvent the point-wise
test drawbacks, it is necessary to implement the recently
developed area-wise, geometric, cumulative area-wise, and
topological significance tests, which are reviewed and devel-
oped in this paper. To improve the computational efficiency
of the cumulative area-wise test, a simplified version of the
testing procedure is created based on the idea that its out-
put is the mean of individual estimates of statistical signif-
icance calculated from the geometric test applied at a set
of point-wise significance levels. Ideal examples are used
to show that the geometric and cumulative area-wise tests
are unable to differentiate wavelet spectral features arising
from singularity-like structures from those associated with
periodicities. A cumulative arc-wise test is therefore devel-
oped to strictly test for periodicities by using normalized ar-
clength, which is defined as the number of points compos-
ing a cross section of a patch divided by the wavelet scale
in question. A previously proposed topological significance
test is formalized using persistent homology profiles (PHPs)
measuring the number of patches and holes corresponding
to the set of all point-wise significance values. Ideal exam-
ples show that the PHPs can be used to distinguish time se-
ries containing signal components from those that are purely
noise. To demonstrate the practical uses of the existing and

newly developed statistical methodologies, a first compre-
hensive wavelet analysis of Indian rainfall is also provided.
An R software package has been written by the author to im-
plement the various testing procedures.

1 Introduction

Time series describing the evolution of physical quantities
such as streamflow, sea surface temperature (SST), rainfall,
and wind speed often contain non-stationary and timescale-
dependent characteristics. A better understanding of these
characteristics is facilitated through the application of vari-
ous statistical and signal processing methods that account for
them. One such method is wavelet analysis, which is a time–
frequency analysis method for extracting time-localized and
scale-dependent features from time series. This method con-
trasts with the widely known Fourier analysis that assumes
stationarity. The short-time Fourier transform (STFT) ad-
dresses the problem of time localization, but wavelet anal-
ysis is still preferred over the STFT because wavelet analysis
uses a variable window width that more effectively separates
signal components. An additional attractive aspect of wavelet
analysis is that it can be used to quantify the relationship or
coherence between two time series at an array of timescales
in a non-stationary setting (Grinsted et al., 2004). More re-
cently, the frequency domain analogs of partial and multiple
correlation (Ng and Cha, 2012; Hu and Si, 2016) have been
developed in wavelet analysis, making the method an even
more powerful exploratory tool for researchers. Given these
desirable aspects of wavelet analysis, it is not surprising that
wavelet analysis has been applied to a broad range of topics,
including climatology (Gallegati, 2018), hydrology (Schaefli
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et al., 2007; Labat, 2010; Schulte et al., 2017), forecast model
verification (Lane, 2007; Liu et al., 2011), ensemble forecast-
ing (Schulte and Georgas, 2018), climate network analysis
(Agarwal et al., 2018; Paluš, 2018; Ramana et al., 2013; Sa-
hay and Srivastava, 2014; Elsanabary and Gan, 2004), and
biomedicine (Addison, 2005).

One application of wavelet analysis is the estimation of
a sample wavelet spectrum and the subsequent comparison
of the sample wavelet spectrum to a background noise spec-
trum. To make such comparisons, one must implement sta-
tistical tests such as the point-wise (Torrence and Compo,
1998), area-wise (Maraun et al., 2007), geometric (Schulte
et al., 2015), and cumulative area-wise (Schulte, 2016a) tests.
Torrence and Compo (1998) were the first to place wavelet
analysis in a statistical hypothesis testing framework using
point-wise significance testing. In the point-wise approach,
the statistical significance of wavelet quantities associated
with points in a wavelet spectrum is assessed individually
without considering the correlation structure among wavelet
coefficients. For wavelet power spectra of climate time se-
ries, theoretical red-noise spectra are often the noise back-
ground spectra against which sample wavelet power spec-
tra are tested. Monte Carlo methods are used to estimate the
background noise spectra for wavelet coherence (Grinsted et
al., 2004), partial coherence (Ng and Cha, 2012), multiple
coherence (Hu and Si, 2016), and auto-bicoherence (Schulte,
2016b).

Despite its wide use, the point-wise approach has two
drawbacks; the first of which is that the test will frequently
generate many false positive results because of the simulta-
neous testing of multiple hypotheses (Maraun et al., 2007;
Schulte et al., 2015). The second drawback is that spuri-
ous results occur in clusters because wavelet coefficients
are correlated. To account for these deficiencies, Maraun et
al. (2007) developed an area-wise test to reduce the num-
ber of spurious results. Additional tests were subsequently
developed by Schulte et al. (2015) and Schulte (2016a) to
address the deficiencies of the point-wise test and compu-
tational inefficiencies of the area-wise test. Although these
tests were demonstrated as being effective in reducing spu-
rious results, the point-wise testing procedure is still more
frequently adopted. Furthermore, there are numerous papers
surveying general aspects of wavelet analysis (Meyers et al.,
1993; Kumar and Foufoula-Georgiou, 1997; Torrence and
Compo, 1998; Labat, 2005, Lau and Weng, 1995; Addison,
2005; Schaefli et al., 2007; Sang et al., 2012) but no papers
surveying the recent developments in statistical hypothesis
testing. This observation underscores the need for a paper
that summarizes theoretical and practical aspects of statisti-
cal hypothesis testing.

A physical application to which wavelet methods have
been applied is the understanding of Indian rainfall (Adarsh
and Reddy, 2014; Maheswaran and Khosa, 2014). In-
dian rainfall variability is a complex, non-stationary, and
timescale-dependent phenomenon, making wavelet analy-

sis a well-suited tool for studying it. Recognizing the non-
stationary behavior of the Indian monsoon phenomena, Tor-
rence and Webster (1999) used wavelet coherence analysis
to show that the relationship between the El Niño–Southern
Oscillation (ENSO) and Indian rainfall is strong and non-
stationary in the 2-year to 7-year period band. Narasimha
and Bhattacharyya (2010) used wavelet cross-spectral anal-
ysis to link the solar cycle to changes in the Indian mon-
soon. Other studies have used wavelet analysis to understand
the temporal characteristics of the Indian rainfall time series
(Nayagam et al., 2009). Fasullo (2004) found biennial os-
cillations in the all-India rainfall time series, while Yadava
and Ramesh (2007) found significant long-term periodicities
in an Indian rainfall proxy time series. Terray et al. (2003)
found that a time series describing late summer (September–
August) Indian rainfall is associated with significant wavelet
power in the 2-year to 3-year period band and suggested that
such power is related to the tropospheric biennial oscillation.
Common to all the studies noted above is the use of point-
wise significance testing. Recent work highlighting the pit-
falls of the point-wise testing approach raises the question as
to whether the features identified in previous wavelet studies
of Indian rainfall are statistical artifacts or ones distinguish-
able from the background noise. To address this question, an
additional study is needed that applies the new statistical hy-
pothesis tests in wavelet analysis.

In this paper, a first review of the theoretical and practi-
cal aspects of recent advances in statistical significance test-
ing of wavelet estimators is presented in Sect. 2. Section 2
also includes discussions about the modifications of existing
tests designed to make them more computationally efficient
than the original formulations. A cumulative arc-wise test is
also proposed for testing for the presence of periodicities em-
bedded in noise in a strict sense. Section 3 is devoted to the
presentation of a comprehensive wavelet analysis of Indian
rainfall time series using recently developed wavelet meth-
ods. The paper concludes with a summary and discussion in
Sect. 4.

2 Wavelet analysis

2.1 Basic overview

The continuous wavelet transform of a time series X(t) is
given by

W (b,a)=
1
√
a

∫
∞

−∞

X(t)ψ∗
(
t − b

a

)
dt, (1)

where a is wavelet scale, ψ is an analyzing wavelet, and b is
time. The sample wavelet power spectrum is |W (b,a)|2 and
measures the energy content of a signal at time b and scale
a. Thus, the wavelet transform of a time series produces a 2-
D representation of it. In this paper, the set consisting of all
points in the 2-D representation will be denoted byH and re-
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ferred to as the timescale plane. To simplify the discussion of
results in this paper, the commonly used Morlet wavelet with
angular frequency ω = 6 is used throughout. For more details
about wavelet analysis, the reader is referred to Torrence and
Compo (1998).

Unlike the Fourier analysis where neighboring frequen-
cies are uncorrelated, the wavelet coefficients at neighboring
points in H are intrinsically correlated. The intrinsic corre-
lation between wavelet coefficients at (b, a) and (b′, a′) is
represented by the reproducing kernel K(b,a, b′, a′) whose
mathematical expression is

K
(
b,a;b′,a′

)
=

1

cψ
√
aa′

∫ [
ψ

(
t − b′

a′

)
ψ∗
(
t − b

a

)]
dt, (2)

where cψ is an admissibility constant. The redundancy be-
tween the values W (a,b) and W

(
a′,b′

)
is expressed as

W (b,a)=

∫ ∫
K
(
b,a;b′,a′

)
W
(
a′,b′

) da′

a′2
db′. (3)

Equation (3) says that a wavelet coefficient at W (b,a) cap-
tures information from neighboring points; the degree to
which this occurs depends on the weight K

(
b,a;b′,a′

)
.

Even for uncorrelated noise, wavelet coefficients will be cor-
related in H (Maraun and Kurths, 2004), a theoretical result
that has important implications for significance testing.

The normalized reproducing kernel for the Morlet wavelet
is shown in Fig. 1, where normalization means that the re-
producing kernel is divided by its maximum value so that the
maximum of the normalized reproducing kernel is equal to
unity and located at the point at which the reproducing ker-
nel is centered. In Fig. 1a, the reproducing kernel is dilated
and translated to the scale a = 32 and time b = 500 and indi-
cates that a wavelet coefficient at (500, 32) will be correlated
with other wavelet coefficients surrounding it. The reproduc-
ing kernel shown in Fig. 1b is dilated and translated to (500,
128) and seen as being wider in the time direction than the
reproducing kernel centered at (500, 32). The widening re-
flects how the reproducing kernel expands linearly in both
the time and scale (in a non-logarithmic scale) direction.

2.2 Statistical significance tests

2.2.1 Point-wise significance

In point-wise significance testing, one individually compares
a wavelet quantity at every point in H to the critical level of
the point-wise test, which depends on the chosen point-wise
significance level αpw and usually on the wavelet scale a. For
wavelet power spectra of climate time series, point-wise test
critical values are often determined from a theoretical red-
noise background (Torrence and Comp, 1998). For wavelet
coherence, partial coherence, multiple coherence, and auto-
bicoherence, Monte Carlo methods need to be implemented
to estimate the critical values (Grinsted et al., 2004; Ng and
Chan, 2012; Hu and Si, 2016; Schulte, 2016b). However, a

Figure 1. The normalized reproducing kernel of the Morlet wavelet
dilated and translated to (a) (500, 32) and (b) (500, 128). Contours
enclose the regions in the timescale plane where the normalized re-
producing kernel exceeds 0.1. The closed path g in Fig. 1b can be
continuously deformed into a point so that it does not surround a
hole in the contoured region.

parametric bootstrap method may be required for determin-
ing the critical values of an arbitrary background model if
analytical background models are not readily available (Ma-
raun et al., 2007). Using the point-wise test, one assigns to
each point in H a p value, ρpw, representing the probabil-
ity of finding the observed or more extreme wavelet quantity
(power, coherence, etc.) when the null hypothesis is true. The
result of the point-wise test is the subset

Ppw =
{
(b,a) : ρpw (b,a) < αpw

}
, (4)

of H , representing regions where point-wise significant
wavelet quantities have been identified.

To better understand the utility of the point-wise testing
procedure, consider two example time series, where the first
time series, R(t), corresponds to a realization of a red-noise
process with a lag-1 autocorrelation coefficient equal to 0.4
(Fig. 2a). The second time series, X(t), shown in Fig. 3a, is
given as

X(t)= S (t)/σs+N(t)/mσn, (5)

where

S (t)=

3∑
j=1

sin
2π

2j+5 t + δ(t), (6)

δ (t)=

{
60 t = 1000
0 otherwise , (7)

and N(t) is a realization of a red-noise process with a lag-1
autocorrelation coefficient equal to 0.1. The constants σs and
σs are the standard deviations of S(t) and N(t), respectively.
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Figure 2. (a) A realization of a red-noise process (denoted by R(t)) with lag-1 autocorrelation coefficient equal to 0.4 together with its
rectified wavelet power spectrum after the application of the (b) point-wise, (c) area-wise, (d) geometric, (e) cumulative area-wise, and
(f) cumulative arc-wise tests. The point-wise, cumulative arc-wise, and cumulative area-wise tests were applied at the 5 % significance levels.
The geometric and area-wise tests were applied at the 0.01 level to 5 % point-wise significance regions. Contours enclose regions of statistical
significance. Light shaded region represents the cone of influence where edge effects become important.

The real number m is a measure of the signal-to-noise ratio,
with larger values indicating a relatively higher signal.

The outcomes of the point-wise test applied to the (recti-
fied; Liu et al., 2007) wavelet power spectrum of X(t) and
R(t) are shown in Figs. 2b and 3b. For R(t), the point-wise
test applied at αpw = 0.05 identified many statistically sig-
nificant wavelet power coefficients, all of which being spuri-
ous by construction. The spurious results are seen occurring
in contiguous regions, and the union of all such regions is
Ppw. For the wavelet power spectrum of X(t), statistically
significant wavelet power at the periods 64, 128, and 256 is
seen clustering in narrow bands, reflecting the periods of the
individual sinusoids (Fig. 3b). The singularity at t = 1000
emerges as a scale-elongated region of point-wise signifi-
cance, extending from a period of 2 to a period of approx-
imately 32. What about the other features seen in the wavelet
power spectrum? All the other significance regions are spu-
rious by construction because they are associated with the
noise term N(t), implying that they resulted from stochas-
tic fluctuations. Thus, without further investigation, it would
be impossible to know without prior knowledge of X(t) if
the features associated with N(t) are part of the signal or
not. These examples highlight how the number of spurious
results can be large and how they could impede the differen-
tiation between an underlying signal and background noise.
It is therefore important to reduce the number of spurious
results using other statistical methods.

2.2.2 Area-wise and geometric testing

As noted by Maraun et al. (2007), the application of the
point-wise test Npw times will on average produce Npwαpw
spurious results, with the spurious results occurring in clus-
ters or patches. These so-called point-wise significance
patches arise from the reproducing kernel of the analyzing
wavelet that represents intrinsic correlations among wavelet
coefficients. As noted by Schulte (2016a), patches can be rig-
orously defined using ideas from topology. That is, a patch is
a path-connected component of Ppw, where a path-connected
component is an equivalent class of Ppw resulting from an
equivalence relation ∼ on Ppw that makes points x,y ∈ Ppw
equivalent (written x ∼ y) if they can be connected by a con-
tinuous path f : [01]→ Ppw such that f (0)= x and f (1)=
y (Fig. 4). The equivalence relation ∼ reduces the original
large set of points in Ppw to a smaller set of patches; the im-
plications of which will be described later.

Because patches arise from the reproducing kernel,
patches inherit the geometric characteristics of the reproduc-
ing kernel, such as convexity, area, length, and width. As an
example, consider the set shown in Fig. 1b entirely consist-
ing of points enclosed by the thick black contour. The con-
toured region is a subset of H for which the normalized re-
producing kernel dilated and translated to (500, 128) exceeds
0.1. The set is convex (i.e., contains no concavities) because
any two points in it can be connected by a line that remains
entirely in the set (Fig. 4). The convexity of the set sug-
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Figure 3. Same as Fig. 2, except for the ideal time series X(t) representing the linear superposition of three sinusoids with period equal
64, 128, and 256; a singularity at t = 1000; and a realization of red-noise process with lag-1 autocorrelation coefficient equal to 0.1. The
signal-to-noise ratio, m, is equal to 0.4.

Figure 4. Four point-wise significance patches whose union is the
set of all point-wise significant values. The closed path g encircles
a hole, while the path f connects the points x and y belonging to
the same path component or patch. The patch containing the points
z and w is convex, contrasting with the patch containing the points
p and q.

gests that typical patches will be convex, which can be con-
firmed by generating a large ensemble of patches found in
the wavelet power spectra of realizations of a red-noise pro-
cess (Schulte et al., 2015). The convexity of patches plays
an important role in understanding how different statistical
tests perform. Another important geometric property is area,
which reflects the dilated reproducing kernel so that patches
at greater scales will be generally larger than those located at
smaller scales, as Fig. 1 suggests.

Recognizing that a typical patch area is given by the repro-
ducing kernel, Maraun et al. (2007) developed an area-wise
test, which is conducted as follows. First choose a critical
area Pcrit (b,a) defined as a subset of H for which the re-
producing kernel dilated and translated to (b, a) exceeds a

certain critical level Kcrit. That is,

Pcrit (b,a)=
{(
b′,a′

)
|K

(
b,a;b′,a′

)
>Kcrit

}
. (8)

The set of points whose associated wavelet quantities are also
area-wise significant is then the set

Paw =
⋃

Pcrit(b,a)⊂Ppw

Pcrit (b,a) , (9)

representing the union of all critical areas that lay completely
inside Ppw. The larger the critical area, the larger a patch
needs to be for it to be deemed area-wise significant so that
Pcrit (b,a) is related to αaw, the significance level of the area-
wise test. As discussed by Maraun et al. (2007), the criti-
cal area that corresponds to αaw is determined using a root-
finding algorithm, which is a non-trivial step that can be cir-
cumvented by performing a geometric test instead, as dis-
cussed below.

While the area-wise test effectively addresses the multiple-
testing pitfall of the point-wise test, the use of the root-
finding algorithm renders the practical implementation of
the test difficult. To overcome this drawback, Schulte et
al. (2015) constructed a geometric test whose test statistic
is normalized area, which is defined as the patch area, Apatch,
divided by the square of the patch’s mean scale coordinate,
â. That is,

Anorm =
Apatch

â2 , (10)

where the division by the mean scale coordinate accounts for
how the reproducing kernel results in the scale-dependent
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expansion of patches in the time and scale direction. Thus,
the normalized areas of patches can be readily compared re-
gardless of where the patches are in H . The critical value
of this test is assessed using Monte Carlo methods as fol-
lows: (1) generate wavelet spectra under some null hypoth-
esis (e.g., red noise), (2) create a null distribution of nor-
malized area using the patches found in the wavelet spectra,
and (3) estimate the critical level of the test corresponding
to the geometric significance level αgeo by computing the
percentile of the null distribution corresponding to 1-αgeo.
This null distribution calculation can be performed rapidly
because wavelet spectra often contain many patches. How-
ever, for wavelet coherence, Monte Carlo methods must be
applied twice because the critical levels of the point-wise test
must be also empirically estimated. Fortunately, the length of
the noise realizations needed to generate the null distribution
of normalized areas need not be the same length of the input
time series because the patch area is unrelated to the time se-
ries length; it is related to the reproducing kernel. As such,
the realizations can be of shorter length, improving the ef-
ficiency of the null distribution computation. The ability to
efficiently generate a null distribution allows p values asso-
ciated with the geometric test to be further adjusted to ac-
count for multiple testing. For example, the false discovery
rate of the geometric test can be controlled at a desired level
if the number of patches to which the test is applied is large
(Schulte et al., 2015).

It is important to note that the geometric and area-wise
tests differ in the way they assign statistical significance to
points. For the geometric test, all points in a patch will be
deemed insignificant or significant if the patch is deemed sta-
tistically insignificant or significant. However, strictly speak-
ing, the area-wise test evaluates the statistical significance of
wavelet quantities associated with points in Ppw based on the
geometric properties of the path-connected subsets of Ppw
to which they belong. That is, for a wavelet quantity at (b,
a) to be area-wise significant means that there must be a
P ⊆ Ppw containing (b, a) that is path-connected, sufficiently
convex, and large enough to have Pcrit (b,a)⊂ P . If P is a
patch, then no subset of P can be area-wise significant if P
is not, consistent with the patch-sorting interpretation. On the
other hand, P may contain both area-wise and non-area-wise
significant subsets, opposing the patch-sorting interpretation.
As discussed earlier, the equivalent relation ∼ reduces the
initial large set of points to a set of fewer patches, implying
that the number of spurious results arising from the geomet-
ric and area-wise test is less than that of the point-wise test.

Figures 2 and 3 show the wavelet power spectra of X(t)
and R(t) after the application of the area-wise and geomet-
ric tests at the 0.1 significance level, where the area-wise
test was performed using an existing R software package
(available at https://rdrr.io/github/Dasonk/SOWAS/, last ac-
cess: 12 January 2018). Both tests are seen reducing the
number of spurious results arising from the point-wise sig-
nificance test applied at the αpw = 0.05 level. However, as

shown in Fig. 3c, the area-wise test also deems features asso-
ciated with the signal S(t) to be noise. For example, the patch
located at a period of 256 extending from t = 100 to t = 1700
is no longer statistically significant. Note also that the area-
wise test largely filters out the scale-elongated feature asso-
ciated with the singularity of X(t) at t = 1000, while the ge-
ometric test deems the feature to be statistically significant.
This difference in performance is expected because patches
must be long with respect to the reproducing kernel to be
area-wise significant, whereas there is no such constraint for
the geometric test. Thus, the area-wise test is better suited
for situations in which only periodicities are sought because
periodicities induce temporally long patches. In general, the
area-wise and geometric tests will reduce the signal detected
by the point-wise test because the area-wise and geometric
tests are theoretically constrained to detect a smaller amount
of signal than the point-wise test (Table A1). This theoretical
constraint raises a natural question: can a test simultaneously
reduce statistical artifacts and increase signal detection (true
positive results) relative to the point-wise test? The fact that
patches enlarge with increasing αpw suggests that examining
the areas of patches across a set of point-wise significance
levels could improve signal detection relative to the point-
wise test.

2.2.3 Cumulative area-wise testing

Maraun et al. (2007) and Schulte et al. (2015) demonstrated
that the area-wise and geometric tests are procedures for re-
ducing the number of spurious results. However, both tests
suffer from the drawback of having to select both an area-
wise (or geometric) significance level and a point-wise sig-
nificance level. This dual significance level selection is a
cause for concern because a single wavelet quantity can have
different levels of area-wise or geometric significance de-
pending on the chosen point-wise significance level, leading
to uncertainty as to whether the wavelet quantity is statisti-
cally artificial or distinguishable from background noise.

To address this concern, Schulte (2016a) suggested that
changes in the geometric and topological characteristics of
patches should be assessed over a finite set of point-wise sig-
nificance levels α1, α2, . . .,αN . If the point-wise significance
levels α1, α2, . . .,αN are chosen such that

α1 < α2 < .. . < αN, (11)

then the sets

P ipw =
{
(b,a) : ρpw (b,a) < αi

}
, (12)

will form a filtration

∅= P 1
pw ⊆ P

2
pw ⊆ . . .⊆ P

N
pw =H, (13)

of H for a sufficiently small α1 and large αN value. Equa-
tion (13) expresses the intuitive idea that one can start with an
empty set (no statistically significant wavelet quantities) and
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Figure 5. (a) An idealized example of a timescale plane filtration
and (b) a geometric pathway corresponding to the point x and the
filtration shown in (a). The first two members of the geometric path-
way shown in (a) are the empty set and are not shown.

build the complete timescale plane by increasing the point-
wise significance level to a value that renders all wavelet
quantities statistically significant.

An idealized example of a wavelet domain filtration is
shown in Fig. 5a. The application of the point-wise test at the
α1 level results in no statistically significant regions, whereas
the application of the test at α2 results in a relatively small re-
gion of point-wise significance (dark gray). In contrast, set-
ting the point-wise significance level to α5 results in nearly
all wavelet quantities being statistically significant, as indi-
cated by the light gray region. At α6, all wavelet quantities
are statistically significant, and P 6

pw is H .
Although filtrations like Eq. (13) have proven to be useful

in a data analysis method called persistent homology (Edels-
brunner and Harer, 2008), this method focuses on the sets of
all point-wise significant values. At present, the concern is
the statistical significance of a wavelet quantity at a point,
and thus a more local approach is needed, though the util-
ity of Eq. (13) will become more apparent in Sect. 2.2.5.
To localize the persistence approach, a local filtration about
x called a geometric pathway is needed (Schulte, 2016a).
Mathematically, a geometric pathway Gx corresponding to
a point x is a nested sequence

∅= P x1 ⊆ P
x
2 ⊆ . . .⊆ P

x
N =H, (14)

where

P xi =
{
(b,a) : (b,a) ∈ P ipw, (b,a)∼ x

}
. (15)

A concrete example of a geometric pathway Gx is shown
in Fig. 5b, where the geometric pathway corresponds to the
wavelet domain filtration shown in Fig. 5a. In this exam-
ple, P x1 =∅ and P x2 =∅, where P x2 =∅ because x is not
in the dark gray region shown in Fig. 5a representing P 2

pw.

Although the set P 3
pw comprises two path components or

patches, only the component containing both x and y corre-
sponds to the geometric pathway member at α3. The reason
is because any point equivalent to w is not equivalent to x on
P 3

pw, as those points cannot be connected to x by a path fully
contained in P 3

pw. Thus, in this example,

P x3 =
{
(b,a) : (b,a) ∈ P 3

pw and (b,a)∼ x
}
, (16)

y ∈ P x3 , and w 6∈ P x3 . A similar situation occurs at α4 be-
cause P 4

pw has three path-connected components containing
v, w, x, y, and z, but x is only equivalent to points that
are equivalent to y. At α5, the set P 5

pw is path-connected
(x ∼ y ∼ z∼ v ∼ w) and is thus the fifth member ofGx . The
sixth and last member of Gx is H .

Using the definition of a geometric pathway,
Schulte (2016a) constructed a cumulative area-wise
test that assesses the statistical significance of wavelet
quantities by associating, to each point x in H , the total
normalized area integrated over its geometric pathway Gx .
The first step of the procedure is to calculate the normalized
areas Ax1,A

x
2, . . .,A

x
N corresponding to the N members of

Gx , where Axi is assumed to be zero if P xi =∅ or P xi = {x}.
The second step is to compute the sum,

Ax =

N∑
k=1

Axk , (17)

and compare Ax to a critical area Acrit determined by Monte
Carlo methods. In the Monte Carlo approach, wavelet spec-
tra and corresponding geometric pathways are generated un-
der some null hypothesis, and a null distribution is calcu-
lated from all the computed total normalized areas. The crit-
ical area corresponding to the αc level of the test is the per-
centile of the null distribution corresponding to 1-αc. Per-
forming these steps for all x ∈H results in an adjusted p
value at every point that accounts for multiple testing and the
correlation among adjacent wavelet coefficients. As noted by
Schulte (2016a), the computational efficiency of the cumula-
tive area-wise test can be improved by setting α1 = 0.02 and
αN = 0.18, though this selection means that the cumulative
area-wise test may no longer adjust p values at every point in
H because complete filtrations like Eq. (13) may no longer
be under consideration. Nevertheless, using a limited range
of point-wise significance levels generally results in a better
performance of the cumulative area-wise test relative to the
geometric test performed at a single point-wise significance
level (Appendix A and Table A1).

A disadvantage of the cumulative area-wise testing proce-
dure is that it involves the computation of nested sequences,
which renders the test computationally inefficient for long
time series. Fortunately, the computation of nested sequences
can be avoided as follows. First note that the test statistic for
the cumulative area-wise test can be replaced by the mean
normalized area without changing the outcome of the test.
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The criterion for a point to be cumulative area-wise signifi-
cant is then

Âx =
1
N

N∑
k=1

Axk > ÂCrit, (18)

where ÂCrit is the critical level of the test calculated by com-
puting the percentile of the null distribution comprising mean
normalized areas corresponding to 1−αc. Furthermore, there
is a one-to-one relationship between the normalized area of
a patch and its geometric test p value because a greater nor-
malized area always means a lower p value. Thus, if ρxi is the
p value associated with Axi , then the criterion for a wavelet
quantity to be cumulative area-wise significant is

ρ̂x =
1
N

N∑
k=1

ρxk < αc, (19)

because there is also a one-to-one relationship between αc
and the critical level of the test. Equation (19) implies that
to perform the cumulative area-wise test, one can individ-
ually perform the geometric test at each point-wise signifi-
cance level and then compute ρ̂x , avoiding the computation
of nested sequences as in the original formulation of the cu-
mulative area-wise test.

This interpretation of the cumulative area-wise test also al-
lows the testing method to be put in an ensemble forecasting
framework. That is, the individual geometric test p values
are identified as ensemble members estimating the statisti-
cal significance of a wavelet quantity. The mean p value is
identified with the ensemble mean that smooths out the un-
predictable aspects of the forecast. In the present context, ρ̂x

smooths out the features in the wavelet spectra resulting from
noise and leaves the features that most of the geometric tests
agree to be significant. This smoothing results in the sup-
pression of noise but enhancement of the signal, which is
consistent with how Schulte (2016a) found the cumulative
area-wise test to perform superiorly to the geometric test in
terms of signal detection, at least for periodic signals (Ap-
pendix A and Table A1).

Using Eq. (19), we now devise a simplified approach to
the cumulative area-wise test. In the simplified approach, all
points in H are initially assigned a value of 0. Then, for a
fixed point-wise significance level, the geometric test is per-
formed on all patches. The points falling in those patches that
are geometrically significant at the αc level are then assigned
the value 2. The values for the points not in geometrically
significant patches are left unchanged. This assignment step
is then repeated for each point-wise significance level, and
the values are stored separately so that each point in H is
assigned a set of values, the number of values equaling the
number of point-wise significance levels used to implement
the cumulative area-wise test. Then, the average value at each
point is computed, with regions where the average value ex-
ceeds unity deemed to be cumulative area-wise significant.

The application of the simplified cumulative area-wise test
to the wavelet power spectra of R(t) and X(t) (Figs. 2e
and 3e) reveals that the test is effective at reducing the num-
ber of spurious results arising from the point-wise test when
applied at the αc = 0.05 level. Like the area-wise test, the
reduction in spurious features is accompanied by a loss in
signal detection. For example, the cumulative area-wise test,
like the area-wise test, deems the wavelet power associated
with the point-wise patch located at a period of 256 extend-
ing from t = 100 to t = 1700 in Fig. 3b to be statistically in-
significant. On the other hand, the scale-elongated feature as-
sociated with the singularity ofX(t) at t = 1000 more clearly
emerges from the application of the cumulative area-wise
test than the area-wise test, which is not surprising because
the cumulative area-wise test assesses statistical significance
based on area without regard to the specific shape of patches.

Although this example suggests that the point-wise test de-
tects a higher amount of signal than the cumulative area-wise
test, a simplified experiment in Appendix A revealed that
the simplified cumulative area-wise test can detect a higher
amount of signal than the point-wise test when the signal-to-
noise ratio is relatively high (Table A1). At low point-wise
significance levels, the tests were found to detect a similar
amount of the signal on average. Thus, a key strength of the
cumulative area-wise test is that it can retain the signal while
also reducing the number of spurious results arising from the
point-wise test.

2.2.4 Cumulative arc-wise testing

While the area-wise, geometric, and cumulative area-wise
tests can effectively reduce the number of spurious results,
they do not test for the existence of periodicities embedded
in a time series. This deficiency is especially true for the
geometric and cumulative area-wise tests because they only
consider the area of patches in the assessment of statistical
significance. For example, the cumulative area-wise test can
identify features that are long in scale but short in time as
statistically significant (Fig. 3e). Thus, a new test needs to be
constructed that is specifically designed to distinguish ran-
domly stable fluctuations from those that are periodicities.
As periodicities are determined by patch length, a strict test
for periodicities should consider patch length and not patch
area.

Using the idea that patch length is more closely linked to
the presence of periodicities, we construct a cumulative arc-
wise test that can be implemented using the following steps.
For Step 1, fix a scale and point-wise significance level and
identify point-wise significance arcs, where point-wise sig-
nificance arcs are contiguous strings of points whose associ-
ated wavelet quantities are point-wise significant. Step 2 is
to compute normalized arclength, defined as the number of
points composing each arc divided by the scale in question.
Step 3 is to repeat Steps 1 and 2 for all wavelet scales asso-
ciated with the wavelet spectrum in question. Repeating the
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procedure for a finite set of point-wise significance levels al-
lows for the assignment of total arclength to each point in
the timescale plane. The null distribution can be computed
using the Monte Carlo approach adopted for the cumulative
area-wise test.

The application of the cumulative arc-wise test at the 0.05
significance level to the wavelet power spectra of X(t) and
R(t) is shown in Figs. 2f and 3f, where point-wise signifi-
cance levels ranging from 0.02 to 0.18 were used. The dis-
crete spacing between adjacent point-wise significance was
set to 0.02 to be consistent with the cumulative area-wise
test applied earlier (Figs. 2e and 3e). Like with the other sta-
tistical tests, the number of spurious point-wise test results
for both time series is seen as being dramatically reduced.
For X(t), much of the signal detected by the point-wise test
remains despite the greater stringency of the cumulative arc-
wise test. A comparison of Fig. 3c and f reveals that the geo-
metric and cumulative arc-wise tests detect a similar amount
of the signal associated with the three sinusoids. As expected,
the cumulative arc-wise test, like the area-wise test, largely
filters out the scale-elongated feature shown in Fig. 3b, sup-
porting the idea that both the arc-wise and area-wise tests
should be preferred to the geometric and cumulative area-
wise tests in situations in which features associated with pe-
riodic signals are sought. In fact, in Appendix A it is shown
that the cumulative arc-wise test can detect a higher amount
of signal than the point-wise test for high signal-to-noise ra-
tios.

2.2.5 Topological significance testing

A common theme among all the statistical procedures dis-
cussed so far is that they evaluate the statistical significance
of wavelet quantities based on the geometric properties of
the patches to which the corresponding points belong. How-
ever, as demonstrated by Schulte et al. (2015), topological
properties are also important to statistical hypothesis testing.
How do topological properties differ from geometric ones?
Topological properties of an object are those that remain un-
changed no matter how much the object is twisted or bent.
Using topological characteristics of point-wise significance
regions, additional information about the time series in ques-
tion can be gained.

The basic principal behind topological significance test-
ing is that topologically equivalent (that is, homeomorphic)
objects have identical topological invariants (Ferri, 2017). In
the present context, the object of interest is Ppw and the topo-
logical invariants of concern are the 0- and 1-D Betti num-
bers denoted by β0 and β1, respectively. The invariant β0
measures the number of path components or patches com-
posing Ppw, whereas β1 measures the number of 1-D holes
in Ppw. A region in Ppw has a hole if there is a closed path
in it such that the path cannot be continuously deformed into
a point (Fig. 4). Equivalently, holes are regions in H fully
surrounded by points in Ppw. Although counter-intuitive,

Schulte et al. (2015) showed that the presence of these holes
is related to the statistical significance of the patch to which
they correspond. To better understand how these holes are
related to statistical significance, consider the reproducing
kernel shown in Fig. 1b together with the set of points en-
closed by the black contour. As shown in Fig. 1b, the closed
path, g, in the contoured region can be continuously (e.g.,
no tearing or cutting) deformed into a point within the set
by contracting or shrinking it, with this property holding for
any closed path so that the set enclosed by the contour has
no holes. As patches arise from the reproducing kernel, typi-
cal patches arising from isolated fluctuations will tend not to
have holes at low point-wise significance levels. However, if
two fluctuations are located at nearby frequencies and times,
then the resulting patches in the wavelet power spectrum may
contain holes (Schulte et al., 2015).

Using Betti numbers, one can assess whether Ppw is home-
omorphic to Pnoise =

{
(b,a) : ρnoise (b,a) < αpw

}
, where

ρnoise denotes the p value resulting from the application of
the point-wise test to a noise spectrum such as the wavelet
power spectrum associated with a realization of a red-noise
process or the coherence spectrum associated with a pair of
red-noise realizations. More specifically, a topological sig-
nificance test is performed as follows: (1) compute wavelet
spectra under some noise model, (2) compute Pnoise for each
of the wavelet spectra, and (3) compute the null distribution
of β0 and β1. The critical values associated with the two-
sided topological significance test applied at the αtopo signif-
icance level are the percentiles of the null distribution cor-
responding to 1-αtopo/2 and αtopo/2. The two-sided test ac-
counts for how the number of patches or holes can be un-
usually high or low relative to noise. However, as shown by
Schulte et al. (2015), a typical patch found in the wavelet
power spectrum of red noise will typically have no holes at
point-wise significance levels less than 0.2, suggesting that a
one-sided topological test may be better than a two-sided test
at low point-wise significance levels.

Topological equivalence at a single point-wise significance
does not necessarily mean that the time series in question is
topological indistinguishable from background noise. That
is, the result of the topological significance test may be sen-
sitive to the chosen point-wise significance level. To address
this concern, it is necessary to adopt the persistent homol-
ogy approach (Edelsbrunner and Harer, 2008) in which a
topological space is distinguished from another topological
space homeomorphic to it through an examination of filtered
versions of the spaces (Ferri, 2017). In the wavelet analysis
context, the spaces are the timescale planes associated with
noise and the times series in question, which are rectangu-
lar and topological equivalent. To distinguish the timescale
planes, it is necessary to examine the filtered versions of the
timescale planes using the filtration represented by Eq. (13).
Computing βo and β1 at each step in the filtration results
in 0- and 1-D persistent homology profiles (PHPs; Qaiser et
al., 2016). The more comprehensive topological significance
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Figure 6. (a) The 1-D and (b) 0-D persistent homology profiles
associated with R(t) and X(t). Gray shaded region is the non-
rejection region of the topological significance test applied at the
0.05 significance level. The non-rejection region was calculated by
generating 100 realizations of a red-noise process with lag-1 auto-
correlation equal to 0.1, the lag-1 autocorrelation coefficient corre-
sponding to X(t).

then involves comparing PHPs for a time series in question
to that of noise by applying the topological significance test
at each point-wise significance level.

The utility of the topological significance testing proce-
dure is demonstrated using the wavelet power spectra ofX(t)
and R(t). The 1-D PHP corresponding to R(t), shown in
Fig. 6a, indicates that β1 is maximum at αpw = 0.7 and de-
creases rapidly until reaching 0 at αpw = 0.1. The overall
curve is the same for realizations of a red-noise process with
any lag-1 autocorrelation coefficient, though the number of
holes is greater for larger lag-1 autocorrelation coefficients
(not shown). The 1-D PHP for X(t) is like that of R(t), sug-
gesting that these time series are topologically indistinguish-
able. The application of the topological significance test with
αtopo = 0.05 further supports the topological equivalence of
X(t) with red noise because the PHP associated with X(t)
falls in the gray-shaded envelope representing the test non-
rejection region, where the non-rejection region was obtained
by generating 100 PHPs associated with 100 realizations of
a red-noise process with a lag-1 autocorrelation coefficient
equal to that of X(t). However, X(t) is not noise by con-
struction, and thus the similarity of 1-D PHPs does not ex-
clude the possibility that time series under consideration are
indistinguishable from noise.

In contrast to the 1-D PHPs, the 0-D PHPs for X(t) and
R(t) differ substantially (Fig. 6b). The PHP for X(t) is seen
to reach a global maximum around αpw = 0.25, while the one
for R(t) peaks around αpw = 0.18. The application of the

topological significance test at the 0.05 level strongly sup-
ports the idea thatX(t) is distinguishable from noise because
β0 far exceeds the critical level of the test at αpw = 0.25.
Thus, there are features that are distinguishable from the
background noise. These features are precisely those identi-
fied from the area-wise, geometric, cumulative arc-wise, and
cumulative area-wise tests.

3 Practical applications to the Indian monsoon

3.1 Data

To understand the temporal behavior and spatial variability of
Indian rainfall, monthly rainfall data for five homogenous re-
gions (Parthasarathy et al., 1994) extracted from Indian Insti-
tute of Tropical Meteorology website (https://www.tropmet.
res.in/DataArchival-51-Page, last access: 15 March 2019)
were analyzed. The five divisions called the Peninsula,
Northwest, Northeast, Central Northeast, and West Central
regions were devised based on continuity of area, contribu-
tion to annual amount, and global and regional circulation
parameters (Parthasarathy et al., 1994; Azad et al., 2010).
The rainfall data for each region were obtained by area-
weighted averaging the sub-divisional data corresponding to
the meteorological subdivisions composing the homogenous
region, where the sub-divisional data were obtained by aver-
aging the rainfall data associated with representative rainfall
gauges. An all-India (Parthasarathy et al., 1995) rainfall time
series was also examined, as it is commonly reported in the
literature. The monthly all-India rainfall time series is con-
structed by averaging the sub-divisional data after assigning
a weight to each sub-division, which is determined by the
sub-divisional area (Parthasarathy et al., 1994). These rain-
fall data span the long time period from 1871 to 2016 and are
continuous, making them well-suited for a wavelet analysis.
Each rainfall time series was converted into an anomaly time
series by subtracting the 1871–2016 mean for each month
from the individual monthly values. After the conversion to
an anomaly time series, the time series were standardized by
dividing them by their respective 1871–2016 standard devia-
tions. The resulting time series are shown in Fig. 7.

The monthly Niño 3.4 index (available at https://www.esrl.
noaa.gov/psd/gcos_wgsp/Timeseries/Data/nino34.long.data,
last access: 15 March 2019) from 1871 to 2016 was used
to characterize the state of the ENSO system. The Niño 3.4
index is defined as the average SST in the region bounded
by 5◦ N and 5◦ S and by 170 and 120◦W. The seasonal cycle
was removed from this time series in the same way as it was
removed from the rainfall time series.

3.2 Wavelet power spectrum

The wavelet power spectra corresponding to the rainfall time
series are shown in Fig. 8, where αpw = 0.05 in this case.
Statistically significant features are seen for all six time se-
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Figure 7. Standardized (a) all-India, (b) Peninsula, (c) Northwest, (d) Northeast, (e) Central Northeast, and (f) West Central rainfall time
series.

Figure 8. Wavelet power spectra of the standardized (a) all-India, (b) Peninsula, (c) Northwest, (d) Northeast, (e) Central Northeast, and
(f) West Central rainfall time series after the application of the point-wise test at the 0.05 significance level. Contours enclose regions of
statistical significance, and the light shaded region represents the cone of influence where edge effects become important.

ries, with a large swath of point-wise significance being seen
around a period of 256 months for the Peninsula, Northeast,
and Northwest time series after 1950. For all the time se-
ries, most of the point-wise significance patches are seen as
being located at lower periods and appear to have varying
geometries. For example, the wavelet power spectrum for the
Northwest time series contains a scale-elongated significance
patch at around 1920, extending from a period of 4 months
to a period of 64 months. A similar but less prominent fea-

ture is also evident in the wavelet power spectrum of all-India
rainfall. For the remaining time series, no such features are
readily identifiable from an inspection of the wavelet power
spectra.

To account for how spurious results may result from mul-
tiple testing, the cumulative area-wise test was applied at
the αc = 0.05 level to the wavelet power spectrum shown in
Fig. 8. For these cases, the simplified cumulative area-wise
test was applied using point-wise significance levels ranging
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from 0.02 to 0.18, with the spacing between adjacent point-
wise levels equaling 0.02. Like with the point-wise test, sta-
tistically significant wavelet power is located around a period
of 256 months for the Northwest and Northeast regions, rais-
ing the possibility that these time series contain periodicities
at that timescale (Fig. 9). For all the time series, most of the
statistically significant results are seen at periods less than
64 months. Two of the most prominent features are the scale-
elongated significance patches around 1920 in the all-India
and Northwest wavelet power spectra. Because the wavelet
power associated with these scale-elongated features remain
statistically significant after the application of the cumula-
tive area-wise, there is strong evidence that the correspond-
ing fluctuations exceed the red-noise background.

To better differentiate patches arising from singularities
from those associated with periodicities, the cumulative arc-
wise test was applied to wavelet power spectra shown in
Fig. 8 at the same point-wise significance levels used for
the cumulative area-wise test. As shown in Fig. 10, the ap-
plication of the cumulative arc-wise test at the 5 % signifi-
cance level reveals two time-elongated regions of statistical
significance around a period of 256 months in the Peninsula
and Northwest wavelet power spectra. However, the wavelet
power around a period of 256 months is no longer statis-
tically significant for the Northeast time series, suggesting
that the point-wise significant wavelet power at that period
is associated with a randomly stable oscillation. The scale-
elongated features for the all-India and Northwest power
spectra are largely filtered out like the scale-elongated fea-
tures shown in Fig. 3 for X(t). This result suggests that the
wavelet power at that time and at those periods is associated
with a singularity-like time domain feature rather than a pe-
riodicity.

To gain a deeper understanding of the rainfall time se-
ries, the 0th and 1-D PHPs were computed for each time se-
ries. For clarity, we computed anomaly PHPs by subtracting
the mean profile associated with noise from the individual
profiles at each point-wise significance level. Thus, positive
(negative) values mean that the number of patches (or holes)
associated with the rainfall time series is greater (less) than
that associated on average with noise. Because the lag-1 au-
tocorrelation coefficients associated with each time series are
nearly identical, a single test non-rejection region was com-
puted using 100 realizations of a red-noise process with lag-1
autocorrelation coefficient equal to the mean lag-1 autocor-
relation coefficient of the six rainfall time series. The mean
noise profile was subtracted from both the upper and lower
bounds of the test non-rejection region after the application
of the topological significance test at the 0.05 level.

The 0th dimensional anomaly PHPs for each rainfall time
series is shown in Fig. 11a. Many of the profiles are seen
to deviate substantially from the mean noise profiles around
αpw = 0.5 and αpw = 0.2. At around αpw = 0.5, the largest
deviations are associated with the Northwest, West Central,
and all-India time series. The profiles for the Northeast and

Peninsula time series lay inside the confidence envelope so
that those time series could be topologically indistinguish-
able from red noise. At around αpw = 0.15, the largest devi-
ations are associated with the Northwest and Central North-
east profiles. The large deviations from the mean noise pro-
file for the Northwest time series suggest that the statisti-
cally significant features identified by the cumulative area-
wise test (Fig. 9) are unlikely statistical artifacts. On the
other hand, the wavelet power spectrum of the West Cen-
tral time series contains only five small regions of cumulative
area-wise significance despite the large departures from the
mean noise profiles at numerous point-wise significance lev-
els. This finding raises the possibility of Type II errors for the
cumulative area-wise test or a Type I error for the topological
significance test.

Additional insight into the time series is provided by the
1-D anomaly PHPs shown in Fig. 11b. In this case, all the
rainfall time series appear to be topologically distinguish-
able from red noise for point-wise significance levels rang-
ing from 0.7 to 0.65. Like with the 0th dimensional profiles,
the departures are greatest for the Northwest and West Cen-
tral time series, providing strong evidence that these time se-
ries comprise features exceeding background noise. For the
West Central time series, the lack of arc-wise significance
shown in Fig. 10 suggests that the topological significance
cannot be attributed to periodicities with high confidence. For
the Northwest time series, the cumulative area-wise test re-
sults suggest that topological significance may be attributed
to the scale-elongated feature around 1915 and the enhanced
wavelet power around a period of 256 months. The PHPs for
all the time series converge to 0 below the point-wise sig-
nificance level 0.3, and the lack of 1-D holes below 0.1 ren-
ders the isolation of topologically significant regions in H
using the approach of Schulte et al. (2015) that determines
where there is enhanced topological significance based on
the location of holes difficult. However, for the Northwest
time series, a few holes were identified at point-wise signif-
icance below 0.1 around the scale-elongated patches shown
in Fig. 9c, supporting the results of the cumulative area-wise
test.

3.3 Wavelet coherence

To determine the timescales at which ENSO influences on In-
dian rainfall are strongest, wavelet coherence was computed
between the Niño 3.4 index and the rainfall time series for
each region. The point-wise, cumulative area-wise, and cu-
mulative arc-wise tests were applied to the wavelet coher-
ence spectra at the 5 % significance level, but only the results
for the cumulative arc-wise test are shown for brevity. The
reason why the results for the cumulative arc-wise test are
emphasized is that we are interested in distinguishing non-
random coherent oscillations at a scale from randomly stable
covarying oscillations.
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Figure 9. Same as Fig. 8 but after the application of the cumulative area-wise test at the 0.05 significance level.

Figure 10. Same as Fig. 8 but after the application of the cumulative arc-wise test at the 0.05 significance level.

The results for the wavelet coherence analysis are shown
in Fig. 12. Statistically significant wavelet coherence was
identified for all six time series, but coherence between the
Niño 3. 4 index and the time series of rainfall is seen to be
most salient for the all-India, Northwest, and West Central
regions. The statistically significant coherence is mainly con-
fined to the period band of 16 to 64 months, and time periods
of enhanced coherence appear to follow time periods of weak
coherence. The results shown in Fig. 12 suggest that the 16-
month to 64-month mode of SST variability across the Niño
3.4 region modulates Indian rainfall, which is a well-known
idea (Torrence and Webster, 1999). It is also noted that the
coherence between rainfall and the Niño 3.4 index varies spa-

tially, consistent with recent work showing how ENSO influ-
ences are spatially non-uniform (Roy et al., 2017).

4 Summary and discussion

Wavelet analysis is a tool for extracting time-localized and
scale-dependent features from time series. To assess the
confidence with which features in wavelet spectra are dis-
tinguishable from a noise background, it is necessary to
implement statistical significance tests. The traditional ap-
proach to statistical significance testing is to individually test
whether a wavelet quantity associated with a point in the
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Figure 11. (a) The 0-D and (b) 1-D anomaly persistent homology
profiles associated with the six rainfall time series. Gray shaded re-
gion is the non-rejection region of the topological significance test
applied at the 0.05 significance level. The non-rejection region was
calculated by generating 100 realizations of a red-noise process with
lag-1 autocorrelation equal to the mean of all six lag-1 autocorrela-
tion coefficients associated with the rainfall time series.

timescale plane exceeds a background noise spectrum. This
point-wise approach has been applied in numerous papers
since its first application to wavelet analysis by Torrence and
Compo (1998).

Despite its wide use, the point-wise test suffers from two
pitfalls, as noted by Maraun and Kurths (2004) and Maraun
et al. (2007) and as shown in Fig. 2. The first pitfall is that the
test typically produces many false positive results because of
the simultaneous testing of multiple hypotheses. Secondly,
spurious results occur in clusters, with the clusters reflecting
the reproducing kernel of the analyzing wavelet. To remedy
the pitfalls of the point-wise test, Maraun et al. (2004) de-
veloped an area-wise test to reduce the number of spurious
point-wise significance patches based on the area and geom-
etry of the patches. While the method has been shown to
be effective at reducing the number of spurious results, the
test is computationally inefficient. To address the concern of
computational inefficiency, Schulte et al. (2015) proposed a
geometric test that reduces the number of spurious results
by assigning a normalized area to each patch. However, both
the area-wise and geometric test suffer from a binary deci-
sion pitfall in which both an area-wise (or geometric) sig-
nificance level and a point-wise significance level must be
selected. This dual selection inevitably leads to uncertainty
regarding the statistical significance of a wavelet quantity.

Schulte (2016a) developed a cumulative area-wise test to
reduce the sensitivity to the chosen point-wise significance
level. Adopting ideas from persistent homology, the test pro-

vides a way to assess the statistical significance of a wavelet
quantity located at a point by examining how the area of
a nested sequence of patches containing the point changes
as the point-wise significance is changed. This test can be
viewed as an ensemble technique, where the individual es-
timates of statistical significance are associated with the p
values of the geometric tests performed at various point-wise
significance levels. The ensemble mean is the mean of all
such p values. Much like how the ensemble mean in weather
forecasting filters out unpredictable aspects associated with
the individual ensemble members, the cumulative area-wise
test filters out the unpredictable aspects associated with a
time series in question; the degree to which this occurs de-
pends on the chosen cumulative area-wise significance level.

Strictly speaking, the geometric and cumulative area-wise
tests (and to a lesser extent the area-wise test) do not as-
sess the confidence with which periodicities are embedded in
time series. To make such assessments, the temporal length
of cross sections of point-wise significance patches needs to
be computed and compared to a null distribution of cross sec-
tion lengths. This procedure is termed the cumulative arc-
wise test and is like the cumulative area-wise test. Two ideal
cases showed that the procedure reduces the number of spu-
rious results arising from the point-wise test while also de-
tecting periodicities embedded in time series. The arc-wise
test is also capable of eliminating scale-elongated point-wise
significance features induced from singularities in the time
domain. Thus, when testing for the presence of periodicities,
the arc-wise test should be preferred to the cumulative area-
wise and geometric tests because those tests are unable to
distinguish features arising from singularities from those as-
sociated with periodicities. An additional benefit of the cu-
mulative arc-wise test is that it operates in one dimension,
rendering its implementation more rapid than that of the cu-
mulative area-wise test.

The application of the statistical tests to the Indian rainfall
time series further highlighted the benefits and disadvantages
of the various methods. The application of the point-wise test
to the wavelet power spectra of the Indian rainfall resulted
in many statistically significant results. Much of the point-
wise significant wavelet power was deemed indistinguishable
from background noise after the implementation of the cu-
mulative area-wise and arc-wise tests. However, for some In-
dian sub-regions, statistically significant features were iden-
tified. For example, the Northwest and all-India time series
were found to contain features consistent with singularities.

The application of the cumulative arc-wise test to wavelet
coherence revealed statistically significant coherence be-
tween rainfall for many of the subregions and the Niño 3.4
index at a period of 16 to 64 months. The most pronounced
coherence was found between the all-India rainfall and Niño
3.4 index time series, while the weakest coherence was gen-
erally found for the Northeast region. These results highlight
the spatial variability of the ENSO teleconnection. Periods
of high coherence were found to be followed by periods of
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Figure 12. Wavelet coherence between Niño 3.4 index and time series of standardized (a) all-India, (b) Peninsula, (c) Northwest, (d) North-
east, (e) Central Northeast, and (f) West Central rainfall. Contours enclose regions where the wavelet coherence is cumulative arc-wise
significant at the 0.05 level. For clarity, phase arrows representing the out-of-phase relationship between ENSO and rainfall are not dis-
played.

lower coherence, consistent with prior work showing how the
Indian rainfall-ENSO teleconnection is non-stationary (Tor-
rence and Webster, 1999).

Topological methods were also adopted to further assess
whether the rainfall time series are consistent with a red-
noise process. An examination of 0th dimensional PHPs
showed that the all-India, Northwest, and West Central rain-
fall time series are topologically distinguishable from red
noise. The 1th dimensional PHPs revealed that all rainfall
time series are distinguishable from red noise despite the lack
of cumulative arc-wise or area-wise significance in the cor-
responding wavelet power spectra. The discrepancies among
the tests suggest that a further investigation is required.

Although only two ideal cases have been in the paper, ad-
ditional ideal cases are presented in the Supplement for ref-
erence. The ideal cases include time series with a single si-
nusoid and a time series with a single singularity without pe-
riodic features.

An R software package has been written by the author to
implement the various tests documented in this paper. The
software package can be found at http://justinschulte.com/
wavelets/advbiwavelet.html (last access: 29 April 2019).

Data availability. Data for Indian rainfall can be accessed through
https://www.tropmet.res.in/DataArchival-51-Page (Indian Institute
of Tropical Meteorology, 2019). The monthly Niño 3.4 index is
available at https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/
Data/nino34.long.data (NOAA/OAR/ESRL PSD, 2019).
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Appendix A

A simplified sinusoid experiment was conducted to assess
how well the various statistical tests detect a periodic signal
embedded in noise. In the experiment, time series of the form

X(t)= sin2π/T/σs+N(t)/mσn, (A1)

were generated. In Eq. (A1), T = 8 is the period of the si-
nusoid, σs is the standard deviation of the sinusoid, N(t) is a
realization of a red-noise process, σn is the standard deviation
of N(t), and m is a number representing the signal-to-noise
ratio. In the experiment, 100 different realizations of X(t)
were constructed by generating 100 realizations ofN(t). The
wavelet power spectrum of each realization ofX(t)was com-
puted. The computations were repeated for values ofm rang-
ing from 0.01 to 1.0. For each statistical test, the fraction of
wavelet power coefficients statistically significant at a period
of 8 was calculated for each realization. The mean fraction
was then calculated for each value of m, resulting in a curve
representing how much of the signal on average is detected
for different signal-to-noise ratios. Values close to 1.0 indi-
cate that the test performed well at detecting the periodic sig-
nal. For the experiments, the lag-1 autocorrelation coefficient
was set to 0.1, 0.5, and 0.9, but only the results for 0.5 are dis-
played because the results are only weakly dependent on the
lag-1 autocorrelation coefficient. The point-wise, cumulative
area-wise, and cumulative arc-wise tests were applied at the
5 % level, and the geometric and area-wise tests were applied
at the 10 % level to 5 % point-wise significance regions.

As shown in Table A1, the amount of the signal detected
by any of the tests increases as the signal-to-noise increases.
Despite how the cumulative area-wise test is more strin-
gent than the point-wise test, the tests detected a comparable
amount of the signal for low signal-to-noise ratios; for signal-
to-noise ratios greater than 0.7, the test performed better. The
cumulative arc-wise test outperformed the cumulative area-
wise test for signal-to-noise ratios greater than 0.5. Consis-
tent with theory, both the area-wise and geometric tests per-
formed worse than the point-wise test. The performance of
all tests was found to improve if the lag-1 autocorrelation co-
efficients were increased to 0.9 and was found to worsen if
the lag-1 autocorrelation coefficient was set to 0.1.

Table A1. The fraction of wavelet power coefficients at a period of 8 that are statistically significant in the case of a sinusoid embedded in
noise with varying signal-to-noise ratios.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Point-wise 0.06 0.1 0.16 0.25 0.36 0.47 0.59 0.68 0.78 0.85
Area-wise 0.01 0.03 0.05 0.12 0.22 0.33 0.44 0.69 0.69 0.79
Geometric 0.03 0.04 0.07 0.16 0.24 0.36 0.49 0.65 0.74 0.84
Cumulative area-wise 0.04 0.07 0.12 0.19 0.33 0.47 0.62 0.76 0.85 0.92
Cumulative arc-wise 0.02 0.04 0.09 0.19 0.36 0.52 0.68 0.80 0.89 0.95
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