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Abstract. Recent advances in mantle convection modeling
led to the release of a new generation of convection codes,
able to self-consistently generate plate-like tectonics at their
surface. Those models physically link mantle dynamics to
surface tectonics. Combined with plate tectonic reconstruc-
tions, they have the potential to produce a new generation of
mantle circulation models that use data assimilation meth-
ods and where uncertainties in plate tectonic reconstructions
are taken into account. We provided a proof of this con-
cept by applying a suboptimal Kalman filter to the recon-
struction of mantle circulation (Bocher et al., 2016). Here,
we propose to go one step further and apply the ensemble
Kalman filter (EnKF) to this problem. The EnKF is a se-
quential Monte Carlo method particularly adapted to solve
high-dimensional data assimilation problems with nonlinear
dynamics. We tested the EnKF using synthetic observations
consisting of surface velocity and heat flow measurements
on a 2-D-spherical annulus model and compared it with the
method developed previously. The EnKF performs on aver-
age better and is more stable than the former method. Less
than 300 ensemble members are sufficient to reconstruct an
evolution. We use covariance adaptive inflation and localiza-
tion to correct for sampling errors. We show that the EnKF
results are robust over a wide range of covariance localization
parameters. The reconstruction is associated with an estima-
tion of the error, and provides valuable information on where
the reconstruction is to be trusted or not.

1 Introduction

Mantle circulation models are estimates of mantle flow his-
tory. They combine two sources of information: observa-
tions on the dynamics or 3-D structure of the Earth’s man-
tle and a numerical model of mantle convection. In their ef-
fort to reconcile both observations and our physical under-
standing of mantle dynamics, they serve a wide variety of
purposes and disciplines. Hager and O’Connell (1979) origi-
nally built instantaneous mantle circulation models to under-
stand the effect of plates on large-scale mantle flow. Since
then, they have been used, among other applications, to un-
derstand the dynamics and evolution of the deep Earth mantle
structures (Bunge et al., 1998; McNamara and Zhong, 2005;
Bower et al., 2013; Davies et al., 2012), to study the evolution
of mantle plumes and their relationship to hotspots (Hassan
et al., 2016), and to infer changes in the Earth’s rotation axis
(Steinberger and O’Connell, 1997), sea-level (Moucha et al.,
2008) or dynamic topography (Flament et al., 2013).

The geodynamics community has developed three alterna-
tive approaches to the problem of the reconstruction of man-
tle circulation.

The first approach, backward advection, consists of start-
ing at present by estimating the current density field of the
mantle from seismic tomography models (see Conrad and
Gurnis, 2003, for a description of this method). This density
field is then advected backward in time with plate tectonic
reconstructions as imposed boundary condition (Steinberger
and O’Connell, 1997). This method has a limited numeri-
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cal cost and exploits the two most instructive constraints on
mantle circulation: plate tectonic reconstructions and seismic
tomography. However, this technique neglects thermal diffu-
sion, so it is not able to reconstruct past thermal structures
that have completely diffused before present and it is lim-
ited to times and regions for which the effect of diffusion is
thought to be small. This limits reconstructions to the last 50
to 75 Ma (Conrad and Gurnis, 2003) or even to shorter peri-
ods if we consider the uncertainties in tomographic models
(Bello et al., 2014).

The second approach, the semi-empirical sequential
method, estimates mantle circulation by integrating plate tec-
tonic reconstructions chronologically into a mantle convec-
tion model. Plate tectonic reconstructions are either intro-
duced as velocity boundary conditions, as first described by
Bunge et al. (1998), or with a more sophisticated method,
by blending a convection solution with thermal and kine-
matic models of plates and slabs (Bower et al., 2015). This
approach allows the use of models of convection with chemi-
cal heterogeneities (McNamara and Zhong, 2005). Also, it is
not anymore the reconstruction method that limits the times-
pan of the reconstruction but the availability of plate tectonic
reconstructions. This led to mantle circulation models inte-
grating up to 450 Ma of plate reconstruction history (Zhang
et al., 2010). However, this method considers plate tectonic
reconstructions as perfect estimates of surface tectonics: un-
certainties affecting the reconstructions are not taken into ac-
count although they are substantial, especially as reconstruc-
tions go further into the past (for example, there is almost
no information on the state of the ocean floor before 140 Ma,
see e.g., Torsvik et al., 2010). This method also requires the
choice of an arbitrary initial temperature field to compute the
evolution.

The third approach uses data assimilation methods to solve
the mantle circulation problem. Data assimilation methods
are inverse methods dealing with the specific problem of
estimating the evolution of a dynamical system from asyn-
chronous data and a physical model (Evensen, 2009a). The
full inverse problem for mantle circulation, as stated by
Bunge et al. (2003), would take into account model errors,
numerical approximations, errors in plate reconstructions
and on the estimation of the current tomography-derived
temperature field to provide the best fit given all sources of
information. However, solving the full inverse problem of
mantle circulation is still a great challenge given the non-
linearities in mantle convection dynamics and the computa-
tional power required to compute a realistic forward mantle
convection evolution alone (Stadler et al., 2010; Burstedde
et al., 2013). So far, variational data assimilation dominates
over other methods to estimate mantle circulation (Bunge
et al., 2003; Horbach et al., 2014; Ghelichkhan and Bunge,
2016). To simplify the problem, they minimize the misfit be-
tween the final temperature field of the mantle circulation
model and the one deduced from seismic tomography. These

mantle circulation models impose plate tectonic reconstruc-
tions as boundary conditions, as in the first two approaches.

Here, we take a different view of data assimilation meth-
ods for mantle circulation models by focusing on how to take
into account the uncertainties in plate tectonic reconstruc-
tions. For almost a decade, 3-D spherical mantle convection
models have shown the capability to self-consistently pro-
duce plate-like tectonics at their surface (Walzer and Hen-
del, 2008; Van Heck and Tackley, 2008; Yoshida, 2008; Fo-
ley and Becker, 2009). These models physically link surface
tectonics comparable to that of the Earth to mantle convec-
tion processes (Coltice et al., 2012; Rolf et al., 2014; Mal-
lard et al., 2016). In Bocher et al. (2016), we took advan-
tage of this link to build a sequential data assimilation al-
gorithm able to integrate plate reconstructions into a mantle
convection code while taking into account the uncertainties
in those plate tectonic reconstructions. This technique assim-
ilates a time series of surface observations chronologically,
by repeating two stages (analysis and forecast), until all ob-
servations are taken into account. Whenever an observation
is available, the analysis evaluates the most likely state of the
mantle at this time, considering a prior guess (supplied by
the forecast) and the new observations at hand. For this eval-
uation, we used the classical best linear unbiased estimate
(Talagrand, 1997). Then, the forward model of mantle con-
vection forecasts the evolution of the mantle until the next
observation time. We tested this algorithm on synthetic ex-
periments. It proved to be efficient in recovering mantle cir-
culation given constraints on the amplitude of errors affecting
observations and the timespan between observations.

Here we extend this work by applying a more advanced
sequential data assimilation method, the ensemble Kalman
filter (EnKF, originally described in Evensen, 1994, and in
its corrected version in Burgers et al., 1998). This method
is particularly suited for high-dimensional nonlinear dynam-
ical models (Evensen, 2009b). Instead of estimating the most
likely state of the mantle, the EnKF provides at each time an
approximation of the probability density function of the state
of the system in the form of a finite ensemble of states. Dur-
ing the forecast stage, each member of the ensemble evolves
independently. For the analysis, we use the second order
statistics of the ensemble to correct each ensemble member
with the new observations at hand. We evaluate this method
with synthetic experiments in 2-D-spherical annulus geom-
etry (Hernlund and Tackley, 2008) and compare it to the al-
gorithm developed in Bocher et al. (2016). The EnKF pro-
vides more accurate estimations than the former method, and
is even able to reconstruct evolutions that the former method
could not. Moreover, the EnKF also estimates locally the er-
ror in the reconstruction. Both covariance inflation and local-
ization eliminate spurious correlations arising from the finite
size of the ensemble that is used to compute them.

This paper is organized as follows: in Sect. 2, we present
our simplifications on the general mantle circulation recon-
struction problem and the correspondence with the notation
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in the EnKF algorithm. Then, in Sect. 3, we detail the EnKF
method and justify the variants chosen for the application to
mantle circulation. Section 4 presents the results obtained on
synthetic experiments and compares them to results obtained
by the method described in Bocher et al. (2016). Section 5 is
a discussion on the choice of the method and the challenges
involved in the application of such a method to a realistic
setting.

2 Presentation of the problem

We aim at reconstructing mantle circulation for the last hun-
dreds of millions of years by combining a mantle convection
model with plate tectonic reconstructions, using an EnKF.
To study the behavior of the EnKF on such a problem, we
consider a simplified mantle convection model. This section
describes the model used to compute a mantle evolution, the
dataset assimilated in this evolution, and finally the backbone
of ensemble Kalman filtering.

2.1 Mantle convection model

On the timescales and length scales we are interested in
(≥ 10 kyr, ≥ 1000 km), the mantle can be modeled as a con-
tinuous viscous medium. To compute mantle circulation, we
solve the equations of conservation of mass (Eq. 1 below),
momentum (Eq. 2 below) and energy (Eq. 8 below) for
an isochemical mantle under the Boussinesq approximation.
The system of equations is nondimensionalized to the ther-
mal diffusion timescale (see Ricard, 2015). Given the high
Prandtl number of the mantle (of the order of 1024), inertia is
neglected. With these assumptions, the equations of conser-
vation of mass and momentum become diagnostic equations
of the form

∇ ·u= 0, (1)
∇ · σ −∇p+RaT T er = 0, (2)

where σ , u, p and T are the nondimensional deviatoric
stress, velocity, dynamic pressure and temperature, respec-
tively. RaT is the Rayleigh number based on the temperature
difference between the top and bottom boundaries of the do-
main, defined as

RaT =
ρ0g0α01T a

3

µ0κ0
(3)

with ρ0 being the density for T = 0, g0 the gravitational ac-
celeration, α0 the thermal expansivity, 1T the temperature
drop, a the depth of the layer, κ0 the thermal diffusivity and
µ0 the dynamic viscosity of the system. The vertical veloci-
ties and shear stress at the surface and the base of the model
are set to zero.

The deformation response of mantle material to stress is
implemented as a linear relationship linking the strain rate

Table 1. Values of the parameters of the forward model.

Symbol Meaning Value

RaT Rayleigh number based on temperature difference 106

RaH Rayleigh number based on internal heating 2.05× 107

L number of grid points in longitude 384
M number of grid points in radius 48
ra radius of the top of the domain 2.2
rb radius of the bottom of the domain 1.2
Ta temperature at the top of the domain 0
Tb temperature at the bottom of the domain 0.9
EA activation energy 23.03
T1 temperature at which µT = 1 1
β factor of viscosity reduction for partial melting 10
Ts0 solidus temperature at r = ra 0.6
∇rTs radial gradient of the solidus temperature 2
σY yield stress 104

∇rσY radial gradient of the yield stress 2× 105

tensor ε̇ to the deviatoric stress tensor σ as

σ = 2µeffε̇ = µeff

(
∇u+ (∇u)T

)
. (4)

The choice of the effective viscosity µeff is crucial for
the development of plate-like tectonics at the surface of the
convective system. For µeff, we choose a composite rheol-
ogy with a viscous Newtonian component µn and a pseudo-
plastic component, implemented with an equivalent pseudo-
plastic viscosity µy , such that

µeff =min(µn,µy). (5)

The Newtonian viscosity µn follows an Arrhenius law

µn = µ0 exp
(

EA

T + T1

)
(6)

with µ0 = exp
(
−
EA
2T1

)
, T1 the temperature at which the

nondimensional µn = 1 and EA the nondimensional activa-
tion energy. This law reflects the thermal activation of crys-
tal deformation, and creates a highly viscous upper boundary
layer (the lithosphere), while the rest of the mantle is less vis-
cous. We also implement the decrease in viscosity in the as-
thenosphere (the layer below the lithosphere) by reducing by
a factor of 10 the viscosity µn when the temperature is above
a solidus equation Ts = Ts0 +∇rTs(ra − r) with ra the sur-
face value of r . The presence of a weak asthenosphere tends
to favor plate-like behavior (Tackley, 2000; Richards et al.,
2001), and is compatible with laboratory and observational
data (King, 2016).

The pseudo-plastic part µy is defined by

µy =
σyield

2ε̇II
, (7)

where ε̇II is the second invariant of the strain rate tensor and
σyield = σY+(ra−r)∇rσY, with σY and∇rσY the yield stress
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at the surface and the depth-dependence of the yield stress,
respectively.

This composite rheology allows the development of strong
plates delimited by narrow weak zones (i.e., plate bound-
aries), and is currently the best way to self-consistently gen-
erate plate-like tectonics at the surface of global mantle con-
vection models (Coltice et al., 2017).

The energy conservation equation is the only prognostic
equation of the system

DT
Dt
=∇

2T +
RaH

RaT
, (8)

with RaH being the Rayleigh number based on internal heat-
ing

RaH =
ρ2

0g0α0Ha
5

µ0k0κ0
(9)

withH being the dimensional heating rate and k0 the thermal
conductivity. We set isothermal top and bottom boundaries
with temperatures Ta and Tb, respectively. The models pre-
sented here have 10 % basal heating and 90 % internal heat-
ing.

These equations are solved using the finite volume, multi-
grid parallel code STAGYY (Tackley et al., 1993), on a
spherical annulus staggered grid. This geometry provides re-
sults closer to the spherical geometry than cylindrical geom-
etry (Hernlund and Tackley, 2008). In the following, the lon-
gitudinal coordinate of a point is φl, with l ∈ {1,2, . . .,L} and
its radial coordinate is rm with m ∈ {1,2, . . .,M}, r varying
from rb to ra .

Note that this paper focuses on the methodology of en-
semble data assimilation for a convecting system similar to
that of the Earth’s mantle. Hence, we choose a rather simple
model that can reproduce plate-like tectonics at the surface.
We rely on simplifications such as a 2-D geometry, incom-
pressible and isochemical mantle, and a rheology which does
not take into account the history of the material. Although
some of the complexities we ignore may play a fundamental
role in the reconstruction of the Earth’s mantle evolution, we
choose to focus in this paper on the data assimilation method-
ology. Moreover, we choose to keep the same parameters as
the test case of Bocher et al. (2016) in order to enable direct
comparison between the methods. Table 1 lists the chosen
parameter values.

To ease the comparison with Earth’s mantle convection,
we rescale the nondimensional time in the evolution, t , by
the transit time of the convective system. By definition, the
transit time of the Earth’s mantle is tEt = a

E/vE
rms = 70 Myrs,

with aE
= 2890 km, the thickness of the Earth’s mantle, and

vE
rms = 4.13 cm yr−1, the root mean square of surface veloc-

ities of the Earth, as estimated by plate tectonic reconstruc-
tions (Seton et al., 2012). We compute the same quantity for
the model tmt = a/vrms, with a = ra − rb. The scaled time t s

is then t s = t t
E
t
tmt

.

The dynamics of the convective system we just described
depends on the two dimensionless numbersRaT andRaH. In
our model, RaT = 106 and RaH = 2.05× 107. These values
are 1 to 2 orders of magnitude lower than the current Earth
estimates, but high enough to ensure chaotic convection with
thermal turbulence (Stewart and Turcotte, 1989; Travis and
Olson, 1994). In this regime, the top and bottom bound-
ary layers develop instabilities that can trigger transient de-
scending and ascending currents, respectively. This leads to
a highly time-dependent flow, and the exponential growth of
perturbations of the initial state of the system, as studied by
Bello et al. (2014), in a series of twin experiments in 3-D
spherical geometry. We computed the Lyapunov time corre-
sponding to the time over which initial perturbations grow
exponentially by a factor of e, and found for our models a
Lyapunov time of 140 Myr, similar to the times Bello et al.
(2014) estimated for their most Earth-like model.

2.2 Observations of mantle circulation

The state of the Earth’s surface is the time-integrated ex-
pression of mantle circulation. On a global scale, the main
source of information for the last 100 Myr is the database
of the localization and identification of magnetic anomalies
on the seafloor, translated into maps of seafloor ages (Müller
et al., 2008; Seton et al., 2014). This information is comple-
mented with regional geological studies giving constraints
on the timing and geometry of tectonic events as well as a
synthesis of paleontological, structural geology, stratigraphi-
cal, magnetic anomalies, gravity data and seismic studies. In
addition, paleomagnetic data provide constraints on the pale-
olatitude of continental blocks (Besse and Courtillot, 2002).

Plate tectonic reconstructions use the geometric theory of
plate tectonics to integrate all these observations. The result
is a time series of maps of seafloor ages, plate layout and
kinematics. The continuously closed plate algorithm (Gurnis
et al., 2012) produces plate tectonic reconstruction maps con-
tinuous in space and time (Seton et al., 2012; Müller et al.,
2016).

Although we are aware that these plate tectonic recon-
struction maps are in themselves models and not direct ob-
servations, we propose to develop an assimilation method
that use them as data to assimilate in our mantle convec-
tion model. This solution is generally chosen in mantle cir-
culation reconstructions (Bunge et al., 2002; Zhang et al.,
2010; Bower et al., 2015), because it provides continuous
surface boundary conditions in space and time for the pe-
riod of reconstruction. One advantage of the technique we
develop is that it is possible to consider errors in the data
that are assimilated, another is that the reconstructions do not
need to be known at all times and at all points on the surface.
Hence it is possible, in principle, to design a data assimila-
tion scheme using direct observations. However, this would
require further developments both on the database design and
on the data assimilation algorithm. Sequential data assimila-

Nonlin. Processes Geophys., 25, 99–123, 2018 www.nonlin-processes-geophys.net/25/99/2018/



M. Bocher et al.: Ensemble Kalman filter for mantle convection 103

tion methods for mantle circulation are still in their infancy,
so we opt for a simpler structure of the data to be assimilated:
a time series of maps of surface velocity and seafloor age, as
given by plate tectonic reconstructions.

In this study, we limit ourselves to the test of data assim-
ilation in synthetic experiments. In the model described in
Sect. 2.1, the absence of small-scale convection at the base
of the boundary layer makes the surface heat flux an excel-
lent proxy for the age of the seafloor (Coltice et al., 2012).
Consequently, we consider surface heat flux and surface ve-
locity as the data to assimilate.

To our knowledge, the amplitude of the uncertainty in
global plate tectonic reconstructions has not yet been as-
sessed.

In the synthetic test we perform in Sect. 4, we choose for
the amplitude of the uncertainties in heat flux and velocity an
arbitrary value of 10 % of their respective root mean square
values. We further discuss this choice in Sect. 5.

2.3 Ensemble Kalman filtering framework notations

Our aim is to assimilate a time series of observations (surface
velocities and heat fluxes) into a mantle convection model to
estimate the evolution of the state of the mantle. We intro-
duce here the general formulation of ensemble Kalman filter-
ing and link them to our problem. We use the notation system
recommended by Ide et al. (1997).

The time series of data is defined as a set of column vectors{
yo

1,y
o
2, . . .,y

o
K

}
, where the subscripts {1,2, . . .,K} refer to

the times at which observations are available. As seen in the
previous section, the data used for our experiments are sur-
face velocity and surface heat flux. The data vector at time k
is thus defined as

yo
k =

[
qo
k (φ1),q

o
k (φ2), . . .,q

o
k (φL),u

o
φk(φ1),u

o
φk(φ2), . . .,

uo
φk(φL)

]T
, (10)

where qo
k (φl) and uo

φk(φl) are the observed values of surface
heat flux and surface horizontal velocity at the kth time step
and longitude φl, and (·)T means transpose. We model er-
rors in observations by a random vector of zero mean and
covariance matrix Rk (we suppose unbiased observations).
Although Rk is a diagonal matrix of constant value and size
in our experiments, it is not generally the case. Correlations
between errors in observations could be specified in Rk .

The evolution of the state of the system is estimated se-
quentially during the period where observations are avail-
able. At each time step k ∈ {1,2, . . .,K}, we define two state
vectors: the a priori state, or forecast state xf

k , and the analy-
sis state xa

k , which is the state corrected after having assim-
ilated the observations yo

k . The system of equations devel-
oped in Sect. 2.1 shows that we can compute velocity, vis-
cosity and pressure values at each grid point from the sole
knowledge of the temperature field: the temperature field de-
scribes completely the state of the system. However, the re-

lation between surface velocities and the temperature field is
nonlinear. We choose to include in the state the whole tem-
perature field, but also add the surface velocities, to form an
augmented state vector, following the suggestion of Evensen
(2003), Sect. 4.5. This formulation establishes a linear rela-
tionship between the state and data (see last paragraph of this
section), which simplifies the computations thereafter. This
formulation also implies that the analyzed surface veloci-
ties and temperature field do not necessarily satisfy Eqs. (1)
and (2). However, momentum and mass conservation are en-
sured at the time step following the analysis, and we did not
observe any instability developing due to this formulation.
The state of the mantle at a time step k ∈ [1,K] is defined as

xk =
[
Tk(φ1, r1),Tk(φ1, r2), . . .,Tk(φL, rM),uφk(φ1),

uφk(φ2), . . .,uφk(φL)
]T
, (11)

where Tk(φl, rm) is the value of temperature at the kth time
step, longitude φl and radius rm, and uφk(φl) is the surface
horizontal velocity at the kth time step and longitude φl. The
forecast and analyzed states are uncertain as well; their un-
certainties are represented by two random vectors of zero ex-
pected value and covariance matrices Pf

k and Pa
k , respectively.

We compute explicitly these covariance matrices only for the
initialization step (see Sect. 3.1). Otherwise, the uncertainty
in the forecast and analyzed states is represented by two en-
sembles of N states {xf

kn}n∈[1,N ] and {xa
kn}n∈[1,N ], such that

their average equals xf
k and xa

k , respectively, and their respec-
tive sample covariance matrices approximate Pf

k and Pa
k . The

ensemble of states {xf
kn}n∈[1,N ] and {xa

kn}n∈[1,N ] are stored
in the matrices Xf

k and Xa
k , where the nth column is the state

of the nth ensemble member xf
kn and xa

kn, respectively.
Finally, we introduce the observation operator, which

maps a given state vector xekn (e being f or a) to the corre-
sponding data yekn. The surface heat flux is approximated by
a first order discretization of Fourier’s law. The observation
operator is then linear, with its velocity part being simply the
identity, and can be represented by the matrix H such that

∀k ∈ {1,2, . . .,K},∀n ∈ {1,2, . . .,N},
yekn =Hxekn. (12)

Table 2 summarizes the dimensions of the vectors and ma-
trices for our problem.

3 EnKF with localization and inflation

The EnKF (Evensen, 1994; Burgers et al., 1998) is a sequen-
tial data assimilation algorithm using the same equations as
the Kalman filter for the analysis step, but Monte Carlo meth-
ods to forecast the error statistics of the state. We explain here
how we adapt the EnKF to our problem and justify the choice
of the starting ensemble.

To implement the EnKF, we used the software environ-
ment Parallel Data Assimilation Framework (PDAF, Nerger
et al., 2005; Nerger and Hiller, 2013).

www.nonlin-processes-geophys.net/25/99/2018/ Nonlin. Processes Geophys., 25, 99–123, 2018
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Table 2. Notations and dimensions of data assimilation variables.

Symbol Meaning Size (literal) Size (value)

x state LM +L 18 816
y data L+L 768
H observation matrix operator (L+L)× (LM +L) 768× 18 816
R observation error covariance matrix (L+L)× (L+L) 768× 768
P state error covariance matrix (LM +L)× (LM +L) 18 816× 18 816
X ensemble state (LM +L)×N 18 816×N ,

(N = 96, 288 or 768)

3.1 Initialization: first analysis and generation of the
starting ensemble

We compute the second order statistics of the background
state from a series of 400 decorrelated snapshots of con-
vection simulations by following the procedure detailed in
Bocher et al. (2016), Sect. 4.1. The model setup is spheri-
cally symmetric, so the expected value and covariance of the
background temperatures and surface velocities must satisfy

∀(φ,r), 〈T (φ,r)〉 = 〈T (0, r)〉, (13)

∀(φ1,φ2, r1, r2),Cov(T (φ1, r1),T (φ2, r2))

= Cov(T (0, r1),T (φ1−φ2, r2)), (14)

= Cov(T (0, r1),T (φ2−φ1, r2)), (15)

where 〈·〉 stands for the expectation operator and Cov(·, ·)
stands for the covariance operator. Likewise, we have

∀φ, 〈uφ(φ)〉 = 〈uφ(0)〉, (16)

∀(φ1,φ2),Cov(uφ(φ1),uφ(φ2))

= Cov(uφ(0),uφ(φ1−φ2)), (17)
∀(φ1,φ2, r1),Cov(T (φ1, r1),uφ(φ2))

= Cov(T (0, r1),uφ(φ2−φ1)), (18)

=−Cov(T (0, r1),uφ(φ1−φ2)). (19)

We use these symmetries to compute

〈T (0, rm)〉, with m ∈ {1, . . .,M} (20)

Cov(T (0, rm),T (φl′ , rm′)), with m ∈ {1, . . .,M},
l′ ∈ {1, . . .,L/2},and m′ ∈ {1, . . .,M} (21)

〈uφ(0)〉, (22)
Cov(uφ(0),uφ(φl)), with l ∈ {1, . . .,L/2} (23)

Cov(uφ(0),T (φl, rm)), with l ∈ {1, . . .,L/2},
and m ∈ {1, . . .,M} (24)

and build with these values the first forecast state of expected
value xf

1 and associated covariance matrix Pf
1. For the model

used in this study (see Table 1), the covariance matrix Pf
1 has

(LM +L)2 = 188162
= 354041856 components. By using

the symmetries in the system, we are able to reduce the num-
ber of independent components in the covariance matrix to
L/2(M + 1)2 = 3557400. Pf

1 is eigendecomposed and rank
reduced into Pf

1r = V3VT , with 3 a diagonal matrix con-
taining the nr = 1928 largest eigenvalues of Pf

1 (which ac-
counts for 99.98 % of its cumulative variance) and V the cor-
responding matrix of eigenvectors.

We assimilate the first set of observations yo
1 using the

classical best linear unbiased estimator equations (see Ghil
and Malanotte-Rizzoli, 1991, for example). When the fore-
cast covariance matrix is eigendecomposed and rank re-
duced, these equations can take the form

xa
1 = x

f
1+VAVTHTR−1(yo

1−Hxf
1), (25)

Pa
1 = VAVT , (26)

with

A=
[
3−1
+VTHTR−1HV

]−1
. (27)

After the first analysis, we generate an ensemble of N initial
states from the first analyzed state average xa

1 and associated
covariance matrix Pa

1. To do so, we follow the second or-
der exact sampling method (Hoteit, 2001; Pham, 2001). First,
A is eigendecomposed

A= Va3aVaT . (28)

The ensemble members are then computed following

Xa
1 =

 | |

xa
11 . . . xa

1N
| |

=
 | |

xa
1 . . . xa

1
| |


+
√
N − 1VVa3a1/2�

T
N×(N−1)

0(nr−N)×N
, (29)

where�N×(N−1) is a random matrix whose columns are vec-
tors forming an orthonormal basis and each of them is or-
thogonal to 1N , the column vector of dimension N full of 1,
1N = [1, . . .,1]T . 0(nr−N)×N is a (nr−N)×N matrix full of
0.�N×(N−1) is generated through the algorithm described in
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the appendix of Nerger et al. (2012). The matrix �N×(N−1)
is designed so that the sample mean of the starting ensemble
is equal to xa

1 and its sample covariance matrix is equal to
matrix Pa

1 reduced to its N largest eigenvalues.
This method of generating the starting ensemble takes ad-

vantage of the extensive knowledge we have on the back-
ground statistics of the model. Several other methods have
been tested to generate a starting ensemble, such as start-
ing with random decorrelated snapshots of mantle convection
simulations, second order exact sampling from xf

1 and Pf
1,

and several assimilations of the first observations yo
1. These

alternative solutions resulted in reconstructions with larger
initial errors and slower error decrease throughout the assim-
ilation window, if any.

3.2 Forecast

Between time steps k− 1 and k, the forward numerical code
STAGYY computes independently the evolution of each of
the analyzed states {xa

k−1,n}n∈[1,N ] to produce a forecast en-
semble {xf

k,n}n∈[1,N ].
The forecast state is the average of the ensemble

xf
k =

1
N

Xf
k1N . (30)

The forecast error covariance matrix is given by the sample
covariance matrix of the ensemble of forecast states

Pf
k =

1
N − 1

Xf
k

(
IN −

1
N

1N1TN

)(
IN −

1
N

1N1TN

)T
Xf Tk , (31)

where IN is the identity matrix of dimension N ×N . Af-
ter several assimilation cycles, the finite size of the ensem-
ble induces the underestimation of the error variance (van
Leeuwen, 1999), and can lead to filter divergence. We ob-
served this behavior in our case; thus, to stabilize the filter,
we apply covariance inflation, as suggested in Anderson and
Anderson (1999) and Hamill et al. (2001).

We correct the forecast ensemble variance with an infla-
tion factor γ according to

Xf
k←

1
N

Xf
k1N1TN +

[
Xf
k

(
IN −

1
N

1N1TN

)]
√
γ , (32)

where← means that we replace the matrix on the left-hand
side by the term on the right-hand side. γ is computed fol-
lowing the same principles as in the suboptimal Kalman filter
developed in Bocher et al. (2016), i.e., by comparing the error
in observations and the standard deviation of the innovation
dk defined as

dk = y
o
k −

1
N

HXf
k1N . (33)

The inflation factor is

γ =
V d −V o

V f , (34)

with

V d = Tr
(
dkd

T
k

)
, (35)

V o
= Tr(Rk), (36)

V f
= Tr

[
HXf

k

(
IN −

1
N

1N1TN

)(
IN −

1
N

1N1TN

)T
Xf Tk HT

]
, (37)

where Tr(·) means the trace. The inflation factor is then trun-
cated between a minimum value of 1 (to prevent further con-
traction of the ensemble spread) and a maximum value of
γ+ = 1.25 (to prevent overspread). Several values of max-
imum inflation factor have been tested, from γ+ = 1.1 to
γ+ = 2, and showed little impact on the efficiency of the
assimilation. A constant inflation factor was also tested, but
the results with an adaptive inflation factor were substantially
more accurate, especially for the first assimilation times.

3.3 Analysis

The analyzed state xakn of the nth member of the ensemble is

xakn = x
f
kn+Kk

(
yokn−Hxfkn

)
, (38)

where Kk is the Kalman gain. yokn is the observed data vector
yok to which a random perturbation of zero expected value
and covariance matrix Rk is added, as is recommended in
Burgers et al. (1998).

The Kalman gain is defined as

Kk = (Pf
k ◦ C)HT

[
H(Pf

k ◦ C)HT
+Rk

]−1
, (39)

where the matrix Pf
k is the sample covariance matrix of the

ensemble of forecast states {xf
kn}n∈[1,N ]. We use a limited en-

semble size (maximum 768) to estimate Pf
k . Spurious corre-

lations ensue, especially between distant points. To mitigate
this effect, we implement localization directly on the fore-
cast error covariance matrix by Schur multiplying (symbol
◦) Pf

k by the localization matrix C, as introduced by Hamill
et al. (2001) and Houtekamer and Mitchell (2001). The ma-
trix C is itself the Schur product of a vertical localization ma-
trix Cv and a horizontal localization matrix Ch. The value of
Cv(i,j) depends on the absolute radius difference between
the ith and the j th components of the state vector and on the
vertical correlation length `v. The value of Ch(i,j) depends
on the absolute angle difference of the ith and the j th compo-
nents of the state vector and on the vertical correlation length
`h. Both values follow a Gaspari–Cohn compactly supported
fifth-order piecewise rational function (similar to a Gaussian
but with a compact support; Eq. 4.10 of Gaspari and Cohn,
1999).

We also tested the domain localization strategy as de-
scribed in Janjic et al. (2011), since it is in some cases
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computationally more efficient and already implemented in
PDAF. However, it led to a systematic failure of the assimi-
lation. This is due to the nature of our problem: all the obser-
vations are located at the surface of the model and we aim at
estimating the temperature field over the whole depth of the
mantle. A vertical localization is as necessary as a horizontal
localization, hence the localization has to be done directly in
the forecast error covariance matrix and not only in the data
space.

3.4 Implementation of the EnKF

We used the software environment PDAF (Nerger et al.,
2005; Nerger and Hiller, 2013) in combination with the man-
tle convection code STAGYY (Tackley, 2008) to develop an
EnKF code for mantle convection. PDAF provides a set of
core routines computing in parallel the analysis steps for a
range of ensemble-based data assimilation techniques. It pro-
vides as well a set of standard routines to adapt the paral-
lelization of a preexisting parallel forward numerical model
and integrate the data assimilation routines. The final product
is a highly scalable ensemble data assimilation code running
both forecasts and analyses in parallel.

We modified the STAGYY code following the procedure
recommended by PDAF (see the online documentation wiki
in Nerger, 2016). We also made a few modifications to PDAF
routines to allow for localization directly in the forecast error
covariance with the EnKF. Additionally, we designed a basic
observation database so as to load, in a single step, all the
observations used in the data assimilation procedure.

4 A posteriori evaluation of the EnKF method

We test the data assimilation scheme on twin experiments
using the model described in Sect. 2.1. Throughout this sec-
tion, we compare the results of the EnKF for mantle circula-
tion reconstructions to the results computed using the method
developed in Bocher et al. (2016), hereafter referred to as
method 1.

After describing the setup used for twin experiments, we
test the robustness of the EnKF method and compare it to that
of method 1. Then, we determine the range of data assimi-
lation parameters which are suitable to conduct an ensemble
data assimilation. Finally, we assess the ability of the scheme
to actually reconstruct specific geodynamic structures.

4.1 Twin experiment setup

Twin experiments are a way to assess the accuracy of a data
assimilation procedure in a controlled environment, where
the true evolution is perfectly known.

First, we compute a reference state evolution using the
forward numerical model, considered as the true state evo-
lution, from which we extract the set of true state vec-
tors {xtk}k∈[1,K]. Here, the timespan of the state evolution

Table 3. Notations and range of values tested for data assimilation
parameters

Symbol Meaning Value

N number of ensemble members 96 to 768
K number of observation times 16
γ+ maximum inflation factor 1.25
`v vertical correlation length 0.3 to 1
`h horizontal correlation angle π/10 to π/2

is 150 Myr and we sample true state vectors every 10 Myr.
From these state vectors, we compute a time series of sur-
face heat fluxes and surface velocities, following Eq. (12).
We add to these observations a random Gaussian noise of
standard deviation 10% of the root mean square of surface
heat flux qrms and surface velocities vrms (we compute qrms
and vrms from a free run of the dynamical model, they rep-
resent long-term averages and are characteristic of the sys-
tem dynamics). We obtain the time series of observations to
assimilate {yo

k}k∈[1,K]. It follows that the observation error
covariance matrix R is diagonal and time independent.

Then, we perform ensemble data assimilation for the
dataset {yo

k}k∈[1,K], with the observation error covariance
matrix R. We did not consider any model error in the filter
we describe, so the parameters of the model used in the data
assimilation realizations are the same as those of the refer-
ence model.

We present here tests with different assimilation parame-
ters, varying the number of members N , the vertical correla-
tion length `v and the horizontal correlation angle `h. Table 3
details the range of parameters tested.

We compute four different state evolutions to test the accu-
racy of the EnKF for different dynamical cases (the four state
evolutions are described in the next section). Figure 3 shows
the initial and final states of these evolutions, together with
the result of global error evolution, and will be discussed in
the next section.

4.2 Robustness of the assimilation algorithm

The evolutions of the global errors in the estimated temper-
ature field and surface horizontal velocity field over the time
period {1, . . .,K} are[
εf
T (1), ε

a
T (1),ε

f
T (2), . . .,ε

f
T (K),ε

a
T (K)

]
and[

εf
uφ
(1),εa

uφ
(1),εf

uφ
(2), . . .,εf

uφ
(K),εa

uφ
(K)

]
, (40)

respectively, where εeT (k) and εeuφ (k), e standing for a (anal-
ysis) or f (forecast), are
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Figure 1. Time evolution of the errors in the estimated tempera-
ture field (panels a to c) and the estimated surface velocities (panels
from d to f) obtained from data assimilations with the same 150 Myr
observation dataset, but different assimilation parameters. The size
of the ensemble is N = 96 for (a) and (d), N = 288 for (b) and
(e) and N = 768 for (c) and (f). The assimilations are computed
for any combination of data assimilation parameters: γ+ = 1.25,
`v = 0.3, 0.5, 0.7 and 1 and `h = π/10, π/8, π/6, π/4 and π/2.
The black lines represent the evolution of the error for the assim-
ilation with the minimum average error in the analyzed tempera-
ture field: N = 96, `z = 0.5, `h = π/6 and γ+ = 1.25 for (a) and
(d), N = 288, `z = 0.7, `h = π/10 and γ+ = 1.25 for (b) and (e),
N = 768, `z = 0.5, `h = π/4 and γ+ = 1.25 for (c) and (f). The
gray area is delimited by the maximum and minimum values of er-
rors at each time, for all data assimilations. The background error is
represented in red for reference.

εe
T (k) =

√√√√√√√√
L∑
l=1

M∑
m=1

(
T
e

k(φl, rm)− T
t
k (φl, rm)

)2
V(φl, rm)

L∑
l=1

M∑
m=1

V(φl, rm)

and εe
uφ
(k)=

√√√√√√√√
L∑
l=1

(
ueφk(φl)− uφ

t
k(φl)

)2
V(φl, ra)

L∑
l=1

V(φl, ra)

(41)

with V(φl, rm) being the volume of the grid cell at longi-
tude φl and radius rm, T

e

k(φl, rm) the average temperature
and ueφk(φl) the average horizontal velocity of the estimated
ensemble (either forecast or analysis) at longitude φl and ra-
dius rm and ra , and where the superscript t still refers to the
true state.

We test the EnKF on one evolution, with sizes of the en-
semble N = 96, 288 and 768 and for each combination of
the following values of the data assimilation parameters: ver-
tical correlation length `v = 0.3, 0.5, 0.7 and 1 and horizon-
tal correlation angle `h = π/10, π/8, π/6, π/4 and π/2. We

show in Fig. 1, for each ensemble size, the maximum and
minimum values of errors in temperature (Fig. 1a–c) and in
surface horizontal velocity (Fig. 1d–f), obtained for all these
parameters, as a function of time. We also represent the back-
ground error in temperature εb

T (k) and on surface horizontal
velocity εb

uφ
(k)

εb
T (k)=

√√√√√√√√
L∑
l=1

M∑
m=1

(
T b(rm)− T

t
k (φl, rm)

)2V(φl, rm)

L∑
l=1

M∑
m=1

V(φl, rm)

and

εb
uφ
(k)=

√√√√√√√√
L∑
l=1

(
ub
φ(ra)− u

t
φk(φl, ra)

)2
V(φl, ra)

L∑
l=1

V(φl, ra)

,

(42)

where T b and ub
φ are 1-D profiles corresponding to the av-

erage temperature and horizontal velocity, respectively, com-
puted from a long run.

We choose the average error in temperature after analysis

εa
T =

1
K

K∑
k=1

εa
T (k) (43)

as the global measure for the quality of the assimilation. For
each ensemble size, the error evolution of the best assimila-
tion (in the sense of minimum εa

T ) is also shown in Fig. 1.
The error evolutions for temperature and surface horizon-

tal velocity follow the analysis–forecast sequence: at each
analysis time (every 10 Myr), the error decreases abruptly,
and during the forecast phases, the error increases.

For the surface horizontal velocity (Fig. 1d–f), the error
evolutions are very similar regardless of the data assimilation
parameters: the error decreases drastically during the analy-
sis to a value of 25 to 50, while the amplitude of the error
growth during the forecast phase evolves from around 200
for the first forecasts to around 100 at the end of the assimi-
lation.

On the contrary, the evolution of the error in the temper-
ature depends on the parameters of the assimilation. Fig-
ure 1a–c shows that, for any size of the ensemble, it is possi-
ble to find a set of parameters leading to a drastic reduction of
the global error in the temperature field after a few analyses.
This first phase, when errors decrease quickly, lasts approx-
imately 70 Myr, which corresponds to the transit time of the
dynamic system. After this phase, the error in temperature
slowly increases with time, while remaining well below the
errors measured for the first analyses. We can see that for
N = 288 and N = 768, any combination of vertical and hor-
izontal correlation lengths leads to errors lower than the first
analysis. However, the difference between the maximum and
the minimum errors obtained is greater than 0.01, which is
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large considering the background error is only around 0.1.
The best error evolutions for N = 288 and N = 768 are very
similar, with a minimum error of 0.0318 and 0.0302 after
90 Myr, and an average global error after analysis of 0.0391
and 0.0378, respectively. During the assimilation of a dataset,
most of the computational time is dedicated to the forecast
step, so the data assimilation with 768 members is 2.7 times
more expensive (computationally speaking) than the assim-
ilation with 288 members. Since we obtain very similar re-
sults for N = 288 and N = 768, we favor the assimilation
with 288 members.

We compute the error in the estimated temperature by
comparing it to the true temperature field. However, in a re-
alistic case, the true temperature is not known, and the evalu-
ation of the data assimilation algorithm is based on the study
of the statistics of the innovation vector dk at forecast num-
ber k

dk = y
o
k −Hxf

k. (44)

After each forecast and just before analysis, we compute the
Euclidean norm of the instantaneous innovation d i

k and the
Euclidean norm of the cumulative mean innovation dc

k

d i
k =‖ dk ‖ and dc

k =

∥∥∥∥∥1
k

k∑
i=1

d i

∥∥∥∥∥ . (45)

Before computing these norms, we normalize the part of the
innovation corresponding to surface heat flux and velocities
by their respective root mean square values qrms and vrms
(corresponding to time averages, characteristic of the dy-
namic system we are studying).

Figure 2 shows the evolution of d i
k and dc

k as a function of
the number of forecasts for data assimilations with different
sizes of ensemble and their respective optimum vertical and
horizontal correlation lengths.

The evolution of the cumulative mean of the innovation
dc
k allows us to check some aspects of the consistency of

the data assimilation algorithm. Indeed, the derivation of the
EnKF equations assumes that the error in observations yo

and the error in the forecast data Hxf are unbiased. Such
hypotheses imply that the statistically expected value of d
is zero, which means that the norm of the cumulative inno-
vation should converge to zero as the number of forecasts
increases. Figure 2a shows the cumulative innovation con-
stantly decreasing throughout the assimilation, with compa-
rable values for N = 288 and N = 768, and slightly higher
values for N = 96.

The norm of the instantaneous innovation d i
k measures the

distance between the forecast data and the observation, and
therefore allows us to monitor the success (or failure) of the
assimilation. In Fig. 2b, we can see that the norm of the in-
stantaneous innovation decreases during the first eight fore-
casts, i.e., 70 Myr, and then oscillates for the rest of the as-
similation. The comparison of Figs. 1 and 2 reveals one im-
portant pitfall of the application of data assimilation to our
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Figure 2. Evolution of (a) the cumulative mean innovation and
(b) the norm of the instantaneous innovation as a function of the
number of forecasts performed, and for different ensemble sizes.
For each size of the ensemble, the evolutions correspond to the best
combinations of correlation length parameters: N = 96, `z = 0.5,
`h = π/6 and γ+ = 1.25;N = 288, `z = 0.7, `h = π/10 and γ+ =
1.25, and N = 768, `z = 0.5, `h = π/4 and γ+ = 1.25.

problem. After the 10th assimilation, the instantaneous inno-
vation (Fig. 2b) is almost the same for N = 96, N = 288 and
N = 768, while the global error in the estimated temperature
field (Fig. 1) is clearly higher for N = 96 than for N = 288
or 768. This is because the instantaneous innovation mea-
sures the distance between observed and forecast data at the
surface, while the error measures the distance between the
estimated and true temperature field, not only at the surface
but also at depth. This means that for a same innovation at
the surface, the error in the temperature field at depth can
vary substantially. In other words, the instantaneous innova-
tion does not necessarily vary the same way the true error in
the temperature field does.

We also tested the assimilation algorithm for four differ-
ent state evolutions, with the optimal parameters for an en-
semble size of N = 288 members (`v = 0.7 and `h = π/10).
Figure 3 shows the initial and final temperature fields of the
evolutions, together with the evolution of the global error, the
spread of the ensemble, the background error and the error
evolution using method 1.

The spread of the ensemble is an estimation of the uncer-
tainty in the state. We compare the evolution of εe

T to the
global standard deviation of the temperature field of the en-
semble:[
σ f
T (1),σ

a
T (1),σ

f
T (2), . . .,σ

f
T (K),σ

a
T (K)

]
(46)

with σ e
T (k) defined as

σ e
T (k)=

√√√√√√√√
N∑
n=1

L∑
l=1

M∑
m=1

(
T ekn(φl, rm)− T

e

k(φl, rm)
)2
V(φl, rm)

(N − 1)
L∑
l=1

M∑
m=1

V(φl, rm)

. (47)
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Figure 3. Evolution of the error (εe
T

, red) as a function of time for four different evolutions with N = 288, γ+ = 1.25, `v = 0.7 and `h =
π/10, compared to the evolution of the spread of the ensemble (σ e

T
, blue), the evolution of the error with the technique of Bocher et al. (2016)

(εe
T

method 1, yellow) and the background error (εb
T

, purple). The initial and final states of the true evolutions are represented on the left of
each corresponding graph.

We compute the error for an estimated state evolution with
method 1 using Eq. (42).

Although we computed the four state evolutions using the
same forward modeling code and with the same values of
physical parameters (as described in Table 1), they show dif-
ferent geodynamic configurations: evolution A has a shorter
wavelength of convection, with the persistence of four sub-
ductions, three ridges and five upwellings, the death of one
ridge and the creation of two. Evolutions B, C and D have
longer wavelengths of convection, with two major down-
wellings, stable throughout the evolutions. In evolution B,
one of these downwellings has a very large negative temper-
ature anomaly at the bottom of the domain. In evolution C,
the remnant of a subduction merges with a larger subduction
into a single downwelling.

In the four cases, the errors in the estimated temperature
field systematically decrease during the analysis step for the
EnKF algorithm. The errors stay below the first analysis error
for evolutions A, B and C, while they reach slightly higher
values for evolution D. The error of the EnKF is always lower
than that obtained with method 1 for the first 50 Myr. The av-
erage error is lower for the EnKF than for method 1 in three
out of four cases. The average standard deviation of the en-
semble (ensemble spread) is of the same order of magnitude
as the true error. However, its evolution is not the same as
the true error, with, for example, differences between both of
more than 0.02 for some part of evolution C. Moreover, in
three out of four cases (evolutions B, C and D), the spread
of the ensemble is much lower than the true error. For evo-
lutions C and D, the results of the two methods are compa-

rable, whereas the assimilation with EnKF performs better
than method 1 for evolutions A and B.

For evolution B, method 1 fails to accurately reconstruct
the evolution, with the error reaching values greater than
0.08 at the end of the assimilation. This case is further in-
vestigated in Figs. 4 and 5. Figure 4 compares the true tem-
perature field evolution with the analyzed temperature field
of method 1 and of the EnKF with N = 288, `v = 0.7 and
`h = π/10. The sudden increase in the error of the estimated
temperature field for method 1 seen in Fig. 3b happens after
around 80 Myr of assimilation, when the direction of bend-
ing at the bottom of the domain changes for the downwelling
on the left side (see Fig. 4b). The analyzed temperature field
of method 1 does not predict this change of direction (see
Fig. 4a), while the analyzed temperature field of the EnKF
predicts it (see Fig. 4c). Method 1 computes only the evo-
lution of the best estimate of the system. The computation
of only one estimate ignores that, in this case, a slight per-
turbation of the estimated state could lead to totally differ-
ent dynamics. On the contrary, the EnKF method computes
the evolution of an ensemble of perturbed solutions and thus
takes into account the nonlinearity of the solution, at least
for the forecast stage. Figure 5 shows examples of the ana-
lyzed temperature fields of different ensemble members for
evolution B, after 80 Myr of assimilation. Although the aver-
age temperature fields display a downwelling bending to the
right, the ensemble members show a wide variety of down-
welling geometries.
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Figure 4. Comparison of temperature field evolutions for evolution B. (a) Depicts the evolution of the analyzed temperature field with method
1, (b) is the true evolution of the temperature field and (c) is the evolution of the analyzed temperature field with the ensemble Kalman filter
(EnKF) N = 288, `v = 0.7 and `h = π/10.

Figure 5. Example of temperature fields of the members of the ensemble. This example is taken after 80 Myr for the assimilation of evolu-
tion B, with EnKF N = 288, `v = 0.7 and `h = π/10.
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4.3 Reliability of the ensemble

In Fig. 3, the standard deviation of the temperature of the en-
semble, σ e

T , is lower than the error in temperature, εe
T , for

some state evolutions. This indicates that we cannot rely on
the spread of the ensemble to estimate accurately the evolu-
tion of the global error in the temperature field. To investigate
the reliability of the ensemble in more detail, we compute
rank histograms for surface heat flux and velocity (Fig. 6),
and for the temperature at the surface, mid-domain and at the
bottom (Fig. 7).

Rank histograms were first described independently by
Anderson (1996), Hamill and Colucci (1996, 1997) and Ta-
lagrand (Harrison et al., 1995; Talagrand et al., 1997). They
are a tool to diagnose systematic biases and misestimations
of the uncertainty in an ensemble of forecasts (Hamill, 2001).
To obtain the rank histograms of Figs. 6 and 7, we proceed
as follows:

1. Selection of the variable and the verification. We com-
pute rank histograms for surface heat fluxes (Fig. 6a, c,
e), surface velocities (Fig. 6b, d, f), and surface, mid-
mantle and bottom temperature (Fig. 7). For Figs. 6a, b
and 7, the ensemble is checked against the true value,
while for Fig. 6c–f, it is checked against the observed
value. In this context, the true values are the verification
for Figs. 6a, b and 7, and the observed values are the
verification for Fig. 6c–f, respectively.

2. Selection of the sampling points. To be able to inter-
pret our rank histograms, we need to populate them with
samples that are independent. To do so, we use the four
evolutions presented in Fig. 2, and, for each evolution,
we select points that are spaced from each other by the
correlation angle `h = π/10, and taken after 10, 80 and
150 Myr of assimilation. We obtain 120 sampling points
per histogram.

3. Determination of the rank of the verification. At each
sampling point, we determine the rank of the verifica-
tion in a vector composed of all the values taken by the
ensemble plus the verification, in ascending order.

4. Computation of the rank histogram. In order to have
bins of constant width, we choose 17 ranks as the bin
width (289= 172).

If the ensemble statistics are reliable, then the true value of
a given variable and the values of the ensemble of forecasts
can be considered as random draws from the same distribu-
tion. In this hypothesis, the rank of the true value follows a
uniform law, and the rank histogram should be flat. We repre-
sent the expected rank counts for a flat histogram as a dashed
line in Figs. 6 and 7. If this is not the case, the shape of the
rank histogram provides indications of the existence of biases
and under- or over-dispersion of the ensemble (even though

the shape of a rank histogram can also be affected by other
factors; see e.g., Hamill, 2001).

To guide our interpretations, we perform the χ2 goodness-
of-fit test (see e.g., Wilks, 2006, Sects. 5.2.5 and 7.7.2) to
test if our rank histograms are significantly non-uniform. We
compute the value

χ2
=

17∑
i=1

(#oi − #ei)2

#ei
, (48)

where #oi is the bin count in the ith bin and #ei is the ex-
pected count for a uniform distribution 120/17≈ 7.06. The
values of χ2 are written on each histogram of Figs. 6 and 7. If
the ranks we sampled come from a uniform distribution, then
χ2 follows a chi-square probability law with 17−1−1= 15
degrees of freedom. In this hypothesis, the probability to ob-
tain a χ2

≥ χ2
c = 24.996 is 0.05. We take this value of χ2

c as
the critical value over which we consider that the rank his-
togram is significantly non-uniform.

The left column of Fig. 6 represents the rank histograms
of the true surface heat flux (Fig. 6a) and velocity (Fig. 6b).
Figure 6a shows a slightly higher occurrence of the true heat
flux in higher ranks within the ensemble. This would suggest
that the ensemble estimation of surface heat flux is biased to-
wards the lower values. However, the χ2 value for Fig. 6a is
well below the critical value χ2

c , so that we cannot say that
the rank histogram is significantly non-uniform. On the con-
trary, the rank histogram of surface velocities (Fig. 6b) has
a χ2
= 26.43> χ2

c : it is significantly non-uniform. This his-
togram is more populated in the bins corresponding to the
lowest and highest ranks (1–17 and 255–289). This would
suggest ensemble under-dispersion, even though the shape
of the rank histogram is more complex than the classical U
shape associated with ensemble under-dispersion (in partic-
ular, the middle ranks, 137–153, are also highly populated).

In an assimilation with Earth data, the truth is not known,
and we would have to draw rank histograms using observed
data. The question is, would we come to the same conclu-
sion about the reliability of the ensemble as with Fig. 6a, b?
The middle column of Fig. 6 represents the rank histograms
of the observed heat flux in Fig. 6c and observed velocity
in Fig. 6d. Both Fig. 6c, d have a distinct U shape, with χ2

of 310.14 and 26.14, respectively. For the surface heat flux,
the difference between rank histograms of the truth and the
observation is dramatic (the χ2 value jumps from 12.14 to
310.14). For the surface velocity, the difference is less strik-
ing, even though the U shape is much clearer on the rank
histogram of observed velocities. The more pronounced U
shape for the rank histograms of both observed heat flux and
velocity indicates that the ensemble is not as under-dispersed
around the truth as what could be deduced from the rank his-
tograms with noised observations. In other words, noise in
the observation has a major effect on the shape of the rank
histogram, so that we cannot interpret the reliability of the
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ensemble by looking directly at the rank histograms of the
observations.

Since the noise in the observations largely affects the
shape of the rank histograms, we need to add noise to the en-
semble members before computing the rank histograms, as
explained in Anderson (1996) and Hamill (2001). The noise
we add to each ensemble member has the same standard de-
viation as the noise affecting the observed data. The right
column of Fig. 6 represents such rank histograms for heat
flux in Fig. 6e and velocity in Fig. 6f. Both χ2 scores are
well below χ2

c thus, we cannot say that the rank histograms
are significantly non-uniform. It is not possible to detect the
under-dispersion of the ensemble for surface velocity using
only observed data.

Figure 7 shows the rank histograms for temperature at dif-
ferent depth. At the surface (Fig. 7a), the rank histogram is
the same as the rank histogram for the true heat flux Fig. 6a,
since there is a linear relationship between surface tempera-
ture and surface heat flux. It follows that the rank histogram
of surface temperature is not significantly non-uniform. At
mid-mantle (Fig. 7b), the rank histogram of temperature
is significantly non-uniform, with a χ2

= 36.43 ≥ χ2
c . It is

more populated towards the higher values, which could in-
dicate that the temperature ensemble in the mid-mantle is
biased towards the lower values. At the bottom (Fig. 7c),
the rank histogram of temperature is also significantly non-
uniform, with a χ2

= 37.29 ≥ χ2
c . The first bin of the rank

histogram is highly populated, while the rest of the histogram
is roughly flat. This suggests that the ensemble is biased to-
wards the hotter temperatures at the bottom of the model.

In conclusion, Fig. 7 shows that the ensemble is reliable at
the surface for temperature, but becomes unreliable at depth.
The lower value of the standard deviation σ e

T compared to

the true error εe
T observed in Fig. 3 in three out of four cases

is due to a misestimation of the error in the temperature at
depth by the ensemble. We discuss this point in more detail
in Sect. 5.

4.4 Effect of the data assimilation parameters on the
quality of the estimation

As shown in Fig. 1, the choice of N , `v and `h is critical to
minimize errors in the assimilation, with errors in the esti-
mated temperature field varying from 0.03 to more than 0.1
depending on the choice of parameters. We further investi-
gate the effect of these parameters by comparing the average
global errors after analyses, εa

T , for different combinations of
N , `v and `h. Figure 8 displays the values of εa

T for sizes of
ensembleN = 96, 288 and 768 (Fig. 8a–c, respectively) with
`v varying between 0.3 and 1, and `h between π/10 and π/2.
As in Fig. 1, we observe a dichotomy between assimilations
with N = 96 members, with higher errors, and assimilations
with N = 288 and 768, with lower errors.

For each size of ensemble N we identify the pair (`v,`h)

that leads to the assimilation with the lowest error εa
Tmin(N).

From this minimum value εa
Tmin(N), we select all the pairs

(`v,`h) that lead to data assimilation with global errors
less than εa

Tmin(N)+ 0.002. As the size of the ensemble in-
creases, the optimal lengths of correlations (`v,`h) tend to
increase. This is a classical effect (Houtekamer and Mitchell,
1998), observed in EnKFs for various dynamical systems. As
N increases, the amplitude of noise in the sample correlation
matrix Pf decreases, and small, yet real, correlations between
distant points can be taken into account (Hamill et al., 2001).
Between ensemble sizes of N = 96 and N = 288, the zone
of optimal correlations is displaced towards the greater ver-
tical correlation lengths. When we increase the size of the
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ensemble from N = 288 to N = 768, the zone of optimal
correlations is displaced towards greater horizontal correla-
tion angles. So the accurate estimation of correlations be-
tween points on the same vertical level needs less samples
than between points on the same horizontal level. This is due
to the specifics of mantle convection dynamics. The highly
nonlinear rheology produces plates at the surface with values
of velocity and temperature that may vary substantially (by
1 or 2 orders of magnitude) on short distances in the horizon-
tal direction, especially because of pseudoplasticity. On the
contrary, highly viscous cold downwellings establish a strong
continuity in the vertical direction. Given that a small pertur-
bation can trigger the formation of a new plate boundary (see
Sect. 2.1), those scales of variability reverberate through the
ensemble covariance matrix.

For the ensemble size N = 288 and all the values of
(`v,`h), we additionally evaluate the average global ensem-
ble spread

σ a
T =

1
K

K∑
k=1

σ a
T (k), (49)

the average norm of the instantaneous innovation

d i =
1
K

K∑
k=1

∥∥∥yo
k −Hxf

k

∥∥∥ (50)

and the cumulative mean innovation after K forecasts

dc
K =

∥∥∥∥∥ 1
K

K∑
k=1

(
yo
k −Hxf

k

)∥∥∥∥∥ . (51)

These three values are indicators of the accuracy of the as-
similation and can be computed in the case of an assimilation
with Earth data, unlike εa

T .
Figure 9 represents these results along with the true error

εa
T . The ensemble of optimal data assimilation parameters is

also outlined (εa
T < ε

a
Tmin(N)+ 0.002).

Overall, the average ensemble spread σ a
T (Fig. 9b) de-

creases when `h and `v increase, with a minimum for `h =

π/2 and `v = 1. The higher the correlation lengths, the more
covariances will be taken into account in the analysis, and
the analyzed members will be closer to each other and σ a

T

lower. The average ensemble spread σ a
T is of the same order

of magnitude as the true error εa
T . Moreover, there is a local
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minimum of σ a
T at `v = 0.7 and `h = π/10. These parame-

ters correspond to the minimum true error εa
T .

The average norm of instantaneous innovations and the
norm of the cumulative innovations display the same behav-
ior: they decrease with increasing vertical and horizontal cor-
relation lengths. The longer the correlation lengths, the closer
the forecast data are to the observations, and the less biased
the assimilation. This means that a better fit to the observa-
tions does not necessarily imply a better fit to the true temper-
ature field. In a realistic context, the result of the assimilation
should be checked against independent data to evaluate its
accuracy. In the case of the Earth’s mantle, independent data
could be, for example, the geoid or tomographic models.

4.5 Accuracy of the reconstruction of geodynamic
structures

We focus on three key flow structures: (1) downwelling
slabs (subduction), (2) ridges, i.e., shallow structures result-
ing from divergent plates at the surface, and (3) plumes, hot
upwellings rising from the base of the model.

Figure 10 shows the final state of the assimilation after
150 Myr for the evolution A of Fig. 3. We selected three
assimilations: EnKF96, an EnKF with N = 96, `v = 0.5
and `h = π/6 (Fig. 3a); EnKF288 an EnKF with N = 288,
`v = 0.7 and `h = π/10 (Fig. 3b) and the assimilation with
method 1 (Fig. 3c). We do not show the EnKF with 768 mem-
bers since the resulting temperature field is almost indistin-
guishable from that of EnKF288. The first column represents
the true temperature field, which is the same for all assimila-
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tions. The second column is the analyzed temperature field,
i.e., the average of the temperature fields of the analyzed en-
semble members. The third column is the absolute tempera-
ture error, and the fourth column is the standard deviation of
the ensemble spread, which is an estimate of the error in the
analyzed temperature field.

Globally, the EnKF288 and EnKF96 solutions for the tem-
perature field are smoother than the solution of method 1.
We observe this difference especially in the asthenosphere,
the part of the mantle below the top boundary layer. For
method 1, the asthenosphere shows short wavelength tem-
perature variations. These variations are absent from the true
temperature field and are inconsistent with convection solu-
tions with the chosen parameters. They stem from the am-
plification of the noise in the observations during the analy-
sis. Moreover, the asthenosphere of the analyzed temperature
field of method 1 is hotter than the true temperature.

Both EnKF96 and EnKF288 reconstruct successfully the
ridges locations and structures, as testified by their error
fields. On the contrary, method 1 fails to reconstruct the ridge
on the top right of the domain. It also predicts a ridge that
does not exist in the true state (in the top left quadrant). On
the right of the domain, another ridge is associated with a
vertical positive temperature anomaly underneath. This pat-
tern is found regularly under ridges when applying method 1.
This is due to the use of a constant forecast error covari-
ance matrix, Pf

0 for the analysis. This constant matrix does
not take into account the specifics of the dynamics under a
ridge, where the positive anomaly is generally shallow. We
do not observe this detrimental effect in the EnKF assimila-
tions, where we compute the forecast error covariance matrix
Pf
k at each analysis time from the forecast ensemble.
All three assimilations reconstruct the subductions and ac-

curately predict the bending direction of slabs at the base of
the model. Method 1 tends to underestimate the amplitude
of the negative temperature anomalies, whereas both EnKF
assimilations overestimate them. This is especially notewor-
thy for the bottom left subduction. Moreover, the estimated
slabs are wider than the true slabs. However, we note two
arguments in favor of the EnKF: first, the estimation of the
slab improves when the size of the ensemble increases; sec-
ond, the local standard deviations of the ensemble indicate
that the estimation in this part of the domain is less accurate.

Both EnKF288 and EnKF96 solutions do not show any
plume at the base of the mantle. However, the ensem-
ble spread shows a greater uncertainty in the places where
plumes occur. Method 1 predicts the approximate location
of all plumes, but their geometry is not accurate. Method 1
provides only one estimate of the temperature field. In this
evolution, the plumes are allowed to develop. EnKF96 and
EnKF288 provide an ensemble of states. Each state develops
plumes at different locations and their averages show only a
slightly hotter anomaly over a wide area of possible location
for the plumes, as we showed earlier in Fig. 5 for another
assimilation.

To illustrate how different flow structures are recon-
structed, we plot in Fig. 11 the time evolution of the
EnKF288 ensemble surface, mid-domain and bottom tem-
perature at the longitude of (a) a subduction, (b) a plume,
(c) a ridge initiation and (d) a stable ridge. Figure 10 shows
the location of these geodynamical features on the true tem-
perature field. We plot the temperature evolutions at the sur-
face, mid-mantle and at the bottom of the domain. Note that
the surface and bottom values of temperature actually corre-
spond to the values of the first points below the surface and
above the bottom of the domain, respectively.

At the surface, the temperature is corrected accurately at
each analysis, with a difference between the true tempera-
ture and the analyzed temperature of less than 0.01. The cor-
rection associated with the analysis gradually decreases with
depth due to both covariance localization and the dynamics
of the system.

For the subduction, the correction is first done on the sur-
face, and then propagates gradually with depth. The recon-
struction of mid-mantle temperature becomes accurate after
40 Myr, and at the bottom of the model after 70 Myr, which
is the value of the transit time. At the surface, the spread of
the ensemble decreases as more data are assimilated. On the
contrary, the spread of the ensemble remains steady for mid-
mantle depths and at the bottom of the domain. For these
depths, only the average temperature varies.

At the surface for the plume, the spread of the ensemble is
very low except for a peak at 40 Myr, which corresponds to
an instability, corrected after one analysis. We note that this
instability greatly affects method 1 since it leads to the false
prediction of the ridge seen in Fig. 10. At mid-mantle, the
ensemble average is slowly converging to the true tempera-
ture. At the bottom, the estimated temperature is lower than
the true temperature, although it slightly increases through-
out the assimilation.

The ridge initiation shows how new observations affect the
spread of the ensemble. At the surface, the spread of the en-
semble remains low until 100 Myr, the time of initiation of
the ridge. From then on, the estimated temperature increases
and the ensemble members follow the cycle of increasing
spread during forecast and dramatic decrease in spread dur-
ing analysis. The temperature in the mid-mantle is estimated
with a very good accuracy after 50 Myr. On the contrary, the
assimilation does not predict the evolution of the temperature
at the bottom of the domain, although the true temperature
falls within the zone defined by the standard deviation of the
ensemble after 50 Myr.

For the stable ridge, the spread of the ensemble at the sur-
face is increasing during forecast and decreasing dramati-
cally during the analysis. At mid-mantle, the estimated tem-
perature becomes accurate after 100 Myr. At the bottom of
the domain the temperature is underestimated although it fol-
lows the variations in the true temperature: increase of tem-
perature at the beginning of the assimilation and slight de-
crease at the end of the assimilation.
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error in the analyzed field (spread of the ensemble). In the true temperature field of EnKF288, we framed the location of the subduction (a),
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5 Discussion

We chose the EnKF method for its ease of implementation
and flexibility to adapt to different forward numerical mod-
els. Indeed, as long as the nature of the state and observa-
tions does not change, the computation of the analysis step
remains the same regardless of the convection code used. On
the contrary, the alternative method, variational data assimi-
lation, requires the development of an adjoint code that needs
further development for each additional complexity added to
the forward model (see Kalnay et al., 2007, for a compar-
ison of EnKF and 4-D variational methods). For the man-
tle circulation problem, this results in a series of derivation

of the adjoint model considering different approximations
(Ismail-Zadeh et al., 2003; Bunge et al., 2003; Ghelichkhan
and Bunge, 2016; Worthen et al., 2014). The ability of a data
assimilation scheme to adapt to different numerical codes
is a particularly important issue for mantle convection since
models are in constant evolution, with current developments
including the implementation of chemistry, nonlinear rhe-
ologies, elasticity, phase transitions and compressibility (see
e.g., Zhong et al., 2015, for a review of recent developments
in mantle convection codes). In particular, this ease of im-
plementation allows us to work on models self-consistently
producing plate-like tectonics at their surface, and hence to
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temperature value at points on four profiles, corresponding to different geodynamic contexts: (a) a subduction, (b) an upwelling, (c) a ridge
initiation and (d) a stable ridge. The first row corresponds to points at the surface of the domain, the second row to points in the mid-mantle
and the third row to points at the bottom of the domain. The lateral coordinates of the points are shown in Fig. 10 (second row first column).
The red line is the true temperature, the black line is the average of the ensemble, the dark grey area represent the average plus or minus
the standard deviation of the ensemble and the light gray area is the area spanned by the minimum and the maximum value taken by the
ensemble of 288 members.

obtain forecasts whose data can be ultimately compared with
plate reconstructions.

The application of the EnKF to the mantle circulation
problem is the continuation of the simpler sequential filter
that we developed in an earlier work (Bocher et al., 2016).
The main difference between the two filters is that the EnKF
evaluates the state covariance matrix with an ensemble of
members. This ensemble approach allows the nonlinear evo-
lution of errors during the forecast stage. This leads to a
higher precision in the reconstruction, but also to a more ro-

bust scheme, able to reconstruct evolutions which could not
be reconstructed with the former method (as illustrated by
Figs. 4 and 5). Moreover, the ensemble assimilation provides
an estimate of the uncertainty in the reconstruction at each
point of the domain. The estimation of uncertainties could be
valuable information for plate tectonic reconstructions, espe-
cially for regions and times where data are scarce, because
they show the different possible scenarios supported by the
ensemble.
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This gain in information and quality for reconstructions
comes with a computational price. While we could perform
the former assimilation method in one core hour, the method
developed here requires several hundreds to several thou-
sands of core hours. However, an efficient parallelization us-
ing the PDAF software (Nerger and Hiller, 2013) in com-
bination with the parallel code STAGYY produces a highly
parallel ensemble filter, able to perform the assimilations on
768 cores in 20 min for an ensemble of 96 members and 3 h
for an ensemble of 768 members.

The important computational cost of the EnKF limited us
in the number of assimilations we could test. After check-
ing the stability of the assimilation results on four different
evolutions, we chose to focus on studying the effect of the
parameters of the ensemble data assimilation: the size of the
ensemble and the vertical and horizontal correlation lengths.
We found that the best compromise between the accuracy of
the assimilation and the computational cost was an ensem-
ble of 288 members (among the ensemble sizes we tested,
i.e., 96, 288 and 768). Indeed, between the assimilations with
288 and 768 members, the global average error in the temper-
ature field (as defined in Eq. 43) decreases by 0.0013, while
the size of the ensemble (and hence the computational cost)
is multiplied by 2.7. On the contrary, dividing the size of the
ensemble by 3 (from N = 288 to 96) leads to an increase in
the global average error of 0.0086. These differences in er-
rors appear to be small; however, they affect the quality of
the reconstruction of thermal structures. We can see this in
Fig. 10 for example: the global errors in temperature (as de-
fined in Eq. 42) range between 0.0367 and 0.0461, so the
difference in global errors is at most 0.0094. Locally, this
translates into the presence (or absence) of artifactual geo-
dynamic structures (like ridges and upwellings, visible in the
second column of Fig. 10). Covariance localization proved
to be important to minimize the error in the reconstruction
of mantle structure: as shown in Fig 9, for 288 members, the
difference in the average error is of 0.0065 between the opti-
mal correlation length and the least favorable one.

During these tests, we also evaluated how accurate the es-
timation of uncertainties (i.e., the spread of the ensemble) is
with respect to the true error, and, more generally, how re-
liable the forecast (i.e., the ensemble) is. If we consider the
four assimilations with different data time series presented
in Fig. 3, the true global error in temperature is higher than
the ensemble spread in three cases. This would indicate that
we are on average overconfident in our forecasts. To test the
reliability of the ensemble in more detail, we produced rank
histograms for temperature at the surface, mid-depth and at
the bottom of the domain (Fig. 7). The rank histogram corre-
sponding to surface temperature does not detect any biases or
over/underspread in the ensemble. On the contrary, the rank
histograms are significantly non-uniform at depth. Our inter-
pretation is that this tendency is linked to the configuration
of the data assimilation problem, combined with the simple
scheme used for covariance inflation (Sect. 3.2). Indeed, the

inflation factor which we propose is directly linked to the
innovation statistics, and it is spatially uniform. It follows
that the inflation factor will adequately correct the spread of
the ensemble at the surface, where the data are located, but
not necessarily at depth, where no observation is available.
To improve the reliability of the ensemble at depth, a solu-
tion could be to implement a more complex algorithm for the
inflation factor, especially spatially varying inflation as pro-
posed by Anderson (2009) and Miyoshi (2011) for example.

Another important question for future applications with
Earth data is, how well can we assess the quality of an assim-
ilation when only observed data are available, i.e., without
any knowledge on the true state? To answer this question, we
investigated the statistics of the cumulative innovation and
of the instantaneous innovation for different ensemble sizes
and correlation lengths. The variation in both cumulative in-
novation and instantaneous innovation as a function of en-
semble size show the same tendency as the global average
error in the temperature field: the larger the ensemble, the
lower the instantaneous and cumulative innovations, and re-
sults for N = 288 and 768 are very close (see Fig. 2). On
the contrary, the correlation lengths minimizing the norm of
the cumulative innovation and the instantaneous innovation
were different from the ones minimizing the error in the tem-
perature field. This shows the limits of these indicators to
determine the optimal parameters for the assimilation. In a
realistic case, rigorous a posteriori evaluation of a data as-
similation result would require comparison of the prediction
made with independent observations (Talagrand, 2014). For
mantle circulation, seismic tomography, topography, true po-
lar wander or the geoid could play this role.

By construction, sequential data assimilation methods do
not propagate new information back in time. In the case of
the reconstruction of mantle circulation, this is a clear dis-
advantage since the information on the Earth’s surface tec-
tonics tends to become more reliable as we get closer to
present-day. Consequently, a natural extension of the present
work would be to implement an ensemble Kalman smoother
(Evensen and Van Leeuwen, 2000; Van Leeuwen, 2001). In
the same way as the EnKF uses sample spatial correlations of
the ensemble to update the state of the system with new ob-
servations, the ensemble Kalman smoother uses sample time
and space correlations of successive ensembles to update for-
mer states with the new observations. Evensen (2003) shows
how an ensemble Kalman smoother can be implemented with
a minimal computational cost alongside a preexisting EnKF.
Moreover, Nerger et al. (2014) shows that such an algorithm
is efficient for nonlinear models, and that in their test case,
optimal localization parameters for the ensemble Kalman
smoother coincide with optimal localization parameters for
the EnKF.

As a first approach to test the EnKF for mantle circu-
lation reconstructions, we chose a fairly simple convection
model. As already discussed in Sect. 2.1, a more realis-
tic mantle model would have, among other things, a 3-D-
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spherical shell geometry and a higher Rayleigh number. This
would substantially increase the size of the data assimilation
problem. However, we followed the procedure as described
in Nerger and Hiller (2013) to implement the EnKF. This
results in a highly scalable filter, enabling the computation
of the EnKF assimilation in a reasonable time. An increase
in the Rayleigh number also implies thinner boundary lay-
ers, slabs and plumes. This could translate into lower op-
timum correlation lengths for the EnKF. A more realistic
model would additionally include a viscosity increase in the
lower mantle (Ricard et al., 1993), and the presence of conti-
nents. This would tend to lengthen the wavelength of convec-
tion in the lower mantle and therefore might ease the man-
tle circulation reconstruction (see for example Ricard, 2015,
Sects. 7.02.6.3.2 and 7.02.6.7 for a discussion of both effects
on mantle convection).

In the synthetic experiments of Sect. 4, the convection
model used to produce the series of data is the same as the
forward model used during the assimilation. For an appli-
cation with Earth data, this will not be the case. The equa-
tions solved in models of mantle convection still hold some
shortcomings (Ricard, 2015). Moreover, theories, observa-
tions and experiments do not yet fully constrain parame-
ters, especially rheological ones (King, 2016), and variations
in rheology affect the reconstructions of mantle circulation
(Bello et al., 2015). Hence it could be fundamental to take
into account model errors. A first order solution is to in-
crease the inflation parameter γ in Eq. (32): this would over-
all increase the a priori uncertainty in the mantle estimation.
Performing experiments where the model used to compute
the observation is different from the model used for the as-
similation would provide us with more information on how
to implement model errors. Another solution would be to
consider the joint assimilation of the state and model pa-
rameters. Although it is in principle possible for the EnKF
(Evensen, 2009b), it could be computationally not tractable.
Indeed, the response of mantle dynamics to different rheolog-
ical parametrization is highly nonlinear, and their inversion
calls for the development of techniques focusing on rheol-
ogy, such as adjoint-based inversions of rheological parame-
ters (Worthen et al., 2014; Ratnaswamy et al., 2015) or fur-
ther applications of the recently developed pattern recogni-
tion techniques for mantle convection (Atkins et al., 2016).

The choice of the synthetic experiments assimilation win-
dow of 150 Myr is a compromise between having the possi-
bility to compute assimilations for various cases and having
an assimilation window covering most parts of the timespan
of plate tectonic reconstructions (Seton et al., 2012; Müller
et al., 2016; Torsvik et al., 2010). However, the structure of
the dataset used for the synthetic experiments is a very ide-
alized version of the actual plate reconstruction models. We
already discuss this issue in Bocher et al. (2016). In the fol-
lowing, we supplement and update this discussion in the light
of research that has recently come to the fore.

First, we set a time series of data covering the whole sur-
face of the domain and regularly available, every 10 Myr.
Plate tectonic reconstruction data are more complex. They
are based on the estimation of finite relative rotations be-
tween individual plates, structured into a hierarchy describ-
ing global relative motions and anchored in an absolute refer-
ence frame. The span of each finite relative rotation is deter-
mined depending on the amount and quality of information
available for a specific context and therefore varies depend-
ing on plate pairs and times. The average span of finite rota-
tions of recent plate models is of the order of 10 Myr (Torsvik
et al., 2010) to 5 Myr (Müller et al., 2016), but varies over
time with, for example, 1 Myr resolution for the last 20 Myr
in some regions (Merkouriev and DeMets, 2014), or some
gaps in the data such as during the Cretaceous superchron
from 121 to 83 Myr ago (Granot et al., 2012). The continu-
ously closed plate algorithm (Gurnis et al., 2012) produces
plate tectonic reconstruction maps continuous in space and
time which allows the creation of a series of global plate re-
constructions at regular intervals. Nonetheless, creating such
a regularized time series of reconstruction might miss tec-
tonic events. Instead, we could adapt the frequency of analy-
ses to the varying plate reconstruction resolution. Additional
synthetic experiments with a time series whose frequency
evolves through time are necessary to explore the limits of
such a method.

Second, the observations were perturbed independently
with a Gaussian noise of 10 % of the respective root mean
square value of surface heat flux and surface velocities. The
estimation of uncertainties in absolute plate motion mod-
els involves estimation of both uncertainties in relative plate
motion and on the absolute reference frame (Müller and
Wessel, 2015). The main source of information on the mo-
tion of plates comes from the map of seafloor magnetic
anomalies. Hellinger (1981) developed a method to com-
pute relative motion of plates and associated uncertainties in-
ferred from magnetic anomaly identifications. Recently, Se-
ton et al. (2014) built an open-source community database.
This database gathers both the coordinates of the seafloor
magnetic anomaly lineations, and their associated plate rela-
tive motion and uncertainties, computed using the Hellinger
method (Hellinger, 1981). This database could be used in the
future as a basis to automatically produce global plate motion
histories and assess their uncertainties. To our knowledge,
this has not been done so far on a global scale. On a regional
scale and for recent time (5 to 20 Myr), Iaffaldano et al.
(2012) applied the trans-dimensional hierarchical Bayesian
method to reduce noise in finite rotation data and produce
time series of high-resolution plate-relative motions. More
recently, Iaffaldano and Bunge (2015) applied this technique
to the relative motion of the pacific plate with North America
for the last 75 Myr. The uncertainties in relative plate veloc-
ities range from 5 to 40 % of the root mean square surface
velocity. As we go further back in time, the quantification of
relative plate motion uncertainties becomes hazardous: most
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of the seafloor created before 150 Myr has been destroyed by
subduction. These plate tectonic reconstructions involve in-
terpretation of different types of data, with a limited spatial
coverage and relies heavily on human expertise. For these
epochs, maintaining very high uncertainties in the regions
where few data supports the reconstructions would be a so-
lution.

6 Conclusions

We applied the EnKF algorithm to the reconstruction of man-
tle circulation through time. We chose a formulation with co-
variance inflation and localization to minimize the effect of
sampling errors in the estimation of the forecast error co-
variance matrix. Synthetic twin experiments with different
evolutions and for different parameters allowed us to assess
the efficiency of the algorithm and to determine the optimal
parameters for the assimilation.

This work builds on the developments of a first approach
to sequential data assimilation for mantle circulation made
in Bocher et al. (2016). The EnKF is more robust and on
average more accurate than the former method. Additionally,
the EnKF provides not only an estimate of mantle circulation
but also detailed maps of uncertainties in this estimation.

We evaluate the accuracy of the EnKF as a function of
three main parameters: the size of the ensemble and two co-
variance localization parameters, namely the vertical corre-
lation length and horizontal correlation angle. We find that
a size of the ensemble of the order of 300 members is suffi-
cient to have an accurate estimation of the evolution of the
state. For this ensemble size, the optimal vertical correla-
tion length corresponds to two-thirds of the domain thick-
ness, and the optimal horizontal correlation angle is of π/10
(around 2000 km). These values should be reevaluated as the
dynamical model becomes more realistic.

The EnKF was implemented using the parallel data as-
similation framework PDAF in a preexisting mantle convec-
tion code, STAGYY. The resulting code is highly scalable,
which means that the application of the EnKF to realistic data
assimilation with plate reconstructions and a 3-D spherical
mantle model is within reach in the foreseeable future.
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