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Abstract. Using the solar-wind-driven magnetosphere–
ionosphere–thermosphere system, a methodology is devel-
oped to reduce a state-vector description of a time-dependent
driven system to a composite scalar picture of the activity in
the system. The technique uses canonical correlation analysis
to reduce the time-dependent system and driver state vectors
to time-dependent system and driver scalars, with the scalars
describing the response in the system that is most-closely re-
lated to the driver. This reduced description has advantages:
low noise, high prediction efficiency, linearity in the de-
scribed system response to the driver, and compactness. The
methodology identifies independent modes of reaction of a
system to its driver. The analysis of the magnetospheric sys-
tem is demonstrated. Using autocorrelation analysis, Jensen–
Shannon complexity analysis, and permutation-entropy anal-
ysis the properties of the derived aggregate scalars are as-
sessed and a new mode of reaction of the magnetosphere to
the solar wind is found. This state-vector-reduction technique
may be useful for other multivariable systems driven by mul-
tiple inputs.

1 Introduction

In this report a methodology is described that can produce
a compact description of the behavior of a time-dependent,
multivariable system driven by a time-dependent, multivari-
able driver or by multiple drivers. The system used to develop
this methodology is the Earth’s magnetosphere–ionosphere–
thermosphere system driven by the time-dependent solar

wind. The spatial domain wherein the Earth’s magnetic field
dominates over the solar wind is known as the magneto-
sphere. The interaction between the solar wind, and the mag-
netosphere is surprisingly complex and the magnetosphere’s
evolution in response to the time-varying solar wind is rich
and diverse. The magnetospheric system is characterized
by multiple subsystems that interact with each other (cf.
Lyon, 2000; Otto, 2005; Siscoe, 2011; Eastwood et al., 2015;
Borovsky and Valdivia, 2018): almost 6 orders of magnitude
of spatial scales are involved in the global behavior of the
magnetosphere, from ∼ 1 to ∼ 6× 105 km. This system is
highly coupled, dynamic, with memory and with feedback
loops. Multiple physical processes act to couple the various
subsystems, with the strength of the couplings evolving with
time as the subsystems evolve owing to the couplings. Even
after a half of a century of measurements and analysis, its
subsystems and the couplings between its subsystems are not
fully understood (Stern, 1989, 1996; Denton et al., 2016). It
has been argued that the system adjectives “adaptive”, “non-
linear”, “dissipative”, and “complex” apply to the magneto-
spheric system (Borovsky and Valdivia, 2018). (See also the
earlier systems analyses by Horton et al., 1999, Chapman et
al., 2004, Valdivia et al., 2005, 2013, and Sharma, 2010.) The
magnetospheric system is well measured: there are hundreds
of thousands of hours of simultaneous measurements of var-
ious aspects of the magnetospheric system and its solar-wind
driver over the five decades of the “space age” (cf. Stern,
1989, 1996; King and Papitashvili, 2005).

The methodology developed here creates a compact de-
scription of a time-dependent, multivariable system driven
by a time-dependent, multivariable driver. The diverse vari-
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ables describing the system may be intercorrelated, and
the variables describing the driving may be intercorrelated.
The methodology was developed to gain an understanding
of the Earth’s magnetosphere–ionosphere–thermosphere sys-
tem as driven by the solar wind. To utilize the methodol-
ogy the system and its driver are conceptualized by a time-
dependent, multidimensional system state vector S(t) and a
time-dependent, multidimensional driver state vector D(t),
with the assumption that the driver vector D affects the sys-
tem vector S, but not vice versa, written D→ S. The individ-
ual time-dependent scalar variables making up the state vec-
tor S(t) are time-dependent measures of various forms of ac-
tivity in the system and various properties of the system, and
the individual time-dependent scalar variables making up the
driver state vector D(t) are various time-dependent measures
of the properties of the drivers of the system. We will utilize
the correlation properties between the components (individ-
ual time-dependent variables) of S and the components of D.
Canonical correlation analysis (CCA) will be used to derive
scalar projections (dot products) of S(t) and scalar projec-
tions of D(t) that have the highest Pearson linear correla-
tion coefficient between them. The derived scalar projections
S(1)(t), S(2)(t), S(3)(t), . . . of the vector S(t) will be com-
posite (aggregate) measures of activity in the system, and the
derived scalar projectionsD(1)(t),D(2)(t),D(3)(t), . . . of the
vector D(t) will be the composite drivers of S(1)(t), S(2)(t),
S(3)(t), . . ., respectively. In essence, the aggregate variables
S(1)(t), S(2)(t), S(3)(t), . . . are “latent variables” of the sys-
tem constructed from the “manifest variables” in the system
state vector. This reduced scalar picture D(i)→ S(i) of the
system driven by the driver focuses on the time-dependent
properties of the system that react to the driver. By maxi-
mizing the correlations, the predictability of the system from
knowledge of the state of the driver is also maximized.

The solar-wind-driven magnetospheric system very
cleanly follows the D→ S picture where the driver affects
the system, but the system does not affect the driver. The
Earth’s magnetosphere has no influence whatsoever on
the properties of the solar wind that passes the Earth.
Measurements of this magnetospheric system will be used
in Sects. 2 and 3 to explore the mathematical reduction
of the state-vector D(t)→ S(t) picture to the composite-
scalar D(i)(t)→ S(i)(t) picture. Table 1 lists the nine
time-dependent measurements of the magnetosphere in
the system state vector S and the eight time-dependent
measurements of the solar wind in the driver state vector D.
The individual variables in the system state vector and in the
driver state vector are described in the Appendix.

This report is organized as follows. In Sect. 2 the CCA
approach is applied to the magnetospheric system driven
by the solar wind to derive the first three time-dependent
sets of composite variables S(1)(t) and D(1)(t), S(2)(t) and
D(2)(t), and S(3)(t) and D(3)(t) from the state vectors S(t)

and D(t). In Sect. 3 the three sets of composite variables
S(i) and D(i) for the magnetospheric system are explored,

and the complexity–entropy properties of the aggregate vari-
able S(1)(t) are analyzed. In Sect. 4 the advantages of the re-
ducedD(i)→ S(i) scalar description are examined: these ad-
vantages include (a) a compact description of global system-
wide reactions to variations in the driver, (b) increased pre-
dictability of the system from knowledge of the driver,
(c) linearity in the description of the system’s response to
the driver, and (d) lower noise in correlations between the
system variables and the driver variables. The reduced scalar
picture can also reveal independent modes of reaction of the
system to the driver, providing insight into the behavior of
the system in reaction to complexities in the driver. The vari-
ables of the magnetospheric and solar-wind state vectors are
described in the Appendix.

2 Creation of composite (aggregate) variables from the
state vectors

Using the Earth’s magnetosphere–ionosphere–thermosphere
system as driven by the solar wind, the reduction of a
time-dependent state-vector picture D(t)→ S(t) to the time-
dependent composite-variable-pair picture D(i)(t)→ S(i)(t)

will be performed. The nine measured variables chosen for
the nine-dimensional magnetospheric system state vector S

appear in the first column of Table 1, and the eight measured
variables chosen for the eight-dimensional solar-wind driver
state vector D appear in the second column of Table 1, with
explanations of those measures deferred to the Appendix.

One-hour averages of all magnetospheric and solar-wind
variables are used in the years 1991–2007. No time lags are
used between the solar-wind measurements and the magneto-
spheric measurements: most expected time lags will be about
1 h (e.g., Clauer et al., 1981; Smith et al., 1999), which is the
time resolution of the data set.

Canonical correlation analysis (CCA) is applied to the
time-dependent state vectors S(t) and D(t). CCA finds cor-
relation patterns between two multivariable data sets (Nimon
et al., 2010; Hair et al., 2010). It yields pairs of compos-
ite (aggregate) variables (a) that are linear combinations of
the variables of the two data sets and (b) that have maximal
correlations with each other. Each pair of composite vari-
ables is called the “N th canonical correlation”. From the data
sets of S(t) and D(t) the first pair of composite variables
yielded (the first canonical variates) is S(1)(t) and D(1)(t):
these two variables are projections of S and D given by
S(1)(t)= CS1 ·S(t) andD(1)(t)= CD1 ·D(t), where CS1 and
CD1 are time-independent coefficient (weight) vectors. S(1)
andD(1) are the composite variables from S and D that have
the highest Pearson linear correlation coefficient with each
other. Here, CCA is in a sense creating the system func-
tion S(1)(t) that is most reactive to the driver vector D(t)

and creating the driver scalar function D(1)(t) that describes
that driving. CCA then yields other pairs of composite vari-
ables S(2) and D(2) (the second canonical correlation), S(3)
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Table 1. The nine time-dependent variables going into the system state vector S(t) of the magnetosphere and the eight time-dependent
variables going into the driver state vector D(t) of the solar wind.

System (magnetospheric) variables Driver (solar-wind) variables

Auroral lower index AL Solar wind speed vsw
Auroral upper index AU Solar wind number density nsw
Polar cap index PCI Solar 10.7 cm radio flux F10.7
Planetary K index Kp North–south-component magnetic field – Bz
Geomagnetic range index am Mach-number function f (M)
Time derivative of disturbance storm-time index Dst Magnetic-field clock angle θclock
Hemispheric electron precipitation power mPe Magnetic-field Sun–Earth angle θBn
Hemispheric ion precipitation power mPi Magnetic-field-vector fluctuation amplitude |1B|

Pressure of the ion plasma sheet Pips

and D(3) (the third canonical correlation), etc. S(2) and D(2)
are the projections of S and D that have the highest corre-
lation with each other, provided that S(2) and D(2) are un-
correlated with S(1) and D(1). S(3) and D(3) are the projec-
tions of S and D that have the highest correlations with each
other, provided they are uncorrelated with S(1), S(2), D(1),
and D(2). S(1)(t), S(2)(t), and S(3)(t) represent three inde-
pendent modes of reaction of the global system to the driver
D(t). The CCA process will identify these modes (and their
respective drivers).

CCA is a matrix equation solution, non-iterative, that
yields a single unique solution (Johnson and Wichern, 2007).
CCA operates on standardized variables (with the mean
value subtracted and the values then divided by the standard
deviation), denoted with an asterisk. (For each variable the
mean value and standard deviation are calculated for the en-
tire data set.) CCA operates most efficiently on variables that
are Gaussian distributed: hence the logarithms of some vari-
ables are used to yield more-Gaussian-like distributions. All
standardized variables v∗ have a mean value of zero, a stan-
dard deviation unity, and no units.

When CCA is applied to the 1991–2007 S(t) and D(t)

data sets (see Table 1), the first canonical pair of time-
dependent variables is

S(1) = 0.0260log10(1+ |AL|)∗

+ 0.1151log10(1+ |AU|)∗+ 0.2160|PCI|∗

+ 0.1451Kp
∗
+ 0.2881log10(1+ am)∗

+ 0.0201d|Dst|/dt∗+ 0.0492log10(0.01+mPe)
∗

+ 0.2531log10(0.01+mPi)
∗

+ 0.0854log10
(
0.01+Pips

)∗ (1a)

D(1) = 0.8378log10(vsw)
∗
+ 0.6876log10(nsw)

∗

+ 0.1018log10(F10.7)
∗
− 0.1676(−Bz)∗

+ 0.3547f (M)∗+ 0.3844
〈
sin2 (θclock/2)

〉∗
3

+ 0.0960〈θBn〉
∗

3+ 0.0943log10(0.1+ |1B|)
∗. (1b)

S(1) and D(1) have mean values of zero and standard devia-
tions of unity. The derived composite variables given by ex-
pressions (1) are robust and reproducible: applying the CCA
process to various subsets of the full 1991–2007 data set, the
CCA process repeatedly yields essentially the same coeffi-
cients that are in Eqs. (1a) and (1b) (cf. Borovsky and Den-
ton, 2018).

CCA applied to the time-dependent state vectors S(t) and
D(t) for the 1991–2007 data set yields the second canonical
pair of time-dependent scalar variables as

S(2) =−0.2628log10(1+ |AL|)∗

− 0.0874log10(1+ |AU|)∗− 0.1302|PCI|∗

− 0.0556Kp
∗
+ 0.1928log10(1+ am)∗

+ 0.0028d|Dst|/dt∗− 0.8506log10(0.01+mPe)
∗

+ 0.9218log10(0.01+mPi)
∗

+ 0.3493log10
(
0.01+Pips

)∗ (2a)

D(2) = 0.1195log10(vsw)
∗
+ 0.8874log10(nsw)

∗

+ 0.1202log10(F10.7)
∗
− 0.1138(−Bz)∗

+ 0.2669f (M)∗− 0.5079
〈
sin2 (θclock/2)

〉
3

∗

− 0.0186〈θBn〉
∗

3+ 0.0260log10(0.1+ |1B|)
∗. (2b)

For the 1991–2007 data set CCA yields the third canonical
pair of time-dependent scalar variables as

S(3) =−0.1796log10(1+ |AL|)∗

− 0.2220log10(1+ |AU|)∗− 1.0351|PCI|∗

+ 0.8265Kp
∗
+ 0.5809log10(1+ am)∗

− 0.2169d|Dst|/dt∗+ 0.3856log10(0.01+mPe)
∗

− 0.6100log10(0.01+mPi)
∗

+ 0.1064log10
(
0.01+Pips

)∗ (3a)

D(3) = 0.4241log10(vsw)
∗
− 0.1985log10(nsw)

∗

− 0.1404log10(F10.7)
∗
− 0.6704(−Bz)∗

− 0.1008f (M)∗+ 0.0572
〈
sin2 (θclock/2)

〉∗
3

− 0.3134〈θBn〉
∗

3+ 0.3055log10(0.1+ |1B|)
∗. (3b)
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Figure 1. The aggregate system scalar S(1) is plotted as a function
of the driver scalar D(1) for the 1 h resolution 1991–2007 data set.
Each black point is 1 h of data.

The properties of S(1)(t) andD(1)(t), S(2)(t) andD(2)(t), and
S(3)(t) and D(3)(t) as given by Eqs. (1)–(3) are explored in
Sect. 3.

3 Properties of the scalar reduced picture for the
magnetospheric system

The three sets of composite variables S(1) and D(1), S(2) and
D(2), and S(3) andD(3) for the magnetospheric system are ex-
plored and the advantages of the reduced D(i)→ S(i) scalar
description are investigated.

3.1 The primary mode of system response as
represented by D(1) → S(1)

In Fig. 1 the composite system variable S(1) (as given by
Eq. 1a) is plotted for the years 1991–2007 as a function of
the composite driver variableD(1) (as given by Eq. 1b). Each
black point in Fig. 1 represents 1 h of data. The Pearson linear
correlation coefficient between S(1) and D(1) for the 1991–
2007 data set is rcorr = 0.921. Accordingly, r2

corr = 84.8 % of
the variance of the system function S(1)(t) is described by
the driver function D(1)(t), and so 15.2 % of the variance of
S(1) is unaccounted for by D(1). The blue line in Fig. 1 is
a linear-regression fit to S(1), and the red curve is a 50-point
vertical running average of the black points. Note the approx-
imate linearity of system variable S(1) as a function of driver
variable D(1), indicated by the manner in which the running
average tracks the linear-regression line.

Note that whereas the correlation coefficient between
S(1)(t) andD(1)(t) is rcorr = 0.921, the maximum correlation
coefficient between any single variable in the system state

vector S(t) and any single variable in the driver state vec-
tor D(t) is only rcorr = 0.586 (between

〈
sin2(θclock/2)

〉
3 and

log10(1+ |AL|)).
As a further note, the Pearson linear correlation coeffi-

cients between S(1) and various “physics-based” solar-wind
driver functions from the literature are the following:+0.378
for −vswBz, +0.557 for vswBsouth (Eq. 2 of Holzer and
Slavin, 1979), +0.679 for the Newell function d8/dt (Eq. 1
of Newell et al., 2007), +0.723 for the quick reconnection
function Rq (Eq. 8 of Borovsky and Birn, 2014), and+0.761
for the nonlinear reconnection-coupled MHD generator with
Bohm viscosity (Eq. 65 of Borovsky, 2013). All of these
driver functions have poor correlations with S(1) in compari-
son with the +0.921 correlation of D(1) with S(1).

In the six panels of Fig. 2 the coefficients of the six vec-
tors CS1, CD1, CS2, CD2, CS3, and CD3 are plotted. (These
are the coefficients in Eqs. 1–3.) Examining these six pan-
els enables the reaction modes represented by S(1), S(2), and
S(3) to be interpreted as well as their drivers D(1), D(2), and
D(3). Figure 2a indicates that all coefficients of S(1) are pos-
itive: this indicates a mode of the magnetospheric system in
which all measures of activity in the system vector S increase
or decrease in unison, with S(1) representing a “global ac-
tivity index”. Figure 2b indicates that all of the coefficients
of D(1) are positive. The variables in the driver state vector
D (Table 1) and their signs were all chosen so that a pos-
itive increase in each variable would result in a generally
accepted increase in magnetospheric activity. The individual
variables on the right-hand side of Eq. (1b) have all been cor-
relatively associated with the driving of magnetospheric ac-
tivity (Berthelier, 1976; Borovsky and Funsten, 2003; Newell
et al., 2007; Borovsky and Denton, 2014; Borovsky and Birn,
2014; Osmane et al., 2015). S(1) is selected by the CCA pro-
cess to have highest correlation with solar-wind variability:
S(1) is focused on activity that reacts to the solar-wind driver.

Using the linear-regression curve in Fig. 1 as a “predic-
tion” of the value of S(1) from knowledge of the value of
D(1) yields

S(1)pred = 0.9209D(1)− 4.4× 10−5. (4)

In Fig. 3 the autocorrelation functions of S(1)(t) (red curve),
D(1)(t) (blue curve), and S(1)(t)− S(1)pred(t) (green curve)
are plotted. In Fig. 3a it is seen that the autocorrelation func-
tions of S(1) and D(1) are very similar, with 1/e autocorrela-
tion times of 23.3 h for S(1) and 22.7 h forD(1). In Fig. 3b the
three autocorrelation functions are plotted for time shifts up
to 40 d. Note the 27 d peak in the autocorrelation functions
of D(1)(t) and S(1)(t): this is associated with the 27 d rota-
tion period of the Sun as viewed from the Earth and the per-
sistence of features on the solar surface that give rise to so-
lar wind with characteristic properties. This causes the driver
D(t) properties to have a 27 d periodicity, which drives the
system S(t) with a 27 d periodicity.

The quantity S(1)− S(1)pred is the portion of S(1)(t) that is
not accounted for by D(1)(t), i.e., the unaccounted-for vari-
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Figure 2. Plots of the nine components of the coefficient vectors used to project the system state vector S into the aggregate variables S(1) (a),
S(2) (c), and S(3) (e) and plots of the eight components of the coefficient vectors used to project the driver state vector D into the driver scalar
variables D(1) (b), D(2) (d), and D(3) (f).

ance of S(1)(t). S(1)(t)− S(1)pred(t) is completely uncorre-
lated withD(1)(t). Further, S(1)(t)−S(1)pred(t) is completely
uncorrelated with each of the eight individual solar-wind
variables on the right-hand side of Eq. (1b). Since S(1) is
so similar to D(1), the standard analyses of the S(1)(t) time
series (e.g., determining the correlation dimension, exam-
ining the state space, or Fourier analyzing; Sharma et al.,
2005a; Vassiliadis, 2006) would largely be an analysis of
the properties of the solar-wind time series D(1)(t) – not so
for S(1)(t)−S(1)pred(t), which is uncorrelated withD(1). The
autocorrelation function of S(1)(t)− S(1)pred(t) in Fig. 3a is
very different from the autocorrelation function of D(1): the
1/e autocorrelation time of S(1)(t)− S(1)pred(t) is 2.4 h. De-
termining what the unaccounted-for variance S(1)− S(1)pred
originates from is of great interest. Four suggestions of what
contributes to S(1)− S(1)pred are made here. First, some frac-
tion of S(1)−S(1)pred may be associated with noise in the var-
ious measurements of the magnetospheric system and of the
solar wind. Shot noise (random noise in the values of the vari-
ables) would have an autocorrelation time of less than 1 h, the
autocorrelation function of the shot-noise going from 1 to 0
in one data-resolution time shift (cf. Sect. 2.4 of Borovsky et
al., 1997). Second, some fraction of S(1)(t)−S(1)pred(t) may

be owed to errors in the measurement values in the state vec-
tors S(t) and D(t). Errors in the values of the variables of D

could be caused by the spatial structure of the solar wind and
the measuring spacecraft upstream of the Earth not intercept-
ing the exact solar-wind structures that hit and drive the Earth
(cf. Weimer et al., 2003; Borovsky, 2018a): this could affect
all of the variables of D. Extrapolating local measures to es-
timate global properties can also lead to errors: this might af-
fect the hemispheric particle-precipitation variables mPe and
mPi (Emery et al., 2008) in S and also the magnetospheric
pressure values Pips (Borovsky, 2017) in S. Variables react-
ing to more than one physical process (such as d|Dst|/dt and
Pips) could also appear to have error in the values when re-
lating the values to D(1). Third, unaccounted-for time lags
between solar-wind variables and magnetospheric variables
may be resulting in weakened correlations: most time lags
are 1 h or less, but measurements of magnetospheric parti-
cle populations can have lags of several hours (e.g., Denton
and Borovsky, 2009; Borovsky, 2017). The fourth suggestion
is that some fraction of S(1)(t)− S(1)pred(t) might be associ-
ated with system variations that are not directly associated
with the solar-wind driver as measured by D. The autocorre-
lation time of S(1)(t)−S(1)pred(t) is approximately the 2–3 h
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Figure 3. The autocorrelation functions for the system scalar S(1)
(red), the driver scalar D(1) (blue), and the unaccounted-for vari-
ance E(1)E(1)pred (green) are plotted. In panel (a) the plot extends
to 50 h and in panel (b) the plot extends to 40 d.

time duration of a magnetospheric substorm (Borovsky et al.,
1993; Weimer, 1994; Chu et al., 2015). Substorms are large
transients in the reaction of the magnetospheric system to
solar-wind driving. (Substorms have been described as self-
organized criticality events in the driven magnetospheric sys-
tem; Klimas et al., 2000.) The occurrence of a substorm is no-
toriously difficult to predict from solar-wind data (Freeman
and Morley, 2004; Hsu and McPherron, 2009; Newell and
Liou, 2011). The timing of substorm occurrence would be
particularly difficult to infer from the 1 h resolution variables
going into D because of the 3 h smoothing used on the clock-
angle term

〈
sin2(θclock/2)

〉
3 in Eq. (1b) for D(1), with the

clock angle being critical for substorm occurrence (Newell
and Liou, 2011). The occurrence of a substorm would pro-
duce signatures in many of the variables used in S(1), typi-
cally an enhancement in the variable’s amplitude lasting 2–
3 h (Weimer, 1994).

Figure 4. Superposed epoch averages of S(1) (red),D(1) (blue), and
S(1)− S(1)pred (green) for 2155 substorms. The epoch time (t = 0)
is the time of onset of each substorm.

To investigate this substorm hypothesis for S(1)(t)−

S(1)pred(t), the variables D(1)(t), S(1)(t), and S(1)(t)−

S(1)pred(t) are superposed-epoch averaged in Fig. 4 for a
collection of 2155 substorm events; the collection is from
Borovsky and Yakymenko (2017). The zero epoch in Fig. 4
is the onset time of each of the 2155 substorms. Substorms
are associated with intervals of driving of the magnetosphere
(e.g., Caan et al., 1977; Morley and Freeman, 2007); this is
indicated by the increase in the superposed average of D(1)
beginning prior to the onset time in Fig. 4. However, sub-
storms also represent a transient release of stored energy in
the magnetosphere (Birn et al., 2006); this is indicated in
Fig. 4 by the superposed average of S(1) exceeding the su-
perposed average ofD(1) after the substorm onset and by the
positive perturbation of the S(1)− S(1)pred curve after onset.
The S(1)− S(1)pred curve indicates a transient in S(1) that is
unaccounted for by D(1) associated with the occurrence of
substorms. The autocorrelation time of the green superposed-
average S(1)− S(1)pred time series plotted in Fig. 4 is 2.6 h,
similar to the Fig. 1 autocorrelation time of the full 1991–
2007 time series of S(1)− S(1)pred.

Compacting the description of the system from a multidi-
mensional state vector to a few variables S(1), S(2), S(3), . . .
is a form of dimensional reduction to a small set of funda-
mental latent variables: in that dimensional reduction a po-
tential question is whether the reduced (more-fundamental)
variables themselves exhibit a reduction of their embedding
dimension from the embedding dimensions of the manifest
variables in the state vector. Additionally, it would be valu-
able to differentiate S(1) from other indices commonly used
to characterize magnetospheric activity. In order to achieve
this task we use the methodology of Rosso et al. (2007) based
on the combined use of permutation entropy (Bandt and
Pompe, 2002) and Jensen–Shannon complexity mapping.
This mapping developed by Rosso et al. (2007) is particu-
larly useful to disentangle deterministic and stochastic time
series. Additionally, one can use the Jensen–Shannon com-
plexity alone to extract correlational structures in time se-
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ries. In other words, one can seek timescales upon which co-
herent structures/fluctuations/modes arise. In some instances,
coherent modes are signatures of deterministic chaos (Maggs
and Morales, 2013) or a reduction to the number of degrees
of freedom (Osmane et al., 2019). Readers with little famil-
iarity with these two information theoretic measures can con-
sult the reviews of Riedl et al. (2013) and Zanin et al. (2012)
or the pedestrian methodology section found in Osmane et
al. (2019). In Figs. 5 and 6, we map the values of AL (red),
am (blue), S(1) (black) and D(1) (pink) on the complexity–
entropy plane for an interval of 500 h duration with no data
gaps, embedding dimensions of d = 4, and embedding de-
lay T ranging between 2 and 40 h. Because there are a total
of d! = 24 ordinal patterns we are limited to embedding de-
lays of the order of 2 d. For embedding delays greater than
T = 48 h the number of segments N − (d − 1)∗T becomes
too small to ascertain the likelihood of forbidden ordinal pat-
terns. Error bars for the Jensen–Shannon complexity, shown
for the zoomed panels of the complexity–entropy planes, are
computed as the square root of the number of ordinal pat-
terns divided by the number of segments available. Hence,
larger embedded dimensions d, require a larger number of
segments N − (d − 1)∗T to determine whether the Jensen–
Shannon complexity lies significantly above the stochastic
boundary (see below).

The bottom left panels in Figs. 5 and 6 show the value of
the permutation entropy for AL, am, D(1) and S(1) as a func-
tion of embedding delay. Similarly, the bottom right panels
show the value of the Jensen–Shannon complexity for AL,
am, D(1) and S(1) as a function of embedding delay. What
we notice is that all four signals are highly stochastic since
the normalized permutation entropy is very close to 1. How-
ever, we see that the Jensen–Shannon complexity for S(1) is
of comparable magnitude as for am, and it is significantly
larger than for AL. This is not a surprise because the con-
struction of S(1) was based on am, and the Jensen–Shannon
complexity indicates that the former preserved the correlated
structures of the latter on timescales ranging between a few
hours to a few days. The top left panel of Figs. 5 and 6 shows
the complexity–entropy plane, and the top right panel is a
zoom of the right corner where most of the data for AL,
am, and S(1) lies. In both figures the blue line curves rep-
resent the maximum and minimum value of complexity for
a fixed entropy value, and the dashed curve represents the
complexity–entropy mapping of fractional Brownian motion
(fBm) with Hurst exponent ranging between 0 and 1, which
is a stochastic process that also contains correlated structures.
The fBm curve is a boundary between deterministic (above)
and stochastic (below) fluctuations. We note that AL is ef-
fectively stochastic, whereas am and S(1) lie above the fBm
boundary for a few tens of hours. The explanation for this be-
havior from am lies in its construction: it is repeated for 3 h at
a time. Hence, ordinal patterns of size d = 4 and embedding
delays of a few hours will register the repetition as correlated

structures. Since S(1) is constructed in part with am, it also
contains part of its correlated structure.

For longer embedding delays of the order of seasonal vari-
ations ranging from 27 to 45 d (not shown), all four time se-
ries overlap and are indistinguishable from stochastic fluc-
tuations. In terms of complexity–entropy plane it translates
into a permutation entropy of approximately 1 and a Jensen–
Shannon complexity of almost 0. Hence, the system variable
S(1), based on various magnetospheric indices, preserves the
stochastic and correlational structures of its individual com-
ponents. The comparable values of the permutation entropy
(and therefore Jensen–Shannon complexity) with the system
variable with the indices for long times are not fortuitous.
The permutation entropy is invariant under any monotonic
transformations (for instance, if one scales the time series
by a positive real number, or if one takes the logarithm).
However, if one used a linear combination of non-monotonic
functions, for instance trigonometric functions, then the per-
mutation entropy would not be invariant. Since the Jensen–
Shannon complexity is a function of the permutation en-
tropy, it is also invariant under monotonic transformations.
Additionally, if one takes an average around the mean of
some time series over a time TAU, one will reduce the noise
level for fluctuations with timescales less than TAU. Thus,
the stochastic nature of the signal will be reduced, and the
permutation entropy and Jensen–Shannon complexity would
move up in the plane towards the chaotic and/or periodic re-
gions. The equivalence mapping of the information theoretic
measures for the system variables and geomagnetic indices
is a consequence of the monotonic transformation linking the
former to the latter and the absence of coarse-graining of the
indices.

3.2 The secondary modes of reaction represented by
S(2) and S(3)

In Fig. 7a and b the second and third scalar pairs are plot-
ted, S(2) as a function of D(2) and S(3) as a function of D(3),
respectively (Eqs. 2 and 3). The correlation coefficient for
the second pair is still quite high (rcorr = 0.775) but lower
than that of the first pair (Fig. 1). This correlation coefficient
rcorr = 0.775 for the secondary mode is better than correla-
tions obtained in most studies of solar-wind–magnetosphere
coupling using single measures of the magnetospheric sys-
tem (e.g., Table 3 of Newell et al., 2007; Table 1 of Borovsky,
2013). D(2) describes r2

corr = 60.0 % of the variance of S(2).
In Fig. 7b the correlation coefficient for the third pair is
low (rcorr = 0.456);D(3) only describes r2

corr = 20.8 % of the
variance of S(3). Canonical pairs beyond the third pair have
even weaker correlations.

Figure 2c shows that mode S(2) (Fig. 7a) is dominated
by opposite-signed coefficients for mPi and mPe, which re-
spectively are measures of the global ion precipitation into
the atmosphere versus the global electron precipitation into
the atmosphere. In this S(2) mode the intensity of ion and
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Figure 5. Jensen–Shannon complexity and permutation entropy, AL (red) and am (blue) for 500 points with no gaps sampled at 1 h interval,
embedding dimension d = 4, and embedding delays ranging between 2 and 40 h.

electron precipitation reacts oppositely. Figure 2d shows that
D(2) (the driver of S(2)) is dominated by the solar wind num-
ber density nsw opposite to the clock angle sin2(θclock/2)
of the solar-wind magnetic field, with the solar wind den-
sity increasing while the clock angle decreases resulting in
more ion precipitation and less electron precipitation. This
ion-versus-electron precipitation mode is a newly uncov-
ered mode of reaction of the magnetosphere–ionosphere–
thermosphere system to the solar wind.

Figure 2e shows that S(3) (Fig. 7b) is characterized by
the polar cap index (PCI) and mPi acting oppositely to Kp
and am. PCI is a measure of high-latitude electrical cur-
rents in the magnetosphere, and mPi is a measure of high-
latitude ion precipitation; Kp and am are measures of global
magnetospheric convection. This S(3) mode is very simi-
lar to a high-latitude versus convection mode uncovered by
Borovsky (2014) and by Holappa et al. (2014). Figure 2f in-
dicates that the driver D(3) for this mode is the solar wind
velocity acting oppositely to the magnetic field clock angle:
the wind velocity increasing while the clock angle is reduced
producing more convection and less high-latitude activity, or
the wind slowing down while the clock angle increases pro-
ducing less convection and more high-latitude activity.

4 Advantages of the reduced (aggregate-variable)
representation of the system

The aggregate variable S(1) acts as a global activity index for
the magnetospheric system: S(1) is new and unfamiliar, and
experience using S(1) is needed to gain an understanding of
the full usefulness of this measure. S(1) could be thought of
as a next-generation magnetospheric index. In Earth systems
science global aggregate variables are familiar: the global
warming index (Hasselman, 1997; Haustein et al., 2016), the
global mean sea level (Vermeer and Rahmstorf, 2009), the
mean global temperature (Hansen et al., 2006), the Palmer
Drought Severity Index (Wells et al., 2004), and Sea Surface
Temperature indices (Kaplan et al., 1998). And stock-market
aggregate indices are well known and are more-meaningful
gauges of an economy than the price of a single stock (e.g.,
Pan and Mishra, 2018). Here the aggregate variable S(1) is
mathematically derived. The individual variables of S that
go into the definition of S(1) represent familiar and identifi-
able aspects of activity in the magnetospheric system. The
composite variable S(1) is a mix of these understood mea-
surements, the mix reflecting some global properties of the
system’s reaction to the solar wind. Unfamiliar as it is, the
composite-scalar D(1)→ S(1) reduction of the state-vector
D→ S picture exhibits some outright advantages for the
magnetospheric system. This is particularly true in compari-
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Figure 6. Jensen–Shannon complexity and permutation entropy for S(1) (black), D(1) (pink) for 500 points with no gaps sampled at 1 h
interval, embedding dimension d = 4, and embedding delays ranging between 2 and 40 h.

son with the standard method of analysis of magnetospheric
driving by the solar wind that uses only a single measurement
of magnetospheric activity and a single function of solar-
wind variables. Four advantages are discussed in the follow-
ing four paragraphs.

– Linearity. The plotted points in Fig. 1 indicate that there
is a linear response of the composite system variable
S(1)(t) to the composite driver D(1)(t). Usually, sin-
gle measures of the magnetosphere tend to have a non-
linear response to the solar wind (e.g., Voros, 1994;
Valdivia et al., 1996; Sharma et al., 2005b; Borovsky,
2013; Stepanova and Valdivia, 2016), with the individ-
ual activity variables saturating (becoming anomalously
weak) when solar-wind driving becomes strong (e.g.,
Fig. 3 of Reiff and Luhmann, 1986; Fig. 17 of Lavraud
and Borovsky, 2008; Fig. 6 of Borovsky, 2013). Such
a saturation is not seen for S(1) driven by D(1). Un-
doubtedly, the linearity of the result is in part owed to
the maximizing of the “linear” correlation coefficient in
the CCA process. The linearity of the S(1)-vs.-D(1) re-
lation has a great advantage: the same mathematical re-
lationship between S(1) and D(1) (i.e., Eq. 4) holds for
weak driving of the system (smallD(1)) (e.g., Kerns and
Gussenhoven, 1990) and for strong driving of the sys-
tem (large D(1)) (e.g., Sharma and Veeramani, 2011).

– Low noise. The high correlation between S(1) and D(1)
(cf. Fig. 1) indicates that there is a relatively low level
of noise in the linear-regression fit to S(1): the activ-
ity in the system as described by S(1) responds di-
rectly to the solar-wind driving as described by D(1).
For example, the unaccounted-for variance of S(1) is
only 15.2 %. Single measures of the magnetospheric
system have much weaker Pearson linear correlation co-
efficients with solar-wind variables than S(1) and D(1)
do. Examples can be found in Table 3 of Newell et
al. (2007) and Table 1 of Borovsky (2013): the maxi-
mum correlation coefficient in those tables is 0.860 (for
the Dst index), but usually it is much lower. The lower
noise is also confirmed by the Jensen–Shannon com-
plexity analysis of S(1): the points for S(1) and D(1) sit
closer to the maximum complexity curve than AL and
other indices. The lower noise (and higher rcorr) reduces
“regression dilution bias” (Bock and Petersen, 1975;
Hutcheon et al., 2010) when the system activity is fit
by the driver strength. Regression dilution bias can lead
to spurious interpretation of trends in the data when sub-
sets of the data are compared, particularly when a subset
with systematically weaker driving is compared with a
subset with systematically stronger driving.
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Figure 7. For the 1 h resolution 1991–2007 data set, the aggregate
system scalar S(2) is plotted as a function of the driver scalar D(2)
in panel (a) and the aggregate system scalar S(3) is plotted as a
function of the driver scalar D(3) in panel (b). Each black point is
1 h of data.

– High prediction efficiency. In magnetospheric physics,
predicting what the reaction of the magnetospheric sys-
tem will be to measured upstream solar-wind conditions
is very important: i.e., the prediction of “space weather”
(Singer et al., 2001). The high correlation between S(1)
and D(1) means that there will be a high prediction effi-
ciency when the value of S(1) is predicted from knowl-
edge of the value of D(1). Note that this is a high pre-
diction of S(1)(t) without using past values of S(1), just
using the present value of D(1)(t). By optimizing the
Pearson linear correlation coefficient between S and D,
S(1) was designed to focus on aspects of the magneto-
spheric system that are responsive to the conditions of
the solar wind. Internal dynamics of the system that are

not dependent on the time-varying state of the driver are
de-emphasized in S(1).

– Compactness of the description. Reductionist analy-
sis has concluded that the magnetosphere–ionosphere–
thermosphere system is extremely complex (e.g., Sis-
coe, 2011; Eastwood et al., 2015; Borovsky and Val-
divia, 2018). As it is driven by the solar wind, there are
major outstanding issues as to how the system functions
(e.g., Denton et al., 2016). Having a single scalar vari-
able S(1)(t) that describes a universal global reaction of
the system to its driver promises to yield insight as to
how the combined system operates.

– Uncovering new modes of reaction. In the CCA anal-
ysis of the system and driver state vectors, two addi-
tional aggregate variables S(2)(t) and S(3)(t) were gen-
erated (Eqs. 2a and 3a). Analysis in Sect. 3.2 showed
these two variables to represent two modes of reaction
of the system to the driver that are independent of (un-
correlated with) the global-activity mode represented
by S(1)(t). The mode represented by S(3) is known
(having been independently discovered by this CCA
methodology in Borovsky, 2014, and by a principle-
components methodology in Holappa et al., 2014), but
the mode represented by S(2) has until now been un-
known. The CCA methodology used here also identi-
fies the aggregate driver variable that drives each of the
independent modes. In the future, expanding the sys-
tem state vector to include a larger number of measure-
ments in the diverse magnetospheric system should en-
able this state-vector-reduction methodology to uncover
more unknown modes of reaction of the system to the
driver. Once a reaction and its driver are uncovered, re-
ductionist analysis can be applied to determine the phys-
ical reasons why the mode arises.

For a system measured by multiple time-dependent vari-
ables (which are collected into a time-dependent system
state vector S(t)), with that system driven by multiple time-
dependent factors (inputs) (which are collected into a time-
dependent driver state vector D(t)), canonical correlation
analysis (CCA) can be used to reduce the D(t)→ S(t) state-
vector picture to a D(i)(t)→ S(i)(t) composite-scalar pic-
ture. The reduction will work, even if there is influence on
the driver by the system (i.e., D(t)↔ S(t)). The advanta-
geous properties of this reduction that were examined for the
magnetospheric system should apply to systems in general.

Future developments of this methodology will focus on
the introduction of time lags between the driver and the sys-
tem, on the introduction of integro-differential correlations
rather than algebraic correlations (e.g., Borovsky, 2017), and
on the use of dynamic canonical correlation analysis (e.g.,
Dong and Qin, 2018a, b).
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Data availability. The 1991–2007 data set of hourly values of
S(1), S(2), S(3), D(1), D(2), and D(3) has been made available
at https://doi.org/10.5281/zenodo.1560686 (Borovsky, 2018b) and
at https://doi.org/10.17605/OSF.IO/QYTNJ (Borovsky, 2018c) as a
tab-delimited text file.
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Appendix A: The variables comprising the
magnetospheric system state vector and the solar-wind
driver state vector

The time-dependent variables of the magnetospheric system
state vector and the solar-wind driver state vector are listed
in Table 1.

The magnetospheric variables measure various aspects of
activity in the magnetosphere. The auroral upper index AU
(Davis and Sugiura, 1966) measures the electrical current in
the high-latitude ionosphere: this variable is taken to be a
measure of electrical currents in the dayside magnetosphere
(Goertz et al., 1993). The auroral lower index AL (Davis
and Sugiura, 1966) measures the electrical current in the
high-latitude nightside ionosphere: this variable is taken to
be a measure of auroral activity in the nightside magneto-
sphere (Goertz et al., 1993). The polar cap index PCI is a
measure of the strength of cross-polar-cap electrical current
in the ionosphere (Troshichev et al., 1988). The planetary
K index Kp is a measure of the strength of global convec-
tion in the magnetosphere (Thomsen, 2004). The range in-
dex am (Mayaud, 1980) is another measure of the strength of
global magnetospheric convection. The disturbance storm-
time index Dst measures plasma pressure in the inner mag-
netosphere (Dessler and Parker, 1959); Dst also reacts to the
currents on the dayside boundary of the magnetosphere and
to the cross-magnetotail currents in the nightside magneto-
sphere. The time derivative of the magnitude of theDst index
d|Dst|/dt is a compound measure of magnetospheric activ-
ity: when d|Dst|/dt is positive, hot plasma is being convected
from the magnetotail into the dipolar portion of the magne-
tosphere, and when d|Dst|/dt is negative, convection has re-
cently subsided. The variables mPe and mPi are estimates of
the full-Earth power in magnetospheric electron precipitation
into the atmosphere and magnetospheric ion precipitation
into the atmosphere (Emery et al., 2008, 2009), with these es-
timates coming from observations on only a few spacecraft in
orbit around the Earth. The average of the ion-plasma-sheet
particle pressure Pips around the Earth (Borovsky, 2017) is
obtained from three to five spacecraft.

The variables going into the solar-wind driver state vec-
tor are various measures of the time-dependent solar wind
at Earth. The solar wind speed vsw ranges from 244 to
1045 km s−1 in the 1991–2007 data set. The solar wind num-
ber density ranges from 0.3 to 98.2 particles cm−3 in the
data set. Bz is the magnetic-field component in the solar-
wind plasma that is approximately aligned with the Earth’s
magnetic-dipole orientation. The function f (M) (Borovsky
and Birn, 2014) is a function of the solar-wind Mach num-
ber M that accounts for the properties of the bow shock
that forms upstream of the Earth in the supersonic solar-
wind flow. The clock angle θclock measures the angular align-
ment of the solar-wind magnetic-field vector with the Earth’s
magnetic-dipole orientation. The angle θBn measures the ori-
entation of the solar-wind magnetic-field vector with respect

to the Sun–Earth line. F10.7 is the 10.7 cm radio flux from
the Sun, a proxy for the ionization of the upper atmosphere
of the Earth by solar photons.

Nonlin. Processes Geophys., 26, 429–443, 2019 www.nonlin-processes-geophys.net/26/429/2019/



J. E. Borovsky and A. Osmane: State vectors to aggregate scalars: the Earth’s magnetosphere 441

Author contributions. JEB devised this study and performed the
CCA analysis. AO performed the complexity and entropy analy-
sis. Both authors are responsible for the interpretation of the results
and for the writing of the manuscript.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. The authors thank Mick Denton and Juan Ale-
jandro Valdivia for helpful discussions.

Financial support. This work was supported by the NSF GEM Pro-
gram via award AGS-1502947, by the NASA Heliophysics LWS
TRT program via grants NNX16AB75G and NNX14AN90G, by
the NSF Solar-Terrestrial Program via grant AGS-12GG13659,
by the NASA Heliophysics Guest Investigator Program via
grant NNX17AB71G, by the NSF SHINE program via award
AGS-1723416, and by the Academy of Finland via grant
no. 297688/2015.

Review statement. This paper was edited by A. Surjalal Sharma and
reviewed by Marina Stepanova and one anonymous referee.

References

Bandt, C. and Pompe, B.: Permutation Entropy: A Natural Com-
plexity measure for time series, Phys. Rev. Lett., 88, 174102,
https://doi.org/10.1103/PhysRevLett.88.174102, 2002.

Berthelier, A.: Influence of the polarity of the interplanetary mag-
netic field on the annual and the diurnal variations of magnetic
activity, J. Geophys. Res., 81, 4546–4552, 1976.

Birn, J., Hesse, M., and Schindler, K.: Modeling of the magneto-
spheric response to the dynamic solar wind, Space Sci. Rev., 124,
103–116, 2006.

Bock, R. D. and Petersen, A C.: A multivariate correction for atten-
uation, Biometrika 62, 673–678, 1975.

Borovsky, J. E.: Physics based solar-wind driver functions for
the magnetosphere: Combining the reconnection-coupled MHD
generator with the viscous interaction, J. Geophys. Res., 118,
7119–7150, 2013.

Borovsky, J. E.: Canonical correlation analysis of the combined
solar-wind and geomagnetic-index data sets, J. Geophys. Res.,
119, 5364–5381, 2014.

Borovsky, J. E.: Time-integral correlations of multiple variables
with the relativistic-electron flux at geosynchronous orbit: The
strong roles of the substorm-injected electrons and the ion
plasma sheet, J. Geophys. Res., 122, 11961–11990, 2017.

Borovsky, J. E.: The spatial structure of the oncoming so-
lar wind at Earth, J. Atmos. Sol.-Terr. Phys., 177, 2–11,
https://doi.org/10.1016/j.jastp.2017.03.014 , 2018a.

Borovsky, J. E.: Aggregate variables for Interna-
tional Journal of General Systems, data set,
https://doi.org/10.5281/zenodo.1560686, 2018b.

Borovsky, J. E.: Hourly data 1991–2007 of three aggre-
gate variables describing the magnetospheric system
and three aggregate solar-wind driver variables, data set,
https://doi.org/10.17605/OSF.IO/QYTNJ, 2018c.

Borovsky, J. E. and Birn, J.: The solar-wind electric field does not
control the dayside reconnection rate, J. Geophys. Res., 119,
751–760, 2014.

Borovsky, J. E. and Denton, M. H.: Exploring the cross-correlations
and autocorrelations of the ULF indices and incorporating the
ULF indices into the systems science of the solar-wind-driven
magnetosphere, J. Geophys. Res., 119, 4307–4334, 2014.

Borovsky, J. E. and Denton, M. H.: Exploration of a composite in-
dex to describe magnetospheric activity: Reduction of the mag-
netospheric state vector to a single scalar, J. Geophys. Res., 123,
7384–7412, 2018.

Borovsky, J. E. and Funsten, H. O.: Role of Solar Wind
Turbulence in the Coupling of the Solar Wind to the
Earth’s Magnetosphere, J. Geophys. Res., 108, 1246,
https://doi.org/10.1029/2002JA009601 , 2003.

Borovsky, J. E. and Valdivia, J. A.: The Earth’s magnetosphere: A
systems science overview and assessment, Surv. Geophys., 39,
817–859, https://doi.org/10.1007/s10712-018-9487-x, 2018.

Borovsky, J. E. and Yakymenko, K.: Systems science of the magne-
tosphere: Creating indices of substorm activity, of the substorm-
injected electron population, and of the electron radiation belt, J.
Geophys. Res., 122, 10012–10035, 2017.

Borovsky, J. E., Nemzek, R. J., and Belian, R. D.: The Occurrence
Rate of Magnetospheric-Substorm Onsets: Random and Periodic
Substorms, J. Geophys. Res., 98, 3807–3813, 1993.

Borovsky, J. E., Elphic, R. C., Funsten, H. O., and Thomsen, M.
F.: The Earth’s Plasma Sheet as a Laboratory for Turbulence in
High-Beta MHD, J. Plasma Phys., 57, 1–34, 1997.

Caan, M. N., McPherron, R. L., and Russell, C. T.: Characteristics
of the association between interplanetary magnetic field and sub-
storms, J. Geophys. Res., 82, 4837–4842, 1977.

Chapman, S. C., Dendy, R. O., and Watkins, N. W.: Robustness and
scaling: key observables in the complex dynamic magnetosphere,
Plasma Phys. Control. Fusion, 46, B157–B166, 2004.

Chu, X., McPherron, R. L., Hsu,T.-S., and Angelopoulos, V.: Solar
cycle dependence of substorm occurrence and duration: Implica-
tions for onset, J. Geophys. Res., 120, 2808–2818, 2015.

Clauer, C. R., McPherron, R. L., Searls, C., and Kivelson, M. G.:
Solar wind control of auroral zone geomagnetic activity, Geo-
phys. Res. Lett., 8, 915–918, 1981.

Davis, T. N. and Sugiura, M.: Auroral electrojet activity index AE
and its Universal Time variations, J. Geophys. Res., 71, 785–801,
1966.

Denton, M. H. and Borovsky, J. E.: The superdense plasma sheet
in the magnetosphere during high-speed-steam-driven storms:
Plasma transport timescales, J. Atmos. Sol.-Terr. Phys., 71,
1045–1058, 2009.

Denton, M. H., Borovsky, J. E., Stepanova, M., and Valdivia, J.
A.: Unsolved Problems of Magnetospheric Physics, J. Geophys.
Res., 121, 10783–10785, 2016.

Dessler, A. J. and Parker, E. N.: Hydromagnetic theory of geomag-
netic storms, J. Geophys. Res., 64, 2239–2252, 1959.

Dong, Y. and Qin, S. J.: Dynamic-inner canonical correlation and
causality analysis for high dimensional time series data, Inter.
Feder. Automatic Contr. Papers, 51, 476–481, 2018a.

www.nonlin-processes-geophys.net/26/429/2019/ Nonlin. Processes Geophys., 26, 429–443, 2019

https://doi.org/10.1103/PhysRevLett.88.174102
https://doi.org/10.1016/j.jastp.2017.03.014 
https://doi.org/10.5281/zenodo.1560686
https://doi.org/10.17605/OSF.IO/QYTNJ
https://doi.org/10.1029/2002JA009601 
https://doi.org/10.1007/s10712-018-9487-x


442 J. E. Borovsky and A. Osmane: State vectors to aggregate scalars: the Earth’s magnetosphere

Dong, Y. and Qin, S. J.: Dynamic latent variable analysis for process
operations and control, Comput. Chemical Engin., 114, 69–80,
2018b.

Eastwood, J. P., Hietala, H., Toth, G., Phan, T. D., and Fujimoto, M.:
What controls the structure and dynamics of the Earth’s magne-
tosphere?, Space Sci. Rev., 188, 251–286, 2015.

Emery B. A., Coumans, V., Evans, D. S., Germany, G. A., Greer,
M. S., Holeman, E., Kadinsky-Cade, K., Rich, F. J., and Xu,
W.: Seasonal, Kp, solar wind, and solar flux variations in
long-term single-pass satellite estimates of electron and ion
auroral hemispheric power, J. Geophys. Res., 113, A06311,
https://doi.org/10.1029/2007JA012866, 2008.

Emery, B. A., Richardson, I. G., Evans, D. S., and Rich, F. J.: So-
lar wind structure sources and periodicities of auroral electron
power over three solar cycles, J. Atmos. Sol.-Terr. Phys., 71,
1157–1175, 2009.

Freeman, M. P. and Morley, S. K.: A minimal substorm
model that explains the observed statistical distribution of
times between substorms, Geophys. Res. Lett., 31, L12807,
https://doi.org/10.1029/2004GL019989, 2004.

Goertz, C. K., Shan, L.-H., and Smith, R. A.: Prediction of geomag-
netic activity, J. Geophys. Res., 98, 7673–7684, 1993.

Hair, J. F., Black, W. C., Babin, B. J., and Anderson, R. E.: Canon-
ical Correlation: A Supplement to Multivariate Data Analysis,
Pearson Prentice Hall Publishing, Upper Saddle River, New Jer-
sey, 2010.

Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D. W., and Medina-
Elizade, M.: Global temperature change, P. Natl. Acad. Sci. USA,
103, 14288–14293, 2006.

Hasselmann, K.: Multi-pattern fingerprint method for detection and
attiribution of climate change, Clim. Dynam., 13, 601–611, 1997.

Haustein, K., Allen, M. R., Forste, P. M., Otto, F. E. L.,
Mitchell, D. M., Matthews, H. D., and Frame, D. J.:
A real-time Global Warming Index, Sci. Rep., 7, 15417,
https://doi.org/10.1038/s41598-017-14828-5, 2016.

Holappa, L., Mursula, K., Asikainen, T., and Richardson, I. G.: An-
nual fractions of high-speed streams from principal component
analysis of local geomagnetic activity, J. Geophys. Res., 119,
4544, https://doi.org/10.1002/2014JA019958, 2014.

Holzer, R. E. and Slavin, J. A.: A correlative study of magnetic flux
transfer in the magnetosphere, J. Geophys. Res., 84, 2573–2578,
1979.

Horton, W., Smith, J. P., Weigel, R., Crabtree, C., Doxas, I.,
Goode, B., and Cary, J.: The solar-wind driven magnetosphere-
ionosphere as a complex dynamical system, Phys. Plasmas, 6,
4178–4184, 1999.

Hsu, T.-S. and McPherron, R. L.: A statistical study of the spa-
tial structure of interplanetary magnetic field substorm triggers
and their associated magnetic response, J. Geophys. Res., 114,
A02223, https://doi.org/10.1029/2008JA013439, 2009.

Hutcheon, J. A., Chiolero, A., and Hanley, J. A.: Random measure-
ment error and regression dilution bias, BMJ, 340, 1402–1406,
2010.

Johnson, R. A. and Wichern, D. W.: Applied Multivariate Statistical
Analysis, 6th edn., Pearson Prentice Hall, Upper Saddle River,
New Jersey, 2007.

Kaplan, A., Cane, M. A., Kushnir, Y., Clement, A. C., Blumenthal,
M. B., and Rajagoplalan, B.: Analyses of global sea surface tem-
perature 1956–1991, J. Geophys. Res., 103, 18567–18589, 1998.

Kerns, K. J. and Gussenhoven, M. S.: Solar wind conditions for a
quiet magnetosphere, J. Geophys. Res., 95, 20867–20875, 1990.

King, J. H. and Papitashvili, N. E.: Solar wind spatial scales
in and comparisons of hourly Wind and ACE plasma
and magnetic field data, J. Geophys. Res., 110, 2104,
https://doi.org/10.1029/2004JA010649, 2005.

Klimas, A. J., Valdivia, J. A., Vassiliadis, D., Baker, D. N., Hesse,
M., and Takalo, J.: Self-organized criticality in the substorm phe-
nomenon and its relation to localized reconnection in the mag-
netospheric plasma sheet, J. Geophys. Res., 105, 18765–18780,
2000.

Lavraud, B. and Borovsky, J. E.: Altered solar wind-
magnetosphere interaction at low Mach numbers: Coro-
nal mass ejections, J. Geophys. Res., 113, A00B08,
https://doi.org/10.1029/2008JA013192, 2008.

Lyon, J. G.: The solar wind-magnetosphere-ionosphere system, Sci-
ence, 288, 1987–1991, 2000.

Maggs, J. E. and Morales, G. J.: Permutation entropy anal-
ysis of temperature fluctuations from a basic electron heat
transport experiment, Plasma Phys. Control. Fusion, 55, 8,
https://doi.org/10.1088/0741-3335/55/8/085015, 2013.

Mayaud, P. N.: Derivation, Meaning, and Use of Geomagnetic In-
dices, Sect. 5.2, American Geophysical Union, Washington, DC,
1980.

Morley, S. K. and Freeman, M. P.: On the association be-
tween northward turnings of the interplanetary magnetic
field and substorm onsets, Geophys. Res. Lett., 34, L08104,
https://doi.org/10.1029/2006GL028891, 2007.

Newell, P. T. and Liou, K.: Solar wind driving and sub-
storm triggering, J. Geophys. Res., 116, A03229,
https://doi.org/10.1029/2010JA016139, 2011.

Newell, P. T., Sotirelis, T., Liou„ K. Meng, C. I., and Rich, F. J.: A
nearly universal solar wind-magnetosphere coupling function in-
ferred from 10 magnetospheric state variables, J. Geophys. Res.,
112, A01206, https://doi.org/10.1029/2006JA012015, 2007.

Nimon, K., Henson, R. K., and Gates, M. S.: Revisiting interpre-
tation of canonical correlation analysis: A tutorial and demon-
stration of canonical commonality analysis, Multivariate Behav.
Res., 45, 702–724, 2010.

Osmane, A., Dimmock, A. P., Naderpour. R., Pulkkinen, T. I., and
Nykyri, K.: The impact of solar wind ULF Bz fluctuations on ge-
omagnetic activity for viscous timescales during strongly north-
ward and southward IMF, J. Geophys. Res., 120, 9307–9322,
2015.

Osmane, A., Dimmock, A. P., and Pulkkinen, T. I.: Jensen-Shannon
complexity and permutation entropy analysis of geomagnetic au-
roral currents, J. Geophys. Res., 124, 2541–2551, 2019.

Otto, A.: The magnetosphere, Lecture Notes Phys., 656, 133–192,
2005.

Pan, L. and Mishra, V.: Stock market development and economic
growth: Empirical evidence from China, Eco. Modell., 68, 661–
673, 2018.

Reiff, P. H. and Luhmann, J. G.: Solar wind control of the polar-
cap voltage, in: Solar Wind-Magnetosphere Coupling, edited by:
Kamide, Y. and Slavin, J. A., Kluwer Academic Publishers, Nor-
well, Massachusetts, 453–476, 1986.

Riedl, M., Muller, A., and Wessel, N.: Practical considerations of
permutation entropy, Euro. Phys. J. Spec. Top., 222, 249–262,
https://doi.org/10.1140/epjst/e2013-01862-7, 2013.

Nonlin. Processes Geophys., 26, 429–443, 2019 www.nonlin-processes-geophys.net/26/429/2019/

https://doi.org/10.1029/2007JA012866
https://doi.org/10.1029/2004GL019989
https://doi.org/10.1038/s41598-017-14828-5
https://doi.org/10.1002/2014JA019958
https://doi.org/10.1029/2008JA013439
https://doi.org/10.1029/2004JA010649
https://doi.org/10.1029/2008JA013192
https://doi.org/10.1088/0741-3335/55/8/085015
https://doi.org/10.1029/2006GL028891
https://doi.org/10.1029/2010JA016139
https://doi.org/10.1029/2006JA012015
https://doi.org/10.1140/epjst/e2013-01862-7


J. E. Borovsky and A. Osmane: State vectors to aggregate scalars: the Earth’s magnetosphere 443

Rosso, O. A., Larrondo, H. A., Martin, M. T., Plas-
tino, A., and Fuentes, M. A.: Distinguishing
Noise from Chaos, Phys. Rev. Lett., 99, 154102,
https://doi.org/10.1103/PhysRevLett.99.154102, 2007.

Sharma, A. S.: The magnetosphere: A complex driven system, AIP
Conf. Proc., 1308, 120–131, 2010.

Sharma, A. S. and Veeramani, T.: Extreme events and long-range
correlations in space weather, Nonlin. Processes Geophys., 18,
719–725, https://doi.org/10.5194/npg-18-719-2011, 2011.

Sharma, A. S., Ukhorskiy, A. Y., and Sitno, M. I.: Global and
multiscale phenomena of the magnetosphere, in: Nonlinear Phe-
nomena in Plasmas, edited by: Sharma, A. S. and Kaw, P. K.,
Springer, Heidelberg, Germany, 117–144, 2005a.

Sharma, A. S., Baker, D. N., and Borovsky, J. E.: Nonequilib-
rium phenomena in the magnetosphere: Phase transition, self-
organized criticality, and turbulence, in: Nonequilibrium Phe-
nomena Plasmas, edited by: Sharma, A. S. and Kaw, P. K.,
Springer, Heidelberg, Germany, 3–22, 2005b.

Singer, H. J., Heckman, G. R., and Hirman, J. W.: Space weather
forecasting: A grand challenge, Geophys. Monog. Ser., 125, 23–
29, 2001.

Siscoe, G. L.: Aspects of global coherence of magnetospheric be-
haviour, J. Atmos. Sol.-Terr. Phys., 73, 402–419, 2011.

Smith, J. P., Thomsen, M. F., Borovsky, J. E., and Collier, M.: So-
lar wind density as a driver for the ring current in mild storms,
Geophys. Res. Lett., 26, 1797–1800, 1999.

Stepanova, M. and Valdivia. J. A.: Contribution of Latin-American
scientists to the study of the magnetosphere of Earth, A review,
Adv., Space Res., 58, 1968–1985, 2016.

Stern, D. P.: A brief history of magnetospheric physics before the
spaceflight era, Rev. Geophys., 27, 103–114, 1989.

Stern, D. P.: A brief history of magnetospheric physics during the
space age, Rev. Geophys., 34, 1–31, 1996.

Thomsen, M. F.: Why Kp is such a good measure of
magnetospheric convection, Space Weather, 2, S11044,
https://doi.org/10.1029/2004SW000089, 2004.

Troshichev, O. A., Andrezen, V. G., Vennerstrøm, S., and Friis-
Christensen, E.: Magnetic activity in the polar cap – A new index,
Planet. Space Sci., 11, 1095–1102, 1998.

Valdivia, J. A., Sharma, A. S., and Papadopoulos, K.: Prediction of
magnetic storms by nonlinear models, Geophys. Res. Lett., 23,
2899–2902, 1996.

Valdivia, J. A., Rogan, J., Munoz, V., Gomberoff, L., Klimas,
A., Vassiliadis, D., Uritsky, V., Sharma, S., Toledo, B., and
Wastavino, L.: The magnetosphere as a complex system, Adv.
Space Res., 35, 961–971, 2005.

Valdivia, J. A., Rogan, J., Munoz, V., Toledo, B. A., and Stepanova,
M.: The magnetosphere as a complex system, Adv. Space Res.,
51, 1934–1941, 2013.

Vassiliadis, D.: Systems theory for geospace plasma dynamics, Rev.
Geophys., 44, RG2002, https://doi.org/10.1029/2004RG000161,
2006.

Vermeer, M. and Rahmstorf. S.: Global sea level linked to global
temperature, P. Natl. Acad. Sci. USA, 106, 21527–21532, 2009.

Voros, Z.: The magnetosphere as a nonlinear system, Stud. Geo-
phys. Geod., 38, 168–186, 1994.

Weimer, D. R.: Substorm time constants, J. Geophys. Res., 99,
11005–11015, 1994.

Weimer, D. R., Ober, D. N., Maynard, N. C., Collier, M. R., McCo-
mas, D. J., Ness, N. F., Smith, C. W., and Watermann, J.: Predict-
ing interplanetary magnetic field (IMF) propagation delay times
using the minimum variance technique, J. Geophys. Res., 108,
1026, https://doi.org/10.1029/2002JA009405, 2003.

Wells, N., Goddard, W., and Hayes, M. J.: A self-calibrating Palmer
Drought Severity Index, J. Climate, 17, 2235–2351, 2004.

Zanin, M., Zunino, L., Rosso, O. A., and Papo, D.: Permutation En-
tropy and Its Main Biomedical and Econophysics Applications:
A Review, Entropy, 14, 1553–1577, 2012.

www.nonlin-processes-geophys.net/26/429/2019/ Nonlin. Processes Geophys., 26, 429–443, 2019

https://doi.org/10.1103/PhysRevLett.99.154102
https://doi.org/10.5194/npg-18-719-2011
https://doi.org/10.1029/2004SW000089
https://doi.org/10.1029/2004RG000161
https://doi.org/10.1029/2002JA009405

	Abstract
	Introduction
	Creation of composite (aggregate) variables from the state vectors
	Properties of the scalar reduced picture for the magnetospheric system
	The primary mode of system response as represented by D(1)S(1)
	The secondary modes of reaction represented by S(2) and S(3)

	Advantages of the reduced (aggregate-variable) representation of the system
	Data availability
	Appendix A: The variables comprising the magnetospheric system state vector and the solar-wind driver state vector
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

