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Figure 12: Top row: The true nonlinear function g✓ and its estimators using posterior mean
and MAP, superposed on the ensemble of all estimators using the samples. Bottom row: The
distribution of the equilibrium state ue (i.e. the zero of the nonlinear function g✓p¨q) and the
distribution of dg✓

du pueq, with ✓ being samples of the prior and of the posterior.

5.3 Estimates of the nonlinear function

One goal of parameter estimation is to identify the nonlinear function g✓ (specified in (2.2)) in the
SEBM. The posterior of the parameters also quantifies the uncertainty in the identification of g✓.
Figure 12 shows the nonlinear function g✓ associated with the true parameters and with the MAPs
and posterior means presented in Figure 7, superposed on an ensemble of the nonlinear function
evaluated with all the samples. Note that in the Gaussian prior case, the true and estimated
functions g✓ are close even though ✓4 is estimated with large biases by either the posterior mean or
by the MAP. In the uniform prior case, the posterior mean has a smaller error than the MAP and
leads to a better estimate of the nonlinear function. In either case, the large band of the ensemble
represents a large uncertainty in the estimates.
For the Gaussian prior, neither the posterior distribution of the equilibrium state ue (for which
g✓pueq “ 0) nor of the feedback strength dg✓{dupueq are substantially changed from the corre-
sponding priors. Both experience only a small reduction of uncertainty. In contrast, the posterior
distributions are narrower than the priors for the uniform prior case - although the posterior means
and MAPs are both biased.
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