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Abstract. Crustal thickness is an important factor affecting
lithospheric structure and deep geodynamics. In this paper, a
deep learning neural network based on a stacked sparse auto-
encoder is proposed for the inversion of crustal thickness in
eastern Tibet and the western Yangtze craton. First, with the
phase velocity of the Rayleigh surface wave as input and the
theoretical crustal thickness as output, 12 deep-sSAE neu-
ral networks are constructed, which are trained by 380 000
and tested by 120 000 theoretical models. We then invert the
observed phase velocities through these 12 neural networks.
According to the test error and misfit of other crustal thick-
ness models, the optimal crustal thickness model is selected
as the crustal thickness of the study area. Compared with
other ways to detect crustal thickness such as seismic wave
reflection and receiver function, we adopt a new way for in-
version of earth model parameters, and realize that a deep
learning neural network based on data driven with the highly
non-linear mapping ability can be widely used by geophysi-
cists, and our result has good agreement with high-resolution
crustal thickness models. Compared with other methods, our
experimental results based on a deep learning neural net-
work and a new Rayleigh wave phase velocity model re-
veal some details: there is a northward-dipping Moho gra-
dient zone in the Qiangtang block and a relatively shallow
north-west–south-east oriented crust at the Songpan–Ganzi
block. Crustal thickness around Xi’an and the Ordos basin
is shallow, about 35 km. The change in crustal thickness in
the Sichuan–Yunnan block is sharp, where crustal thickness
is 60 km north-west and 35 km south-east. We conclude that

the deep learning neural network is a promising, efficient,
and believable geophysical inversion tool.

1 Introduction

Eastern Tibet and the western Yangtze craton are one of the
key areas for understanding the collision process between the
Indo-European plate and are an important area for under-
standing the collision and contact relationship between the
Qinghai–Tibet Plateau and the Yangtze craton. In the field
of geosciences, because of the strong seismic activity, the
nature of the two blocks is different, especially the special
topography. The altitude of the two blocks suddenly rises
from about 500 m in eastern Tibet to 5000 m in the west-
ern Yangtze craton. Many studies focus on understanding the
crust and upper mantle structure in this region; there have
especially been heated debates on crustal thickness. The dis-
continuity between the crust and the mantle is called Moho
discontinuity, which varies greatly on a small scale and is
an important factor in geodynamics, including crustal evolu-
tion, tectonic activity, gravity correction of the crustal effect,
seismic tomography, and geothermal models. Many studies
focus on obtaining the depth of Moho discontinuity called
crustal thickness by various data and different methods.

Usually, the crustal thickness can be inverted by many
kinds of data, such as inversion of deep seismic sounding
profiles on the Chinese mainland for crustal thickness (Zeng
et al., 1995), inversion of satellite gravity data for global
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crustal and lithospheric thickness (Fang, 1999), inversion of
Bouguer gravity and topography data to calculate the crustal
thickness of China and its surrounding areas (Huang et al.,
2006; Guo et al., 2012), and an inversion receiver function
used to calculate the crustal thickness and Poisson’s ratio of
the Chinese mainland (Chen et al., 2010; Zhu et al., 2012; Xu
et al., 2007). In particular, one of the newest models’ crust 1.0
at 1◦× 1◦ (Laske et al., 2013; Stolket al., 2013) is based on
refraction and reflection seismology as well as receiver func-
tion studies. In addition, these data related to crustal thick-
ness mentioned above, and crust thickness has significant
effects on fundamental mode surface waves (Meier et al.,
2007; Grad and Tiira, 2009). Dispersion characteristicz of
surface waves provide a powerful tool to research the struc-
ture of the crust and upper mantle (Legendre et al., 2015). So
far phase and group velocity measurements of fundamental
mode surface waves have most commonly been used to con-
strain shear-velocity structure in the crust and upper man-
tle on a global scale (Zhou et al., 2006; Shapiro and Ritz-
woller, 2002) or on a regional scale (Zhang et al., 2011; Yi et
al., 2008); also, the newly developed ambient noise surface
wave tomography has been used to constrain shear-velocity
structure (Sun et al., 2010; Yao et al., 2006; Zheng et al.,
2008; Zhou et al., 2012), with a few works to invert funda-
mental mode surface wave data for global or regional crustal
thickness and to present a global or regional crustal thick-
ness model (Devile et al., 1999; Meier et al., 2007; Das and
Nolet 2001; Lebedev et al., 2013). Although the measure-
ment period and method of group velocity and phase velocity
are different, the detection depth and measurement error are
also different, and phase velocity is more sensitive to deeper
structure, so it is easier to infer deep structure from phase ve-
locity measurements. We use phase velocity as input to infer
the crustal thickness.

There are several inversion methods to get crustal thick-
ness which can be broadly classified into two classes: (1) the
model-driven method and (2) the data-driven method. For
the model-driven method, the researchers mainly consider
the physical relation between earth parameter space and data
space to calculate an inversion function. Most model-driven
methods deal with the inversion of crustal thickness as a
linear problem. More importantly, their results largely de-
pend on the initial earth model. Compared with model-driven
method, another fully non-linear data-driven method is called
a neural network, which is used to obtain crustal thickness
(Devile et al., 1999; Meier et al., 2007). Data-driven, highly
non-linear mapping neural networks are widely used in geo-
physical inversion methods, which use actual seismic log-
ging data and their attributes to predict the earth’s parame-
ters. Compared with model-driven inversion, data-driven in-
version does not need to consider the physical relationship
between the parameters of the earth model and data space and
can map and predict arbitrary non-linear relationship quickly
and accurately. Neural networks can be very useful in sit-
uations where the forward relation is known, but the inverse

mapping is unknown or difficult to establish by more conven-
tional analytical or numerical methods (de Wit et al., 2013).
So the aim of neural network inversion is to find the map-
ping from a set of training data. Neural networks have been
widely used in different geophysical applications, well sum-
marized by van der Baan and Jutten (2000) such as in elec-
trical impedance tomography (Lampinen, and Vehtari, 2001)
and in seismic processing including trace editing, travel time
picking, horizon tracking, and velocity analysis. Devilee et
al. (1999) were the first to use a neural network to invert sur-
face wave velocities for Eurasian crustal thickness in a fully
non-linear and probabilistic manner. Meier et al. (2007) fur-
ther developed the methods of Devilee et al. (1999), and then
inverted surface wave data for global crustal thickness on a
2◦× 2◦ grid globally using a neural network.

As seismology points out that there are many factors af-
fecting phase velocity, inverting phase velocity for disconti-
nuities within the earth forms a non-linear inverse problem
(Meier et al., 2007). Because of strong non-linear relations
between crust thickness and surface wave dispersion, we can-
not treat it with a linear inverse problem as Montagner and
Jobert (1988) stated. Although a shallow neural network with
a lower number of hidden layers can present a non-linear
inverse function, it maybe cannot learn or approximate the
true inverse function well when the true inverse function is
too complicated. In contrast, a deep learning neural network
can overcome this defect since it has powerful representation
abilities and can discover intricate structures in large data
sets, because it makes use of the back-propagation algorithm
to indicate how a machine should change its internal parame-
ters that are used to compute the representation in each layer
from the representation in the previous layer (LeCun et al.,
2015).

In this paper, in view of the advantages and characteris-
tics of a deep learning neural network, a new fast inverse
method based on a data-driven, deep stacked sparse auto-
encoders (sSAE) neural network is introduced to solve the
non-linear geophysical inverse problems. We focus on deep
learning neural networks to solve the non-linear inverse prob-
lem, and then apply them to retrieve the crustal thickness for
eastern Tibet and the western Yangtze craton from the newest
and high-resolution phase velocity maps. Based on normal
mode theory we compute phase velocities for the sampled ra-
dially symmetric earth models to generate 500 000 theoreti-
cal models. First, the theoretical phase velocity of a Rayleigh
surface wave under random noise is used as input to enhance
the robustness of the neural network, and the corresponding
theoretical crustal thickness is used as output. Twelve deep
neural networks are constructed and trained by 380 000 and
tested by 120 000 synthetic models. We then invert the ob-
served phase velocities through these 12 neural networks.
According to test errors and misfits with other crustal thick-
ness models, the optimal crustal thickness model is selected
as the crustal thickness of the study area.
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To the best of our knowledge, we are the first to in-
troduce deep learning neural networks to learn and invert
crustal thickness, and our results show that crustal thick-
ness is strongly non-linear with respect to phase velocity.
The merits of our methods include the following: first, since
deep learning neural networks can represent complex func-
tions, it is possible to learn the crustal thickness inverse func-
tion precisely. Using a deep learning neural network, we can
learn the relationship between surface wave phase velocity
and model parameters on the basis of large data (i.e. 500 000
theoretical models in this study) and relax the a priori con-
straints on model parameters (the crustal thickness is limited
to 20–100 km). Secondly, inverse mapping based on neural
networks is of high efficiency because new observations can
be inverted instantaneously once well-trained deep learning
neural networks with multiple hidden layers are constructed.
Thirdly, we can invert any combination of model parameters
without resampling model space (we will invert crustal thick-
ness and shear wave velocity simultaneously in future work).
Last but not least, the results show that when the number of
hidden layers reaches six and the test error is about 4.5e-6,
the change in the number of neurons in each layer has little
effect on the test error, which indicates that the deep learning
neural network has strong robustness to the neural network
structure with appropriate layers. In the following, we will
first briefly introduce the deep learning neural network.

2 Deep learning neural networks

In geophysics the real inverse function is usually a very
complicated one between data space and model space. The
traditional linear inverse methods that treat the real inverse
function as a linear one can resolve the linear relation prob-
lems. However, they depend on physical relationships be-
tween the parameter space and initial earth model. A neu-
ral network has its origins in attempts to find mathematical
representations of information processing in biological sys-
tems (Bishop, 1995). The deeper strength of artificial neu-
ral networks (ANNs) is that more capabilities learn to infer
complex, non-linear, underlying relationships without any a
priori knowledge of the model (Bengio, 2009). A shallow
neural network has gained in popularity in geophysics in the
last decade and has been applied successfully to a variety
of problems such as well-log, interpretation of seismic data,
or geophysical inversion. Although a shallow neural network
can present a non-linear inverse function, it can only learn
the relatively simple inverse function. In contrast, many re-
search results indicate that a deep learning neural network
has a powerful representation ability and can apply big geo-
physical observable data to learn and approximate the com-
plicated inverse function well (Lecun et al., 2015; Bengio et
al., 2006; Liu et al., 2015).

Based on the analysis above, we design a deep learning
neural network to obtain crustal thickness for eastern Ti-
bet and the western Yangtze craton. Compared with shal-
low neural networks, a deep learning neural network allows
computational models that are composed of multiple pro-
cessing layers to learn representations of data with multiple
levels of abstraction and can learn complex functions. The
essence of deep learning is building an artificial neural net-
work with deep structures to simulate the analysis and in-
terpretation process of the human brain for data such as im-
age, speech, or text. However, many research results suggest
that gradient-based training of a deep neural network gets
stuck in apparent local minima, which leads to poor results
in practice (Bengio, 2009). Fortunately, the greedy layer-
wise training algorithm proposed by Hinton and Salakhut-
dinov (2006) overcomes the optimization difficulty of deep
networks effectively. The training processing of deep neural
networks is divided into two steps. First, unsupervised learn-
ing methods are employed to pre-train each layer’s param-
eters with the output of the previous layer as input, giving
rise to initialize parameter values. After that, the gradient-
based method is used to finely tune the whole neural net-
work parameter values with respect to a supervised learning
criterion as usual. The advantage of the unsupervised pre-
training method at each layer can help guide the parameters
of that layer towards better regions in parameter space (Ben-
gio, 2009). There are multiple types of deep learning neu-
ral networks, such as convolutional neural networks, deep
belief nets, and sSAE. sSAE works very well in learning
useful high-level features for better representation of input
raw data. Since the sSAE learning algorithm can automati-
cally learn even better feature representations than the hand-
engineered ones, sSAE is used widely in many domains such
as computer vision, audio processing, and natural language
processing (Hinton and Salakhutdinov, 2006; Deng et al.,
2013). Similar to these problems, we need to extract earth
feature representation from dispersion of surface waves. Here
we introduce sparse auto-encoders briefly, and a detailed de-
scription of the network training method is given by Liu et
al. (2015).

The structure of sSAE is stacked by sparse auto-encoders
to extract abstract features. A typical sparse auto-encoder
(SAE) can be seen as a neural network with three layers, as
shown in Fig. 1, including one input layer, one hidden layer,
and one output layer. The input vector and the output vec-
tor are denoted by v and v̂, respectively. The matrix W is
associated with the connection between the input layer and
the hidden layer. Similarly, the matrix Ŵ connects the hid-
den layer to the output layer. The vectors b and b̂ are the bias
vectors associated with the units in the hidden layer and the
output layer, respectively. The SAE is trained to encode the
input vector v into some representation so that the input can
be reconstructed from that representation. Let f (x) denote
the activation function, and the activation vector of the hid-
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Figure 1. An auto-encoder with one hidden layer (Liu et al., 2015).

den layer then is calculated (with an encoder) as

z= f (Wv+ b), (1)

where z is the encoding result and some representation for
the input v. The representation z or code is then mapped back
(with a decoder into a construction v̂ of the same shape as v.
The mapping happens through a similar transformation, e.g.

v̂ = f (Ŵz+ b̂). (2)

SAE is an unsupervised learning algorithm which sets the
target values to be equal to the inputs and constrain outputs
of the hidden layer which are near to zero and most hidden
layers are inactive; the cost function is expressed as

Jsparse (W,b)= J (W,b)+β

S2∑
j=1

ρ log
ρ

ρ̂j

+ (1− ρ) log
1− ρ
1− ρ̂j

. (3)

Here J (W,b) is the cost function without a sparsity con-
straint, β controls the weight of the sparsity penalty term, S2
is the number of neurons in the hidden layer, and the index
j sums over the hidden units in our network. ρ̂j is the aver-
age activation of hidden unit j , and ρ is a sparsity parameter,
typically a small value close to zero.

Further, sSAE are neural networks consisting of multiple
layers of SAE in which SAE are stacked to form a deep neu-
ral network by feeding the representation of the SAE found
on the layer below as input to the current layer. Using unsu-
pervised pre-training methods, each layer is trained as sSAE
by minimizing the error in reconstructing its input, which is
the output code of the previous layer. After all layers are pre-
trained, we add a logistic regression layer on top of the net-
work, and then train the entire network by minimizing pre-
diction error as we would train a traditional neural network.

Figure 2. Stacked sparse auto-encoder with two hidden layers.

For example, an sSAE with two hidden layers is shown in
Fig. 2. This sSAE is composed of two SAEs. The first SAE
consists of the input layer and the first hidden layer, and the
representation or code of the input v is h1 = f (W1v+ b1).
The second SAE comprises two hidden layers, and the code
of h1 is h2 = f (W2h1+b2). Each SAE is added to a decoder
layer as shown in Fig. 1, and we can then employ unsuper-
vised pre-training methods to train each SAE by expression
(1). Finally, the matrix W1, W2 and bias vector b1 and b2 are
initialized. We then apply supervised fine-tuning methods to
train an entire network. Since our aim is to calculate crustal
thickness and this is a regression problem, we attach a layer
connected fully with the last layer of the encoder part (the
matrix Ws). After that, we train this network as done in a
traditional neural network.

3 Inverting surface wave data for crustal thickness

As Meier et al. (2007) demonstrated, the neural network ap-
proach for solving inverse problems is best summarized by
three major steps as shown in Fig. 3: (1) forward problem.
In this stage we proceed by randomly sampling the model
space and solve the forward problem for all visited models
based on seismic wave normal mode theory. (2) Designing a
neural network structure. In this stage taking phase velocities
with random noise as input and theoretical crustal thickness
as output, we train the deep learning neural networks and the
optimized neural network is obtained. (3) Inverse problem.
Based on trained networks, we invert crustal thickness from
observed phase velocities.

In what follows we introduce how to train sSAE deep
learning neural networks to model surface wave dispersion
based on synthetic seismograms, and then invert dispersion
curves based on the trained networks. Finally we compare
our crustal model with other crustal thickness models, and
discuss the geodynamic implications of our model.
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Figure 3. Crustal thickness inversion based on an sSAE neural net-
work composed of two parts: forward problem and inverse problem.

3.1 Data preparation

We closely follow the model parameterization methodology
outlined in de Wit et al. (2014), which is based on the Pre-
liminary Reference Earth Model (PREM, Dziewonski and
Anderson, 1981) and is parameterized on a discrete set of
185 grid points used by the Mineos package (Masters et al.,
2014). In addition, these models we have got show no corre-
lations between physical parameters such as velocity, density,
anisotropic parameter, and attenuation profiles. As with the
model parameterization method mentioned above, we gener-
ate 500 000 synthetic models based on 1-D reference model
PREM, which are randomly drawn from the prior model dis-
tribution; also, prior ranges for the various parameters in our
model are given in Tables A.2–A.4. of de Wit et al. (2014).
We use the Mineos package to compute phase velocity for
fundamental mode Rayleigh waves for all 500 000 synthetic
1-D earth models. As for observation data used in the stage
of inversion below, phase velocities are more sensitive to the
deep structure than group velocity. Based on Rayleigh wave
phase velocity from ambient noise (Xie et al., 2013) shown
in Fig. 4 averaged from 10 to 35 mHz, we take these as input
for our neural networks.

3.2 Training an sSAE deep learning neural network

It is well known that the artificial neural network can approx-
imate any non-linear function to solve the non-linear inverse
problem by using a corresponding set of input–output pairs.
These examples are presented to a network in a so-called
training process, during which the free parameters of a net-
work are modified to approximate the function of interests

Figure 4. Average phase velocity of the western Yangtze craton
(Xie et al., 2013) from 10 to 35 mHz. The black lines in the figure
show structure lines. The blue lines show boundaries of sedimentary
basins. The red dots show seismic events in this region from 1975
to 2015, and the size of a dot demonstrates the size in magnitude
from Ms 6.0 to Ms 8.0. The yellow and purple stars demonstrate
the Wenchuan and Lushan earthquakes respectively. These are the
same as Figs. 4, 6, and 7.

(de Wit et al., 2014). Here adopting an sSAE deep learning
neural network, with detailed methods presented in Sect. 2
above, we pre-train the neural network, taking the theoreti-
cal phase velocity of Rayleigh waves with random noise as
inputs and the theoretical crustal thickness as outputs to at-
tain the initial weights and bias for a neural network. And
then we take the theoretical phase velocity of Rayleigh waves
with random noise as input and crustal thickness as output to
fine-tune the neural network as done in a traditional neural
network.

How to find a satisfactory structure of a neural network is
a difficult problem because neural network training is sensi-
tive to the random initialization of the network parameters.
Therefore, de Wit et al. (2014) pointed out that it is com-
mon practice to train several neural networks with different
initializations and subsequently choose the network which
performs best on a given synthetic test data set, and the net-
work which performed best on the test set is used to draw
inferences from the observed data (de Wit et al., 2014). After
trying many times, we find the proportion of the training data
set to test one is 3 : 1, which is reasonable (Fig. 5). The final
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Figure 5. The relationship between proportions of training data sets
to test data sets and test errors.

test error depends on not only the number of input neurons,
hidden layers, and intermediate neurons, but also on the num-
ber of trainings, batch sizes, and other optional parameters.
In addition, the type of activation function, learning rate, zero
masked fraction, and non-sparsity penalty value will affect fi-
nal test errors. We give 12 cases and their corresponding test
errors in Table 1.

3.3 Inverting crust thickness

Based on all our 12 neural networks, we invert Rayleigh
phase velocities (10–35.0 mHz) to attain 12 crustal thickness
models for eastern Tibet and the western Yangtze craton.
Considering not only the test errors of sSAE networks but
also misfits and correlation coefficients of our 12 models with
crustal thickness models from other studies, we choose the
network structure indicated by ∗ in Table 1. We find the best
fit crustal thickness model from sSAE (Fig. 6). We compare
our model with the crustal thickness model from the receiver
function (Zhu et al., 2012), and the other two global crustal
thickness models, CRUST2.0 from Bassin et al. (2000) based
on refraction and reflection seismics as well as receiver func-
tion studies and the CUB2 model from Shapiro and Ritz-
woller (2002) (Fig. 7), who inverted a similar data set for
crustal thickness using a Monte Carlo approach. The corre-
lation coefficients and scatter plots of our model versus ZJS,
our model versus CRUST2.0, and our model versus CUB2
(Fig. 8) indicate overall agreement between the three mod-
els. However, the agreements of our model with CUB2 and
CRUST2.0 are better than with ZJS, since model ZJS at-
tained from Zhu et al. (2012) has relatively sparse stations
with poor data coverage and lower resolution. In addition,
taking the Monte Carlo method (Hansen et al., 2013) using
four processors only for 1000 iterations, it takes 3 weeks to

Figure 6. Crustal thickness of the western Yangtze craton from this
paper.

invert the Xie et al. (2013) data set to the crust thickness of
the same region. As Shapiro and Ritzwoller (2002) pointed
out, the major disadvantage of this method is computational
expense. Maybe the result is high resolution after many more
iterations using the Monte Carlo method. However, when we
make use of sSAE, using only one processor, a six-layer net-
work for 380 000 training samples and 120 000 test samples
for network training takes 5 h, while a well-trained neural
network inversion takes only a few seconds to complete.

In this article, we fixed the following three parameters in
every situation: A – type of activation function (sigmoid); B
– learning rate (1); C – zero masked fraction (0.5). Various
parameters: D – non-sparsity penalty, which is zero except
for layer 1 in every sASE structure; E – number of epochs;
F – size of batch. G – RMS misfit of our result with other
model; H – correlation coefficient of our result with another
model. ∗ – selected sSAE neural network structure.

4 Discussion

On the one hand, our results show that deep learning neural
networks can effectively invert crustal thickness because they
have the ability to represent complex inverse functions.

A deep neural network can offer improvement over a shal-
low neural network as shown in Table 1. Test errors of a deep
learning neural network may be affected by the number of
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Table 1. Deep learning neural network structures in this article.

sSAE structure Parameters Error ×10−6 CUB2 CRUST2.0 ZJS

Layers D E F G H G H G H

[21 50 10 1] Layer 1 0.3 10 1e4 262 7.29 0.79 7.68 0.80 9.12 0.71
[21 50 10 1] Layer 1 0.3 10 1e3 79.5 7.52 0.77 8.00 0.76 8.42 0.73
[21 50 10 1] Layer 1 0.3 10 1e2 27.83 7.29 0.78 7.32 0.79 7.98 0.72
[21 50 10 1] Layer 1 0.3 100 1e3 28.83 7.44 0.78 7.13 0.80 7.89 0.71
[21 50 10 1] Layer 1 0.3 100 1e2 11.29 7.34 0.79 6.61 0.82 7.79 0.68
[21 50 10 1] Layer 1 0.01 100 1e2 11.28 7.33 0.79 6.61 0.81 7.79 0.68
[21 10 2 1] Layer 1 0.01 100 1e2 15.73 7.08 0.79 6.67 0.82 7.91 0.68
[21 100 50 20 1] Layer 1 0.5 100 1e2 8.35 7.37 0.79 6.64 0.82 7.53 0.68
[21 200 50 20 10 1] Layer 1 0.5 100 1e2 7.62 7.32 0.79 6.69 0.81 7.59 0.68
[21 200 100 50 20 10 5 1]∗ Layer 1 0.5 100 1e2 7.22 6.75 0.80 6.70 0.82 8.00 0.69
[21 200 100 50 20 10 5 1] Layer 1 0.5 100 50 4.58 7.79 0.79 8.45 0.84 10.7 0.65
[21 50 40 30 20 10 5 1] Layer 1 0.5 100 50 6.04 7.62 0.78 8.35 0.83 10.3 0.66

Figure 7. Crustal thickness of model CUB2 from Shapiro and Ritz-
woller (2002). Note: the colour scale is not exactly the same as
Fig. 6.

hidden layers in networks. The test error of a deep learning
neural network may be affected by the number of hidden lay-
ers in the network, which indicates that the more hidden lay-
ers, the smaller the test error. When the number of hidden
layers in networks increases from three to six, we can attain
from Table 1 that the test error decreases from 2.6× 10−4 to
6.0× 10−6. In addition, the robustness of deep learning neu-

ral networks is strong. When the number of hidden layers in a
network reaches six, the change in the number of neurons in
each layer has little influence on test errors, about 5.5×10−6.

In addition, we conclude that different training parame-
ters have different effects on training results. We think that
the size of a batch is more important than epochs, as shown
in Table 1. The size of a batch decreases from 1× 104 to
1×103 and test errors decrease from 2.6×10−4 to 7.9×10−5;
however, epochs increase from 10 to 100, and corresponding
test errors change a little. The neural network structure indi-
cated by ∗ in Table 1 reveals misfits of our model with models
CUB2, CRUST2.0, and ZJS are relatively low at 6.75, 6.70,
and 8.0, and corresponding correlation coefficients are rela-
tively high at 0.8, 0.82, and 0.69 respectively; however, the
test error is 7.22× 10−6 and is not minimum. This tells us
that the test error may not be the only criterion determining
which neural network is best, because over-fitting may lead
to small test errors.

Compared with the works of Meier et al. (2007), in or-
der to enhance robustness of neural networks, random noise
is added to synthetic phase velocity as input in training
progress. However, we have not considered the uncertainty
of crustal thickness, which should be revealed by the deep
mixture density network in a probabilistic manner in our fu-
ture work.

On the other hand, we can attain the crustal thickness and
resultant geodynamic implications in a research region from
our result. We find relatively good agreement of our result
(Fig. 6) with CUB2 (Fig. 7), CRUST2.0, (Fig. 8) and other
recent studies (Qian et al., 2018; Xu et al., 2016; Wang et
al., 2015). All these models indicate that crustal thickness is
deeper to the west of the Longmen Mountains than to the east
of the Longmen Mountains, which all showed an approxi-
mately 45 km thick crust below the Sichuan basin, thicken-
ing beneath the Longmen Mountains and the high Tibetan
Plateau to about 60–80 km. Since we make use of a regional
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Figure 8. (a–c) Scatter plots of our model versus ZJS, our model versus CRUST2.0, and our model versus CUB2.

Figure 9. The relative error of the average phase velocity between
the phase velocity calculated by our model and the phase velocity
observed by Xie et al. (2013).

high-resolution phase velocity model, our result reveals more
details. In order to prove that these anomalies are persistent,
only accidents, or inversion artifacts, we verify two aspects:
one is that because our model gives a point estimate with-
out uncertainty information, we propose the relative error be-
tween the phase velocity calculated based on our model and
the phase velocity observed in the same region (Xie et al.,
2013) to verify the uncertainty and non-uniqueness of the in-
version results (Figs. 9 and 10). The relative error calculation

formula is shown in Eq. (4).

RE=
|Phacal−Phaobs|

Phaobs
(4)

RE – relative error of average phase velocity; Phacal – cal-
culated average phase velocity based on our model; Phaobs –
observed average phase velocity from Xie et al. (2013).

The relative error between east and west is significantly
different (Fig. 9). The reason is that in our research area, as
shown in Fig. 1b of Xie et al. (2013), the stations in the east
are much denser than in the west, and the Rayleigh wave
measurements has a higher resolution in the east. Therefore,
compared with the west, the training data in the east are more
dense, resulting in higher prediction accuracy of the neu-
ral network in the east and lower prediction accuracy in the
west. Using the same parameters but for a traditional shallow
neural network with three layers (one input layer, one inter-
mediate layer, and one output layer), we train this shallow
neural network and obtain a relative error with the observed
average phase velocity. The histogram error of the relative
error of the shallow network is larger than that of our deep
learning network (Fig. 10). We can conclude that our model
is more reliable in the eastern part of the Longmen Moun-
tains, especially in Chengdu, the Qinling–Dabei fold belt, the
Xi’an and Ordos basins, and the Sichuan–Yunnan block, and
so the crust thickness anomaly in these areas is worth ex-
plaining. Another reference is to the results of other studies
conducted by C. Y. Wang et al. (2010) in the same area, who
attained the crustal thickness estimated by the H–k stacking
method based on the broadband tele-seismic data recorded at
132 seismic stations in the Longmen Mountains and adjacent
regions (26–35◦ N, 98–109◦ E) (Fig. 11).

Our result reveals similar details to C. Y. Wang et
al. (2010): the crustal thickness of the eastern Tibetan Plateau
is complex and varies greatly. The average crust thickness is
about above 60 km, especially about 70–75 km at the Qiang-
tang block, under which there is a northward-dipping Moho
gradient zone. There is a relatively shallow crust at the
Songpa–Ganzi block and is characteristic of a decrease in
northwest–southeast orientation. Our model still shows some
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Figure 10. The histogram of the relative error of the shallow neural
network (SNN) and deep neural network (DNN).

Figure 11. Contour map of crustal thickness estimated by h–k
stacking analysis based on the receiver function (C. Y. Wang et al.,
2010). Small black solid circles indicate the seismic station used by
C. Y. Wang et al. (2010).

changes in the thickness of the crust in this area. For example,
the thickness of the crust around Chengdu is relatively thin,
especially in the north-eastern part of Chengdu, about 50 km
thick under the Qinlin–Dabei fold belt, and the thickness of
the crust in the north-east to the Sichuan basin is about 45–
48 km. In addition, crustal thickness around Xi’an and the
Ordos basin is about 35 km. By contrast, a change in the
crustal thickness in the Sichuan–Yunnan block varies greatly,
with a thickness of about 60 km in the north-west and about
35 km in the south-east. From a geological viewpoint, eastern
Tibet and the western Yangtze craton have a very complex

structure and tectonics, where several tectonic blocks, in-
cluding the Yangtze Platform, the Songpan–Ganzi Fold Sys-
tem, the Qiangtang block, and the Indochina block, interact
with each other. It is a site of important processes associated
with the India–Asia collision and abutment against the stable
Yangtze Platform, including strong compressional deforma-
tion with crust shortening and thickening; the plateau surface
has been elevated to 4–5 km, and the Tibetan crust has dou-
bled in thickness since the collision (Chen and Wilson, 1996;
Flesch et al., 2005; Z. Wang et al., 2010). East–west crustal
extension and strong earthquakes often occur on the active
faults inside and on the edge of the plateau and are the most
active seismic areas within the mainland. Based on the anal-
ysis of the distribution of the epicentres during 1970–2015,
the results show that a large earthquake occurred in the brit-
tle upper crust of the Longmenshan fault zone in Sichuan and
Yunnan, and the crustal thickness changed sharply by about
10 km. The Ms 8.0 Wenchuan earthquake in 2008 and the
Ms 7.0 Lushan earthquake in 2013 were caused by the reac-
tions associated with the Songpan–Ganzi Fold System and
the Qiangtang block obliquely colliding with the Yangtze
Platform. The reason may be that main fault cut off the
Moho discontinuity where materials exchange between crust
and mantle, and accumulated press triggers a series of earth-
quakes frequently.

5 Conclusion and remarks

Making use of an sSAE deep learning network, we present
a crustal thickness map of eastern Tibet and the western
Yangtze craton (Fig. 7). The data sets consist of phase ve-
locities of Rayleigh waves from Xie et al. (2013) at discrete
frequencies of 10.0, 12.5, 15.0, 17.5, 20.0, 22.5, 25.0, 27.5,
30.0, 32.5, and 35.0 mHz. We conclude the following.

1. Neural network structure is essential for inversion re-
sults, determined by the following parameters: the num-
ber of hidden layers, the number of neurons per layer,
number of epoch, batch size, type of activation function,
learning rate, and non-sparsity penalty. We find that the
number of parameters in hidden layers and the size of
a batch are crucial for training neural networks. After
many tests, the number of hidden layers was set to 6;
the number of neurons was 200, 100, 50, 20, 10, and
5. The number of periods and the batch size were both
set to 100, the activation function was sigmoid, and the
learning rate was 1; higher resolution and a more reli-
able crustal thickness model were attained.

2. By training the deep network with six hidden layers and
the traditional shallow network with only one hidden
layer, the relative error between the phase velocity pre-
dicted by the deep network and the observed average
phase velocity is smaller than that between the phase ve-
locity predicted by the traditional shallow network and
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observed average phase velocity, indicating that the in-
version result based on the deep network is more reli-
able than that of the traditional shallow network.

3. Using only one processor, a six-layer sSAE network for
380 000 training samples and 120 000 test samples for
network training takes 5 h, while a well-trained neural
network inversion takes only a few seconds to complete.
To complete the same inversion task, it takes 3 weeks
to use the Monte Carlo method for four processors. We
demonstrate that sSAE deep network inversion is more
efficient than Monte Carlo inversion.

4. Comparing our model with current knowledge about
crustal structure as represented by ZJS, CRUST2.0, and
CUB2, the overall agreement with these three models
is very good, and agreement is generally better with
CUB2 and CRUST2.0, which are attained from rela-
tively dense stations with rich data coverage and higher
resolution. Our result reveals more details in Chengdu,
the Qinling–Dabei fold belt, the Xi’an and Ordos basins,
and the Sichuan–Yunnan block.
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