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Abstract. We apply tipping point analysis to a large record of
ocean acoustic data to identify the main components of the
acoustic dynamical system and study possible bifurcations
and transitions of the system. The analysis is based on a sta-
tistical physics framework with stochastic modelling, where
we represent the observed data as a composition of deter-
ministic and stochastic components estimated from the data
using time-series techniques. We analyse long-term and sea-
sonal trends, system states and acoustic fluctuations to recon-
struct a one-dimensional stochastic equation to approximate
the acoustic dynamical system. We apply potential analysis
to acoustic fluctuations and detect several changes in the sys-
tem states in the past 14 years. These are most likely caused
by climatic phenomena. We analyse trends in sound pres-
sure level within different frequency bands and hypothesize a
possible anthropogenic impact on the acoustic environment.
The tipping point analysis framework provides insight into
the structure of the acoustic data and helps identify its dy-
namic phenomena, correctly reproducing the probability dis-
tribution and scaling properties (power-law correlations) of
the time series.

1 Introduction

The Preparatory Commission of the Comprehensive
Nuclear-Test-Ban Treaty Organization (CTBTO) has es-
tablished a global network of underwater hydrophones
as a part of its hydroacoustic observations (others being
seismic, infrasound, and radionuclide), with the goal of
continuous monitoring for possible nuclear explosions
(CTBTO, 2013). The CTBTO database provides several
unique and large oceanic acoustic records, covering more
than 10 years of continuous recording with a high temporal

resolution of 250 Hz. In this article, we study the records
of the hydrophone H01W1 at the Cape Leeuwin station.
The hydrophone is located at a depth of about 1 km off
the southwest shore of Australia. We apply tipping point
analysis and identify the main components of this acoustic
dynamical system, which we then model, with reconstruc-
tion of the probability distribution and scaling properties
(power-law correlations) of the observed data. Both the
probability distribution and scaling properties are important
for ensuring that the model correctly represents the observed
data, because probability distribution characterizes the range
and frequency of time series values, while scaling properties
characterize their temporal arrangement (Kantelhardt et al.,
2002; Livina et al., 2013).

Tipping points in climatic subsystems have become a
widely publicized topic of high societal interest related to
climate change; see, for example, Lenton et al. (2008). Ap-
plications of tipping point analysis have been found in geo-
physics (Lenton et al., 2009, 2012a, b; Livina and Lenton,
2007; Livina et al., 2010, 2011, 2012, 2013; Cimatoribus et
al., 2013), statistical physics (Vaz Martins et al., 2010; Liv-
ina et al., 2013), ecology (Dakos et al., 2012), and structure
health monitoring (Livina et al., 2014; Perry et al., 2016).

A stochastic model combining deterministic and stochas-
tic components is a powerful yet simple tool for modelling
time series of real-world dynamical systems. Given a one-
dimensional trajectory of a dynamical system (the recorded
time series), the system dynamics can be modelled by the
stochastic equation with state variable z and time t :

ż=D(z, t)+ S(z, t), (1)

where ż is the time derivative of the system variable z(t),
andD and S are deterministic and stochastic components, re-
spectively. Component D(z, t) may be stationary or dynam-
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ically changing (for instance, containing long-term and/or
periodic trends). Many geophysical variables, which follow
seasonal variability, can be approximated by a stochastic
model

z(t)= T (t)+A(t)cos(2πφ(t))+8(t), (2)

where the trend T (t) is a real-valued function, such as a
straight-line function of t , the second term models seasonal
variability, and 8(t) is a stationary random process. As an
example, 8(t) can be Gaussian white noise or a continu-
ous autoregressive moving average random process of order
(p,q). Similarly, De Livera et al. (2011) used a trigonometric
Box–Cox transform with ARMA errors and seasonal compo-
nents.

The probability distribution of the trajectory (time series)
of such a system, however complex it may be, can in the
majority of cases be approximated using a so-called system
potential in the form of a polynomial of even order. Tip-
ping points can be identified in terms of the variability of the
underlying system potential U(z, t), which defines (if it ex-
ists) the deterministic term in Eq. (1):D(z, t)=−U ′(z, t). If
the structure of the potential (the number of potential wells)
changes, the tipping point is a bifurcation. If the potential
structure remains the same, while the trajectory of the sys-
tem samples various states, such a tipping point is transi-
tional Livina et al. (2011). The stochastic component, in the
simplest case, may be Gaussian white or red noise, with pos-
sible multifractality and other nonlinear properties. The tip-
ping point methodology is currently based on the techniques
of degenerate fingerprinting and potential analysis, which are
described below.

2 Methodology

The tipping point analysis consists of the following three
stages: (1) anticipating (pre-tipping, or analysis of early-
warning signals), (2) detecting (tipping), and (3) forecasting
(post-tipping).

Anticipating tipping points (pre-tipping) is based on the
effect of slowing down of the dynamics of the system prior
to critical behaviour. When a system state becomes unsta-
ble and starts a transition to another state, the response to
small perturbations becomes slower. This “critical slowing
down” can be detected as increasing autocorrelations (ACF)
in the time series Held and Kleinen (2004). Alternatively,
the short-range scaling exponent of detrended fluctuation
analysis (DFA) (Peng et al., 1994) may be monitored (up
to 100 units, which in the case, for example, of daily data
correspond to 3.5 months; see Livina and Lenton, 2007).
The lag-1 autocorrelation is calculated in sliding windows of
fixed length (conventionally, half of the series length) or vari-
able length (for uncertainty estimation) along the time series,
which produces a curve of an early warning indicator. This
indicator describes the structural dynamics of the time series.

If the curve of the indicator remains flat and stable, the time
series does not experience a critical change (whether bifurca-
tional or transitional). If the indicator rises to a critical value
of 1 (the monotonic trend can be estimated, for instance, us-
ing Kendall rank correlation), it provides a warning of critical
behaviour.

Lag-1 autocorrelation is estimated by fitting an autoregres-
sive process of order 1 (AR1):

zt+1 = czt + σηt , (3)

where η is a Gaussian white noise process of unit variance,
σ is the noise level, and c = e−κ1t is the “ACF indicator”
with κ the decay rate of perturbations. Then, c→ 1 as κ→ 0
when a tipping point is approached. In addition, the DFA
method utilizes built-in detrending of a chosen polynomial
order, which allows one to distinguish transitions and bifur-
cations in the early-warning signals. This can be done by
comparing several early-warning indicators, with and with-
out detrending data in sliding windows (Livina et al., 2012).
The paper Livina and Lenton (2007) provided the first appli-
cation of the DFA-based early-warning indicator to the pale-
otemperature record with detected transition using both ACF
and DFA indicators.

Detecting and forecasting of a tipping point is performed
using dynamical potential analysis. The technique detects a
bifurcation in a time series and the time when it happens,
which is illustrated in a novel plot mapping by colour the
potential dynamics of the system (Livina et al., 2010, 2011).
The dynamics of the tipping point is forecast using extrapo-
lation of the dynamically derived Chebyshev coefficients of
the approximation to the probability density function of the
system trajectory (Livina et al., 2013).

For the purposes of potential analysis, the dynamics of the
system is approximated by a potential stochastic model with
a polynomial U (which, in general, may depend on both state
variable z and time)

ż=−U ′(z, t)+ ση, (4)

where ż is the time derivative of the system variable z(t), η
is Gaussian white noise of unit variance, and σ is the noise
level. In the case of a double-well potential, U can be de-
scribed by a polynomial of fourth order (assuming its quasi-
stationarity, with dependence on the state variable z only):

U(z)= a4z
4
+ a3z

3
+ a2z

2
+ a1z. (5)

The Fokker–Planck equation for the probability density func-
tion p(z, t),

δtp(z, t)= δz
[
U ′(z)p(z, t)

]
+

1
2
σ 2δ2

zp(z, t), (6)

has a stationary solution given by

p(z, t)∼ exp
[
−2U(z)/σ 2

]
. (7)
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The potential can be reconstructed from time series data
of the system using the following relation to the probability
density function:

U(z)=−
σ 2

2
logpd(z), (8)

which means that the empirical probability density pd (ker-
nel distribution) has a number of modes corresponding to the
number of wells of the potential.

The structural changes of the potential are often not visi-
ble in the time series, yet they may lead to a dramatic evolu-
tion of the system. Detecting such changes gives an advan-
tage in understanding of the dynamical system. The potential
coloured map (Livina et al., 2010) visualizes bifurcations ac-
cording to the number of detected system states. It illustrates
bifurcations as the change in the colour describing the num-
ber of states along all timescales (the y axis shows the length
of the sliding window of data for which the number of states
is assessed). If no such pattern is observed, there is no bifur-
cation in the time series.

This stochastic approximation of the system structural dy-
namics has remarkable accuracy for data subsets of length as
short as 400 to 500 data points, demonstrating above 90 %
rate of successful detection, as was shown in an experiment
with double-well-potential artificial data (Livina et al., 2011).
For data subsets of length greater than 1000 data points it cor-
rectly detects the structure of the potential with a success rate
of over 98 %.

The technique of potential forecasting is based on dynami-
cal propagation of the probability density function of the time
series. We employ the coefficients of the Chebyshev polyno-
mial approximation of the empirical probability distribution
and extrapolate them in order to forecast the future probabil-
ity distribution of the data. After reconstruction of the system
kernel distribution, a time series is generated using rejection
sampling technique, and then the obtained dataset is sorted
according to the initial data in order to reconstruct the tem-
poral correlations in the time series. The detailed mathemati-
cal description of the potential forecasting technique is given
in Livina et al. (2013). The technique has the advantage of
reproducing both static properties (probability density) and
dynamic properties (scaling exponent, or power-law correla-
tions) of a time series.

3 Data

We study the large CTBTO record (2003–2016) of the Cape
Leeuwin hydrophone, series H01W1, which is a 250 Hz sam-
pled time series of ocean sound pressure. The raw data repre-
sent 3 TB of binary waveforms, which after extraction consti-
tute 95 billion points in the time series. We analyse 1 min av-
erages of sound pressure level (SPL) in five frequency bands
(5–115 Hz broadband as well as 10–30, 40–60, 56–70, and
85–105 Hz), of about 7 million points per time series. These

Figure 1. Initial (a) and processed (b) sound pressure level data in
five frequency bands. Processing included interpolation and desea-
sonalization. Note that seasonal variability is less pronounced in the
higher frequencies of the initial data. At the same time, the records
of higher frequencies have declining trend visible by eye.

data have pronounced seasonality and some small gaps, and
therefore we perform interpolation and deseasonalization of
all five time series, the result of which can be seen in Fig. 1.

The data samples were scaled using their calibration fac-
tors (provided by CTBTO), and an inverse filter of the record-
ing system’s frequency response was applied to eliminate the
effect of the acquisition chain on the frequency response of
the recordings. The fast Fourier transform (FFT) of the signal
was computed using rectangular windows of 15 000 samples
(i.e. 1 min intervals at 250 Hz sampling rate) and the broad-
band signal was then filtered in five frequency bands (5–115,
10–30, 40–60, 56–70, 85–105 Hz) via selection of the cor-
responding FFT bins within each frequency band. Then the
resulting sound pressure level (SPL) in dB re 1 µ Pa2 for each
frequency band was calculated (Robinson et al., 2014; ISO
18405, 2017). Finally, outliers, i.e. levels more than 20 dB
above the average of the entire time series of SPL values,
were removed.

Because of the data gaps, we interpolate the SPL data to
achieve equidistant 1 min temporal resolution. We then re-
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Figure 2. Trend estimation in SPL bands (deseasonalized data)
using “delete-d” jackknife sampling with 1000 subsets with d =
10 000 randomly deleted data points. Blue dots show the slope with
corresponding jackknife uncertainties of the least-squares linear re-
gression, whereas red dots show the trend (the absence of it, with
zero slopes of linear regression) for the shuffled data, i.e. the data
with randomly allocated values of the time series.

move the seasonal periodicity by subtracting the averaged
seasonal cycle over the 14 years of observation to obtain the
fluctuations

zi = Si− S̄i, (9)

where Si is the interpolated SPL data, and S̄i is the mean
1 min interpolated SPL data. The resulting fluctuations are
shown in the right column of Fig. 1, for the broadband and
the four selected sub-bands.

4 Results and discussion

We analyse the global trends of these five datasets, assuming
the simplest linear model in a least-squares regression. To es-
timate the uncertainty in the trends, we apply the “jackknife”
technique (see Efron, 1982; Wu, 1986). We use the “delete-
d” variation of the method, with random subsampling and
numerical implementation reducing the number of required
samples, which allows to estimate variance of the trend as

v =
r

dm

m∑
t=1

(
Tr,st −

1
m

m∑
k=1

Tr,sk

)2

, (10)

where d is the number of the excluded data points in each
sample (“delete-d”) of length r = n− d (n is data length), T
are statistics of the trend estimator; see further details in Shao
and Tu (1995).

The resulting trends show a small annual decline in SPL
for all five datasets, as shown in Fig. 2.

The above trend analysis was applied to deseasonalized
fluctuations (SPL broadband). It is interesting that the av-
erage annual cycle of the initial broadband data, too, has a
declining trend, which is illustrated in Fig. 3.

The origin of the seasonality in the acoustic data from
a hydrophone installed at depth is a subject of discussion,
because the seasonal ocean temperature fluctuations at the
surface would barely influence the sound propagation to-
wards hydrophones. There are various possible mechanisms

Figure 3. Average annual cycle of the SPL broadband, its linear
regression line (red) and horizontal line (cyan) for comparison.

through which seasonal variability may manifest in the hy-
droacoustic data. For example, seasonal variations in ship-
ping frequency, recreational vehicle use, iceberg breakup.
Seasonally, there may be a slight warming/cooling in the top
few tens of metres of water surface layer, but at the depth of
the SOFAR (sound fixing and ranging) channel, where the
hydrophone is located, temperature is stable on a seasonal
timescale. Some seasonal effects in the sound record may
be originating from iceberg formation as the edges of the
Antarctic, as ice breaks up at a higher rate in the Southern
Hemisphere summertime. Furthermore, seasonal variations
in whale song are plausible, as well as in fauna migration
due to seasonal fluctuations in food supply.

We next apply the pre-tipping analysis (early-warning sig-
nals) to analyse lag-1 autocorrelations and variance of the
broadband SPL record, with estimation of uncertainty. We
vary the length of the sliding windows for calculating these
indicators between one-fourth and three-fourths of the record
length to obtain the averaged curves and standard uncertain-
ties and display the indicator values at the end of each win-
dow, as shown in Fig. 4.

The noticeable change at the end of these early-warning
indicators may be related to the unusually large El Niño event
of 2015–2016. One can see that the variance decline slows
down and autocorrelation sharply rises, which means that
the increase in memory is not accompanied by increasing
amplitude of acoustic fluctuations. Such effects may happen
when a dynamical system experiences critical slowing down
prior to a bifurcational tipping. As we hypothesize that the
El Niño signature may be related to changes in both oceanic
dynamics and fauna, the increasing memory in the acoustic
data may reflect, for instance, the observation that during the
El Niño the Cape Leeuwin current slows down (Feng et al.,
2003). The slower ocean current introduces more inertia in
the dynamical system, and therefore higher temporal mem-
ory/autocorrelations.
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Figure 4. Early-warning indicators of the broadband SPL dataset:
lag-1 autocorrelation (upper panel) and variance (lower panel), cal-
culated with variable window lengths, from 1/4 to 3/4 of the record
length, and corresponding standard uncertainties, displayed at the
end of each window. Both indicators demonstrate nonstationary be-
haviour (increasing autocorrelation and decreasing variance), which
denotes long-term development a possible future tipping.

Similar to what is seen in the CTBTO data, the effect of in-
creasing autocorrelation and decreasing variance was earlier
observed in bifurcating artificial data changing from white
noise to random walk, in Livina et al. (2012). The acous-
tics dynamics may be undergoing a similar tipping. Note that
this analysis of early-warning signals is performed with large
enough windows (starting from a length of 3 years up to
9 years), which identify large-scale variability, with possible
dynamics on the scale of decades ahead.

Further, we apply potential analysis to identify smaller-
scale variability, varying the length of the sliding window
from 3 days to 1 year. The resulting potential plot is shown
in Fig. 5.

El Niño–Southern Oscillation (ENSO) can be monitored
using several indices, which are obtained by averaging cli-
matic variables to make the presence of El Niño more visible
in the series. We show in Fig. 5 two of them: Southern Os-
cillation Index (SOI) and Oceanic Niño Index (ONI). SOI is
based on the sea level air pressure differences between Tahiti
and Darwin, Australia. ONI is based on the 3-month running
mean of sea-surface temperature anomalies ERSST.v4 SST
(Huang et al., 2014) in the Niño 3.4 region (NOAA SOI).
Negative SOI (positive ONI) corresponds to El Niño events,
characterized by warm SST in the eastern and central tropical
Pacific (Trenberth and Caron, 2000).

We calculate, for easier comparison of El Niño indices
and potential analysis, two binary indices derived from the
ONI and from the single level of the potential plot at the
scale 0.5 years. The bars in the bottom panel of Fig. 5 show
the occurrence of El Niño events in the ONI (which is less
noisy than SOI), and at the same time we plot a binary in-

Figure 5. (a) Potential analysis plot of the broadband SPL data, with
varying window length (y axis) from 1 day to 1 year. The colours
denote the number of detected potential states: green – two; cyan
– three. Specks of magenta denote very short periods of a higher
number of states, which correspond to highly variable (possibly
non-potential) subsets of data of small size. (b) ENSO indices ONI
and SOI, known to be anti-correlated, which indicate several ENSO
events (El Niño and La Niña). These can also be seen in the poten-
tial analysis plot. ONI positive and negative values (roughly corre-
sponding to El Niño and La Niña) are shaded by light red and light
blue respectively, for better comparison with the indices in the lower
panel. (c) Binary indices derived from the ONI and potential plot (at
the level 0.5 year of y-scale in the top panel) which have values 1
when there is an El Niño (in the case of ONI-based binary index) or
anomalous potential state (in the case of the potential binary index).

dex showing periods when the system potential does not fol-
low its “regular” three-well-potential pattern; these two in-
dices have agreement in several periods corresponding to the
known El Niño events (2003, 2004, 2006, 2009, 2015–2016),
which illustrates our hypothesis of the El Niño signature in
the acoustic data.

The vertical span of the features of the potential plot (the
specks of different colours) corresponds to the timescale of
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Figure 6. The difference between two-well-potential (first half of
the year 2016, black curve) and three-well-potential (second half of
2016, red curve) subsets of the broadband SPL record in the two
upper panels. In the lower panel, the build-up of the new poten-
tial well can be seen in the red histogram, where the main mode
becomes broader and starts building two new modes around SPL
values −3 and 0 dB re 1 Pa2 (deseasonalized SPL data).

the change, i.e. the size of the time window, within which
the change has been detected. As El Niño is a seasonal phe-
nomenon (except the unusually long event of 2015–2016),
most of such specks are located within the window of size
1 year. The large event of 2015–2016, indeed, extends higher
than that. To address this timescale, we derived the binary
potential index using the detection data at fixed timescale of
0.5 year, at which most El Niño events should be present in
the detection statistics.

We do not claim that the potential colour plot could
be used for early-warning signals (such as prognosis of
El Niño), in this system or in others. Moreover, there may be
other factors causing structural changes in the acoustic data,
rather than El Niño or La Niña. On the other hand, detection
of such changes can indeed be useful useful for other studies
that could investigate attribution of structural variability, and
here the technique of potential analysis might be very useful.

To understand better what dynamical changes occur in the
acoustic fluctuations, it is useful to plot the histograms of
the corresponding subsets of data. Figure 6 demonstrates the
difference between the two-well-potential (first part of the
year 2016) and the three-well-potential (second part of the
year 2016) subsets, which correspond to green and cyan areas
in the top panel of Fig. 5.

The variability of the potential can be understood as ap-
pearance and disappearance of the SPL fluctuations, which
are present in the three-well-potential subsets and disappear
in sub-periods of two-well-potential dynamics. These peri-
ods of change seem to coincide with some of the recent
El Niño events, in particular the strong oscillation in 2015–

2016. Since in these short periods data become two-well po-
tential during El Niño, one can hypothesize that the El Niño
event reduces acoustic fluctuations events in the tails of the
probability distribution (higher and lower values) and inten-
sifies the events in the middle range of values.

It is known (Feng et al., 2003) that the Leeuwin Current is
influenced by El Niño, which causes lower temperature and
slower current. This causes a number of climatic and environ-
mental changes (including the impact of El Niño on sea level,
current transport, and migration of marine animals), and this
may affect the acoustic signal. In particular, the local sea bot-
tom slopes near Cape Leeuwin are very steep, with large un-
derwater peaks (see Fig. 4 in Feng et al., 2003), which may
be inducing reflection and scattering of the acoustic signal at
greater depths, where the hydrophone is located.

The hydrophone, located 100 km off-coast from Cape
Leeuwin at the south-western corner of Australia, has un-
obstructed reception of acoustic signals arriving via the SO-
FAR channel at angles between 110 and 355◦ azimuth. The
hydrophone is omnidirectional at these frequencies, but its
“field of view” is blocked by the land mass of Australia. For
other azimuths, which are occluded by the Australian conti-
nental shelf, surface sounds and seismic waves can still be
reflected or refracted into the SOFAR channel there where
the ocean bottom slopes through the SOFAR channel, par-
ticularly if it does so steeply. Note that on account of the
lower speed of sound in water compared to rock, refraction
is towards the normal for seismic waves coupling into water
so such coupling is not efficient for a mostly horizontal sea
bottom: the hydrophone array will predominantly see seis-
mic waves that impinge close to vertically from below (have
a small slowness, high apparent velocity across the array)
which are subsequently scattered by the wavy sea surface in-
stead of propagating coherently onwards. Hence steep slopes
couple better.

The detailed analysis of directional acoustic propagation is
beyond the scope of the current paper and may be analysed
later elsewhere.

Finally, we analyse the scaling properties of the deseason-
alized fluctuations of the broadband SPL to identify the type
of noise present in this dynamical system. When the noise is
white, the DFA scaling exponent has value 0.5, whereas red
noise has values of the exponent higher than 0.5 (Peng et al.,
1994), with nonstationary red noise having exponent higher
than 1 (random walk has exponent 1.5). The scaling expo-
nent is estimating by fitting the fluctuation curve F(s)∼ sα

in a log–log plot, as shown in Fig. 7. The variable “s” is the
scale size of the DFA, which is the size of the varying win-
dow where the fluctuations are estimated. For more details
on the DFA method, we refer the reader to Kantelhardt et al.
(2002).

When we apply the scaling analysis to the deseasonalized
broadband SPL, in both short and long temporal range it has
a high exponent (about 0.9), which means that the acous-
tic fluctuations are stationary red noise, and this is how they
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Figure 7. Detrended fluctuation analysis scaling curve of the broad-
band SPL, with estimated scaling exponent values. The straight line
denotes the slope with scaling exponent 1. The scaling exponents
of the curve (short term and long term) are much higher than 0.5,
hence the noise is not white but red (presence of correlations); the
exponent is slightly smaller than 1, which means that the fluctua-
tions are stationary (unlike a nonstationary random walk).

should be modelled to represent accurately the stochastic
term in Eq. (1).

It is important to model the climatic variables with colour
noise rather than with basic white noise, especially when a
system like this exhibits highly correlated long-term persis-
tence (as estimated by DFA in Fig. 7 with α = 0.96). The pat-
tern of such fluctuations differs significantly from the pattern
of white noise: the persistent data (“with memory”) is likely
to have positive fluctuations tomorrow if today the fluctua-
tions are positive. The scaling methods, such as DFA, allow
one to quantify this effect, and detect the changes in the data
that are not visible in time series by a naked eye, as it is il-
lustrated in Fig. 4. If one uses white noise for modelling such
complex data, the ability to analyse such data and forecast the
system dynamics would be much reduced, with poor skill.

5 Model

Acoustic noise at the depth of 1 km can be influenced by mul-
tiple factors of natural and anthropogenic origin, and we in-
vestigate some of the possible components that could repre-
sent the dynamics of the acoustic system. While there may be
various equivalent models reproducing the observed time se-
ries, we choose the simple stochastic dynamic system which
generates simulated time series with closely matching statis-
tical properties.

Based on the above analysis, we can formulate a stochastic
model for the acoustic oceanic noise. We adopt an additive
model with the following terms:

ż=−U ′(z, t)+ T (t)+P(t)+8, (11)

Figure 8. Five samples of SPL data (real, black; modelled, red).
(a) Samples of data; (b) DFA scaling curves. The thin line in the
panels of the right column denotes the slope with scaling expo-
nent 1, to which the curves are very close. The modelled data have
the same probability density and scaling properties as the real data.

where U(t) is the system potential, T (t) is a long-term linear
trend, P(t) is a seasonal trend, and 8 are red-noise fluctu-
ations. In Eq. (11), we use time as the main variable of the
time series, assuming that only the shape of the potential U
is defined by the state variable z as described above. The pa-
rameters of the model (the global trend slope, the amplitude
of the seasonality, the coefficients of the potential, the scaling
exponent of the fluctuations, and the dynamics of its autocor-
relation and variance) can be derived from the data and used
for simulating artificial data for comparison. Such stochas-
tically modelled artificial data can be used for a long-term
forecast of acoustic data and for testing various hypotheses
of the hydroacoustic dynamical system. For simplicity, we
illustrate this with a triple-well-potential term U(t), and fur-
ther parameters derived from the broadband SPL. We show
five subsamples of the SPL broadband data in Fig. 8, where
observed and modelled time series are compared (left col-
umn), as well as their fluctuation curves (right column).

The model (11) is a version of the non-autonomous
Langevin equation, which was previously used in analysis of
paleodata; see for example Ditlevsen et al. (2005), although
paleodata have different temporal resolution and patterns.
This illustrates the flexibility of the stochastic modelling ap-
proach and its general applicability.

6 Conclusions

We have applied tipping point analysis and identified de-
terministic and stochastic components of the ocean acoustic
data. We have discovered a possible signature of El Niño in
the deep-ocean acoustic data, which is an interesting obser-
vation confirmed by both potential analysis and direct esti-
mation of the probability density function of the broadband
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SPL. Given that the hydrophones are located at depth, and the
number of factors influencing the hydroacoustic system in
conjunction with the global climate system is large, the inves-
tigation of the transitional mechanisms between the surface
multiannual phenomena and deep-water acoustic processes
may be a subject of a separate paper. The current dynamics of
the acoustic fluctuations, which demonstrate slow but steady
changes in early-warning indicators, suggests of an upcom-
ing tipping point in this hydroacoustic system, with possi-
ble appearance/disappearance of system states, which in this
context denote higher/lower SPL fluctuations. Because Cape
Leeuwin is a busy shipping junction in world trade, and as
trading processes intensify (at the same time requiring more
modern ships, with more efficient and less noisy engines),
we hypothesize that frequency ranges of the oceanic acous-
tic noise will be affected unequally, due to multiple factors
related to anthropogenic activities.

In Sardeshmukh et al. (2015), the authors consider extreme
weather statistics and warn against seeking anthropogenic
components in data with heavy-tailed non-Gaussian distribu-
tions. In agreement with their opinion, we do not attempt to
introduce an anthropogenic term in our model. However, the
acoustic impact of shipping and other anthropogenic factors
on the marine wildlife have already been reported: anthro-
pogenic sounds affect vocalizing baleen whales, with dis-
tance of impact up to 200 km (Risch et al., 2012); such dis-
turbances cause behavioural changes in large animals, and
consequently reduce their acoustic presence in the area of
observation.

Some frequency bands may decrease in level because of
the technological changes: new developments in quieter en-
gine technology, establishment of noise mitigation standards,
and renewal of the fleets. In particular, there is global large-
scale replacement of heavy-tonnage ships, where in some
categories, like “cargo”, “containers” and “bulk carriers”,
ships of age above 25 years are no longer present; see the
report of the European Maritime Safety Agency (EMSA,
2015).

Other potential causes of trends in ocean noise levels
include changes in the frequency of other anthropogenic
sources such as geophysical surveying, changes in the num-
ber and distributions of biological sources such as large
cetaceans, changes in natural sources of sound such ice
breakup and ice formation, and changes in the ocean envi-
ronment which may affect the propagation of sound (for ex-
ample, sea temperature).

By taking into account all the components of the proposed
model (11), i.e. the global trend, the seasonal trend, the asym-
metric system potential structure, and the long-term corre-
lated red noise, one can reproduce the considered acoustic
data. Our analysis allows one to understand these main com-
ponents and derive their specific parameters, which are then
used to forecast data, and thus validate our understanding of
this dynamical system. Indeed, there may be other models
that can produce similar structure of time series. The advan-

tage of our model is its simplicity and adequate represen-
tation of the main geophysical processes of this dynamical
system.

The hypothesis of the possible influence of El Niño ap-
peared in the course of our research and was unexpected.
Therefore, our modelling approach, in principle, is capable
of discovering such interesting signatures in the data for fur-
ther investigation. This demonstrates the capability of the
proposed data analysis, on its part, to stimulate geophysical
research.

Data availability. CTBTO data are not openly accessible, but ac-
cess can be requested by submitting a research proposal via https:
//www.ctbto.org/specials/vdec.
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