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Abstract. The importance of chaotic advection relative to
turbulent diffusion is investigated in an idealized model of
a 3-D swirling and overturning ocean eddy. Various mea-
sures of stirring and mixing are examined in order to deter-
mine when and where chaotic advection is relevant. Turbu-
lent diffusion is alternatively represented by (1) an explicit,
observation-based, scale-dependent diffusivity, (2) stochastic
noise, added to a deterministic velocity field, or (3) explicit
and implicit diffusion in a spectral numerical model of the
Navier–Stokes equations. Lagrangian chaos in our model oc-
curs only within distinct regions of the eddy, including a large
chaotic “sea” that fills much of the volume near the perime-
ter and central axis of the eddy and much smaller “resonant”
bands. The size and distribution of these regions depend on
factors such as the degree of axial asymmetry of the eddy
and the Ekman number. The relative importance of chaotic
advection and turbulent diffusion within the chaotic regions
is quantified using three measures: the Lagrangian Batche-
lor scale, the rate of dispersal of closely spaced fluid parcels,
and the Nakamura effective diffusivity. The role of chaotic
advection in the stirring of a passive tracer is generally found
to be most important within the larger chaotic seas, at inter-
mediate times, with small diffusivities, and for eddies with
strong asymmetry. In contrast, in thin chaotic regions, turbu-
lent diffusion at oceanographically relevant rates is at least as
important as chaotic advection. Future work should address
anisotropic and spatially varying representations of turbulent
diffusion for more realistic models.

1 Introduction

Chaotic advection (Aref, 1984; Shepherd et al., 2000) is a
process by which rapid stirring, as manifested by the stretch-
ing and folding of material, is produced within a smooth
and well-organized Eulerian velocity field. The enhancement
of stirring can be attributed to chaotic fluid parcel trajec-
tories and their rapid separation from nearby trajectories.
There are many examples, ranging from simple models of
purely laminar flow (e.g., Rom-Kedar et al., 1990; Samelson,
1992; Pierrehumbert, 1994; Malhotra et al., 1998; Poje and
Haller, 1999; Coulliette and Wiggins, 2001, and other work
reviewed in the texts of Ottino, 1990; Samelson and Wiggins,
2006) to modeled or observed, oceanographically or atmo-
spherically relevant flows (e.g. Rogerson et al., 1999; Miller
et al., 2002; Deese et al., 2002; Olascoaga and Haller, 2012;
Sayol et al., 2013; Rypina et al., 2007, 2009, 2011a, 2012).
In most cases the flow fields are two-dimensional and time-
dependent, and when observed, they often occur at the sea
surface or within the stratosphere (Polvani et al., 1995; Ngan
and Shepherd, 1997). Three-dimensional examples also ex-
ist (e.g., Fountain et al., 2000; Rypina et al., 2015; Solomon
and Mezić, 2003; Yuan et al., 2004; Branicki and Kirwan Jr.,
2010, and Pratt et al., 2014, hereafter P2014) and often in-
volve numerically modeled velocity fields, due to the limita-
tions of observational methods.

A feature that is intriguing and quite common in these
studies is that Lagrangian chaos is confined to certain sub-
regions of the flow field, separated from each other by bands
of material curves or surfaces that contain no chaotic La-
grangian motion. The chaotic regions are rapidly stirred
as a result of the signature rapid separation of nearby tra-
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jectories, but the non-chaotic bands act as barriers that
confine the stirring. In textbook examples, including area-
preserving maps of time-periodic 2-D or steady 3-D veloc-
ity fields, the chaotic and non-chaotic regions form a frac-
tal geometry, with bounded chaotic regions imbedded in
larger chaotic seas, themselves bounded and imbedded in
even larger chaotic regions (Chirikov, 1971, 1979; Casati and
Ford, 1979; Gromeka, 1881; Dombre et al., 1986). In finite-
time systems or systems with arbitrary time dependence, the
distinction between chaotic and regular trajectories is diffi-
cult to define. A great deal of recent work in the field has
resulted in the development of methods for identifying ma-
terial barriers based on the notion of Lagrangian coherence.
These methods include, for instance, finding sets of trajec-
tories that experience the fastest separation rates from their
close neighbors, identifying contours that undergo minimal
stretching, locating sets of trajectories that remain compact
in some sense and/or share a common property, or identi-
fying trajectories that encounter the largest number of other
trajectories (see Haller, 2002; Shadden et al., 2005; Froyland
et al., 2007, 2012; Rypina and Pratt, 2017; Rypina et al.,
2018, 2011b; Hadjighasem et al., 2017; Haller and Beron-
Vera, 2012, 2013, as well as the review by Haller, 2015, and
references contained therein). Applications of these methods
often result in the identification of material contours and sur-
faces that act as barriers over finite time, thus allowing for
partitioning between strongly and weakly stirred regions of
the flow field.

Completely impenetrable material barriers only exist be-
cause of the deterministic nature of the trajectories. Even a
low level of background turbulence at small scales, if rep-
resented as a diffusive process, would cause the barriers to
become permeable or fuzzy over sufficiently long periods
of time and perhaps nonexistent in any practical sense if
the timescale of interest is long enough. The relevance of
chaotic advection for the stirring of material within geophys-
ical flows would appear to rest on several criteria. The first is
that the flow field must contain persistent, long-lived (on the
timescale of interest) features such as gyres, eddies, and jets,
which by themselves generate regions of elevated stirring
as well as separating barriers. Secondly, the stirring within
these regions should be at least as important as that due to
smaller scale, intermittent features (i.e., small-scale turbu-
lence). Third, the barriers that exist in the absence of small-
scale turbulence should retain meaning as suppressors of ex-
change between the rapidly stirred regions in the presence
of the small-scale turbulence. For the flow considered in this
paper the first aspect has been investigated and shown to be
true (P2014; Rypina et al., 2015); this work concentrates on
investigating the second and third aspects.

The terms “important” and “relevant” are somewhat sub-
jective, and a particular aspect, such as the existence of bar-
riers, that is of interest for one scientific question may not be
so for another. We examine several measures of stirring and
mixing in a particular case of a three-dimensional flow field:

an idealized representation of an isolated eddy with horizon-
tal swirl and vertical overturning. This idealized eddy is most
likely to be similar to a submesoscale eddy within a surface
mixed layer of the ocean, although the velocities of such ed-
dies have not been well observed. The effects of stirring and
mixing at these smaller scales, where vertical velocities be-
come important, is increasingly under study (e.g. Mahade-
van, 2016). Generally, increased resolution improves ocean
model behavior (Griffies et al., 2015), so at lower resolu-
tions, an ongoing challenge is parameterizing sub-grid-scale
processes (e.g. Hallberg, 2013).

Our three-dimensional flow contains Ekman layers at the
top and bottom of a cylindrical domain, and their thickness
relative to the full depth is measured by an Ekman num-
ber. The Lagrangian structure of the steady as well as time-
periodic, deterministic versions of this flow has previously
been explored (P2014; Fountain et al., 2000; Rypina et al.,
2015). This deterministic flow field can be approximated by
an analytically described velocity field (Sect. 2), favorable
for the efficient calculation of large numbers of trajectories.
In this paper, we will add a stochastic disturbance represent-
ing small-scale turbulent diffusion to the deterministic flow.
In addition, some of our calculations are done using veloc-
ity fields from a direct numerical integration of the Navier–
Stokes equations (used in Sect. 5).

In order to examine the relevance and importance of stir-
ring and mixing due to large-scale Lagrangian chaos com-
pared to that due to small-scale turbulent diffusion, we use
several distinct measures applied to our isolated eddy model.
The first measure is a Lagrangian version of the Batche-
lor scale (Sect. 3), a measure of the smallest tracer fila-
ment width that can be produced by chaotic advection be-
fore small-scale turbulent diffusion arrests the progression to
smaller scales. The second measure (Sect. 4) involves the dis-
persion of ensembles of initially closely spaced trajectories.
The final measure (Sect. 5) is a bulk or “effective” diffusivity
(Nakamura, 1996) that indicates the rate of irreversible mix-
ing between volumes with different tracer concentrations.
The analyses in Sects. 3–4 are based on a “kinematic” an-
alytical model with and without stochastic perturbation; the
analysis in Sect. 5 is based on a “dynamical” numerical solu-
tion of the Navier–Stokes equations.

2 Models

We will consider the steady flow of a homogeneous and in-
compressible fluid in a rotating cylinder of depth H , driven
at the top by the stress due to a differentially rotating lid. The
resulting circulation has Ekman layers at the top and bottom,
and thus a central parameter is the Ekman number

E =
(
ν/�H 2

)
= (δE/H)

2, (1)

where ν is the kinematic viscosity, � is the angular rate
of rotation of the cylinder, and δE is the thickness of the
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Figure 1. Sketch of the qualitative velocity field (Eqs. 7–9). Ekman
layers at the top and bottom are where flow has a larger radial com-
ponent.� is the rotation rate of the system.X0 is the offset between
the lid and cylinder rotational centers, as set for the Navier–Stokes
simulations.

Ekman layers. Much oceanographic literature has been de-
voted to the case in which the differential lid rotation δ�
is small (δ�/�)� 1), and the Ekman layers are relatively
thin, E� 1. In this case, a linear, asymptotic solution is
available (Greenspan, 1968, and Appendix A of P2014). Ac-
cording to this solution (with δ� > 0), fluid is drawn up into
the top Ekman layer from an inviscid and vertically rigid in-
terior region that rotates at half the angular velocity of the
lid. The fluid is carried radially outward and then downward
within thin, viscous side-wall layers. When it reaches the bot-
tom, the fluid flows radially inward in a bottom Ekman layer
and is expelled upward into the interior region. Fluid trajec-
tories thus spiral upwards in the interior, outwards in the top
Ekman layer, downwards near the side walls, and inward in
the bottom Ekman layer; Fig. 1 is a diagram of this flow (see
also Fig. 1 of P2014).

Although the setup described above and its linear asymp-
totic treatment have provided a foundation for a wide variety
of models with geophysical and industrial applications (e.g.,
Lopez and Marques, 2010), it is not the most convenient for
Lagrangian studies. One difficulty is that all fluid trajectories
pass through small corner regions at the top and bottom of
the cylinder. These regions are not resolved by the asymp-
totic solution and can be difficult to resolve numerically, par-
ticularly when the velocity field is to be used to accurately
calculate trajectories that are cycling through the cylinder nu-
merous times. For this reason it is advantageous to modify
the forcing at the upper surface to conform to a stress that

still acts in the azimuthal direction and is zero at the cylinder
axis but approaches zero at the cylinder boundary as well.
P2014 used one such forcing distribution to create a flow in
which the downwelling occurs over a broad outer region of
the inviscid interior, no longer confined to the thin, viscous
side-wall layers. We will use the same velocities (obtained
from a numerical model) for the tracer release experiments
discussed later in this work.

Since numerical solutions are required to get a complete,
dynamically consistent velocity field for the rotating cylin-
der, Lagrangian calculations requiring long integration times
can become cumbersome, making it difficult to explore the
variations in the governing parameters. As a compromise,
past investigators have developed phenomenological models
in which an incompressible Eulerian velocity field containing
the qualitative features of the dynamically consistent fields
is specified analytically and fluid trajectories are computed
from it. Many of the calculations described below are based
on such a model, hereafter referred to as the kinematic model.
This new model is an improvement of the phenomenological
model used by P2014 and Rypina et al. (2015) in terms of its
more realistic portrayal of Ekman layers and inclusion of the
Ekman number as a parameter.

The kinematic model specifies an analytically prescribed
background velocity field that is steady, incompressible, and
has no azimuthal structure. Under these conditions, all tra-
jectories are regular, or non-chaotic. When perturbed through
the addition of an analytically prescribed symmetry-breaking
disturbance, one with azimuthal structure, Lagrangian chaos
arises in portions of the three-dimensional flow field. To see
the qualitative behavior of the flow, examine Fig. 1. The ve-
locity field is specified in nondimensional cylindrical coordi-
nates (r,θ,z), with (1≥ z ≥ 0) and (r ≤ a), where a is the
width-to-height ratio of the domain. The background flow
has ∂/∂θ = 0 and can be expressed as the sum of an az-
imuthal velocity V (r,z) and an overturning circulation with
radial and vertical velocity components U(r,z) and W(r,z).
The latter are specified by the streamfunction 9:

9 =−E1/2R(r)F (z), (2)

where F(z) is the vertical portion of the streamfunction, and
R(r) is the radial portion of the streamfunction. The stream-
function relates to the velocities by the negative z derivative
of 9 being the radial velocity and the radial derivative being
the vertical velocity. The vertical portion of the streamfunc-
tion is

F(z)= A[sin(ζ )sinh(ζ )− cos(ζ )cosh(ζ )]
+B[sin(ζ )sinh(ζ )+ cos(ζ )cosh(ζ )] −D, (3)

where ζ is a transformed vertical coordinate,

ζ =
z− 1/2
E1/2 , (4)
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and the constants are defined by

A=
−1
2

cS

s2C2+ c2S2 , B =
1
2

sC

s2C2+ c2S2 ,

D = A(sS− cC)+B(sS+ cC),

s = sin
(

1
2E1/2

)
, c = cos

(
1

2E1/2

)
, S = sinh

(
1

2E1/2

)
,

C = cosh
(

1
2E1/2

)
. (5)

In the limit of infinite cylinder radius, a→∞, the radial
portion of the streamfunction, R(r)= r2/s, yields a dynam-
ically consistent solution for flow between two differentially
rotating, horizontal plates. Fluid flows radially inward within
the bottom Ekman layer and is expelled upward and eventu-
ally into the top Ekman layer, where it moves radially out-
ward. When a is finite the velocity needs to vanish at the
cylinder walls, and this can be accomplished by choosing R
as

R(r)= r(a− r)2/2, (6)

giving velocities

U =
−∂9

∂z
= r(a− r)2[Asin(ζ )cosh(ζ )+B cos(ζ )sinh(ζ )],

(7)

W =
1
r

∂r9

∂r
=−(a− r)(a− 2r)E1/2F(z), (8)

where U is radial and W is vertical.
The axisymmetric azimuthal velocity V , satisfying the in-

compressibility condition in 3-D, is defined as

V (r,z)= r(a−r)2
[

1
2
+B sin(ζ )cosh(ζ )−Acos(ζ )sinh(ζ )

]
.

(9)

This velocity leads to typical nondimensional trajectory ro-
tation times of 20–200 for all Ekman numbers examined; the
central orbit at (r,z)= (0.5,0.5) has a period of 16π ≈ 50.
At the maximum azimuthal velocity, which occurs at r =
aH/3, the period is about 20. Model horizontal velocities are
typically between 0.01 and 0.1 in magnitude, which are rea-
sonable ocean velocities in meters per second. This choice
of the velocity scale being 1 ms−1 gives rotation times of
several hours, assuming the eddy radius is equal to its height
(a = 1). Using the same scaling for vertical velocities, whose
nondimensional values are E1/2 smaller, gives overturning
times of 7 h to 2 months; although eddies with this struc-
ture have not been carefully observed, vertical velocities near
submesoscale fronts reach 30 mday−1, which is in line with
these rates. These and all other relationships between nondi-
mensional model values and their dimensional equivalents
are listed in Table 1. For all parameter values, there is up-
welling in the center (r = 0) and weaker downwelling near

the sides of the cylinder (strongest at r = 0.75a). There is
horizontal convergence near the bottom and divergence near
the top; for E near 1, these are true for the full bottom and
top halves of the system.

As the Ekman number varies, the overturning streamfunc-
tion changes qualitatively (Fig. 2). For E > 1/60 the over-
turning circulation is rounded and has a single internal fixed
point corresponding to the horizontal, circular trajectory de-
scribed above as the central orbit (Fig. 2a, b). For E < 1/60
additional fixed points in the overturning circulation arise at
r = 0.5 (Fig. 2c). These fixed points in Fig. 2c are again cir-
cular periodic trajectories in 3-D, and the increasing num-
ber arises through pitchfork bifurcations as E decreases (see
Appendix A for more details). The additional circular trajec-
tories are associated with smaller overturning cells imbed-
ded in the larger cell (detailed example in Appendix A,
Fig. A2). The overturning streamfunction also exhibits more
vertical rigidity as E decreases, analogous to deeper oceanic
columns, in accordance with the Taylor–Proudman theorem
(Greenspan, 1968).

2.1 Symmetry-breaking perturbation

In the kinematic, axially symmetric, and analytically pre-
scribed background flow described above all trajectories
move along toroidal surfaces and are thus non-chaotic. In or-
der to use this system to study the interplay of chaotic advec-
tion and turbulent diffusion, we must perturb the system to
break the axial symmetry, which will introduce chaotic tra-
jectories. The applied perturbation, approximating the flow
produced by a lid rotating off-center, is a horizontal flow that
decays in strength with depth and is described by the follow-
ing streamfunction:

9̃ = ε
−sinh(z/E1/2)

2sinh(1/E1/2)
(a2
− r2)(γ 2a2

− s2),

s =

√
(x− x0)2+ y2. (10)

This general form allows for an r- and z-dependent adjust-
ment to the strength of the azimuthal velocity, with ampli-
tude ε, and a symmetry-breaking component governed by
the offset parameter x0. If x0 = 0, the disturbance is axially
symmetric; if it is nonzero, the disturbance has an azimuthal
variation in amplitude εx0. The parameter γ can be used to
make adjustments in the radial structure of the disturbance.
This streamfunction is for velocities in the x and y directions,
unlike r- and z-dependent background overturning stream-
function; the velocities from the two are added together. The
perturbation velocities in x and y are

ũ= ∂9̃/∂y = 4yε
sinh(z/

√
E)

sinh(1/
√
E)

[
(a2
− r2)+ (γ 2a2

− s2)
]
,

(11)

ṽ =−∂9̃/∂x
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Table 1. Nondimensional variables, their scale factors, and their dimensional equivalents.

Variable Nondimensional Scaling Dimensional value,

Value factor E = 0.25 E = 0.125 E = 0.02 E = 0.0005

δE a/
√
E 40 m 40 m 40 m 40 m 40 m

H 1 aδE/
√
E 80 m 113 m 283 m 1789 m

u 0.01–0.1 1 ms−1 0.01–0.1 ms−1 0.01–0.1 ms−1 0.01–0.1 ms−1 0.01–0.1 ms−1

w 2× 10−4–0.05 1 ms−1 0.005–0.05 ms−1 0.003–0.04 ms−1 0.001–0.014 ms−1 2× 10−4–2× 10−3 ms−1

Time step 1 (1000) H /1 ms−1 84 s (23 h) 113 s (31 h) 283 s (3.3 days) 1789 s (20.7 days)
Winding time 20–200 Time 28 min–4.6 h 39 min–6.6 h 1.5–16.5 h 3.3–33 h
Overturning time 30–400 Time 42 min–9 h 1–12 h 2–31 h 15 h–8 days
κ e.g., 10−5 H m2 s−1 8× 10−4 m2 s−1 1.1× 10−3 m2 s−1 2.8× 10−3 m2 s−1 1.8× 10−2 m2 s−1

Figure 2. (a–c) Background overturning streamfunction for a = 1; (a) E = 0.125, (b) E = 0.02, and (c) E = 0.0005. Blue dots are rz-fixed
points. (d) Horizontal perturbation streamfunction for γ = 2, x0 =−0.5. Note that the center of rotation in the perturbation streamfunction
is not at the origin.

=−4yε
sinh(z/

√
E)

sinh(1/
√
E)

[
(x− x0)(a

2
− r2)+ x(γ 2a2

− s2)
]
.

(12)

The corresponding azimuthal and radial velocity perturba-
tions are

Ṽ =−2ε
sinh(z/

√
E)

sinh(1/
√
E)

[
(a2
− r2)+ (γ 2a2

− s2)

−
x0

r
cos(θ)(a2

− r2)
]
, (13)

Ũ = 2εx0
sinh(z/

√
E)

sinh(1/
√
E)

sin(θ)(a2
− r2). (14)

The perturbation streamfunction’s overall strength decays
with depth and goes to 0 at the bottom (z= 0). For the rest
of the work, we will use a = 1 and γ = 2 (Fig. 2d). We note
that the total, i.e., background plus perturbation, azimuthal
velocity can be zero at some locations in the domain for cer-

tain choices of ε, but with ε < 0.05 these locations are all
very close to the boundaries of the cylinder.

2.2 Comparison to dynamic model

In this section we compare our kinematic model to the
Navier–Stokes (NS) simulation of a rotating cylinder flow
by P2014. We will use the kinematic model for the analy-
ses in Sect. 3.1 and 3.2 and the NS simulation for the anal-
ysis in Sect. 3.3. We are interested in comparing the qualita-
tive features of the two model flows under steady symmetry-
breaking perturbation. It is important to note that the parame-
ters of the two systems are slightly different. The parameters
that arise in the NS simulation are the Ekman number, E, the
aspect ratio, α, the displacement X0 of the lid’s center (la-
beled in Fig. 1; not to be confused with x0 in the kinematic
model), and the Rossby number, Ro= δ�/�. The kinematic
model parameters are the Ekman number,E, the aspect ratio,
a, the perturbation offset parameter, x0, and the strength of
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the perturbation, ε. For matching the kinematic model to the
NS simulation, we set α = a = 1 and examine four Ekman
numbers used in P2014,E ∈ {0.25,0.125,0.02,0.0005}. The
displacement and strength of the kinematic perturbation are
adjusted to match the behavior for a given Rossby number
and displacement of the lid in the dynamic simulation. The
chosen values are maintained throughout the rest of the work
unless otherwise noted. We do this rather than attempting a
mathematical equivalence because the kinematic perturba-
tion has a different form than that describing a physical lid
rotating off-center. Our model mimics a flow with a small
Rossby number, so we compare our results to those from
P2014’s Ro= 0.2, with lid displacement X0 =−0.02.

Figures 3–4 show some examples of Poincaré maps from
the NS simulation (panels a, b, reproduced from P2014) with
maps from the kinematic model (panels c, d). It is impor-
tant for our purposes to achieve qualitative agreement in
terms of the depth of the Ekman layers, the vertical rigid-
ity of the interior regions, and the overall layout of regular,
chaotic, and resonant regions. For the choice of the param-
eters described above, there is a good match of these qual-
itative features. Each case is marked by the presence of a
substantial chaotic region that extends from the radial cen-
ter around the top and bottom boundaries and to our largest
radii near the perimeter of the cylinder. We henceforth re-
fer to this region as the “chaotic sea”. Also, in all cases
there are many more points near the surface than near the
bottom; this is due to the higher azimuthal velocities near
the surface, and is seen in both the dynamic and kinematic
model. In E = 0.25, both Poincaré sections show a series of
nested closed curves centered around (r,z)= (0.5,0.5) cor-
responding to quasiperiodic trajectories on nested tori. Be-
tween these are some thin resonant layers with high num-
bers of small islands. For E = 0.125, the main feature is a
series of larger islands between a set of nested tori and the
chaotic sea. For E = 0.02, there is one large island with a
number of resonant layers surrounding it, including small is-
lands. For E = 0.0005, the vertical structure of both mod-
els is more rigid, the kinematic model more so than the NS
simulation. Altogether, the kinematic model reproduces the
general features of the NS simulations, though there are of-
ten differences in details, such as the number and widths of
islands.

3 Lagrangian Batchelor scale

In this section, we examine the relative importance of chaotic
advection and turbulent diffusion for tracer distribution us-
ing a Lagrangian Batchelor scale. The Batchelor scale, δ,
is the length scale at which advection and diffusion bal-
ance in their respective thinning and widening of a patch of
tracer. Chaotic advection thins tracer patches through aver-
aged exponential contraction in the contracting direction or
directions, decreasing the relevant length scale towards small

scales where turbulent diffusion is dominant. In this section,
we represent turbulent diffusion as a scale-dependent diffu-
sivity. This diffusion widens tracer patches by moving tracer
down its gradient, spreading it out from its maximum. Be-
low δ, diffusion dominates tracer behavior, while above δ ad-
vection dominates. If δ is larger than the structures in the
flow induced by chaos, then diffusion will overcome advec-
tion and wipe out these structures. The structures of interest,
induced by the deterministic, symmetry-breaking perturba-
tion (see Figs. 3–4), are the bands of chaos, called resonant
layers, surrounding regular island chains (see blue diamond
in Fig. 3d), and the chaotic sea region (outside the red oval in
Fig. 3d) located near the cylinder perimeter and central axis,
which are identified by visual inspection of Poincaré sec-
tions. When we compare δ to these structures, we define their
widths as the difference between distances from the central
orbit, (r,z)= (0.5,0.5), to the outermost and innermost part
of the structure, measured in Poincaré sections like Figs. 3–4.

In principle, the width of a tracer filament should approach
the Batchelor scale regardless of initial conditions. If we con-
sider an initial patch of tracer that is far from the Batchelor
scale, advection and diffusion will not balance. If the patch is
larger than the Batchelor scale, chaotic advection constricts
the patch in the direction of fastest contraction so that it ap-
proaches the Batchelor scale. If the patch of tracer is smaller
than the Batchelor scale, diffusion widens the patch to ap-
proach the Batchelor scale. When the width of a filament is
at the Batchelor scale, the width will be steady in time but
the concentration will continue falling.

Traditional formulations of the Batchelor scale use the Eu-
lerian quantity – strain rate – to quantify advection and to
find the scale at which advective and diffusive effects bal-
ance. Several rigorous derivations of a Lagrangian Batche-
lor scale have been presented (e.g. Thiffeault, 2004; Fereday
and Haynes, 2004; Son, 1999), and a few papers have used
less-rigorous scaling arguments to estimate the importance of
chaotic advection (Rypina et al., 2010; Ledwell et al., 1993,
1998). Below we present a simple explanation for the La-
grangian Batchelor scale to gain intuition about this quantity,
followed by a rigorous derivation of a Lagrangian Batchelor
scale for a Gaussian tracer in a 3-D linear strain flow. The
latter extends the work of Flierl and Woods (2015) from 2-D
to 3-D.

The first formulation of the Lagrangian Batchelor scale
uses dimensional arguments to construct a quantity that has
units of length from the diffusivity κ , which quantifies the
intensity of diffusion (and has units of length2time−1), and
the average exponential contraction rate λ3, which quantifies
the thinning of a filament due to chaotic advection (and has
units of time−1):

δ =
√
κ/|λ3|. (15)

In a flow field with uniform steady strain, one could sim-
ply use the Eulerian strain rate as the filament thinning rate.
However, in flows with a non-constant strain rate, the tracer
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Figure 3. Structures in the kinematic model and dynamical simulation for Ekman numbers of 0.25 (a, c) and 0.125 (b, d). (a, b) Poincaré
maps from Pratt et al. (Fig. 10 in 2014), resulting from a dynamically consistent numerical simulation. (c, d) Poincaré maps (black) and largest
FTLEs (color) resulting from our non-dynamically consistent kinematic analytic model, with ε = 0.01 and x0 either −0.5 (c) or −0.9 (d);
in color are maximum FTLEs calculated for the kinematic model with integration time 400. In (d), red oval approximately separates the
resonant and regular layers (inside) from the chaotic sea region (outside), with the blue line segment showing the width of the chaotic sea.
The blue diamond shows the width of an island, which is also the width of the resonant layer.

will feel different strain as it is advected by the flow, so a La-
grangian quantity such as the finite-time Lyapunov exponent
(FTLE) would be more appropriate. The FTLE quantifies the
average exponential separation rate between a trajectory and
its close neighbors over a finite-time interval 1t ,

1x =1x0e
λ1t . (16)

Since separation rates between trajectories are generally dif-
ferent in different directions, in 3-D flows there are three
FTLEs that can be ordered λ1 ≥ λ2 ≥ λ3 and can be thought
of as the stretching and contraction rates of the three ma-
jor axes of an infinitesimal spherical blob of fluid as it de-
forms into an ellipsoid under the influence of the flow field
(see Fig. 5). For incompressible flows, λ1 ≥ 0, λ3 ≤ 0 and
λ1+λ2+λ3 = 0. For the Batchelor scale in Eq. (16), the ap-
propriate FTLE is that for the most contracting direction, i.e.,
λ3. FTLEs are most commonly computed as

λi = 1/|T | ln
√
σi, (17)

where σi values are the eigenvalues of the right Cauchy–
Green deformation tensor,

G= [1xi/1x0j ]
T
[1xi/1x0j ]. (18)

Here 1xi and 1xi0 are the final and initial displacements in
the ith direction between initially nearby particles that are ad-
vected by the flow over time interval1t .G can be calculated
directly from dense grids of simulated Lagrangian trajecto-
ries. We use the latter method in our calculations to estimate
λ3.

As an alternative motivation of the Lagrangian Batche-
lor scale, we show analytically that the width of a Gaussian
tracer distribution asymptotically approaches the Batchelor
scale in a simple flow field. This derivation is an extension to
three dimensions of a two-dimensional calculation by Flierl
and Woods (2015). The main steps of the derivation are de-
scribed below, with more details in Appendix B. First, we
assume that in the Lagrangian frame, the velocity field is a
steady linear strain with rates λi in each direction such that
the sum of the λ is zero, giving an incompressible flow. Sec-
ond, we assume that the tracer concentration C initially has
a Gaussian distribution in each direction, and we look for
a solution to the tracer evolution equation where it remains
Gaussian. In this case we can use the standard deviation of
the Gaussian distribution to measure the width of the fila-
ment in each direction. The width in the most contracting
direction, which is shrinking with rate λ3, is denoted by σ .
As shown in the Appendix, the differential equation for σ has
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Figure 4. Structures in the kinematic model (c, d) and dynamical simulation (a, b) for Ekman numbers of 0.02 (a, c) and 0.0005 (b, d), with
same format as Fig. 3.

a fixed point at

σ =
√
κ/|λ3|, (19)

meaning that the width of the Gaussian patch in the fastest
contracting direction has a fixed point at the Batchelor scale,
as expected from the physical arguments about the balance
between advection and diffusion. This fixed point is attract-
ing, meaning that for any initial width, the width in the λ3
direction will converge to the Lagrangian Batchelor scale.
Mathematically there are also fixed points with negative λ3
and with negative σ for positive λ3, but neither corresponds
to a real positive tracer distribution. The full solution for σ is

σ =
√
κ/|λ3|

(
(λ3σ

2
0 /κ − 1)e2λ3t + 1

)1/2
. (20)

More details and the full solution for C are in Appendix B.

Results of Batchelor scale analysis

In order to calculate the Lagrangian Batchelor scale, δ, we
use the oceanic diffusivity estimates from Okubo (1971).
In the ocean, diffusivity is scale-dependent, increasing with
size, as described by Okubo. He used observations of hori-
zontal dye diffusion at various scales ranging between about
20 m and 100 km to find the empirical relationship

κ = 0.0103l1.15, (21)

Figure 5. An initial sphere in a linear strain field evolving into an
ellipsoid during a time of 1. Ellipsoid axes marked by bars, with
figure axes ticks showing their endpoint values. Velocity field u=
1.5+ x, v = 0.5y, w =−1.5z. Color shows z values at t = 0..

where l is the horizontal length scale of the dye patch (in cm)
and κ is in centimeters squared per second. Consistent with
the lack of density stratification in our model, we assume
an isotropic three-dimensional diffusivity. This assumption is
supportable in the upper ocean mixed layer and is consistent
with our assumption of shallow eddies.

The variable nature of Okubo’s κ makes determination of
the Batchelor scale a bit more subtle. In the case of a spatially
variable κ , the thinning of an initially large tracer patch will
occur as before, but as the filaments decrease in width, the
corresponding κ decreases as well. Following Rypina et al.
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(2010), we hypothesize that equilibration will occur if during
this process, the tracer scale L approaches (κ(L)/|λ3|)

1/2
=

(0.0103L1.15/|λ3|)
1/2. Solving for L yields the Batchelor

scale:

δ = 0.0046|λ3|
−1.1765, (22)

where λ3 (in s−1) yields δ (in cms−1).
To relate our dimensionless kinematic model FTLEs to

Okubo’s diffusivities, we need to set dimensional time and
diffusivity scaling factors. We previously discussed the wind-
ing times and associated velocity scaling of 1 ms−1; our de-
sired scaling factors can be computed with this velocity scal-
ing and a length scale. The main parameter of the background
model is the Ekman number, the square of the ratio of Ek-
man layer thickness to eddy depth. Due to the unstratified na-
ture of our flow, we focus on two intermediate Ekman num-
bers:E = 0.125 andE = 0.02. Assuming an Ekman depth of
about 40 m, which is within the range of open-ocean observa-
tions (see Lenn and Chereskin, 2009, and references therein),
our shallower eddy is about 110 m deep, whereas E = 0.02
would correspond to an eddy depth of about 280 m. Depend-
ing on region and season, it is possible for either of these to
be within the surface mixed layer of the ocean, which can
reach 500 m in subpolar regions in the winter but may de-
crease to a few meters in the summer. Since the aspect ratio
of the width to depth of our eddy is 1, the corresponding eddy
radius is also between roughly 100 and 300 m. Using the
product of the dimensional depth of the eddy and the chosen
velocity scale, Okubo’s diffusivities can be made nondimen-
sional. In contrast, the FTLEs could be made dimensional
using the time step in seconds. These scalings are explicitly
given in Table 1; we will discuss the results in nondimen-
sional terms.

The calculated δ values are shown in Fig. 6 next to the
widths of chaotic regions; both widths are made dimensional
using the eddy depths. The range of δ values is due to the spa-
tial variation in the most contracting FTLE, λ3, in the region
(see Figs. 3–4 for most stretching FTLEs, which are of the
same magnitude). FTLEs were estimated over an integration
time of 400; the range of FTLE magnitudes does not notice-
ably change when the integration time is decreased by half.
The widths of the chaotic sea and smaller resonant regions
were estimated from inspection of Poincaré sections. The
Batchelor scale is generally about 0.01–0.08, which is similar
to the resonant layer widths and smaller than the chaotic sea
widths. The dimensional diffusivities at these scales range
from 2× 10−4 m2 s−1 at 1 m to 0.06 m2 s−1 at 140 m, which
are considerably smaller than diffusivities on the horizon-
tal scale of eddies themselves, about 0.5–8.2 m2 s−1 for 1–
10 km. The Batchelor scale results imply that chaotic advec-
tion is expected to influence tracer distribution throughout
the system but dominates only in the wider chaotic sea re-
gion.

Figure 6. Layer widths in blue, and Lagrangian Batchelor scale δ
(Eq. 22) in the same region in yellow. (a) Chaotic resonant region
between islands; (b) the chaotic sea region. The diffusivities at the
Batchelor scale (in m2 s−1) are between 10−4 and 6×10−3 for the
three larger Ekman numbers and between 1× 10−2 and 6× 10−2

for E = 0.0005.

4 Particle dispersion

In this section, we quantify the relative effects of turbu-
lent diffusion and chaotic advection using the dispersion (or
spread) of sets of initially nearby trajectories in the kinematic
model. We consider chaotic advection to be dominant com-
pared to diffusion when the ensemble spread is greater for
the deterministic perturbation that induces chaos than for the
stochastic perturbation that simulates turbulent diffusion. En-
sembles of 100 to 300 trajectories that begin inside a small
sphere have been examined for their behavior under various
perturbations. Other initial conditions, on a torus or axial cir-
cle, give similar results (not shown). The spread of trajec-
tories is measured in terms of 9 values; the streamfunction
of the background flow is given by Eq. (2). Examining the
spread in 9 is convenient because it leads to zero spread for
particles following the background flow. However, it is im-
portant to note that this interpretation limits the directions
of chaotic stretching that are considered – it is possible for
the fastest-spreading direction to be along the background
streamlines, which would not be visible in the coordinates
chosen.

To simulate turbulent diffusion, we add a stochastic veloc-
ity perturbation to the background model flow. The stochastic
perturbation is a random flight model created by adding small
pseudorandom values with a Gaussian distribution to the ve-
locity at fixed intervals of time 1t . The equation governing
a fluid particle trajectory is then

dxi
dt
= Ubi(x)+ u

′

i, (23)

where i is a direction index, Ubi is the background ve-
locity, and u′i are the stochastic additions. These velocity
additions are uncorrelated and lead to a Gaussian random
walk behavior (Zambianchi and Griffa, 1994). Using the de-
scribed stochastic perturbation, although it is quite simple,
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withUbi = 0 or a constant, the variance of a set of trajectories
grows linearly in time, while the standard deviation grows
linearly with the square root of time, as expected for diffu-
sion. The diffusivity, κ , is computed from the 1-D relation-
ship for a Gaussian random walk: κ = s2/21t , where s is the
standard deviation of step size in the random walk. To choose
the level of diffusivity for the stochastic perturbation, we
consider the turbulent diffusivities near the Batchelor scale as
computed in the previous section. The Okubo diffusivities at
the Batchelor scale are in the range κ ∈ [10−4,10−2

]m2 s−1

across the four Ekman numbers examined, which is nondi-
mensionally κ ∈ {10−6,3× 10−5

}. As our primary example,
we will discuss the level of diffusivity κ = 10−6. This diffu-
sivity requires a certain step size s for the stochastic pertur-
bation, which relates to the distribution of u′ by s = σ1t/3,
with σ being the standard deviation of u′ and 1t being
the numerical time step (0.01) and having the factor of 3
due to the details of a fourth-order Runga–Kutta integration.
The next position, using this method, is estimated using the
weighted sum of estimates of the velocity at the current po-
sition (v1, weight 1/6), the halfway point estimated from the
current position (v2, weight 1/3), the halfway point estimated
using v2 (v3, weight 1/3), and the final point estimated using
v3 (v4, weight 1/6). Only v1 and v4 include stochastic addi-
tions, leading to the 1/3 factor. Together, these give

κ =
σ 21t

18
, (24)

so σ = 0.042. We will also discuss a smaller stochastic per-
turbation, κ = 10−7 and σ = 0.013, and a larger one, κ =
10−5 and σ = 0.13. The stochastic perturbation with κ =
10−6 has kinetic energy (integrated over the cylinder) about
the same as the background flow:

∫
(u′)2 ≈

∫
(U2

b)≈ 0.63.
The perturbation with κ = 10−7 has kinetic energy about
the same as the deterministic perturbation with ε = 0.01 and
x0 =−0.5, such that

∫
(u′d)

2
≈
∫
(u′s)

2
≈ 0.075, where u′d is

the deterministic perturbation velocity and u′s is stochastic.
We begin with an example for E = 0.125, showing the

spread of trajectories (measured in terms of the background
streamfunction 9) in the presence of either the determin-
istic or the stochastic perturbation. Trajectories are started
on a small sphere located entirely in the chaotic sea region
centered on (r,z)= (0.1,0.5) (see Fig. 3 for the Poincaré
section). For the deterministic perturbation at early times,
trajectories oscillate through the background streamfunction
because the perturbation velocities form an azimuthal wave
(Fig. 7a). The frequency of this oscillation depends on the ex-
act location of the trajectory, so with time, trajectories move
out of phase due to the cumulative effect of their slightly dif-
ferent oscillatory frequencies. It takes a few cycles of over-
turning to develop noticeable spreading, but then the spread
grows quickly.

For the stochastic perturbation (Fig. 7b), trajectories are
uncorrelated as they spread across the background stream-
function. There are no oscillations in time because the per-

turbation acts separately on each trajectory at each time step,
leading to continuous and monotonic spreading of the ensem-
ble. This spreading is similar to diffusion, but the increase in
the range of trajectories does not depend on the gradients of
concentration – Fick’s law does not apply. If both perturba-
tions are included (Fig. 7c), trajectory ensembles maintain
some of their oscillatory behavior but spread out in a more
continuous fashion due to the stochastic perturbation. In this
example, and over timescales considered, we conclude that
the stochastic perturbation dominates at early times but that
chaotic spreading takes over at times larger than about 1000.
Over an even longer time period, turbulent diffusive spread-
ing is expected to overtake chaotic spreading.

We next compare the spreading of trajectory ensembles in
9 with a variety of perturbations for the same initial con-
ditions as in Fig. 7 using the range over time (Fig. 8); re-
sults are similar when the variance in 9 is used for com-
parison (not shown). Chaotic advection dominates when the
spread in9 for an ensemble under deterministic perturbation
is larger than the spread under stochastic perturbation. The
spread from the deterministic perturbation is very fast, ap-
pearing to be qualitatively exponential, for a period of time,
as expected for a region with high FTLEs, which indicates
exponential growth on average but is limited to the width
of the chaotic region in which the ensemble begins (e.g.,
red curve in Fig. 8a). In contrast, the stochastic perturba-
tion will spread with the square root of time until it reaches
the cylinder boundaries (e.g., dark blue curve in Fig. 8a).
Therefore, the time when the deterministic perturbation has
greater spread will be limited to between when fast chaotic-
advection-induced separation starts in the deterministic per-
turbation, which requires sufficient interaction with hyper-
bolic regions, and when the stochastic perturbation spreads
the ensemble to the width of the chaotic region.

In the chaotic sea region (Fig. 8a, c), ensembles with
stochastic perturbations all have their ranges in 9 grow in
a manner similar to the square root of time, and the spread-
ing is faster for larger κ . The ensembles with deterministic,
chaos-inducing perturbations experience an initial delay be-
fore they begin quickly growing. Once rapid growth sets in,
they spread to the width of the chaotic region between the
times 500 and 3000. Larger deterministic perturbations lead
to earlier and faster spreading as well as wider chaotic re-
gions. For the weaker deterministic perturbation ε = 0.01,
there are some time intervals over which chaotic spread-
ing in the chaotic sea dominates stochastic spreading. These
instances occur more readily in the case of the shallower
eddy (E = 0.125; Fig. 8a) and less so for the deeper eddy
(E = 0.02; Fig. 8c). However, larger deterministic perturba-
tions (e.g., ε = 0.08) produce chaos that is dominant over
longer times, an extreme example being the pink curve in
Fig. 8a.

We can also consider the timescales over which diffusive
and advective processes with similar kinetic energy (red and
light blue curves in Fig. 8) dominate over each other. The en-
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sembles released in the chaotic sea show that over the first
few hundred time steps, turbulent diffusion dominates the
spread (Fig. 8a and c at t < 1000), as chaotic advection does
not yet show significant growth. After that we see a period
of fast growth due to chaotic advection, which quickly over-
takes the slower diffusive spreading. This rapid growth stops
when the advective spread reaches the width of the chaotic
region, and the diffusive spreading, which is not limited by
the chaotic region width, is then able to catch up and exceed
chaotic advection. Of course, these processes will be acting
at the same time, not separately; the green curves in Fig. 8 are
examples when small perturbations of both types are present.
In this case, spreading of the ensemble begins immediately,
as in simulations with only stochastic perturbations, but then
has a time period of pronounced growth and some oscilla-
tions, as seen in simulations with only steady perturbations.

We also examined the behavior of trajectories beginning
at (r,z)= (0.4,0.5), a small distance from the central fixed
orbit, within the region containing resonant layers (Figs. 3–
4). In these cases, the same behavior as in the chaotic sea
region occurs for the spreading under stochastic perturba-
tions (Fig. 8b, d). The spreading under deterministic pertur-
bations is much slower than in the outer chaotic sea region
for ε = 0.01 (red curves in Fig. 8b, d), and diffusion domi-
nates at all times for all values of κ shown. With ε = 0.08, the
chaotic region is larger, and growth due to the deterministic
perturbation is generally more rapid than that due to diffu-
sion, at least within the time window when chaotic advection
begins and until saturation occurs (pink curves in Fig. 8b, d).

From the spreading of ensembles of trajectories, we see
that the wider chaotic regions are where chaotic advection
dominates over turbulent diffusion (at least over some time
intervals), as expected from our scaling arguments. However,
those scalings did not include considerations of time includ-
ing considerations of when fast chaotic-advection-induced
stretching begins, as FTLEs are time averages; the delay in
chaotic stretching decreases the period of time when chaotic
advection is important. This time period begins when fast
advective stretching is first apparent and ends when turbulent
diffusion has spread across the region under consideration.
From these ensembles, we would expect a set of passive 3-D
drifters or an injected tracer beginning in a blob to spread out
diffusively, be stretched and folded throughout the chaotic
sea, producing strong filamentation, then gradually diffuse
across the barriers of the chaotic sea and into the remainder
of the eddy. During the later stage, tracer variance due to the
formation of filaments by chaotic advection would be grad-
ually eroded by turbulent diffusion. This sequence of events
will be apparent in tracer simulations shown in the next sec-
tion.

Figure 7. Grey lines are individual trajectories in ψ starting from
a sphere of radius 0.002 at (r,z)= (0.1,0.5) with E = 0.125. Solid
black curves are the mean; black dashed–dotted lines are ±1 stan-
dard deviations from the mean.

5 Tracer simulations and Nakamura effective
diffusivity

In this section we analyze the effects of the symmetry-
breaking, chaos-inducing deterministic velocity perturbation
on the stirring and mixing of a diffusive tracer in a dy-
namically consistent numerical model of a rotating cylin-
der flow. Dye experiments are often used in both the ocean
and the laboratory to understand the stirring and mixing in a
fluid (examples include Fountain et al., 2000; Ledwell et al.,
1993, 1998). The distributions of passive tracers like dye
are created by the advective and diffusive patterns without
the feedback onto the flow that would occur with temper-
ature or salinity, allowing for insight into those processes.
For our simulations we turn away from the kinematic model
and take advantage of the existing numerical model that
solves Navier–Stokes equations corresponding to the rotating
cylinder flow accompanied by integration of the advection–
diffusion equation with diffusivity k for a passive tracer, both
described in P2014. As discussed earlier, these simulations
have the advantage of being dynamically consistent at the
cost of being computationally expensive, whereas economy
of the kinematic model allows us to explore a wider range of
parameters.

Our main quantification tool is Nakamura’s effective dif-
fusivity: a background diffusivity scaled by a representation
of the stretching of dye concentration contours by advection.
Two-dimensional and quasi-three-dimensional analyses of
effective diffusivity have been applied to the atmosphere and
ocean (Nakamura, 1996; Nakamura and Ma, 1997; Haynes
and Shuckburgh, 2000; Abernathey et al., 2010). For our
fully three-dimensional system with constant density, the ef-
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Figure 8. Range in ψ for ensembles of trajectories started from a sphere of radius 0.002. Steady perturbation (ε ∈ {0.01,0.08}), stochastic
perturbations (κ ∈ {10−5,10−6,10−7

}), or both (κ = 10−7, ε = 0.01) are added to the background flow. (a, c) Initial sphere in the chaotic
sea region, away from fixed points, at (r,z)= (0.1,0.5). (b, d) Initial sphere centered on (r,z)= (0.4,0.5), a resonant region. In (a), the
dashed black line is 10−5√t .

fective diffusivity can be written as

κeff(C)= k
1

(∂C/∂V )2
|̂∇C|

2
, (25)

whereC is tracer concentration, V is volume, and f̂ indicates
an average of function f over the area of a concentration
surface. The imposed small-scale diffusivity k is constant
and is thus more closely related to the κ used in Sect. 4 for
the stochastic perturbation than the scale-dependent Okubo
κ in Sect. 3. (It is not clear how one would incorporate
a scale-dependent diffusivity into Nakamura’s formulation.)
The volume V is a one-to-one mapping of tracer concentra-
tion and volume such that V (C) is the volume occupied by
fluid with concentrations greater than C. The derivation lead-
ing to the above definition for κeff can be found in Shuck-
burgh and Haynes (2003), who perform the algebra in 2-D
but note that the 3-D development is identical. Equation (25)
describes an effective diffusivity that is amplified from the
small-scale diffusivity by a factor of the degree of contortion
of the concentration contour. The units of the effective diffu-
sivity are those of k (typically m2 s−1), multiplied by m4, or
volume squared divided by length squared, which is the same
as surface area squared. Larger effective diffusivity leads to
larger diffusive fluxes of tracer. This amplification can be un-
derstood as being caused by advective stretching and folding
of tracer contours which increases the area of surfaces of con-
stant C, thereby amplifying gradients of C and speeding up
diffusive fluxes. This amplification factor is precisely the sur-

face area squared in the rare situation where |∇C| is constant
on a C surface.

Both advection and diffusion redistribute tracer concen-
tration and influence effective diffusivity. The effective dif-
fusivity allows the effects of advection to be included in a
diffusive term:
∂C

∂t
=

∂

∂V

(
κeff

∂C

∂V

)
. (26)

As advection stretches and folds the initial tracer, creating
filaments, the surface area of a contour and gradients of
the tracer increase, leading to larger κeff. Then, as diffusion
smooths the tracer field, wiping away the filaments, gradi-
ents decrease and contours become smoother, with a lower
surface-area-to-volume ratio. We compare the effective dif-
fusivity with a deterministic perturbation to that without; any
increase is due to increased stirring, which gives a quantita-
tive measure of how important that stirring is for the distri-
bution of tracer in each region of the flow.

As a secondary quantification tool, we use the volume-
integrated tracer variance function, χ2 (Pattanayak, 2001):

χ2
=

∫
V

|∇C|2dV
/∫

V

|C|2dV, (27)

where V here is simple volume. Stirring increases the vari-
ance of a tracer, while mixing decreases it. When χ2 is in-
creasing, stirring is dominant and the slope of χ2(t) quanti-
fies the stirring rate. The tracer variance function was used
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to relate the Ekman number, perturbation strength, and stir-
ring rate for the rotating cylinder in P2014; the authors found
that stirring increased with larger perturbations and was non-
monotonic with E, peaking near E = 0.01.

The numerical simulations are run using the solver
NEK5000 for several diffusivities and strengths of the
symmetry-breaking deterministic perturbation. This model
solves the incompressible Navier–Stokes equations using a
spectral element method (see https://nek5000.mcs.anl.gov,
last access: 3 September 2018, P2014, Fischer, 1997). The
domain has an identical radius and height, matching the as-
pect ratio assumed in our kinematic model. The symmetry-
breaking perturbation is created by moving the central axis of
the imposed surface lid stress a fraction of the radiusX0 from
the cylinder axis so that X0 becomes the primary parame-
ter determining the perturbation strength. The X0 =−0.02
case is what was used to compare Poincaré sections with the
kinematic model, so qualitative features match the ε = 0.01
cases. The X0 =−0.16 case is a significantly larger pertur-
bation, similar to the ε = 0.08 case in the previous section.
The nondimensional imposed tracer diffusivity, k, is 10−4 or
10−6. Using Okubo’s scaling, the lower diffusivity is appro-
priate for scales near 1 m, while the larger is appropriate for
scales near 50 m. After the simulated velocity field is spun
up, the tracer concentration, C, is initialized with a constant
vertical gradient, C = 1− z.

The set of simulations performed allows for an examina-
tion of the effects of changing E, k, and X0. They are E =
0.125 and k = 10−4, X0 ∈ {0,−0.02,−0.16} and E = 0.02,
and k ∈ {10−4,10−6

} andX0 ∈ {0,−0.02} for a total of seven
simulations. Each simulation is run for a time of 300 after the
tracer is initialized. The evolution in time of the tracer vari-
ance function and Nakamura effective diffusivity integrated
over the volume of the cylinder are described first; we then
discuss the evolution of the dye and finally the spatial char-
acteristics of the Nakamura effective diffusivity.

The tracer variance function over time (Fig. 9a–c) initially
grows nearly linearly as stirring creates filaments and large
gradients. The function then has a single maximum that oc-
curs at the time when diffusive mixing starts to overcome stir-
ring so that the variance of the tracer begins to decrease. The
maximum occurs earlier when either the imposed diffusivity
or the strength of the deterministic perturbation increases. In-
creasing the diffusivity makes the maximum occur earlier by
increasing the strength of the mixing (Fig. 9a, b). Increasing
the deterministic perturbation also makes the maximum oc-
cur earlier, as faster stirring creates larger gradients, in turn
increasing diffusive fluxes (Fig. 9c, red curve).

The maximum of the tracer variance function increases
with decreased diffusivity, as more filamentation can occur
before diffusion wipes the filaments out. This change in max-
imum is most evident in the difference between k = 10−4 and
k = 10−6 for E = 0.02, where the decrease in diffusivity in-
creases the maximum of the tracer variance function by an or-
der of magnitude (Fig. 9a, b). Changes in the maximum as the

size of X0 is increased from 0 to 0.02 are small and negative,
because the slightly earlier time of the maximum combined
with similar stirring rates leads to a slightly smaller max-
imum with the perturbation. In the case of E = 0.125 and
X0 =−0.16, the maximum is larger than with either X0 = 0
or X0 =−0.02 due to faster stirring and a different spatial
pattern of the dye, which will be discussed later.

The effective diffusivity, κeff, integrated over the total vol-
ume shows an overall progression similar to the tracer vari-
ance function, which indicates the dominance of the gradient
term over both the ∂C/∂V term in κeff and the |C|2 term
in χ2 (Fig. 9d–f). The initial slope and details of the maxi-
mum can be understood as relating to perturbation and dif-
fusivity strengths in the same manner as for χ2. At longer
times, the integrated effective diffusivity reaches a nearly
constant positive value unlike χ2, which approaches zero.
This constant value can be estimated by using the surface
area representation of κeff. At long times, here meaning af-
ter many overturns but before diffusion removes all gradi-
ents, the shape of tracer surfaces is distorted nested tori (look
ahead to Fig. 10h). If the C surfaces were nested circular
tori, |∇C| would be constant along the surfaces, and then
κeff = kA

2, where A is the surface area of a given toroidal
tracer contour. The volume integral of the squared surface
area of circular tori nested around (r,z)= (0.5,0.5) multi-
plied by the background diffusivity is kπ6/8, which we ex-
pect to be the minimum for

∫
κeffdV in this system while gra-

dients are nonzero (see Appendix C for details). This value is
shown as black dashed lines in Fig. 9d–f and is just below the
lowest

∫
κeffdV value seen. The higher values for κeff with

steady perturbations at long times correspond to persistent
asymmetries in the tracer field which result in larger constant
concentration surface areas. The extreme case is E = 0.125,
X0 =−0.16, and k = 10−4, which has the most asymmetric
dye contours (Fig. 11i); here, the long-time value of

∫
κeffdV

is about twice as large as for circular tori.
Further insight can be gained by perusal of vertical sec-

tions of C and κeff (Figs. 10 and 11). A caveat is that κeff is a
nonlocal property, so plots show the values κeff(C) mapped
onto the locations on the sections with corresponding dye
concentrations, C, while they are calculated using the dis-
tribution of C over the whole volume at that time. These
mappings are noisier than the sections of C because the nu-
merically computed κeff(C) is nonmonotonic and can have
large changes with small changes in C. Nevertheless, these
plots can yield some insights into the time histories shown in
Fig. 9. Figure 10 is restricted to cases with E = 0.02, while
Fig. 11 is restricted to E = 0.125. The two are laid out dif-
ferently, with the former designed to emphasize the effects
of varying k and the latter designed to explore variations
in the strength X0 of the perturbation. Both figures contain
snapshots from an early time (t = 39) in the simulation, be-
fore diffusion has had a chance to arrest growth in the tracer
variance function, and at a late time (t = 299) when κeff has
reached a quasi-steady value. In all cases, the C sections be-
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Figure 9. (a–c) Tracer variance, χ2; (d–f) κeff integrated over volume. (a, d) k = 10−6 and E = 0.02, (b, e) k = 10−4 and E = 0.02, and
(c, f) k = 10−4 and E = 0.125. Solid blue lines include the deterministic perturbation which induces chaos, X0 =−0.02, green dashed lines
are unperturbed, and solid red lines include the deterministic perturbation with X0 =−0.16. Black dashed lines indicate κeff integrated over
volume in the case of nested circular tori.

come smoother and their range decreases between the snap-
shots, due to continued mixing. The high κeff values are en-
hanced over much of the sections’ area at the early time and
localized to mostly the chaotic sea region at the late time.

The early development (t = 39) of the tracer field, C,
and of κeff can be seen in Fig. 10a–f. With no disturbance
present (X0 = 0) and k = 10−4 (Fig. 10b), the initially hor-
izontal lines of constant C have been advected by the axi-
ally symmetric overturning circulation such that contours of
constant C are roughly aligned with the overturning stream-
function. For an initial broad gradient in any direction, we
expect the same realignment after the first few overturnings
as the tracer is passively advected by the background veloc-
ity field. We believe, then, that the tracer distribution that ex-
ists at later times is somewhat independent of initial distri-
bution. The corresponding κeff at t = 39 (Fig. 10e) exhibits
high values at the edges of filaments created by the strain-
ing motion of the symmetric background flow, despite the
fact that no trajectories are chaotic. When a disturbance is
added (X0 =−0.02, Figs. 10c, f) the axial symmetry is bro-
ken and the peak values of κeff are reduced. The latter is
somewhat surprising, since we have already seen (Fig. 9b)
that the volume-integrated values of κeff are nearly the same
for the disturbed and undisturbed case. The situation is made
clearer if one notes that moderate values of κeff (light blue in
Fig. 10f) are more widely distributed in the disturbed case.
A similar result can be seen by comparing the case X0 = 0
(Fig. 11a, d) toX0 =−0.02 (Figs. 11b, e), all for E = 0.125.
Again, the unperturbed (symmetric case) has larger peak val-
ues while the perturbed case has more locations with mod-

erate values of κeff, resulting in a similar volume-integrated
value of κeff (Fig. 9f). It is possible that slight increases in
stirring in the perturbed cases have caused more mixing than
in the unperturbed cases, even over the short interval before
these snapshots, leading to a lower range ofC and smaller av-
erage gradients in the perturbed cases. However, the volume-
integrated measures (Fig. 9) do not show any clear indica-
tions of that process occurring.

When the imposed diffusivity k is decreased by 2 orders
of magnitude, withX0 fixed at−0.02, the results are remark-
ably different. To begin with, a comparison of Fig. 9d with
Fig. 9e shows that κeff is generally larger at any particular
time when k takes the smaller value. As Fig. 10a and c show,
the tracer field contains much finer filaments when k = 10−6,
consistent with the reduction of the Batchelor scale. The dis-
tribution of κeff is broader and with larger peak values for
this lower numerical diffusivity (compare Fig. 10d and f).
The higher κeff indicates that despite the decrease in k, the
effects of stirring on the contours, as measured by κeff/k,
have more than compensated, resulting in a higher rate of ir-
reversible property exchange. Thus the combined effect of
smaller diffusivity and finer filaments (i.e., stronger tracer
gradients) leads to more rapid mixing across tracer contours.

The results that have just been described occur early (t =
39) in the evolution of the tracer field, at a time when fluid
parcels have overturned just a few times and the perturba-
tion amplitude X0 has been small. For this weakly perturbed
flow, Lagrangian chaos requires many overturns to be signif-
icant, so we now turn our attention to the results for t = 299
(Figs. 10g–l and 11g–l). Here a comparison between the un-
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Figure 10. Results from three Navier–Stokes simulations with E = 0.02: (a, d, g, j) x0 =−0.02 and k = 10−6, (b, e, h, k) x0 = 0 and
k = 10−4, and (c, f, i, l) x0 =−0.02 and k = 10−4. The x0 = 0, k = 10−6 case is not shown but is qualitatively similar to the x0 = 0,
k = 10−4 case. (a–c) Dye, t = 39. (d–f) κeff, t = 39. (g–i) Dye, t = 299. (j–l) κeff, t = 299.

Figure 11. Results from Navier–Stokes simulations for E = 0.125 and k = 10−4, with three deterministic perturbation levels: (a, d, g,
j) X0 = 0, (b, e, h, k) X0 =−0.02, and (c, f, i, l) X0 =−0.16. (a–c) Dye, t = 39. (d–f) κeff, t = 39. (g–i) Dye, t = 299. (j–l) κeff, t = 299.
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perturbed and perturbed cases (contrast Fig. 10h and k with
Fig. 10i and l and also Fig. 11g and j with Fig. 11h and k)
reveal only modest differences in the spatial distribution and
magnitude of C and κeff. As in the early snapshots, there is a
tendency for the unperturbed flows to have higher peak val-
ues of κeff, while the perturbed flows produce moderate val-
ues over a larger area. Decreasing the value of k again has
the effect of creating a more fine structure (Fig. 10g) and of
increasing the peak values of κeff by an order of magnitude
(Fig. 10j).

So far, the consequences of the symmetry-breaking dis-
turbance are modest. However, dramatic differences occur
when X0 is increased from −0.02 to −0.16 for E = 0.125.
The tracer distribution is markedly distorted at early times
(compare Fig. 11b with Fig. 11c), and strong tracer gradi-
ents remain present even at t = 299, at a time when the gra-
dients in the unperturbed and weakly perturbed cases have
been strongly eroded (compare Fig. 11g and h with Fig. 11i).
The peak values of κeff at t = 299 (Fig. 11l) remain compa-
rable to those of the weakly perturbed case (Fig. 11k) but
occupy a much larger volume, making the volume-integrated
κeff much larger, in agreement with Fig. 9f.

For a different perspective, we examine the mean κeff in
subdomains of the system corresponding to a regular island
and a region of the chaotic resonant layer of roughly the same
size. The cross sections of the cylinder along the x and y axes
are broken into different regions using the matching Poincaré
sections of the perturbed flow (Fig. 12). Demarcation of these
subdomains was most straightforward for the case E = 0.02,
due to its large island and extended resonant region. While
we used Poincaré sections as guidance for defining regu-
lar and chaotic regions, other methods (for example, Haller
et al., 2018) could be used instead for the more precise delin-
eation of the phase space. The mean κeff in the chosen sub-
domains gives a clear result in the E = 0.02 and k = 10−4

case (Fig. 12c), where at long times, when the overall gra-
dients have smoothed out, the resonant regions have about
twice the effective diffusivity as the islands. The islands’ κeff
at that time approximately matches the value from the same
region in the unperturbed simulation, indicating that chaos
has not affected this area. In the E = 0.02 and k = 10−6 case
(Fig. 12d), the mean κeff is typically higher in the resonant
region than in the island, but the differences are less pro-
nounced. It is notable that at t > 130, κeff is larger in the is-
land than in the same unperturbed region, perhaps because is-
lands are not completely regular and contain smaller chaotic
resonant regions within them.

Overall, these dye experiments show that chaotic ad-
vection enhances Nakamura effective diffusivity within the
chaotic sea at some times in all cases examined. The amount
of enhancement is controlled by both the size of the perturba-
tion and the imposed diffusivity. A larger perturbation leads
to greater enhancement (higher κeff). A smaller diffusivity
leads to more filamentation (higher χ2) and highly elevated
enhancement (much larger κeff).

6 Conclusions

The main goal of this work is to establish whether the stir-
ring due to chaotic advection in an idealized model of an up-
per ocean eddy remains relevant in the presence of levels of
background turbulent diffusion that are consistent with ob-
servations. The answer is that chaotic advection can indeed
be relevant, and in some cases dominant, within certain re-
gions of the flow field and over certain time intervals. The re-
gion most likely to feel the effects of chaotic advection is the
extensive chaotic sea that exists in all simulations, and this
is especially pronounced when the eddy is shallow. Chaotic
stirring in the smaller and more isolated resonant regions is
less likely to be important. This conclusion comes with many
caveats related to idealizations (e.g., homogeneous turbulent
diffusion) and uncertain parameter values (e.g., background
diffusivity and strength of perturbation).

A second focus of the work has been to explore different
bases for comparison of the effects of chaotic advection and
homogeneous turbulent diffusion. To this end we have iden-
tified three metrics for comparison and are now in a posi-
tion to discuss their advantages and disadvantages. The first
metric is the Lagrangian Batchelor scale (Sect. 3), an esti-
mate of the equilibrium width of a passive tracer filament.
Equilibrium is achieved when transverse compression due
to advection, as quantified by the negative Lyapunov expo-
nent with the largest magnitude (λ3), is balanced by the dif-
fusive spreading of the tracer. Below the Batchelor scale, dif-
fusion is stronger than advection. When this width is smaller
than that of the chaotic regions, advection dominates; when
it is larger, diffusion dominates. We fixed the turbulent dif-
fusivity using Okubo’s empirical formula and calculated the
Batchelor scale δ using the rate of chaotic filament stretching,
λ3, computed numerically as the largest negative finite-time
Lyapunov exponent for the kinematic model. The resulting
Batchelor scale varies from O(1 m) forE = 0.25 to O(100 m)
for E = 0.0005. These values of δ are smaller than the spa-
tial extent of the chaotic sea over all E values considered
(0.25, 0.125, 0.02, and 0.0005) but of similar magnitude to
the widths of the resonant regions.

Interpretation of the Lagrangian Batchelor scale analysis
would appear to be straightforward, but it does not com-
prehend the fact that chaotic advection may only be dom-
inant over a finite-time interval, which is averaged in the
FTLEs. Even when the level of background turbulent diffu-
sion is weak, it will eventually spread beyond the region of
Lagrangian chaos. There is also a level of uncertainty due to
the choice of integration time over which λ3 is calculated.
Finally, it is not yet possible to calculate λ3 from ocean data
with contemporary float or drifter technology. Vertical veloc-
ities are typically very weak, and Lagrangian drifters that are
able to follow water parcels in 3-D are expensive and have
only been deployed in small numbers (D’Asaro et al., 1996;
D’Asaro, 2015).
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Figure 12. E = 0.02 Poincaré sections in the (a) x–z and (b) y–z planes in black. Polygons show the island (blue) and resonant (red) regions
used for analysis (c) and (d), which show mean κeff over time in these regions under both applied background diffusivities.

As a second basis for comparison, we computed the dis-
persion over time of initially small clusters of trajectories
(Sect. 4) as they spread across isosurfaces of the background
streamfunction. Background turbulent diffusion is simulated
as a Lagrangian random walk based on spatially uniform dif-
fusivity. We consider the dispersion characteristics that arise
when this representation of turbulent diffusion is added to
a background flow with no chaotic advection and compare
it to flows that are undergoing chaotic advection but lack
turbulent diffusion. Since the chaotic regions occupy sub-
volumes of the entire eddy, spread of trajectories or tracers
due to turbulent diffusion will eventually surpass that due
to chaotic advection: chaos alone cannot distribute parcels
across Lagrangian boundaries. However, it remains mean-
ingful to compare the rate of spreading of parcels at ear-
lier times. One immediate observation is that the character
of ensemble spreading is qualitatively different for advec-
tive as opposed to diffusive perturbations. For the former, the
spreading rate is significantly enhanced at some key times
when trajectories pass near strong hyperbolic regions. In the
latter case, the spread grows similarly to the square root of
time at all times.

When the eddy is moderately shallow (E = 0.125), there
are many instances in which chaotic advection in the chaotic
sea dominates turbulent diffusion, even at the higher ranges
of turbulent diffusivity. When the perturbation strength is
moderately large (ε = 0.08, x0 =−0.02), chaotic advection
produces more rapid spreading than diffusion for two of three
diffusivities considered (pink curve in Fig. 8a). Even when
the perturbation strength is small (ε = 0.01), spread due to

chaotic advection in the chaotic sea (red curve in Fig. 8a) is
of a comparable order to turbulent diffusion at the lowest k
values considered (light blue curve in Fig. 8a). These results
are in agreement with the Batchelor scale analysis.

When the eddy is deeper (E = 0.02) spreading due to tur-
bulent diffusion in the chaotic sea and resonant regions gen-
erally dominates over spreading due to chaotic advection.
This holds even when the perturbation strength is moder-
ately large (ε = 0.08). These results are not in strict agree-
ment with the Batchelor scale analysis (Fig. 6) result that the
dimension of the chaotic sea is greater or equal to that of the
Lagrangian Batchelor scale for deeper eddies. To reconcile
these inconsistencies, note that asE gets small, a greater per-
centage of the eddy volume becomes occupied by an inviscid,
vertically rigid interior. For a very small E, parcels experi-
ence relatively low levels of strain while rising or descending
through the region. When a fluid parcel nears the top or bot-
tom boundary, however, it become vertically squashed and
horizontally stretched, suggesting that the main contribution
to λ3 comes from close encounters with these boundaries.
A Batchelor scale that is based only on a single parameter
measuring the time-averaged contraction over several over-
turning cycles may be too simplistic when a parcel divides
its time between kinematically distinct regions.

This method of comparison based on parcel spreading has
several advantages over the Batchelor scale. First, it offers
a direct measure of fluid stirring. Also, it reveals informa-
tion about the time history of dispersion that is hidden in
the Lagrangian Batchelor scale analysis. Disadvantages in-
clude the fact that the analysis, as presented, does not ac-
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count for scale-dependent diffusivity. Also, like the Batche-
lor scale analysis, it requires the tracking of fluid parcels in
3-D, something that is currently difficult in the ocean.

The third method for comparison (Sect. 5) differs from
the first two in that it is based on metrics of irreversible
property exchange (mixing). These metrics consist of the
Nakamura effective diffusivity, κeff, and a volume-integrated
tracer variance function, χ2. We consider a flow with a given
background turbulent diffusivity, k, and calculate how much
the irreversible property exchange is amplified as a result of
chaotic stirring. The volume-integrated κeff and χ2 both de-
pend on time and show rapid initial growth, a result of fila-
mentation of an initially smooth tracer distribution. Growth
is arrested when diffusion begins to dominate due to the en-
hanced gradients produced by the filamentation process, at
which time both measures, κeff and χ2, reach peak values.
This is followed by a long period in which χ2 slowly di-
minishes to zero and the volume integral of κeff reaches a
nearly constant value. In most cases, chaotic advection leads
to more rapid initial growth, a lower peak value for both mea-
sures, and a larger long-term, near-equilibrium value of κeff.
In weakly perturbed cases, the differences in initial growth
and peak value of κeff are minor, usually on the order of
10 % or 20 %, while differences in the longer term, near-
equilibrium value of κeff are more significant. For strongly
perturbed cases the initial growth is an order of magnitude
larger and the amplification in the long-term value of κeff is
larger by a factor of 2 than in the unperturbed case.

The spatial structure of κeff also yields interesting infor-
mation, though one must be aware of the caveat that the local
value is due to nonlocal processes. The chaotic sea region
generally has enhanced values compared to the interior and
its resonant regions. Under weak perturbation, maximum val-
ues of κeff were smaller than in the unperturbed case, but the
spatial extent of the intermediate values was larger, leading
to the enhanced volume-integrated values discussed above.
Larger changes in κeff are evident for lower k due to the
occurrence of more numerous small-scale filaments. With a
larger perturbation, chaotic advection dramatically changes
the effective diffusivity, but there are also stronger barriers
present, evident from isolated areas with different tracer con-
centrations. We conclude that the spatial structures of chaotic
and regular regions can play an important role in how a tracer
is distributed.

The use of effective diffusivity as a metric has several ad-
vantages. First of all, it provides a direct measure of irre-
versible property exchange between regions with different
dye concentration. Its time history leads to insights about
the evolution of mixing and, in particular, the time periods
when chaotic advection is most relevant. Also, it can be mea-
sured, at least in principle, by performing an ocean dye re-
lease and measuring the dye concentration along sections that
cut through the dye plume at different depths or angles, all in
an attempt to recreate a concentration map in 3-D. Of the
three methods proposed herein, it would appear to be the one
most testable by ocean observations. The main disadvantage
of effective diffusivity is that it requires the background dif-
fusivity to be constant, which is strictly true only if the diffu-
sivity is interpreted as the molecular diffusivity.

In this work, we examined the relative strengths of advec-
tion and diffusion for the redistribution of a passive tracer
in a rotating cylinder flow as an analogue for an overturn-
ing submesoscale eddy. Since a major challenge of this work
was developing ways of thinking about the competition be-
tween chaotic advection and turbulent diffusion, the numeri-
cal experiments described in this paper have been necessarily
idealized. Although the focus of this current paper is on the
behavior of a steady 3-D eddy flow subject to a turbulent
diffusion, similar results are expected to hold for 3-D eddy
flows with time-periodic and time-quasi-periodic behavior.
Exploration with models that are more realistic for the ocean
presents a number of challenges, including the development
of more anisotropic and spatially varying representations of
turbulence to account for differences between the ocean sur-
face mixed layer and the stratified fluid underneath. In addi-
tion, finite eddy lifetimes must be confronted, as a separation
of timescales between feature lifetimes and the periods of
trajectories within them is needed for these analyses.

Code and data availability. Matlab codes for performing trajectory
integrations and for making most figures are available at Github
(Brett, 2018, https://doi.org/10.5281/zenodo.1560663). Data (code
outputs) for making the figures are available through Zenodo (Brett
and Wang, 2018, https://doi.org/10.5281/zenodo.1560204). Outputs
of NS simulations using NEK5000 are included, but the source code
is available instead at the following link: https://nek5000.mcs.anl.
gov, last access: 3 September 2018.
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Appendix A: Bifurcation analysis of fixed points of the
background streamfunction

Here we provide detail about the fixed points, and their bi-
furcations, of the background velocity field in the kinematic
model of the rotating cylinder. Then we present the bifurca-
tion diagram and an example of the flow with many fixed
points in the overturning streamfunction.

The overturning streamfunction is described by Eqs. (2)–
(7), with radial and vertical velocities (Eqs. 8–9) and az-
imuthal velocity (Eq. 10). All three velocity components are
zero at z= 0 and r = a. The azimuthal velocity V only has
one other zero at r = 0. However, additional points with zero
vertical and radial velocity exist, which correspond to circu-
lar periodic orbits in the horizontal plane and which we refer
to as rz-fixed points.

All rz-fixed points in the interior occur at r = 0.5a be-
cause this is the only place where W = 0. Finding the rz-
fixed points is thus equivalent to finding points in z where
U(r = 0.5a,z)= 0. One such point exists for all E at z=
0.5. Additional rz-fixed points appear through pitchfork bi-
furcations, where new pairs split from z= 0.5 and move
apart in z as E decreases from 1 (Fig. A1).

It is possible to classify the rz-fixed points as elliptic or
hyperbolic according to their behavior in the r–z plane: the
overturning streamfunction is a local maximum in both z and
r at elliptic points and a saddle, i.e., a minimum in r but
a maximum in z, at hyperbolic points. At E = 1, the only
stationary point is at (r,z)= (0.5,0.5), and it is elliptic. As
E decreases to about 1/62, the first bifurcation creates two
elliptic points above and below the now-hyperbolic central
point at (r,z)= (0.5,0.5). As E decreases, the newly cre-
ated points move away vertically from the central point, un-
til the next bifurcation creates two new hyperbolic points,
and the central fixed point becomes elliptic again. This pro-
cess continues; the number of fixed points increases as E
decreases through a repeated pitchfork bifurcations of the
(r,z)= (0.5,0.5) fixed point. As these bifurcations occur,
their effects remain within a region bounded by trajectories
between the first pair of hyperbolic points, meaning that their
effects are quite local. The spreading of the first pair of hy-
perbolic points, and not the total increase in rz-fixed points,
causes the increasing vertical homogeneity of the flow with
decreasing E, which appears qualitatively similar to Taylor
columns. An example with nine rz-fixed points is shown
in Fig. A2 for E = 0.00125; the central point is now ellip-
tic. Trajectories in the vertical plane are level curves of the
streamfunction; these show the elliptic and hyperbolic nature
of the rz-fixed points, where trajectories near an elliptic point
remain nearby but trajectories near a hyperbolic point may
travel a long distance before returning or may move toward
another hyperbolic point.

Figure A1. z positions of rz-fixed points. Black indicates elliptic
points, blue hyperbolic points, and grey the neutrally stable points
at the top and bottom. New fixed point pairs separate symmetrically
from z= 0.5 as E decreases. At each bifurcation, the central fixed
point changes stability.

Figure A2. Trajectories in the vertical plane for E = 0.00125 and
a = 1. There are nine rz-fixed points along r = 0.5, marked with
red stars. Note the closed curves between the outermost hyperbolic
points which surround the interior five rz-fixed points; these limit
the effects of those points to the local area.
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Appendix B: Gaussian tracer in linear strain

In this Appendix, we present the derivation of the evolution
of a three-dimensional tracer in a steady linear strain flow.
This result was used in the main text to show that the thinnest
width of the Gaussian tracer distribution will asymptotically
approach the Lagrangian Batchelor scale. We start with the
definitions of the velocity field, the tracer evolution equation,
and the form of the solution. Then we derive the full time-
dependent solution for the tracer distribution.

We are solving for the evolution of tracer concentration,
C, with a solution in the form of a Gaussian function:

C = cmax(t)exp
(
−x2α2(t)

2
+
−y2β2(t)

2
+
−z2γ 2(t)

2

)
,

(B1)

where cmax is the maximum concentration and α, β, and γ
are the reciprocal of the standard deviations in each direction.
In the Lagrangian frame of reference that is moving with the
center of mass of the tracer, these four parameters are depen-
dent on time but not space. The smallest width of the distri-
bution is σ = 1/α, and in the main text, we have used the
fact that it has a stable fixed point σ =

√
κ/|λ3|, where λ3 is

the contraction rate of the velocity field. We are now going
to formally prove it.

The velocities are defined in the Lagrangian frame by

u= λ3x(x0, t), (B2)
v = λ2y(x0, t), (B3)
w = λ1z(x0, t), (B4)
λ1 > λ2 > λ3, (B5)
λ1 > 0, λ3 < 0, (B6)

with x(x0, t) indicating the initial position x0 of the water
parcel at t = 0. The Lagrangian tracer evolution equation is

∂C

∂t
+ λ3x

∂C

∂x
+ λ2y

∂C

∂y
+ λ1z

∂C

∂z
= κ∇2C, (B7)

where κ is the diffusivity.
The form of C and the tracer evolution equation allow us

to find differential equations for each of our four parameters,
which are

1
cmax

dcmax

dt
=−κ

(
α2
+β2
+ γ 2

)
, (B8)

dα
dt
=−λ3α− κα

3, (B9)

dβ
dt
=−λ2β − κβ

3, (B10)

dγ
dt
=−λ1γ − κγ

3. (B11)

The width parameters’ equations are nonlinear, but when
rewritten in terms like α−2, they give the following:

dα−2

dt
= 2λ3α

−2
+ 2κ, (B12)

dβ−2

dt
= 2λ2β

−2
+ 2κ, (B13)

dγ−2

dt
= 2λ1γ

−2
+ 2κ, (B14)

which are Bernoulli equations, solvable with integrating fac-
tors, giving

α =
√
|λ3|/κ

(
(λ3α

−2
0 /κ − 1)e2λ3t + 1

)−1/2
, (B15)

β =
(
(β−2

0 + κ/λ2)e
2λ2t − κ/λ2

)−1/2
, (B16)

γ =
√
λ1/κ

(
(λ1γ

−2
0 /κ + 1)e2λ1t − 1

)−1/2
, (B17)

where subscript 0 indicates the value at t = 0. The differ-
ences in these equations are due to the different signs of each
λ, with the ambiguity of the sign of λ2 preventing its factor-
ing.

The cmax equation depends on the width parameters and
is not simple to solve directly. However, a careful inspection
shows that cmax/(αβγ ) is conserved, so we can write

cmax(t)= c0α(t)β(t)γ (t). (B18)

For anyone in doubt, we plug in this solution to check it:

dcmax

dt
=

d
dt
(c0αβγ )= c0

(
βγ

dα
dt
+αγ

dβ
dt
+αβ

dγ
dt

)
= c0

(
−αβγ (λ3+ κα

2)

−αβγ (λ2+ κβ
2)−αβγ (λ1+ κγ

2)
)

=−c0αβγ
(
λ1+ λ2+ λ3+ κ[α

2
+β2
+ γ 2
]

)
⇒

1
cmax

dcmax

dt
=−κ

(
α2
+β2
+ γ 2

)
.

The full solution for the tracer concentration C then has been
fully solved by Eq. (B1), with α,β,γ , and cmax given by
Eqs. (B15)–(B18).

For a three-dimensional Gaussian tracer advected by a lin-
ear strain field in the presence of constant diffusivity, in the
Lagrangian frame the width of the tracer distribution will
increase in the stretching direction or directions forever but
reach a fixed value in the contracting direction or directions.
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Appendix C: Long-time limit of effective diffusivity for
the axially symmetric rotating cylinder flow

For the axially symmetric rotating cylinder flow at long
times, the dye contours resemble nested tori, although with
cross sections that are somewhat between a circle and a
square. Here, we derive the expected limit of

∫
κeffdV , as-

suming that the dye iso-contours at late times are nested tori
with a circular cross section and that the gradient of the dye
concentration is constant along each torus. In this case the
effective diffusivity on each torus is κeff = kA

2, the back-
ground diffusivity multiplied by the squared surface area of
a torus.

Recall that the volume of a circular torus is

Vct = 2π2r2R, (C1)

where r is the radius of the circular cross section and R is the
distance from the center of mass of the torus to the center of
the cross section. The surface area is

Act = 4π2rR.

Noting that Act = dVct/dr , we can calculate the volume-
integrated effective diffusivity as∫
κeffdV =

∫ ∫ ∫
kA2dV

= k

rmax∫
0

A3dr

= k

rmax∫
0

(4π2rR)3dr

= 43π6R3k

rmax∫
0

r3dr

= 42π6R3kr4
∣∣∣rmax

0
= kπ6/8, (C2)

using R = 0.5 and rmax = 0.5. This circular-torus-based re-
sult gives a lower bound, because there is still volume out-
side the largest torus that fits in the cylinder, and the final
cross sections are somewhat square, thus having a larger sur-
face area per volume.
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