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Abstract. An intelligent method is presented for locating a
microseismic source based on the particle swarm optimiza-
tion (PSO) concept. It eliminates microseismic source locat-
ing errors caused by the inaccurate velocity model of the
earth medium. The method uses, as the target of PSO, a
global minimum of the sum of squared discrepancies be-
tween differences of modeled arrival times and differences of
measured arrival times. The discrepancies are calculated for
all pairs of detectors of a seismic monitoring system. Then,
the adaptive PSO algorithm is applied to locate the micro-
seismic source and obtain optimal value of the P-wave ve-
locity. The PSO algorithm adjusts inertia weight, accelerat-
ing constants, the maximum flight velocity of particles, and
other parameters to avoid the PSO algorithm trapping by lo-
cal optima during the solution process. The origin time of
the microseismic event is estimated by minimizing the sum
of squared discrepancies between the modeled arrival times
and the measured arrival times. This sum is calculated us-
ing the obtained estimates of the microseismic source coor-
dinates and P-wave velocity. The effectiveness of the PSO al-
gorithm was verified through inversion of a theoretical model
and two analyses of actual data from mine blasts in different
locations. Compared with the classic least squares method
(LSM), the PSO algorithm displays faster convergence and
higher accuracy of microseismic source location. Moreover,
there is no need to measure the microseismic wave velocity
in advance: the PSO algorithm eliminates the adverse effects
caused by error in the P-wave velocity when locating a mi-
croseismic source using traditional methods.

1 Introduction

Microseismic monitoring technology can be used for effec-
tively locating rock ruptures caused by rock burst, coal and
gas outbursts, water inrush, and other coal mine disasters. In
recent years it was also used in early warning systems (Li
et al., 2016; Pastén et al., 2015; Jia et al., 2015). The spa-
tial coordinates of monitoring stations and the arrival times
of the first seismic wave are used to determine the coordi-
nates of the microseismic source, origin time, and other at-
tributes. The accuracy of microseismic source location has
been an important research topic in microseismic monitoring
technology for a long time.

Current microseismic source location methods mostly
come from seismology. Now they are widely used in mi-
croseismic monitoring (Sun et al., 2016; Xue et al., 2015;
Anikiev et al., 2014; Dong and Li, 2013). The earthquake
source location method, based on time-difference princi-
ples, was proposed (Geiger, 1912). Based on this work,
Lienert et al. (1986) developed an improved algorithm called
HYPOCENTER. Since then, Nelson and Vidale (1990) pre-
sented the Quake3D method for 3-D velocity modeling. Lo-
max et al. (2000, 2001) worked out a nonlinear mode for
locating global earthquakes in 3-D media and developed
NonLinLoc software. Waldhauser and Ellsworth (2000) pre-
sented an earthquake location algorithm based on a double
difference and developed HypoDD software. After occur-
rence of characteristics of the coal mine overburden, namely
layers and abscission zones, Gong et al. (2012) proposed
a microseismic detecting algorithm for the isotropic veloc-
ity model along the mine length; the algorithm decreases
source location errors. Dong et al. (2017) proposed math-

Published by Copernicus Publications on behalf of the European Geosciences Union & the American Geophysical Union.



164 H.-M. Sun et al.: Technique for solving microseismic source location parameters

ematical algorithms of microseismic source location where
there is no need to predict velocity in advance. The algo-
rithms overcome location errors caused by errors of velocity
measurement inherent in traditional location methods. Lin
et al. (2010) analyzed the characteristics of the linear loca-
tion method and Geiger method and proposed a joint method
to address the problem of low precision in estimation of
source coordinates inherent in the linear location method.
Feng et al. (2015) proposed stratified methods for microseis-
mic source location based on particle swarm optimization to
obtain correlations among the source position, origin time,
and microseismic propagation speed for a non-unique solu-
tion.

In conclusion we note that the microseismic source loca-
tion accuracy is influenced by many factors, such as the lo-
cation method, the layout of the microseismic network, the
velocity model, and the accuracy of the arrival-time mea-
surement (Dong and Li, 2013). Among these, the key factor
influencing the stability of the location algorithm and the lo-
cation accuracy is precision of the velocity model (Prange et
al., 2015; Li et al., 2014; Usher et al., 2013). In this paper, an
adaptive particle swarm optimization algorithm is proposed
for microseismic source location, which is based on average
flying velocity of the particles. It uses, as the particle swarm
optimization (PSO) target function, the least squares sum of
measured arrival-time differences for all pairs of seismic sen-
sors and uses the PSO algorithm to identify the source co-
ordinates and microseismic wave velocity. Then, the origin
time of the microseismic event is calculated according to the
source location just determined and the wave velocity. Pa-
rameters of the PSO algorithm, such as the inertia weight,
the acceleration constants, and the flight velocities of parti-
cles, are adaptively adjusted to avoid the algorithm failure
caused by the improper selection of these parameters. Care-
ful dynamic adjusting of the PSO parameters improves the
robustness of the PSO algorithm, reduces the number of iter-
ations, and improves estimation of the microseismic source
coordinates and the seismic wave velocity.

2 Microseismic source location principle

Suppose that there are n geophones in the microseismic mon-
itoring system. Set the microseismic source location point to
ro = (X0, Y0, 20), the coordinates of each geophone to r; =
(xi,vi,zi) and (i =1,...,n), the time of P-wave arrival to
the ith geophone of the microseismic monitoring system to #;,
and the origin time of the microseismic event to 7. Assuming
that the rock layers between the microseismic sources and
the geophone are uniform (i.e., uniform velocity model), the
equivalent average propagation velocity of the P wave in the
medium is V. Then, the theoretical (regression) arrival-time
differences for i and j geophones are

li—1

Afij=1t —tj= %

J,j=(,...,n), (1)
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where

1= (i =50+ 0 = 302+ (@ — 20)°
1= (5 —x0)> + () —30)” + (2 — 20)°

The differences between the difference of regression arrival
times At; j (ro) and the difference of the measured arrival
times Ati/’ j are analogous to the double-difference concept
introduced by Waldhauser and Ellsworth (2000). The sum
of their squares reflect the degree of discrepancies between
regression and observed arrival times. The equation for esti-
mation of the microseismic source position has the form

n . 7. 2
O, V)= Z (Ati/,j — M) = min. (2)

=1 \% ro,V

The estimates of microseismic source coordinates 7y =
(%0, 0. Z0) and equivalent P-wave velocity in the medium

~

V correspond to those values of ry = (xo, y0,20) and V in
Eq. (1) and Eq. (2), for which the function Q (¢, V) reaches
a global minimum in the ranges of possible values of the mi-
croseismic source coordinates and medium equivalent veloc-
ity.

According to time-difference location principles, the equa-
tion for calculation of the source origin time #y has the fol-
lowing form:

ki —min e B .
n}én (tO)_H,l;nZ t;—to— v . (3

i=1

In the equation, ti’ denotes the measured travel times; for a

case where signal-to-noise ratios in observed signals from

microseismic source are sufficiently high and the earth

medium between the source and geophones is homogeneous

to rr}inF (to) =~ 0, the estimate of the microseism origin time
0

can be calculated as

RN
z0~’—lZ(ti— - ) 4)

i=1

In solving for the seismic source location and origin time,
the estimates of source coordinates 7o = ()20, 30, 20) and the

equivalent wave velocity V are obtained first, according to

Eq. (2). Then, the estimate of the origin time is determined

by substituting the estimated values 7y and V into Eq. (3) (or

in Eq. 4 for the case where n}inF (to) =~ 0). Because Eq. (2)
0

is a nonnegative function of (xp, yo, zo) and V, a minimum
mi‘r/lQ (ro, V) always exists and can be found by the nonlin-
1o,

ear fitting methods. The classic method is the minimum least
squares solution. However, in this solution the source loca-
tion estimate 7 correlates with the origin-time estimate fo,
and the algorithm has a slow convergence for the velocity
V. It is also easy to get a non-unique solution (Chen et al.,
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2009). To overcome these problems, this paper introduces an
adaptive PSO algorithm to optimize the solution process.

Source location based on the time-difference principle
is a multi-extremum nonlinear problem. The most popular
method is the classical method proposed by Geiger (1912)
and various improvements thereafter. This kind of method is
a solution method in the linear category. According to Tay-
lor’s formula, the nonlinear problem is transformed into a lin-
ear problem, and then different strategies are adopted to solve
the linear equation system. In many cases, such as those of
a second order or more, this will appear. Problems such as
in appropriate omitting of terms, unreasonable selection of
initial values, and trapping solutions into local minima will
occur (Lee and Stewart, 1981). The particle swarm optimiza-
tion (PSO) method is simple to operate and easy to use, and it
is easy to get the global optimal solution for multi-extremum
nonlinear problems. Therefore, the improved PSO method is
introduced to solve the above problems.

3 Adaptive PSO algorithm for solving location
parameters

3.1 PSO principle

The PSO is an evolutionary computation technique devel-
oped by Eberhart and Kennedy (1995). It is an evolutionary
algorithm similar to a simulated annealing optimization algo-
rithm for a problem of iterative improvement of a candidate
for the solution with regards to a given measure of quality.
PSO is an intelligent computational algorithm for analyzing
the dynamic behavior of a swarm of particles. In comparison
with other similar algorithms, PSO has such advantages as
simple implementation, high accuracy, and fast convergence.
It has been successfully applied in the field of optimization
in recent years (Fong et al., 2016; Renaudineau et al., 2015;
Sudheeret al., 2014). The basic PSO principles are as fol-
lows: PSO randomly initializes a set of particles in the so-
lution space. Each particle flies through the solution space
with a certain speed by following the current optimum parti-
cle, and the optimal solution is found through the search in
successive generations. In each generation, the particles up-
date themselves by tracking two types of extreme values: lo-
cal optimums and global optimums. The first extreme values
are the optimal values for every particle itself in a set of po-
sitions of this particle in the sequence of generations that al-
ready exist. They are denoted as pBest. The second optimum
is the optimal value found in the all existing generations of
the whole swarm of particles. It is denoted as gBest. After the
two sorts of the optimal values are found, the particles update
their speed and positions according to Eq. (5):

oD = w8 4 (0 (P,(kd) l(l;))Jrc(k)r (Pékfz z(lil))

k 1 k k+1
xl.{d+) <,;+ v i =y, d =1, m)

&)
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where m is the dimension of the particle space, n is a number
of particles in the swarm, k is a number of the current evolu-
tionary particle generation, r; and r, are independent random
values within [0, 1], w™® is the inertia weight at the kth parti-

cle generation, cik) and c;k) are acceleration constants at the

()

kth particle generation, v;; is the current flight speed for the

dth component of the zth partlcle at the kth generation, xl( d)

is the dth component of the ith particle’s current location at
the kth generation, p d is the dth coordinate of the current
optimal value for the ith particle itself at the kth generation,
and p(kzi is the dth component of the current optimal value
for the total particle population up to the kth generation.

3.2 The algorithm for solving source location
parameters

Equation (2) concerns a nonlinear optimization problem with
multiple local extrema. The PSO algorithm was developed
for solving such problems and can be applied to search for
the optimal value in four-dimensional solution space com-
posed of (x, y, z, and v), that is, to solve for the source lo-
cation and the equivalent seismic velocity. x, y, z, and v are
the first, second, third, and fourth component of particles, re-
spectively. The flow chart for the PSO algorithm is shown in
Fig. 1.

The procedure for the source location parameter evalua-
tion based on the PSO algorithm is described as follows.

Step 1. Initialize the model parameters for microseismic
source location and the PSO parameters. Randomly initial-
ize the source position and wave velocity of the PSO algo-
rithm. Initialization of the PSO parameters mainly includes
the population size m, acceleration constants c¢; and ¢, in-
ertia weight w, computational accuracy ¢, largest number of
evolutionary generations Tpx, initial velocity and positions
of the particles, and maximum particle flight speed vpax.
Then, initialize the iterative counter k.

Step 2. Calculate the particle (microseismic source coor-
dinate and velocity model) fitness value by using Eq. (2).
The calculated values here are the source’s 3-D coordinates

x(()k), y(()k), (() )) and equivalent velocity V& where k is the
evolutionary generation number.

Step 3. Judge whether the current parameters of the par-
ticles meet the presupposed flight times and positioning ac-
curacy or not. If they do, then go to Step 5; otherwise, go to
Step 4.

Step 4. Update the flight velocity and particle positions ac-
cording to Eq. (5), and then go back to Step 2.

Step 5. Output the estimated source’s 3-D coordinates
(%0, $0, 20) and equivalent wave velocity V.

Step 6. Calculate and output the origin-time estimate 7
by substituting estimated values of the source coordinates
()?0, 30, 20) and equivalent velocity V into Eq. (4). When the
solution for the source coordinates and the origin time are
obtained, the algorithm is over.

Nonlin. Processes Geophys., 26, 163-173, 2019
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Figure 1. Flow chart for the microseismic source location algorithm based on adaptive particle swarm optimization.

3.3 Discussion of PSO algorithm parameters

The parameter values for the PSO algorithm are the keys to
influencing the algorithm performance and efficiency. This
paper proposes guiding principles for adjusting parameters of
the PSO algorithm based on the practical approach for solv-
ing for the seismic source parameters.

3.3.1 Inertia weight w®

Generally, optimization problems are divided into local and
global problems. The former consists of looking for the min-
imum in a finite area of function value space; the latter is
for finding the minimum in the whole area of function value
space. As early as 1998, Shi and Eberhart (1998) found that
when the value of inertia weight w is relatively large, the
global optimization ability of the PSO algorithm is strong,
while the local optimization ability is weak. On the other
hand, when the value of inertia weight w is relatively small,
the local optimization ability of the PSO algorithm is strong,
while the global optimization ability is weak. To avoid par-
ticles being stuck in a local optimum at the wrong time or
missing the global optimal solution, this study uses the strat-
egy of self-adaptive inertia weight to determine the proper
value of w (Zhang and Liao, 2009). The strategy is the fol-
lowing.

In order to enhance the exploring competence of the PSO
algorithm, the population average velocity should be main-
tained to be rather high at the initial stages of evolution, while
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in the late stage of evolution a smaller population average ve-
locity should be maintained in order to strengthen the devel-
opment capabilities of the algorithm. We assume that evo-
lution of the average particle flying velocity with changing
number of generations k should be close to the function de-
fined by Eq. (6):

2

2k

—(k k - ax—
T = v = oe ()

(6)

where vg represents the initial average velocity of population,
Tmax is the largest number of evolutionary generations, and
T is the number of evolved generations.

We will call vék) the expected value of the average flying
velocity for a particle population at the kth generation. The
actual average velocity of the particle swarm at the kth gen-
eration is given by Eq. (7):

1 m 4
k
=33 > )
i
where vl.(lg represents the velocity of the dth component of

the ith pérticle at the kth generation.
Set the initial inertia weight to w. Designate w® inertia
weight for the kth particle generation. Then the inertia weight

www.nonlin-processes-geophys.net/26/163/2019/
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w*+D for the (k+1)th generation is determined by Eq. (8):

if vg% > vék) then wk+1)=wk)/p

if viy < v then wk+1)=wk)-p

if viy =o' then w(k+1)=w k) : ®)
if wk4+1)>wnax then wk+1) = wpax

if w(k+1) <wpjn then w(k+1) = wpin

where p is a some constant. Practice has proved that the best
value of p is 1.05 (Zhang and Liao, 2009).

Substitution of w® éiven by Eq. (8) into Eq. (5) ensures
that average velocity vavi, will reduce to zero in the process
of population evolution.

k)

3.3.2  Acceleration constants c; (k)

and c,
Gao and Liao noted that the position xl.(f;) of each
particle in the population eventually converges to
(c1pia +c2pg.a)/(c1+c2) (Gao and Liao, 2012). This
means that the position of the particles for a large k will
stay close to the lines that connect the global optimum
point with the local optimum point. Therefore, in the first
stage of particle swarm optimization, the optimum value of
the particle itself is an important parameter for making all
particles converge to global optimum.

However, if ci would be high for all k£ values, then the
optimum position of the particle swarm would, generally, not
coincide with the global optimum of the target function (2).
Therefore, at the first stage of PSO, c%k) should take a larger

value, while cék) should take a smaller value to promote the
local optimization speed. When particle swarm optimization
is near its end, the role of the global optimal value should be

highlighted. At this stage, c}k should take a smaller value,

while cék) should take a larger value to help the particle
swarm converge to the global optimum. Therefore, the ac-
celeration constants ¢, and cg( should be designed based

on the average velocity of the particle swarm:

b_ Ve @ Ving
P =c=E P =cl1-"2). ©)

Umax Umax
C is a positive integer, usually in the range [2, 5].
3.3.3 The maximum flight velocity of particles vyax

The selection and analysis of the maximum flight velocity
of particles should proceed as follows: if vy is too small,
then the particle movement will be restricted. In this situa-
tion, the algorithm cannot converge fast enough and may not
even be able to achieve the optimal solution. On the other
hand, if vmax is too large, then the optimal solution may be
missed (Eslami et al., 2014; Abido, 2002). Therefore, it is
very important to dynamically adjust the vy« value. To en-
sure uniform velocity through all dimensions, the maximum

www.nonlin-processes-geophys.net/26/163/2019/

Table 1. Coordinates of sensors and microseismic sources.

Geophone Microseismic
coordinates (m) source coordinates (m)
A (0,0, 0) 0 (400, 400, 400)

B (800, 0, 0) P (300, 600, 700)

C (800, 800, 0) 0 (300, 200, 300)

D (0, 800, 0) R (500, 600, 1200)

E (0, 0, 800)

F (800, 0, 800)
G (800, 800, 800)
H (0, 800, 800)

£ Geophone
F O Seismic source

.

Figure 2. The locations of geophones and microseismic sources.

velocity in the dth dimension is proposed as

Xmax,d — Xmin,d
- N
where xXmax,4 and xmin 4, respectively, stand for the largest
and smallest values in the dth dimension of the possible par-
ticle positions, and N is a chosen number of intervals (Abido,
2002), usually in the range [1, 10].

(10)

Umax,d =

4 Simulation and case study
4.1 Simulation analysis and discussion

For the simulation, eight sensors comprising a microseismic
localization system are located on the eight vertices of a cube.
Four microseismic sources, O, P, and Q, are located inside
the cube, and R is located outside of the cube. The coor-
dinates of the geophones and the microseismic sources are
shown in Table 1, and the relative locations of the geophones
and microseismic sources are shown in Fig. 2.

It is assumed that the velocity of wave propagation (v)
in the medium is unknown. According to the coordinates of
geophones and microseismic sources shown in Table 1, first,
the synthetic travel is computed. Then, the differences be-
tween the arrival times of all the pairs of the station are re-
trieved according to Egs. (2), (3), and (4), and inversion is

Nonlin. Processes Geophys., 26, 163-173, 2019
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Table 2. Travel time of a microseismic wave.

Geophones Travel time (ms)

0 P (0] R
A 12372 173.13 83.76  255.68
B 12372  187.29 110.08 245.50
C 12372 15771 14940 223.75
D 123.72  140.61 131.22 234.87
E 12372 121.11 110.08 156.70
F 123.72  140.61 131.22 13947
G 123.72 97.81 165.60 96.16
H 123.72 66.82 14940 119.79

carried out by the least squares method (LSM; Dong et al.,
2013) and the PSO proposed in this paper. The microseismic
source location, equivalent wave velocity, and origin time are
obtained. Then, the results calculated using the two different
methods are compared using error analysis, the algorithm ex-
ecution time, and the number of iterations.

Suppose a microseismic velocity of v = 5.60mms~!. Ac-
cording to the coordinate information in Table 1, the trigger
time of the microseismic waves recorded by the geophones
triggered can be calculated, as shown in Table 2. The method
in this paper is PSO. The computational accuracy of the LSM
algorithm is & = 1.0 x 107'%. The parameters for the PSO al-
gorithm are as follows: population size is m =50, wg =1,
and Tpmax = 3000. The inertia weight w, acceleration con-
stants ¢1 and ¢, and maximum flight velocity of particles
Vavg are determined by Egs. (6)—-(10). MATLAB program-
ming was used to implement the LSM and PSO algorithms
to obtain solutions at four points, O, P, Q, and R. The calcu-
lated results are shown in Table 3. The results of convergence
are different when different initial values are selected for the
LSM. When the initial value is far from the true value, the
LSM satisfies the end condition, but it does not get the true
value of the microseismic source. By repeatedly adjusting
the initial value, the algorithm converges to the correct re-
sult. The corresponding initial values of the LSM in Table 3
are obtained after several adjustments. The PSO method can
converge to the true value only by randomly selecting a set
of initial values within a specified range.

Based on the results shown in Table 3, the LSM algorithm
has different convergent results for different initial values.
When the initial value is far from the true value, the required
calculation accuracy ¢ can be met, but the result does not ap-
proach the true value. In some cases, there are multi-group
results, so the initial values need to be repeatedly adjusted in
order to make the LSM algorithm approach the true value.
For the PSO algorithm, a wide range of initial values was
used for the microseismic source location parameters. The
only variables that need to be solved for are the 3-D co-
ordinates of the arbitrary point inside the space surrounded
by the seismic detection equipment. Thus, the calculated re-
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sults can better approach the true value, and the solution is
unique. This occurs because by improving the parameter se-
lection rules, the condition where particles are trapped in lo-
cal optima or fly over the global optimum during the process
of searching is avoided; thus, the optimization ability of the
PSO algorithm is improved.

Comparisons of the errors in the microseismic source loca-
tion parameters obtained using the LSM and PSO algorithms
are shown in Fig. 3, and the comparison of iterations between
the two algorithms is shown in Fig. 4.

The selection of initial values for parameters in the LSM
algorithm is comparatively complex, so the basic principle of
parameter selection is to approach the desired value as near
as possible. The selection of different initial values for pa-
rameters in the LSM algorithm has a greater influence on the
accuracy of the solution location compared to PSO and re-
sults in a large difference in the number of iterations between
the two methods. The improved PSO algorithm only needs
to provide a value range for the initial parameters. Then, it
automatically selects parameter values to iterate, and the al-
gorithm runs for a maximum number of 3000 iterations. As
is shown in Table 3, Fig. 3, and Fig. 4, compared with the
LSM algorithm, the PSO algorithm not only improves the
computational accuracy of the desired value of microseismic
source parameters but also increases the computational ef-
ficiency and determines the microseismic source’s real time
location.

The following is a discussion of some special conditions.
(1) Since source O is located at the cube’s center of gravity,
the distance between O and each geophone is the same. As
a result, both the LSM and PSO algorithms can converge to
the true value when solving for the seismic source coordi-
nates (xg, Yo, zo) but cannot solve the origin time #y because
regardless of which value of wave velocity v is selected, the
value of Q in Eq. (2) tends to be zero. Because of the random-
ness of the wave velocity, the origin time ¢y cannot be solved
according to Eq. (3). (2) Since source R is located outside
of the cube, the average distance from this point to each sen-
sor is larger than that from other points in the cube, such as
P and Q points, to each sensor. The error in the equivalent
wave velocity, which is solved by iteration, causes greater
location error for R than for other points in the cube, so the
layout of the seismic detection equipment should ensure that
the microseismic source is within the detection array.

4.2 Case study

Because rock bursts occur frequently at a mine in central
China, a Paladin 24-bit, multi-channel microseismic moni-
toring system of ESG Solutions in Canada was installed. In
total, 18 seismic detection devices were installed in different
positions at the mine: 9 seismic detection devices were in-
stalled at the —520 level, and 9 were installed at the —840
level. A blasting operation with a known position was con-
ducted in order to verify the validity of the PSO algorithm.

www.nonlin-processes-geophys.net/26/163/2019/
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Table 3. Comparison of the LSM and PSO algorithms.

Algorithm Microseismic source O
x(m) y@m)  z(m) fH(ms) v(mmsh
LSM Initial value 350.00 350.00 350.00 0.00 1.00
Calculated value  400.00  400.00 400.00 - -
PSO Initial value 0-800  0-800 0-800 0-10
Calculated value  400.00  400.00 400.00 - -
True value 400.00  400.00 400.00 0.00 5.60
Algorithm Microseismic source P
x(m) y(m) z(m) fp(ms) v(mms})
LSM Initial value 100.00  400.00 500.00 0.00 1.00
Calculated value  304.37  295.22 703.63 6.27 5.85
PSO Initial value 0-800  0-800 0-800 0-10
Calculated value  301.23  298.95 701.02 1.81 5.67
True value 300.00  300.00 700.00 0.00 5.60
Algorithm Microseismic source Q
x(@m) y@m) oz 1o(ms) v(mms ')
LSM Initial value 100.00  100.00 100.00 0.00 1.00
Calculated value  263.98  206.33 304.59 2.92 5.81
PSO Initial value 0-800  0-800 0-800 0-10
Calculated value  258.84  201.35 298.01 1.11 5.68
True value 260.00  200.00 300.00 0.00 5.60
Algorithm Microseismic source R
x(m) y@m)  z(@m) fH(ms) v(mmsh
LSM Initial value 300.00 400.00 1000.00 0.00 1.00
Calculated value  491.28 590.68 1208.32 13.82 5.92
PSO Initial value 0-800  0-800 0-800 0-10
Calculated value  504.21  605.23  1195.25 4.48 5.70
True value 500.00 600.00 1200.00 0.00 5.60
Note: “~” means that the value cannot be obtained directly. The calculated value from the PSO is the average

value obtained after running the PSO algorithm 20 times.
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Ten seismic detection devices detected microseismic signals
during the blasting operation. Pretreatments of the data, such
as denoising and filtering, were performed on the detected
signals in order to obtain a high SNR. Then, two blast points
that showed an obvious rising waveform trend, making it
easy to capture the trigger time, were selected and analyzed.
The position coordinates of the two points are A (1495.60,
998.50, —685.10) and B (1298.70, 855.30, —576.20). The
coordinates of the 10 seismic detection devices and the trig-
ger times detected are shown in Table 4. The relative posi-
tion of the 10 geophones and the two burst points is shown in
Fig. 5. The seismic waveform data received by the geophone
are shown in Fig. 6.

www.nonlin-processes-geophys.net/26/163/2019/

The experiment was carried out on the advanced roadway
of the coal mine working face. The diameter of the borehole
is 42 mm, the depth of the borehole is 1.2 m, and the length
of the filled explosive is one-fourth of the borehole depth.
We approximate the blasting point to a spherical blasting
point without considering the error caused by the assump-
tion. Based on the data presented in Table 4, the PSO algo-
rithm and LSM algorithm were used to solve for the seismic
source location parameters and origin time. A comparison of
the error is shown in Table 5.

According to Table 5, the accuracy of the LSM algorithm
is relatively poor. Its average deviation in the X, Y, and Z
directions is 8.97, 10.81, and 12.90 m, respectively. The re-
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sults were obtained after repeated adjustment of the initial
location parameters for the seismic source and the wave ve-
locity. The PSO algorithm can automatically approach the
true values according to the given initial parameter range. Its
average deviation in the X, Y, and Z directions is 6.37, 5.78,
and 9.03 m, respectively, with errors that are less than 5 %.
Therefore, the PSO can achieve high positioning accuracy in
the geophone range.

The simulation example and blasting experiment dis-
cussed above clearly demonstrate that the PSO optimization
algorithm is better than the LSM when solving for the micro-
seismic positioning parameters and the seismic origin time.
The algorithm has high positioning accuracy and fast conver-
gence speed, and it is easy to set the initial parameters. This
is because the adaptive PSO algorithm is more accurate in fit-
ting the relationship between each coordinate for the seismic
detection equipment and the time difference. It can dynami-

Nonlin. Processes Geophys., 26, 163-173, 2019

cally adjust the velocity value in an iterative process until the
value approximates the optimal average velocity, which can
account for the nonlinear relationship between each coordi-
nate of the seismic detection equipment and the time differ-
ence and can greatly reduce the impact of the velocity error
on the positioning precision.

4.3 Discussion

In order to further verify the effectiveness of the proposed
method, the experiments in Sect. 4.1 are compared and ana-
lyzed under different wave velocities. The comparative anal-
ysis steps are as follows. (1) Use the PSO method and the
LSM to locate the microseismic source when using real ve-
locity (i.e., error floating at 0 %). (2) Because it is difficult
to measure real wave velocity in practical engineering, small
errors of 1 %, 3 %, and 5 % are given to the PSO method and

www.nonlin-processes-geophys.net/26/163/2019/
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Table 4. Geophone coordinates and travel time from the burst point.
Geophone no. Geophone coordinates (m) ‘ Travel time (ms)
X y z ‘ Burst point A Burst point B
No. 2 751.26 549.55 —520.51 157.39 112.01
No. 3 755.40 1302.64 —523.35 146.02 146.02
No. 4 1752.37 700.70  —519.43 76.08 86.03
No. 6 2005.65 1298.72 —521.35 109.69 149.34
No. 9 1512.59 1149.63 —519.15 39.98 65.41
No. 12 995.87 1305.66 —820.20 107.27 106.07
No. 13 124820 1597.85 —821.95 118.96 140.72
No. 15 1500.46 550.75 —819.87 82.76 77.72
No. 16 225438 1303.22 —818.35 146.92 192.00
No. 17 1750.34 998.48 —822.73 52.20 96.23
Table 5. Error comparison for the LSM algorithm and PSO algorithm.
Xerr (M) Yerr (m)  Zepr (M) Tepr (ms)
Burst point A LSM 9.65 10.39 13.05 18.63
P PSO 6.78 5.7 9.79 10.33
Burst point B LSM 8.28 11.22 12.74 27.24
urstp PSO 5.96 6.29 8.26 15.95
E LSM 8.97 10.81 12.90 22.94
ot PSO 6.37 578 9.03 13.14
; : x10®
B : = 2
DINDG. €} @ |
: 5 Tat .
: < ) ) ) ) A
ool ) 0 1000 2000 |3:Jn0133 4000 5000 5000
A : iy w10
— -B50 4 : = 2
Moo RURESU 5
R noo T i :‘ |
-7E0 A _N:D.-13_ 5 §_1_ i
R h 2 1000 2w 300 2000 5000 5000 7000
t (ms)
-850 -
1600 1400 42 Figure 6. (a) Seismic waveform of burst point A received by geo-

1000 aon B0
¥}

400

Figure 5. Schematic diagram of the relative position of the 10 geo-
phones and the two burst points.

LSM; in other words, when the wave velocity is 5.544, 5.432,
and 5.320 m ms—!, two methods are used to locate the micro-
seismic source. (3) Step 1 and Step 2 are used to locate the
microseismic source, and the absolute distance error is calcu-
lated by comparing the locating results with the real values.

www.nonlin-processes-geophys.net/26/163/2019/

phone no. 2. (b) Seismic waveform of burst point B received by
geophone no. 2.

The absolute distance errors calculated by the PSO method
and the LSM at different wave velocities are plotted in Fig. 7.

As we can be seen from Fig. 7, the LSM will cause large
errors in the location system under the disturbance of differ-
ent wave velocities. The maximum error is up to 25 m (except
for the seismic source R), while the PSO method is more sta-
ble. The reason is that the PSO method can accurately fit
the relationship between the coordinates of each sensor and
the time difference because it does not depend on the veloc-
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ity value when solving the seismic location parameters. The
LSM needs accurate velocity to solve the seismic location
parameters, and the disturbance of velocity has a great influ-
ence on the results. That is to say, in the case of wave velocity
disturbance, even if there is a small error in the value of wave
velocity, there will be a large error in the location result of the
LSM. Because of the complexity of rock media, the average
velocity of each region is not necessarily the same, and due to
the influence of construction technology, it is very difficult to
determine the velocity of anisotropic media; this is the main
reason for the low positioning accuracy of the LSM. In ad-
dition, when the source is outside of the sensor array (such
as seismic source R), the errors of the two methods are very
large, but the LSM has greater locating errors than the PSO
method, which shows that the sensor arrangement should en-
sure that the seismic source is within the array as far as pos-
sible.

5 Conclusions

1. An adaptive PSO optimization method is proposed
based on the average population velocity in order to
solve for location parameters of the seismic source in a
location model. This method takes the minimum resid-
ual sum of squares between the time-difference regres-
sion values and the time-difference measured values for
two seismic detection devices, and the PSO algorithm
is designed to solve for the seismic source coordinates
and the equivalent wave velocity and then solve for the
seismic source origin time.

2. Combined with the actual need to solve for seismic
source parameters, the model constraints of inertia
weight, accelerating constants, the maximum flight ve-
locity of particles, and other parameters are discussed in
order to improve the optimization capacity of the PSO
algorithm and avoid being trapped in a local optimum.

3. Comparative analysis shows that when solving for the
seismic source location parameters, compared with the

Nonlin. Processes Geophys., 26, 163-173, 2019

classic least squares method, the adaptive PSO algo-
rithm has high positioning accuracy and fast conver-
gence, and it is easy to set the initial parameter values.
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