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Abstract. Particle filtering is a generic weighted ensemble
data assimilation method based on sequential importance
sampling, suited for nonlinear and non-Gaussian filtering
problems. Unless the number of ensemble members scales
exponentially with the problem size, particle filter (PF) algo-
rithms experience weight degeneracy. This phenomenon is a
manifestation of the curse of dimensionality that prevents the
use of PF methods for high-dimensional data assimilation.
The use of local analyses to counteract the curse of dimen-
sionality was suggested early in the development of PF al-
gorithms. However, implementing localisation in the PF is a
challenge, because there is no simple and yet consistent way
of gluing together locally updated particles across domains.

In this article, we review the ideas related to localisation
and the PF in the geosciences. We introduce a generic and
theoretical classification of local particle filter (LPF) algo-
rithms, with an emphasis on the advantages and drawbacks
of each category. Alongside the classification, we suggest
practical solutions to the difficulties of local particle filter-
ing, which lead to new implementations and improvements
in the design of LPF algorithms.

The LPF algorithms are systematically tested and com-
pared using twin experiments with the one-dimensional
Lorenz 40-variables model and with a two-dimensional
barotropic vorticity model. The results illustrate the advan-
tages of using the optimal transport theory to design the local
analysis. With reasonable ensemble sizes, the best LPF algo-
rithms yield data assimilation scores comparable to those of
typical ensemble Kalman filter algorithms, even for a mildly
nonlinear system.

1 Introduction

The ensemble Kalman filter (EnKF, Evensen, 1994) and its
variants are currently among the most popular data assimila-
tion (DA) methods. Because EnKF-like methods are simple
to implement, they have been successfully developed and ap-
plied to numerous dynamical systems in geophysics such as
atmospheric and oceanographic models, including in opera-
tional conditions (see for example Houtekamer et al., 2005;
Sakov et al., 2012a).

The EnKF can be viewed as a subclass of sequential Monte
Carlo (MC) methods whose analysis step relies on Gaussian
distributions. However, observations can have non-Gaussian
error distributions, an example being the case of bounded
variables, which are frequent in ocean and land surface mod-
elling or in atmospheric chemistry. Most geophysical dynam-
ical models are nonlinear yielding non-Gaussian error distri-
butions (Bocquet et al., 2010). Moreover, recent advances in
numerical modelling enable the use of finer resolutions for
the models: small scale processes that can increase nonlin-
earity must then be resolved.

When the Gaussian assumption is not fulfilled, Kalman
filtering is suboptimal. Iterative ensemble Kalman filter and
smoother methods have been developed to overcome these
limitations, mainly by including variational analysis in the
algorithms (Zupanski, 2005; Sakov et al., 2012b; Bocquet
and Sakov, 2014) or through heuristic iterations (Kalnay and
Yang, 2010). Yet one cannot bypass the Gaussian represen-
tation of the conditional density with these latter methods.
On the other hand, with particle filter (PF) methods (Gordon
et al., 1993; Doucet et al., 2001; Arulampalam et al., 2002;
Chen, 2003; van Leeuwen, 2009; Bocquet et al., 2010), all
Gaussian and linear hypotheses have been relaxed, allowing
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a fully Bayesian analysis step. That is why the generic PF is
a promising method.

Unfortunately, there is no successful application of it to
a significantly high-dimensional DA problem. Unless the
number of ensemble members scales exponentially with the
problem size, PF methods experience weight degeneracy and
yield poor estimates of the model state. This phenomenon
is a symptom of the curse of dimensionality and is the
main obstacle to an application of PF algorithms to most
DA problems (Silverman, 1986; Kong et al., 1994; Snyder
et al., 2008). Nevertheless, the PF has appealing properties
– the method is elegant, simple, and fast, and it allows for a
Bayesian analysis. Part of the research on the PF is dedicated
to their application to high-dimensional DA with a focus on
four topics: importance sampling, resampling, hybridisation,
and localisation.

Importance sampling is at the heart of PF methods where
the goal is to construct a sample of the posterior density
(the conditional density) given particles from the prior den-
sity using importance weights. The use of a proposal tran-
sition density is a way to reduce the variance of the im-
portance weights, hence allowing the use of fewer particles.
However, importance sampling with a proposal density can
lead to more costly algorithms that are not necessarily rid
of the curse of dimensionality (chap. 4 of MacKay, 2003;
Snyder et al., 2015). Proposal-density PF methods include
the optimal importance particle filter (OIPF, Doucet et al.,
2000), whose exact implementation is only available in sim-
ple DA problems (linear observation operator and additive
Gaussian noise), the implicit particle filter (Chorin and Tu,
2009; Chorin et al., 2010; Morzfeld et al., 2012), which is
an extension of the OIPF for DA problems using smoothing,
the equivalent-weights particle filter (EWPF), and its implicit
version (van Leeuwen, 2010; Zhu et al., 2016).

Resampling is the first improvement that was suggested
in the bootstrap algorithm (Gordon et al., 1993) to avoid the
collapse of a PF based on sequential importance sampling.
Common resampling algorithms include the multinomial re-
sampling and the stochastic universal (SU) sampling algo-
rithms. The resampling step allows the algorithm to focus
on particles that are more likely, but as a drawback, it intro-
duces sampling noise. Worse, it may lead to sample impov-
erishment, hence failing to avoid the collapse of the PF if
the model noise is insufficient (van Leeuwen, 2009; Bocquet
et al., 2010). Therefore it is usual practice to add a regular-
isation step after the resampling (Musso et al., 2001). Us-
ing ideas from the optimal transport theory, Reich (2013) de-
signed a resampling algorithm that creates strong bindings
between the prior ensemble members and the updated en-
semble members.

Hybridising PFs with EnKFs seems a promising approach
for the application of PF methods to high-dimensional DA,
in which one can hope to take the best of both worlds: the ro-
bustness of the EnKF and the Bayesian analysis of the PF.
The balance between the EnKF and the PF analysis must

be chosen carefully. Hybridisation especially suits the case
where the number of significantly nonlinear degrees of free-
dom is small compared to the others. Hybrid filters have
been applied, for example, to geophysical low-order models
(Chustagulprom et al., 2016) and to Lagrangian DA (Apte
and Jones, 2013; Slivinski et al., 2015).

In most geophysical systems, distant regions have an (al-
most) independent evolution over short timescales. This idea
was used in the EnKF to implement localisation in the anal-
ysis (Houtekamer and Mitchell, 2001; Hamill et al., 2001;
Evensen, 2003; Ott et al., 2004). In a PF context, localisa-
tion could be used to counteract the curse of dimensionality.
Yet, if localisation of the EnKF is simple and leads to effi-
cient algorithms (Hunt et al., 2007), implementing localisa-
tion in the PF is a challenge, because there is no trivial way
of gluing together locally updated particles across domains
(van Leeuwen, 2009). The aim of this paper is to review and
compare recent propositions of local particle filter (LPF) al-
gorithms (Rebeschini and van Handel, 2015; Lee and Majda,
2016; Penny and Miyoshi, 2016; Poterjoy, 2016; Robert and
Künsch, 2017) and to suggest practical solutions to the diffi-
culties of local particle filtering that lead to improvements in
the design of LPF algorithms.

Section 2 provides some background on DA and parti-
cle filtering. Section 3 is dedicated to the curse of dimen-
sionality, with some theoretical elements and illustrations.
The challenges of localisation in PF methods are then dis-
cussed in Sects. 4 and 7 from two different angles. For both
approaches, we propose new implementations of LPF algo-
rithms, which are tested in Sects. 5, 6, and 8 with twin simu-
lations of low-order models. Several of the LPFs are tested in
Sect. 9 with twin simulations of a higher dimensional model.
Conclusions are given in Sect. 10.

2 Background

2.1 The data assimilation filtering problem

We follow a state vector xk ∈ RNx at discrete times tk , k ∈ N,
through independent observation vectors yk ∈ RNy . The evo-
lution is assumed to be driven by a hidden Markov model
whose initial distribution is p(x0), whose transition distri-
bution is p(xk+1|xk), and whose observation distribution is
p
(
yk|xk

)
.

The model can alternatively be described by

xk+1 =Mk (xk, wk) , (1)
yk =Hk (xk, vk) , (2)

where the random vectors wk and vk follow the transition
and observation distributions.

The components of the state vector xk are called state vari-
ables or simply variables, and the components of the obser-
vation vector yk are called observations.
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Let πk|k be the analysis (or filtering) density πk|k =

p
(
xk|yk:0

)
, where yk:0 is the set

{
yl, l = 0. . .k

}
, and let

πk+1|k be the prediction (or forecast) density πk+1|k =

p
(
xk+1|yk:0

)
, with π0|−1 coinciding with p(x0) by conven-

tion.
The prediction operator Pk is defined by the Chapman–

Kolmogorov equation:

Pk
(
πk|k

)
,πk+1|k =

∫
p(xk+1|xk)πk|k dxk, (3)

and Bayes’ theorem is used to define the correction operator
Ck:

Ck+1
(
πk+1|k

)
,πk+1|k+1 =

p
(
yk+1|xk+1

)
πk+1|k

p
(
yk+1|yk:0

) . (4)

In this article, we consider the DA filtering problem that
consists in estimating πk|k with given realisations of yk:0.

2.2 Particle filtering

The PF is a class of sequential MC methods that produces,
from the realisations of yk:0, a set of weighted ensemble
members (or particles)

(
xik, w

i
k

)
, i = 1. . .Ne. The analysis

density πk|k is estimated through the empirical density:

π
Ne
k|k =

Ne∑
i=1

wik δxik
, (5)

where the weights are normalised so that their sum is 1 and
δx is the Dirac distribution centred at x.

Inserting the particle representation Eq. (5) in the
Chapman–Kolmogorov equation yields

Pk

(
π
Ne
k|k

)
=

Ne∑
i=1

wik p
(
xk+1|x

i
k

)
. (6)

In order to recover a particle representation, the prediction
operator Pk must be followed by a sampling step SNe . In
the bootstrap or sampling importance resampling (SIR) al-
gorithm of Gordon et al. (1993), the sampling is performed
as follows:

xik+1 ∼ p
(
xk+1|x

i
k

)
, (7)

wik+1← wik, (8)

where x ∼ p means that x is a realisation of a random vec-
tor distributed according to the probability density function
(pdf) p. The empirical density πNe

k+1|k is now an estimator of
πk+1|k .

Applying Bayes’ theorem to πNe
k+1|k gives a weight update

that follows the principle of importance sampling:

wik+1← wik+1 p
(
yk+1|x

i
k+1

)
. (9)

The weights are then renormalised so that they sum to 1.
Finally, an optional resampling stepRNe is added if needed

(see Sect. 2.3). In terms of densities, the PF can be sum-
marised by the recursion

π
Ne
k+1|k+1 = R

Ne ◦Ck+1 ◦ S
Ne ◦Pk

(
π
Ne
k|k

)
. (10)

The additional sampling and resampling operators SNe and
RNe are ensemble transformations that are required to prop-
agate the particle representation of the density. Ideally, they
should not alter the densities.

Under reasonable assumptions on the prediction and cor-
rection operators and on the sampling and resampling algo-
rithms, it is possible to show that, in the limit Ne→∞, πNe

k|k

converges to πk|k for the weak topology on the set of proba-
bility measures over RNx . This convergence result is one of
the main reasons for the interest of the DA community in
PF methods. More details about the convergence of PF algo-
rithms can be found in Crisan and Doucet (2002).

Eventually, the focus of this article is on the analysis step,
that is, the correction and the resampling. Hence, prior or
forecast (posterior, updated, or analysis) will refer to quan-
tities before (after) the analysis step, respectively.

2.3 Resampling

Without resampling, PF methods are subject to weight de-
generacy: after a few assimilation cycles, one particle gets
almost all the weight. The goal of resampling is to reduce the
variance of the weights by reinitialising the ensemble. Af-
ter this step, the ensemble is made of Ne equally weighted
particles.

In most resampling algorithms, highly probable particles
are selected and duplicated, while particles with low prob-
ability are discarded. It is desirable that the selection of
particles has a low impact on the empirical density π

Ne
k|k .

The most common resampling algorithms – multinomial
resampling, SU sampling, residual resampling, and Monte
Carlo Metropolis–Hastings algorithm – are reviewed by van
Leeuwen (2009). The multinomial resampling and the SU
sampling algorithms, frequently mentioned in this paper, are
described in Appendix E.

Resampling introduces sampling noise. On the other
hand, not resampling means imparting computational time
to highly improbable particles that have a very low contribu-
tion to the empirical analysis density. Therefore, the choice
of the resampling frequency is critical in the design of PF al-
gorithms. Common criteria to decide if a resampling step is
needed are based on measures of the degeneracy, for example
the maximum of the weights or the effective ensemble size
defined by Kong et al. (1994), i.e.

Neff =

(
Ne∑
i=1

(
wik

)2
)−1

∈ [1, Ne] . (11)
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The correction and resampling steps of PF methods can
be combined and embedded into the so-called linear ensem-
ble transform (LET) framework (Bishop et al., 2001; Reich
and Cotter, 2015) as follows. Let Ek be the ensemble matrix,
that is, the Nx×Ne matrix whose columns are the ensemble
members xik . The update of the particles is then given by

Ek← EkT, (12)

where T is a Ne×Ne transformation matrix whose coeffi-
cients are uniquely determined during the resampling step.
In the general LET framework, T has real coefficients, and it
is subject to the normalisation constraint

Ne∑
i=1

[T]i, j = 1, j = 1. . .Ne, (13)

such that the updated ensemble members can be interpreted
as weighted averages of the prior ensemble members. The
transformation is said to be first-order accurate if it preserves
the ensemble mean (Acevedo et al., 2017), i.e. if

Ne∑
j=1

[T]i, j =New
i
k, i = 1. . .Ne. (14)

In the “select and duplicate” resampling schemes, the co-
efficients of T are in {0, 1}, meaning that the updated parti-
cles are copies of the prior particles. The first-order condition
Eq. (14) is then only satisfied on average over realisations of
the resampling step. Yet it is sufficient to ensure the weak
convergence of πNe

k|k almost surely in the case of the multino-
mial resampling (Crisan and Doucet, 2002).

If the coefficients of T are positive reals, the transforma-
tion can be understood as a resampling where the updated
particles are composite copies of the prior particles. For ex-
ample, in the ensemble transform particle filter (ETPF) al-
gorithm of Reich (2013), the transformation is chosen such
that it minimises the expected distance between the prior and
the updated ensembles (seen as realisations of random vec-
tors) among all possible first-order accurate transformations.
This leads to a minimisation problem typical of the discrete
optimal transport theory (Villani, 2009):

min
T∈T

Ne∑
i, j=1

[T]i, j
∥∥∥xik − x

j
k

∥∥∥2
, (15)

where T is the set of Ne×Ne transformation matrices sat-
isfying Eqs. (13) and (14). In this way, the correlation be-
tween the prior and the updated ensembles is increased, and
π
Ne
k|k still converges toward πk|k for the weak topology. In the

following, this resampling algorithm will be called optimal
ensemble coupling.

2.4 Proposal-density particle filters

Let q (xk+1) be a density whose support is larger than that
of p(xk+1|xk), i.e. q (xk+1) > 0 whenever p(xk+1|xk) > 0.

The Chapman–Kolmogorov Eq. (3) can be written as

πk+1|k =

∫
p(xk+1|xk)

q (xk+1)
q (xk+1)πk|k dxk. (16)

In the importance sampling literature, q is called the proposal
density and can be used to perform the sampling step SNe

described by Eqs. (7) and (8) in a more general way:

xik+1 ∼ q (xk+1) , (17)

wik+1← wik
p
(
xik+1|x

i
k

)
q
(
xik+1

) . (18)

Using the proposal density q can lead to an improvement of
the PF method if, for example, q is easier to sample from
than p or if q includes information about xk or yk+1 in order
to reduce the variance of the importance weights.

The SIR algorithm is recovered with the standard pro-
posal p(xk+1|xk), while the optimal importance proposal
p
(
xk+1|xk, yk+1

)
yields the optimal importance sampling

importance resampling (OISIR) algorithm (Doucet et al.,
2000). Merging the prediction and correction steps of the
OISIR algorithm yields the weight update

wik+1← wik p
(
yk+1|x

i
k

)
. (19)

It is remarkable that this formula does not depend on xk+1
(Doucet et al., 2000). Hence the optimal importance pro-
posal is optimal in the sense that it minimises the variance
of the weights over realisations of xik+1 – namely 0. More-
over, it can be shown that it also minimises the variance of
the weights over realisations of the whole trajectory xik+1:0
among proposal densities that depend on xk and yk+1 (Sny-
der et al., 2015).

Although the optimal importance proposal has appealing
properties, its computation is non-trivial. For the generic
model with Gaussian additive noise described in Ap-
pendix A2, when the observation operator H is linear, the
optimal importance proposal can be computed as a Kalman
filter analysis as shown by Doucet et al. (2000). However,
in the general case, there is no analytic form, and one must
resort to more elaborate algorithms (Chorin and Tu, 2009;
Chorin et al., 2010; Morzfeld et al., 2012).

3 The curse of dimensionality

3.1 The weight degeneracy of particle filters

The PF has been successfully applied to low-dimensional DA
problems (Doucet et al., 2000). However, attempts to apply
the SIR algorithm to medium- to high-dimensional geophysi-
cal models have led to weight degeneracy (e.g. van Leeuwen,
2003; Zhou et al., 2006).

Bocquet et al. (2010) demonstrated weight degeneracy in
low-order models, for example, in the Lorenz 1996 (L96,
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Lorenz and Emanuel, 1998) model in the standard config-
uration described in Appendix A3. They illustrated the em-
pirical statistics of the maximum of the weights for several
values of the system size. When the system size is small (10
to 20 variables), weights are balanced, and values close to 1
are infrequent. However, when the system size grows (more
than 40 variables) weights rapidly degenerate: values close
to 1 become more frequent. Ultimately, the frequency of the
maximum of the weights peaks to 1.

Similar results are produced when applying one impor-
tance sampling step to the Gaussian linear model described
in Appendix A1. For this model, we illustrate the empirical
statistics of the maximum of the weights in Fig. 1. Snyder
et al. (2008) also computed the required number of particles
in order to avoid degeneracy in simulations and found that it
scales exponentially with the size of the problem.

This phenomenon, well known in the PF literature, is often
referred to as degeneracy, collapse, or impoverishment and is
a symptom of the curse of dimensionality.

3.2 The equivalent state dimension

At first sight, it might seem surprising that, although MC
methods have a convergence rate independent of the di-
mension, the curse of dimensionality applies to PF meth-
ods. Yet the correction step Ck is an importance sampling
step between the prior and the analysis probability densities.
The higher the number of observations Ny, the more singu-
lar these densities are to each other: random particles from
the prior density have an exponentially small likelihood ac-
cording to the analysis density. This is the main reason for
the blow-up of the number of particles required for a non-
degenerate scenario (Rebeschini and van Handel, 2015).

A quantitative description of the behaviour of weights for
large values of Ny can be found in Snyder et al. (2008). In
this study, the authors first define

τ 2
= var

[
ln
(
p
(
yk|xk

)) ]
, (20)

with the hypothesis that the observation noise is additive and
each of its components are independent and identically dis-
tributed (iid). Then they derive the asymptotic relationship
for only one analysis step:

E

 1
max
i
wik

 ∼
Ne→∞

1+
√

2lnNe

τ
, (21)

where E is the expectation over realisations of the prior en-
semble members.

This result means that, in order to avoid the collapse of
a PF method, the number of particles Ne must be of order
exp

(
τ 2/2

)
. In simple cases, as the ones considered in the pre-

vious sections, τ 2 is proportional to Ny. The dependence of
τ on Nx is indirect in the sense that the derivation of Eq. (21)
requires Nx to be asymptotically large. In a sense, one can
think of τ 2 as an equivalent state dimension.

Figure 1. Empirical statistics of the maximum of the weights for
one importance sampling step applied to the Gaussian linear model
of Appendix A1. The model parameters are p = 1, a = 1, h= 1,
q = 1, and σ = 1, the ensemble size is Ne = 128, and the system
size varies from Nx = 8 (well-balanced case) to Nx = 128 (almost
degenerate case).

Snyder et al. (2008) then illustrate the validity of the
asymptotic relationship Eq. (21) using simulations of the
Gaussian linear model of Appendix A1 with a SIR algorithm,
for which

τ 2
=Ny

h2 (q2
+ a2p2)
σ 2

(
1+

3h2

2σ 2

(
q2
+ a2p2

))
. (22)

Snyder et al. (2008) do not illustrate the validity of Eq. (21)
in more general cases, mainly because the computation of
τ is non-trivial. The effect of resampling is not investigated
either, though it is clear from simulations that resampling is
not enough to avoid filter collapse. Finally, the effect of using
proposal densities is the subject of another study by Snyder
et al. (2015).

3.3 Mitigating the collapse using proposals

One objective of using proposal densities in PF methods is to
reduce the variance of the importance weights as discussed in
Sect. 2.4. If one uses the optimal importance proposal den-
sity p

(
xk+1|xk, yk+1

)
to sample xk in the prediction and

sampling step SNe ◦Pk , the correction step Ck+1 consists in
matching two identical densities, which leads to a weight up-
date Eq. (19) that does not depend on the realisation of xk+1.

Yet the OISIR algorithm still collapses even for low-order
models, such as the L96 model with 40 variables (Bocquet
et al., 2010). In fact, the curse of dimensionality for any
proposal-density PF does not primarily come from the cor-
rection step Ck , but from the recursion in the PF. In particu-
lar it stems from the fact that the algorithm does not correct
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the particles at earlier times to account for new observations
(Snyder et al., 2015). This was a key motivation in the devel-
opment of the guided SIR algorithm of van Leeuwen (2009),
whose ideas were included in the practical implementations
of the EWPF algorithm (van Leeuwen, 2010; Ades and van
Leeuwen, 2015) as a relaxation step, with moderate success
(Browne, 2016).

Snyder et al. (2015) illustrate the validity of Eq. (21) using
simulations of the Gaussian linear model of Appendix A1
with an OISIR algorithm, for which

τ 2
=Ny

a2p2h2

σ 2+h2q2

(
1+

3a2h2p2

2
(
σ 2+h2q2

)) , (23)

and they found a good accuracy of Eq. (21) in the limitNe�

exp
(
τ 2/2

)
. This shows that the use of the optimal importance

proposal reduces the number of particles required to avoid
the collapse of a PF method. However, ultimately, proposal-
density PFs cannot counteract the curse of dimensionality in
this simple model, and there is no reason to think that they
could in more elaborate models (see chap. 29 of MacKay,
2003).

In a generic Gaussian linear model, the equivalent state di-
mension τ 2 as in Eqs. (22) and (23) is directly proportional
to the system sizeNx, equal toNy in this case. For more elab-
orate models, the relationship between τ 2 and Nx is likely to
be more complex and may involve the effective number of
degrees of freedom in the model.

3.4 Using localisation to avoid collapse

By considering the definition of τ 2 from Eq. (20), one can
see that the curse of dimensionality is a consequence of the
fact that the importance weights are influenced by all com-
ponents of the observation vector yk . Yet a particular state
variable and observation can be nearly independent, for ex-
ample in spatially extended models if they are distant to each
other. In this situation, the statistical properties of the ensem-
ble at this state variable (i.e. the marginal density) should not
evolve during the analysis step. Yet this is not the case in
PF methods because of the use of (relatively) low ensemble
sizes; even the ensemble mean can be significantly impacted.
A good illustration of this phenomenon can be found in Fig. 2
of Poterjoy (2016). In this case, the PF overestimates the in-
formation available and equivalently underestimates the un-
certainty in the analysis density (Snyder et al., 2008). As a
consequence, spurious correlations appear between distant
state variables.

This would not be the case in a PF algorithm that would
be able to perform local analyses, that is, when the influence
of each observation is restricted to a spatial neighbourhood of
its location. The equivalent state dimension τ 2 would then be
defined using the maximum number of observations that in-
fluence a state variable, which could be kept relatively small
even for high-dimensional systems.

In the EnKF literature, this idea is known as domain local-
isation or local analysis and was introduced to fix the same
kind of issues (Houtekamer and Mitchell, 2001; Hamill et al.,
2001; Evensen, 2003; Ott et al., 2004). The technical imple-
mentations of domain localisation in EnKF methods are as
easy as implementing a global analysis, and the local analy-
ses can be carried out in parallel (Hunt et al., 2007). By con-
trast, the application of localisation techniques in PF methods
is discussed in Snyder et al. (2008), van Leeuwen (2009), and
Bocquet et al. (2010), with an emphasis on two major diffi-
culties.

The first issue is that the variation of the weights across
local domains irredeemably breaks the structure of the global
particles. There is no trivial way of recovering this global
structure, i.e. gluing together the locally updated particles.
Global particles are required for the prediction and sampling
step SNe ◦Pk in all PF algorithms, where the model Mk is
applied to each individual ensemble member.

Second, if not carefully constructed, this gluing together
could lead to balance problems and sharp gradients in the
fields (van Leeuwen, 2009). In EnKF methods, these issues
are mitigated by using smooth functions to taper the influ-
ence of the observations. The smooth dependency of the
analysis ensemble on the observation precision reduces im-
balance (Greybush et al., 2011). Yet, in most PF algorithms,
there is no such smooth dependency. From now on, this is-
sue will be called “imbalance” or “discontinuity” issue. The
word “discontinuity” does not point to the discrete nature of
the model field on the grid, but inspired by the mathemat-
ical notion of continuity, it points to large unphysical gaps
appearing in the discrete model field.

3.5 Two types of localisation

From now on, we will assume that our DA problem has a
well-defined spatial structure:

– Each state variable is attached to a location, the grid
point.

– Each observation is attached to a location, the observa-
tion site, or simply the site (observations are assumed
local).

– There is a distance function between locations.

The goal is to be able to define notions such as “the distance
between an observation site and a grid point”, “the distance
between two grid points”, or “the centre of a group of grid
points”. In realistic models, these concepts need to be related
to the underlying physical space.

In the following sections, we discuss algorithms that ad-
dress the two issues of local particle filtering (gluing and im-
balance) and lead to implementations of domain localisation
in PF methods. We divide the solutions into two categories.

In the first approach, independent analyses are performed
at each grid point by using only the observation sites that in-
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fluence this grid point. This leads to algorithms that are easy
to define, to implement, and to parallelise. However, there is
no obvious relationship between state variables, which could
be problematic with respect to the imbalance issue. This ap-
proach is used for example by Rebeschini and van Handel
(2015), Penny and Miyoshi (2016), Lee and Majda (2016),
and Chustagulprom et al. (2016). In this article, we call it
state–domain (and later state–block–domain) localisation.

In the second approach, an analysis is performed at each
observation site. When assimilating the observation at a site,
we partition the state space: nearby grid points are updated,
while distant grid point remain unchanged. In this formal-
ism, observations need to be assimilated sequentially, which
makes the algorithms harder to define and to parallelise but
may mitigate the imbalance issue. This approach is used,
for example, by Poterjoy (2016). In this article, we call it
sequential–observation localisation.

4 State–domain localisation for particle filters

From now on, the time subscript k is systematically dropped
for clarity, and the conditioning with respect to prior quan-
tities is implicit. The superscript i ∈ {1. . .Ne} is the member
index, the subscript n ∈ {1. . .Nx} is the state variable or grid
point index, the subscript q ∈

{
1. . .Ny

}
is the observation or

observation site index, and the subscript b ∈ {1. . .Nb} is the
block index (the concept of block is defined in Sect. 4.2).

4.1 Introducing localisation in particle filters

Localisation is generally introduced in PF methods by allow-
ing the analysis weights to depend on the spatial position. In
the (global) PF, the marginal of the analysis density for each
state variable is

p(xn)=

Ne∑
i=1

wi δxin
, (24)

whose localised version is

p(xn)=

Ne∑
i=1

win δxin
. (25)

The local weights win depend on the spatial position through
the grid point index n.

With local analysis weights, the marginals of the analysis
density are uncoupled. This is the reason why localisation
was introduced in the first place, but as a drawback, the full
analysis density is not known. The simplest fix is to approxi-
mate the full density as the product of its marginals:

p(x)=

Nx∏
n=1

Ne∑
i=1

win δxin
, (26)

which is a weighted sum of the NNx
e possible combinations

between all particles.

In summary, in LPF methods, we keep the generic MC
structure described in Sect. 2.2. The prediction and sampling
step is not modified. The correction step is adjusted to allow
the analysis density to have the form given by Eq. (26). In
particular, one has to define the local analysis weights win;
this point will be discussed in Sect. 4.2.2. Finally, global par-
ticles are required for the next assimilation cycle, and they
are obtained as follows. A local resampling is first performed
independently for each grid point. The locally resampled par-
ticles are then assembled into global particles. The local re-
sampling step is discussed in detail in Sect. 4.4.

4.2 Extension to state–block–domain localisation

The principle of localisation in the PF, in particular Eq. (26),
can be included into a more general state–block–domain
(SBD) localisation formalism. The state space is divided into
(local state) blocks with the additional constraint that the
weights should be constant over the blocks. The resampling
then has to be performed independently for each block.

In the block particle filter algorithm of Rebeschini and van
Handel (2015), the local weight of a block is computed using
the observation sites that are located inside this block. How-
ever, in general, nothing prevents one from using the obser-
vation sites inside a local domain potentially different from
the block. This is the case in the LPF of Penny and Miyoshi
(2016), in which the blocks have size 1 grid point, while the
size of the local domains is controlled by a localisation ra-
dius.

To summarise, LPF algorithms using the SBD localisa-
tion formalism, hereafter called LPFx algorithms1, are char-
acterised by

– the geometry of the blocks over which the weights are
constant;

– the local domain of each block, which gathers all obser-
vation sites used to compute the local weight;

– the local resampling algorithm.

Most LPFs (e.g. those described in Rebeschini and van
Handel, 2015; Penny and Miyoshi, 2016; Lee and Majda,
2016) in the literature can be seen to adopt this SBD for-
malism.

4.2.1 The local state blocks

Using parallelepipedal blocks is a standard geometric choice
(Rebeschini and van Handel, 2015; Penny and Miyoshi,
2016). It is easy to conceive and to implement, and it offers
a potentially interesting degree of freedom: the block shape.
Using larger blocks decreases the proportion of block bound-
aries, hence the bias in the local analyses. On the other hand,

1The x exponent emphasises the fact that we perform one anal-
ysis per (local state) block.
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it also means less freedom to counteract the curse of dimen-
sionality.

In the clustered particle filter algorithms of Lee and Ma-
jda (2016), the blocks are centred around the observation
sites. The potential gains of this method are unclear. More-
over, when the sites are regularly distributed over the space –
which is the case in the numerical examples of Sects. 5 and
6 – there is no difference with the standard method.

4.2.2 The local domains

The general idea of domain localisation in the EnKF is that
the analysis at one grid point is computed using only the ob-
servation sites that lie within a local region around this grid
point, hereafter called the local domain. For instance, in two
dimensions, a common choice is to define the local domain
of a grid point as a disk, which is centred at this grid point
and whose radius is a free parameter called the localisation
radius. The same principle can be applied to the SBD local-
isation formalism: the local domain of a block will be a disk
whose centre coincides with that of the block and whose ra-
dius will be a free parameter.

The terminology adopted here (disk, radius, etc.) fits two-
dimensional spatial spaces. Yet most geophysical models
have a three-dimensional spatial structure, with typical un-
even vertical scales that are usually much shorter than hor-
izontal scales. For these models, the geometry of the local
domains should be adapted accordingly.

Increasing the localisation radius allows one to take more
observation sites into account, hence reducing the bias in the
local analysis. It is also a means to reduce the spatial inho-
mogeneity by making the weights smoother in space.

The smoothness of the local weights is an important prop-
erty. Indeed, spatial discontinuities in the weights can lead
to spatial discontinuities in the updated particles. Again lift-
ing ideas from the local EnKF methods, the smoothness of
the weights can be improved by tapering the influence of an
observation site with respect to its distance to the block cen-
tre as follows. For the (global) PF, assuming that the obser-
vation sites are independent, the unnormalised weights are
computed according to

wi =

Ny∏
q=1

p
(
yq |x

i
)
. (27)

Following Poterjoy (2016), for an LPF, it becomes

wib =

Ny∏
q=1

{
α+G

(
dq, b

r

)(
p
(
yq |x

i
)
−α

)}
, (28)

where α is a constant that should be of the same order as
the maximum value of p(y|x), dq, b is the distance between
the qth observation site and the centre of the bth block, r is
the localisation radius, andG is the taper function:G(0)= 1
and G(x)= 0 if x is larger than 1, with a smooth transition.

A popular choice for G is the piecewise rational function of
Gaspari and Cohn (1999), hereafter called the Gaspari–Cohn
function. If the observation error is an iid Gaussian additive
noise with variance σ 2, one can use an alternative “Gaussian”
formula for wib, directly inspired from local EnKF methods:

lnwib =−
1

2σ 2

Ny∑
q=1

G

(
dq, b

r

)(
yq −Hq

(
xi
))2

. (29)

Equations (28) and (29) differ. Still they are equivalent in the
asymptotic limit r→ 0 and σ →∞.

4.2.3 Algorithm summary

Algorithm 1 describes the analysis step for a generic LPFx.
The algorithm parameters are the ensemble size Ne, the ge-
ometry of the blocks, and the localisation radius r used to
compute the local weights with Eq. (28) or (29). Nb is the
number of blocks, and E|b is the restriction of the ensemble
matrix E to the bth block (i.e. the rows of E corresponding
to grid points that are located within the bth block). E|b is a
Nx/Nb×Ne matrix.

In this algorithm, and in the rest of this article, the ensem-
ble matrix E and the particles xi (its columns) are used inter-
changeably. Note that in most cases, steps 3, 5, and 6 can be
merged into one step.

An illustration of the definition of blocks and local do-
mains is displayed in Fig. 2.

4.3 Beating the curse of dimensionality

The feasibility of PF methods using SBD localisation is dis-
cussed by Rebeschini and van Handel (2015) through the ex-
ample of their block particle filter algorithm. In this algo-
rithm, the distinction between blocks and local domains does
not exist. The influence of each observation is not tapered and
the resampling is performed independently for each block,
regardless of the boundaries between blocks.

The main mathematical result is that, under reasonable hy-
potheses, the error on the analysis density for this algorithm
can be bounded by the sum of a bias and a variance term. The
bias term is related to the block boundaries and decreases ex-
ponentially with the diameter of the blocks, in number of grid
points. It is due to the fact that the correction is not Bayesian
anymore, since only a subset of observations is used to up-
date each block. The exponential decrease is a demonstration
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Figure 2. Example of geometry in the SBD localisation formalism
for a two-dimensional space. The focus is on the block in the mid-
dle, which gathers 12 grid points. The local domain is circumscribed
by a circle around the block centre, with potential observation sites
outside the block.

of the decay of correlations property. The variance term is
common to all MC methods and scales with exp(K)/

√
Ne.

For global MC methods, K is the state dimension, whereas
here K is the number of grid points inside each block. This
implies that LPFx algorithms can indeed beat the curse of
dimensionality with reasonably large ensembles.

4.4 The local resampling

Resampling from the analysis density given by Eq. (26) does
not cause any theoretical or technical issue. One just needs
to apply any resampling algorithm (e.g. those described in
Sect. 2.3) locally to each block, using the local weights.
Global particles are then obtained by assembling the locally
resampled particles. By doing so, adjacent blocks are fully
uncoupled – this is the same remark as when we constructed
the analysis density Eq. (26) from its marginals Eq. (25).
Once again, this is beneficial, since uncoupling is what coun-
teracts the curse of dimensionality.

On the other hand, blind assembling is likely to lead to un-
physical discontinuities in the updated particles, regardless
of the spatial smoothness of the analysis weights. More pre-
cisely, one builds composite particles: that is when the ith
updated particle is composed of the j th particle on one block
and of the kth particle on an adjacent block with j 6= k, as
shown by Fig. 3 in one dimension. There is no guarantee that
the j th and the kth local particles are close and that assem-
bling them will represent a physical state.

Figure 3. Example of one-dimensional concatenation of particle i
on the left and particle j on the right. The composite particle (pur-
ple) is a concatenation of particles i (blue) and j (green). In this
situation, a large unphysical discontinuity appears at the boundary.

In order to mitigate the unphysical discontinuities, the
analysis weights must be spatially smooth, as mentioned
in Sect. 4.2.2. Moreover, the resampling scheme must have
some “regularity”, in order to preserve part of the spatial
structure held in the prior particles. This is a challenge due to
the stochastic nature of the resampling algorithms; potential
solutions are presented hereafter.

4.4.1 Applying a smoothing-by-weights step

A first solution is to smooth out potential unphysical dis-
continuities by averaging in space the locally resampled en-
semble as follows. This method was introduced by Penny
and Miyoshi (2016) in their LPF and called smoothing by
weights.

Let Er
b be the matrix of the ensemble computed by apply-

ing the resampling method to the global ensemble, weighted
by the local weights wib of the bth block. Er

b is an Nx×Ne
matrix different from the Nx/Nb×Ne matrix Er

|b defined in
Sect. 4.2.3. We then define the smoothed ensemble matrix Es

by

[
Es]i

n
=

Nb∑
b=1

G
(
dn, b
rs

)[
Er
b

]i
n

Nb∑
b=1

G
(
dn, b
rs

) , (30)

where dn, b is the distance between the nth grid point and
the centre of the bth block, rs is the smoothing radius, a free
parameter potentially different from r , andG is a taper func-
tion, potentially different from the one used to compute the
local weights.

www.nonlin-processes-geophys.net/25/765/2018/ Nonlin. Processes Geophys., 25, 765–807, 2018



774 A. Farchi and M. Bocquet: Comparison of local particle filters and new implementations

If the resampling is performed using a “select and dupli-
cate” algorithm (see Sect. 2.3), for example, the SU sampling
algorithm, then define φb as the resampling map for the bth
block, i.e. the map computed with the local weights wib such
that φb(i) is the index of the ith selected particle. With E
being the prior ensemble matrix, Eq. (30) becomes

[
Es]i

n
=

Nb∑
b=1

G
(
dn, b
rs

)
[E]φb(i)n

Nb∑
b=1

G
(
dn, b
rs

) . (31)

Finally, the ensemble is updated as

E← αsEs
+ (1−αs)Er, (32)

where Er is the resampled ensemble matrix implicitly defined
by step 5 of Algorithm 1, and αs is the smoothing strength,
a free parameter in [0, 1] that controls the intensity of the
smoothing. When αs = 0, no smoothing is performed, and
when αs = 1, the analysis ensemble is totally replaced by the
smoothed ensemble.

Algorithm 2 describes the analysis step for a generic LPFx

with the smoothing-by-weights method. The original LPF of
Penny and Miyoshi (2016) can be recovered if the following
conditions are satisfied:

– Blocks have size 1 grid point (hence there is no distinc-
tion between grid points and blocks).

– The local weights are computed using Eq. (29).

– The function G is a top-hat function.

– The resampling method is the SU sampling algorithm.

– The smoothing radius rs is set to be equal to r .

– The smoothing strength αs is set to 0.5.

The method described here is a generalisation of their algo-
rithm.

Note that when the resampling method is the SU sam-
pling algorithm, the matrices Er

b do not need to be explic-
itly computed. One just has to store the resampling maps

φb, b = 1. . .Nb in memory and then use Eq. (31) to obtain
the smoothed ensemble matrix Es.

The smoothing-by-weights step is an ad hoc fix to reduce
potential unphysical discontinuities after they have been in-
troduced in the local resampling step. Its necessity hints that
there is room for improvement in the design of the local re-
sampling algorithms.

4.4.2 Refining the sampling algorithms

In this section, we study several properties of the local re-
sampling algorithm that might help dealing with the discon-
tinuity issue: balance, adjustment, and random numbers.

A “select and duplicate” sampling algorithm is said to be
balanced if, for i = 1. . .Ne, the number of copies of the ith
particle selected by the algorithm does not differ by more
than one unity fromwiNe. For example, this is the case of the
SU sampling but not the multinomial resampling algorithm.

A “select and duplicate” sampling algorithm is said to be
adjustment-minimising if the indices of the particles selected
by the algorithm are reordered to maximise the number of
indices i ∈ {1. . .Ne}, such that the ith updated particle is a
copy of the ith original particle. The SU sampling and the
multinomial resampling algorithms can be simply modified
to yield adjustment-minimising resampling algorithms.

While performing the resampling independently for each
block, one can use the same random number(s) in the local
resampling of each block.

Using the same random number(s) for the resampling of
all blocks avoids a stochastic source of unphysical discon-
tinuity. Choosing balanced and adjustment-minimising re-
sampling algorithms is an attempt to include some kind of
continuity in the map {local weights} 7−→ {locally updated
particles} by minimising the occurrences of composite parti-
cles. However, these properties cannot eliminate all sources
of unphysical discontinuity. Indeed, ultimately, composite
particles will be built – if not, then localisation would not be
necessary – and there is no mechanism to reduce unphysical
discontinuities in them. These properties have been first in-
troduced in the “naive” local ensemble Kalman particle filter
of Robert and Künsch (2017).

4.4.3 Using optimal transport in ensemble space

As mentioned in Sect. 2.3, using the optimal transport (OT)
theory to design a resampling algorithm was first investigated
in the ETPF algorithm of Reich (2013).

Applying optimal ensemble coupling to the SBD localisa-
tion frameworks results in a local LET resampling method,
whose local transformation at each block Tb solves the dis-
crete OT problem

min
Tb∈Tb

Ne∑
i, j=1

[Tb]i, j c
i, j
b , (33)
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where Tb is the set of Ne×Ne transformations satisfying the
normalisation constraint Eq. (13) and the local first-order ac-
curacy constraint

Ne∑
j=1

[Tb]i, j =New
i
b, i = 1. . .Ne. (34)

In the ETPF, the coefficients ci, j were chosen as the squared
L2 distance between the whole ith and j th particles as in
Eq. (15). Since we perform a local resampling step, it seems
more appropriate to use a local criterion, such as

c
i, j
b =

Nx∑
n=1

(
xin− x

j
n

)2
G

(
dn, b

rd

)
, (35)

where dn, b is the distance between the nth grid point and
the centre of the bth block, rd is the distance radius, another
free parameter, andG is a taper function, potentially different
from the one used to compute the local weights.

To summarise, Algorithm 3 describes the analysis step for
a generic LPFx that uses optimal ensemble coupling as local
resampling algorithm. Localisation was first included in the
ETPF algorithm by Cheng and Reich (2015), in a similar way
to the SBD localisation formalism. Hence Algorithm 3 can
be seen as a generalisation of the local ETPF of Cheng and
Reich (2015) that includes the concept of local state blocks.

On each block, the linear transformation establishes a
strong connection between the prior and the updated ensem-
bles. Moreover, there is no stochastic variation of the cou-
pling at each block. This means that the spatial coherence
can be (at least partially) transferred from the prior to the
updated ensemble.

4.4.4 Using optimal transport in state space

In Sect. 4.4.3, the discrete OT theory was used to compute a
linear transformation between the prior and the updated en-
sembles. Following these ideas, we would like to use OT di-
rectly in state space. In more than one spatial dimension, the
continuous OT problem is highly non-trivial and numerically
challenging (Villani, 2009). Therefore, we will restrict our-
selves to the case where blocks have size 1 grid point. Hence
there is no distinction between blocks and grid points.

For each state variable n, we define the prior (marginal)
pdf pf

n as the empirical density of the unweighted prior en-
semble

{
xin, i = 1. . .Ne

}
and the analysis pdf pa

n as the em-
pirical density of the prior ensemble, weighted by the anal-
ysis weights

{(
xin, w

i
n

)
, i = 1. . .Ne

}
. We seek the map Tn

that solves the following OT problem:

min
T ∈T f→a

n

∫
|xn− T (xn)|

2dxn, (36)

where T f→a
n is the set of maps T that transport pf

n into pa
n:

pf
n = p

a
n ◦ T · Jac(T ), (37)

with Jac(T ) being the absolute value of the determinant of
the Jacobian matrix of T .

In one dimension, this transport map is also known to be
the anamorphosis from pf

n to pa
n and its computation is im-

mediate:

Tn =
(
ca
n

)−1
◦ cf

n, (38)

where cf
n and ca

n are the cumulative density function (cdf) of
pf
n and pa

n, respectively. Since Tn maps the prior ensemble
to an ensemble whose empirical density is pa

n, the images of
the prior ensemble members by Tn are suitable candidates for
updated ensemble members.

The computation of Tn using Eq. (38) requires a contin-
uous representation for the empirical densities pf

n and pa
n.

An appealing approach to obtain it is to use the kernel den-
sity estimation (KDE) theory (Silverman, 1986; Musso et al.,
2001). In this context, the prior density can be written as

pf
n (xn)= α

f
n

Ne∑
i=1

K

(
xn− x

i
n

hσ f
n

)
, (39)

while the updated density is

pa
n (xn)= α

a
n

Ne∑
i=1

winK

(
xn− x

i
n

hσ a
n

)
. (40)

K is the regularisation kernel, h is the bandwidth, a free pa-
rameter, σ f

n and σ a
n are the empirical standard deviation of

respectively the unweighted ensemble
{
xin, i = 1. . .Ne

}
and

the weighted ensemble
{(
xin, w

i
n

)
, i = 1. . .Ne

}
and αf

n and
αa
n are normalisation constants.
According to the KDE theory, when the underlying distri-

bution is Gaussian, the optimal shape for K is the Epanech-
nikov kernel (quadratic functions). Yet there is no reason to
think that this will also be the case for the prior density. Be-
sides, the Epanechnikov kernel, having a finite support, gen-
erally leads to a poor representation of the distribution tails,
and it is a potential source of indetermination in the defini-
tion of the cumulative density functions. That is why it is
more common to use a Gaussian kernel for K . However, in
this case, the computational cost associated with the cdf of
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the kernel (the error function) becomes significant. Hence,
as an alternative, we choose to use the Student’s t distribu-
tion with two degrees of freedom. It is similar to a Gaussian,
but it has heavy tails, and its cdf is fast to compute. It was
also shown to be a better representation of the prior density
than a Gaussian in an EnKF context (Bocquet et al., 2015).

To summarise, Algorithm 4 describes the analysis step for
a generic LPFx that uses anamorphosis as local resampling
algorithm.

The local resampling algorithm using anamorphosis is, as
well as the algorithm using optimal ensemble coupling, a de-
terministic transformation. This means that unphysical dis-
continuities due to different random realisations over the grid
points are avoided. As explained by Poterjoy (2016), in such
an algorithm the updated ensemble members have the same
quantiles as the prior ensemble members. The quantile prop-
erty should, to some extent, be regular in space – for example
if the spatial discretisation is fine enough – and this kind of
regularity is transferred in the updated ensemble.

When defining the prior and the corrected densities with
Eqs. (39) and (40), we introduce some regularisation whose
magnitude is controlled through the bandwidth parameter h.
Regularisation is necessary to obtain continuous probability
density functions. Yet it introduces an additional bias in the
analysis step. Typical values of h should be around 1, with
larger ensemble sizesNe requiring smaller values for h. More
generally, regularisation is widely used in PF algorithms as
a fix to avoid (or at least limit the impact of) weight degen-
eracy, though its implementation (see Sect. 5.2) is usually
different from the method used in this section.

The refinements of the resampling algorithms suggested in
Sect. 4.4.2 were designed to minimise the number of unphys-
ical discontinuities in the local resampling step. The goal of
the smoothing-by-weights step is to mitigate potential un-
physical discontinuities after they have been introduced. On
the other hand, the local resampling algorithms based on OT
are designed to mitigate the unphysical discontinuities them-
selves. The main difference between the algorithm based on
optimal ensemble coupling and the one based on anamorpho-
sis is that the first one is formulated in the ensemble space,
whereas the second one is formulated in the state space. That

is to say, in the first case, we build an ensemble transforma-
tion Tb, whereas in the second case we build a state transfor-
mation Tn.

Due to computational considerations, the optimisation
problem Eq. (36) was only considered in one dimension.
Hence, contrary to the local resampling algorithm based on
optimal ensemble coupling, the one based on anamorphosis
is purely one-dimensional and can only be used with blocks
of size 1 grid point.

The design of the resampling algorithm based on anamor-
phosis has been inspired from the kernel density distribu-
tion mapping (KDDM) step of the LPF algorithm of Poterjoy
(2016), which will be introduced in Sect. 7.3. However, the
use of OT has different purposes. In our algorithm, we use
the anamorphosis transformation to sample particles from the
analysis density, whereas the KDDM step of Poterjoy (2016)
is designed to correct the posterior particles – they have al-
ready been transformed – with consistent high-order statisti-
cal moments.

4.5 Summary for the LPFx algorithms

4.5.1 Highlights

In this section, we have constructed a generic SBD localisa-
tion framework, which we have used to define the LPFxs, our
first category of LPF methods. The LPFx algorithms are char-
acterised by the geometry of the blocks and domains (i.e. the
definition of the local weights) and the resampling algorithm.
As shown by Rebeschini and van Handel (2015), the LPFx al-
gorithms have potential to beat the curse of dimensionality.
However, unphysical discontinuities are likely to arise after
the assembling of locally resampled particles (van Leeuwen,
2009). In this section, we have proposed to mitigate these dis-
continuities by improving the design of the local resampling
step. We distinguished four approaches:

1. A smoothing-by-weights step can be applied after the
local resampling step in order to reduce potential un-
physical discontinuities. Our method is a generalisa-
tion of the original smoothing designed by Penny and
Miyoshi (2016) that includes spatial tapering, a smooth-
ing strength, and is suited to the use of state blocks.

2. Simple properties of the local resampling algorithms
can be used in order to minimise the occurrences of un-
physical discontinuity as shown by Robert and Künsch
(2017).

3. Using the principles of discrete OT, we have proposed
a resampling algorithm based on a local version of the
ETPF of Reich (2013). This algorithm is similar to the
PF part of the PF–EnKF hybrid derived by Chustagul-
prom et al. (2016), but it includes a more general trans-
port cost, and it is suited to the use of blocks and any
resampling algorithm. By construction, the distance be-
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tween the prior and the analysis local ensembles is min-
imised.

4. By combining the continuous OT problem with the
KDE theory, we have derived a new local resampling
algorithm based on anamorphosis. We have shown how
it helps mitigate the unphysical discontinuities.

In Sect. 4.5.2, we discuss the numerical complexity, and in
Sect. 4.5.4, we discuss the asymptotic limits of the proposed
LPFx algorithms. In Sect. 4.5.3, we propose guidelines that
should inform our choice of the key parameters when imple-
menting these algorithms.

4.5.2 Numerical complexity

We define the auxiliary quantities N`
b (R), N

`
x (R), and

N`
y (R) by

N`
x (R)= max

b∈{1...Nb}
Card

{
n ∈ {1. . .Nx}\dn, b ≤ R

}
, (41)

N`
b (R)= max

n∈{1...Nx}
Card

{
b ∈ {1. . .Nb}\dn, b ≤ R

}
, (42)

N`
y (R)= max

q∈{1...Nb}
Card

{
q ∈

{
1. . .Ny

}
\dq, b ≤ R

}
. (43)

N`
y (R) is the maximum number of observation sites in a local

domain of radius R. N`
b (R) and N`

x (R) are the correspond-
ing quantities for the neighbourhood grid points and blocks.
In a d-dimensional spatial space, these quantities are at most
proportional to Rd .

The complexity of the LPFx analysis is the sum of the
complexity of computing all local weights and the com-
plexity of the resampling. Using Eq. (28) or (29), we con-
clude that the complexity of computing the local weights
is O

(
NeTH+NbNeN

`
y (r)

)
, which depends on the locali-

sation radius r and on the complexity TH of applying the ob-
servation operatorH to a vector. In the following paragraphs
we detail the complexity of each resampling algorithm.

When using the multinomial resampling of the SU sam-
pling algorithm for the local resampling, the total complexity
of the resampling step is O (NxNe).

When using optimal ensemble coupling, the resampling
step is computationally more expensive, because it requires
to solve one optimisation problem for each block. The min-
imisation coefficients Eq. (35) are computed with com-
plexity O

(
N2

eN
`
x (rd)

)
, which depends on the distance ra-

dius rd. The discrete OT problem Eq. (33) is a particu-
lar case of the minimum-cost flow problem and can be
solved quite efficiently using the algorithm of Pele and Wer-
man (2009) with complexity O

(
N2

e lnNe
)
. Applying the

transformation to the block has complexity O
(
NxN

−1
b N2

e

)
.

Finally, the total complexity of the resampling step is
O
(
NbN

2
eN

`
x (rd)+NbN

2
e lnNe+NxN

2
e
)
.

When using optimal transport in state space, every one-
dimensional anamorphosis is computed with complexity

O
(
Np
)
, whereNp is the one-dimensional resolution for each

state variable. Therefore the total complexity of the resam-
pling step is O

(
NxNeNp

)
.

When using the smoothing-by-weights step with the
multinomial resampling or the SU sampling algorithm, the
smoothed ensemble Eq. (31) is computed with complexity
O
(
NxNeN

`
b (rs)

)
, which depends on the smoothing radius rs,

and the updated ensemble Eq. (32) is computed with com-
plexity O (NxNe). Therefore, the total complexity of the re-
sampling and the smoothing steps is O

(
NxNeN

`
b (rs)

)
.

For comparison, the more costly operation in the local
analysis of a local EnKF algorithm is to compute the singular
value decomposition of aN`

y (r)×Ne matrix, which has com-

plexity O
(
N`

y (r)N
2
e

)
assuming that Ne ≤N

`
y (r). The total

complexity for a local EnKF algorithm depends on the spe-
cific implementation but should be at leastO

(
NbN

`
y (r)N

2
e

)
.

In this complexity analysis, the influence of the parameters
r , rd and rs is explicitly shown, because a practitioner must be
aware of the numerical cost of increasing these parameters.
Since the resampling is performed independently for each
block, this algorithmic step (which is the most costly step in
practice) can be carried out in parallel, allowing a theoretical
gain up to a factor Nb.

4.5.3 Choice of key parameters

The localisation radius r controls the number of observation
sites in the local domains N`

y (r) and the impact of the curse
of dimensionality. To avoid immediate weight degeneracy,
r should therefore be relatively small – smaller than what
would be required for an EnKF using domain localisation,
for example. This is especially true for realistic models with
two or more spatial dimensions in which N`

y (r) grows as r2

or more. In this case, it can happen that the localisation ra-
dius r have to be too small for the method to follow the truth
trajectory (either because too much information is ignored,
or because there is too much spatial variation in the local
weights), which would mean that localisation alone would
not be enough to make PF methods operational.

For a local EnKF algorithm, gathering grid points into
blocks is an approximation that reduces the numerical cost
of the analysis steps by reducing the number of local anal-
yses to perform. For an LPFx algorithm, the local analyses
should generally be faster (see the complexity analysis in
Sect. 4.5.2). In this case, using larger blocks is a way to de-
crease the proportion of block borders, which are potential
spots for unphysical discontinuities. However, increasing the
size of the blocks reduces the number of degrees of freedom
to counteract the curse of dimensionality. It also introduces
an additional bias in the local weight update, Eq. (28) or
(29), since the local weights are computed relatively to the
block centres. This issue was identified by Rebeschini and
van Handel (2015) as a source of spatial inhomogeneity of
the error. For these reasons, the blocks should be small (no
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more than a few grid points). Only large ensembles could
potentially benefit from larger blocks.

More discussion regarding the choice of the localisation
radius r and the number of blocks Nb, but also regarding
the choice of other parameters (the smoothing radius rs, the
smoothing strength αs, the distance radius rd, and the regu-
larisation bandwidth h) can be found in Sect. 5.

4.5.4 Asymptotic limit

An essential property of PF algorithms is that they are
asymptotically Bayesian: as stated in Sect. 2.2, under reason-
able assumptions, the empirical analysis density converges to
the true analysis density for the weak topology on the set of
probability measures over RNx in the limit Ne→∞. In this
section, we study under which conditions the LPFx analysis
can be equivalent to a (global) PF analysis and can therefore
be asymptotically Bayesian.

In the limit of very large localisation radius, r→∞, the
local weights Eqs. (28) and (29) are equal to the (global)
weights of the (global) PF. However, this does not imply that
the LPFx analysis is equivalent to a PF analysis, because the
resampling is performed independently for each block. Yet
we can distinguish the following cases in the limit r→∞:

– When using independent multinomial resampling or SU
sampling for the local resampling, if one uses the same
random number for all blocks (this property is always
true if Nb = 1), then the LPFx analysis is equivalent to
the analysis of the PF.

– When using the smoothing-by-weights step with the
multinomial resampling or the SU sampling, if one
uses the same random number for all blocks, then the
smoothed ensemble Eq. (31) is equal to the (locally) re-
sampled ensemble and the smoothing has no effect: we
are back to the first case.

– When using optimal ensemble coupling for the local
resampling, in the limit rd→∞, the LPFx analysis is
equivalent to the analysis of the (global) ETPF.

For other cases, we cannot give a firm conclusion:

– When using independent multinomial resampling or SU
sampling for the local resampling with different random
number for all blocks, then the updated particles are dis-
tributed according to the product of the marginal analy-
sis density Eq. (26), which is, in general, different from
the analysis density, even in the limit r→∞.

– For the same reason, when using anamorphosis for the
local resampling, we could not find proof that the LPFx

analysis is asymptotically Bayesian, even in the limit
h→ 0 and r→∞.

– When using the smoothing-by-weights step with the
multinomial resampling or the SU sampling, in the limit

r→∞ and rs→∞, the smoothed ensemble Eq. (31)
can be different from the updated ensemble of the global
PF, because the resampling is performed independently
for each block.

5 Numerical illustration of LPFx algorithms with the
Lorenz-96 model

5.1 Model specifications

In this section, we illustrate the performance of LPFxs with
twin simulations of the L96 model in the standard (mildly
nonlinear) configuration described in Appendix A3. For this
series of experiments, as for all experiments in this paper,
the synthetic truth is computed without model error. This is
usually a stringent constraint for the PF methods for which
accounting for model error is a means for regularisation. But
on the other hand, it allows for a fair comparison with the
EnKF, and it avoids the issue of defining a realistic model
noise.

The distance between the truth and the analysis is mea-
sured with the average analysis root mean square error, here-
after simply called the RMSE. To ensure the convergence of
the statistical indicators, the runs are at least 5×1041t long,
with an additional 1031t spin-up period. An advantage of
using PF methods is that they should asymptotically yield
sharp though reliable ensembles. This may not be entirely
reflected in the RMSE. However, not only does the RMSE
offer a clear ranking of the algorithms, but it is also an indi-
cator that measures the adequacy to the primary goal of data
assimilation, i.e. mean state estimation. Moreover, for a suffi-
ciently cycled DA problem, it seems likely that good RMSE
scores can only be achieved with ensembles of good quality
in the light of most other indicators. Nonetheless, in addition
to the RMSE, rank histograms meant to assess the quality of
the ensembles are computed and reported in Appendix D for
a selection of experiments.

For the localisation, we assume that the grid points are
positioned on an axis with a regular spacing of 1 unit of
length and with periodic boundary conditions consistent with
the system size. Therefore, the local domain centred on the
nth grid point is composed of the points {n−brc. . .n+brc},
where brc is the integer part of the localisation radius and the
Nb blocks consist of Nx/Nb consecutive grid points.

This filtering problem has been widely used to asses the
performance of DA algorithms. In this configuration, non-
linearities in the model are rather mild and representative of
synoptic scale meteorology, and the error distributions are
close to Gaussian. As a reference, the evolution of the RMSE
as a function of the ensemble size Ne is shown in Fig. 4
for the ensemble transform Kalman filter (ETKF) and its lo-
cal version (LETKF). For each value of Ne, the multiplica-
tive inflation parameter and the localisation radius (for the
LETKF) are optimally tuned to yield the lowest RMSE. In
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Figure 4. RMSE as a function of the ensemble sizeNe for the ETKF
and the LETKF.

most of the following figures related to the L96 test series, we
draw a baseline at 0.2, roughly the RMSE of the LETKF with
Ne = 10 particles. Note that slightly lower RMSE scores can
be achieved with larger ensembles.

5.2 Perfect model and regularisation

The application of PF algorithms to this chaotic model with-
out error leads to a fast collapse. Even with stochastic models
that account for some model error, PF algorithms experience
weight degeneracy when the model noise is too low. There-
fore, PF practitioners commonly include some additional jit-
ter to mitigate the collapse (e.g. Pham, 2001). As described
by Musso et al. (2001), jitter can be added in two different
ways.

5.2.1 Pre-regularisation

First, the prediction and sampling step Eq. (7) can be per-
formed using a stochastic extension of the model:

xik+1−M
(
xik

)
= wk ∼N

(
0, q2I

)
, (44)

where M is the model associated to the integration scheme
of the ordinary differential equations (ODEs), N (v, 6) is
the normal distribution with mean v and covariance matrix
6, and q is a tunable parameter. This jitter is meant to com-
pensate for the deterministic nature of the given model. In
this case, the truth could be seen as a trajectory of the per-
turbed model Eq. (44) with a realisation of the noise that is
identically zero. In the literature, this method is called pre-
regularisation (Le Gland et al., 1998), because the jitter is
added before the correction step.

5.2.2 Post-regularisation

Second, a regularisation step can be added after a full analy-
sis cycle:

xik+1← xik+1+u, u∼N
(

0, s2I
)
, (45)

where s is a tunable parameter. As opposed to the first
method, it can be seen as a jitter before integration: the
noise is integrated by the model before the next analysis
step, while smoothing potential unphysical discontinuities.
In some ways this method is similar to additive inflation in
EnKF algorithms. It is called post-regularisation (Musso and
Oudjane, 1998; Oudjane and Musso, 1999), because the jitter
is added after the correction step.

5.2.3 Numerical complexity and asymptotic limit

Both regularisation steps have numerical complexity
O (NxNeTr), with Tr being the complexity of drawing one
random number according to the univariate standard normal
law N (0, 1).

The exact LPF is recovered in the limit q→ 0 and s→ 0.

5.2.4 Standard S(IR)xR algorithm

With optimally tuned jitter for the standard L96 model, the
bootstrap PF algorithm requires about 200 particles to give,
on average, more information than the observations.2 With
103 particles, its RMSE is around 0.6, and with 104, it is
around 0.4.

We define the standard S(IR)xR algorithm – sampling, im-
portance, resampling, regularisation, the x exponent meaning
that steps in parentheses are performed locally for each block
– as the LPFx (Algorithm 1) with the following characteris-
tics:

– Grid points are gathered into Nb blocks of Nx/Nb con-
nected grid points.

– Jitter is added after the integration using Eq. (44), with
a standard deviation controlled by q.

– The local weights are computed using the Gaussian ta-
pering of observation influence given by Eq. (29), where
G is the Gaspari–Cohn function.

– The local resampling is performed independently for
each block with the adjustment-minimising SU sam-
pling algorithm.

– Jitter is added at the end of each assimilation cycle using
Eq. (45) with a standard deviation controlled by s.

2We have proven in this case that the RMSE, when computed
between the observations yk and truth xk , has an expected value of
0.98.
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The standard deviation of the jitter after integration (q)
and before integration (s) shall be called “integration jitter”
and “regularisation jitter”, respectively. The S(IR)xR algo-
rithm has five parameters: (Ne, Nb, r, q, s). All algorithms
tested in this section are variants of this standard algorithm
and are named S(αβ)xγ δ, with the conventions detailed in
Table 1. Table 2 lists all LPFx algorithms tested in this section
and reports their characteristics according to the convention
of Table 1.

5.3 Tuning the localisation radius

We first check that, in this standard configuration, local-
isation is working by testing the S(IR)xR algorithm with
Nb = 40 blocks of size 1 grid point. We take Ne = 10 par-
ticles, q = 0 (perfect model), and several values for the reg-
ularisation jitter s. The evolution of the RMSE as a function
of the localisation radius r is shown in Fig. 5. With SBD lo-
calisation, the LPF yields an RMSE around 0.45 in a regime
where the bootstrap PF algorithm is degenerate. The compro-
mise between bias (small values of r , too much information
is ignored, or there is too much spatial variation in the local
weights) and variance (large values of r , the weights are de-
generate) reaches an optimum around r = 3 grid points. As
expected, the local domains are quite small (5 observation
sites) in order to efficiently counteract the curse of dimen-
sionality.

5.4 Tuning the jitter

To evaluate the efficiency of the jitter, we experiment with the
S(IR)xR algorithm withNe = 10 particles,Nb = 40 blocks of
size 1 grid point, and a localisation radius r = 3 grid points.
The evolution of the RMSE as a function of the integration
jitter q is shown in Fig. 6 and as a function of the regularisa-
tion jitter s in Fig. 7.

From these results, we can identify two regimes:

– With low regularisation jitter (s < 0.15), the filter sta-
bility is ensured by the integration jitter, with optimal
values around q = 1.25.

– With low integration jitter (q < 0.5), the stability is en-
sured by the regularisation jitter, with optimal values
around s = 0.26.

As expected, adding jitter before integration (i.e. with s)
yields significantly better results. This indicates that the
model integration indeed smoothes the jitter out and removes
unphysical discontinuities for the correction step. We ob-
served the same tendency for most LPFs tested in this article.

In the rest of this section, we take zero integration jitter
(q = 0), and the localisation radius r and the regularisation
jitter s are systematically tuned to yield the lowest RMSE
score.

Table 1. Nomenclature conventions for the S(αβ)xγ δ algorithms.
Capital letters refer to the main algorithmic ingredients: “I” for im-
portance, “R” for resampling or regularisation, “T” for transport,
and “S” for smoothing. Subscripts are used to distinguish the meth-
ods in two different ways. Lower-case subscripts refer to explicit
concepts used in the method: “ng” stands for non-Gaussian, “su” for
stochastic universal, “s” for state space, and “c” for colour. Upper-
case subscripts refer to the work that inspired the method; “PM”
stands for Penny and Miyoshi (2016) and “R” for Reich (2013). For
simplicity, some subscripts are omitted: “g” for Gaussian, “amsu”
for adjustment-minimising stochastic universal, and “w” for white.
Finally, note that we used the subscript “d” (for deterministic) to
indicate that the same random numbers are used for the resampling
over all blocks.

α Local importance weights (Sect. 4.2.2)

Ing Eq. (28) (non-Gaussian)
I Eq. (29) (Gaussian)

β Local resampling algorithm (Sect. 4.4)

Rsu SU sampling algorithm
Rd Adjustment-minimising SU sampling algorithm with

the same random numbers over all blocks
R Adjustment-minimising SU sampling algorithm
TR Optimal transport in ensemble space
Ts Optimal transport in state space

γ Smoothing-by-weights method (Sect. 4.4.1)

SPM Enabled
– Disabled

δ Regularisation method (Sect. 5.2 and 5.8)

R White noise method
Rc Coloured noise method

5.5 Increasing the size of the blocks

To illustrate the influence of the size of the blocks, we com-
pare the RMSEs obtained by the S(IR)xR algorithm with var-
ious fixed number of blocks Nb. The evolution of the RMSE
as a function of the ensemble size Ne is shown in Fig. 8. For
small ensemble sizes, using larger blocks is inefficient, be-
cause of the need for degrees of freedom to counteract the
curse of dimensionality. Only very large ensembles benefit
from using large blocks as a consequence of the reduction of
proportion of block boundaries, potential spots for unphysi-
cal discontinuities.

From now on, unless specified otherwise, we systemati-
cally test our algorithms with Nb = 40, 20, and 10 blocks of
1, 2, and 4 grid points, respectively, and we keep the best
RMSE score.

5.6 Choice of the local weights

To illustrate the influence of the definition of the local
weights, we compare the RMSEs of the S(IR)xR and the
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Figure 5. RMSE as a function of the localisation radius r for the
S(IR)xR algorithm with Ne = 10 particles, Nb = 40 blocks of size
1 grid point, and no integration jitter (q = 0). For each r , several val-
ues for the regularisation jitter s are tested, as shown by the colour
scale.

Figure 6. RMSE as a function of the integration jitter q for the
S(IR)xR algorithm with Ne = 10 particles, Nb = 40 blocks of size
1 grid point, and a localisation radius r = 3 grid points. For each q,
several values for the regularisation jitter s are tested, as shown by
the colour scale.

S(IngR)xR algorithms. These two variants only differ in their
definition of the local importance weights: the S(IR)xR al-
gorithm uses the Gaussian tapering of observation influence
defined by Eq. (29), while the S(IngR)xR algorithm uses the
non-Gaussian tapering given by Eq. (28).

Figure 9 shows the evolution of the RMSE as a function of
the ensemble size Ne. The Gaussian version of the definition

Figure 7. RMSE as a function of the regularisation jitter s for the
S(IR)xR algorithm with Ne = 10 particles, Nb = 40 blocks of size
1 grid point, and a localisation radius r = 3 grid points. For each s,
several values for the integration jitter q are tested, as shown by the
colour scale.

Figure 8. RMSE as a function of the ensemble size Ne for the
S(IR)xR algorithm with Nb = 40, 20, and 10 blocks of size 1, 2,
and 4 grid points, respectively.

of the weights always yields better results. This is probably a
consequence of the fact that, in this configuration, nonlineari-
ties are mild and the error distributions are close to Gaussian.
In the following, we always use Eq. (29) to define the local
weights.
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Figure 9. RMSE as a function of the ensemble size Ne for the
S(IR)xR and the S(IngR)xR algorithms withNb = 40 and 10 blocks
of size 1 and 4 grid points, respectively. The scores are displayed in
units of the RMSE of the S(IR)xR algorithm with Nb = 40 blocks
of size 1 grid point.

5.7 Refining the stochastic universal sampling

In this section, we test the refinements of the sampling algo-
rithms proposed in Sect. 4.4.2. To do this, we compare the
S(IR)xR algorithm with the following algorithms:

– the S(IRd)xR algorithm, for which the same random
numbers are used for the resampling of each block;

– the S(IRsu)xR algorithm, which uses the SU sampling
algorithm without the adjustment-minimising property.

Figure 10 shows the evolution of the RMSE as a func-
tion of the ensemble size Ne. The S(IRsu)xR, the only algo-
rithm that does not satisfy the adjustment-minimising prop-
erty, yields higher RMSEs. This shows that the adjustment-
minimising property is indeed an efficient way of reducing
the number of unphysical discontinuities introduced during
the resampling step.

However, using the same random number for the resam-
pling of each block does not produce significantly lower RM-
SEs. This method is insufficient to reduce the number of un-
physical discontinuities introduced when assembling the lo-
cally updated particles. This is probably a consequence of the
fact that the SU sampling algorithm only uses one random
number to compute the resampling map. It also suggests that
the specific realisation of this random number has a weak
influence on long-term statistical properties.

In the following, when using the SU sampling algorithm,
we always choose its adjustment-minimising form, but we do
not enforce the same random numbers over different blocks.

Figure 10. RMSE as a function of the ensemble size Ne for the
S(IR)xR, the S(IRd)xR, and the S(IRsu)xR algorithms, with Nb =
40 and 10 blocks of size 1 and 4 grid points, respectively. The scores
are displayed in units of the RMSE of the S(IR)xR algorithm with
Nb = 40 blocks of size 1 grid point.

5.8 Colourising the regularisation

5.8.1 Colourisation for global PFs

According to Eqs. (44) and (45), the regularisation jitters
are white noises. In realistic models, different state variables
may take their values in disjoint intervals (e.g. the tempera-
ture takes values around 300K and the wind speed can take
its values between −10 and 10ms−1), which makes these
jittering methods inadequate.

It is hence a common procedure in ensemble DA to
scale the regularisation jitter with statistical properties of
the ensemble. In a (global) PF context, practitioners often
“colourise” the Gaussian regularisation jitter with the em-
pirical covariances of the ensemble as described by Musso
et al. (2001). Since the regularisation jitter is added after the
resampling step, it is scaled with the weighted ensemble be-
fore resampling in order to mitigate the effect of resampling
noise.

More precisely, the regularisation jitter has zero mean and
Nx×Nx covariance matrix given by

[6]n,m =
ĥ

1−
Ne∑
i=1

(
wi
)2

Ne∑
i=1

wi
(
xin− xn

)(
xim− xm

)
, (46)

where ĥ is the bandwidth, a free parameter, and xn is the
ensemble mean for the nth state variable:

xn =
1
Ne

Ne∑
i=1

xin. (47)
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In practice, the Nx×Ne anomaly matrix X is defined by

[X]n, i =

√√√√√√ ĥwi

1−
Ne∑
i=1

(
wi
)2
(
xin− xn

)
, (48)

and the regularisation is added as

E← E+XZ, (49)

where E is the ensemble matrix and Z is a Ne×Ne random
matrix whose coefficients are distributed according to a nor-
mal law, such that XZ is a sample from the Gaussian distri-
bution with zero mean and covariance matrix 6. In this case,
the regularisation fits in the LET framework with a random
transformation matrix.

Colourisation could be added to the integration jitter as
well. However in this case, scaling the noise with the en-
semble is less justified than for the regularisation jitter. In-
deed, the integration noise is inherent to the perturbed model
that is used to evolve each ensemble member independently.
Hence PF practitioners often take a time-independent Gaus-
sian integration noise whose covariance matrix does not de-
pend on the ensemble but includes some off-diagonal terms
based on the distance between grid points (e.g. Ades and van
Leeuwen, 2015). However, as we mentioned in Sect. 5.4, we
do not use integration jitter for the rest of this article.

5.8.2 Colourisation for LPFs

The 40 variables of the L96 model in its standard configura-
tion are statistically homogeneous with short-range correla-
tions. This is the main reason of the efficiency of the white
noise jitter in the S(IR)xR algorithm and its variants tested so
far. We still want to investigate the potential gains of using
coloured jitters in LPFxs.

In the analysis step of LPFx algorithms, at each grid point,
there is a different set of local weights win. Therefore it is not
possible to compute the covariance of the regularisation jitter
with Eq. (46). We propose two different ways of circumvent-
ing this obstacle.

A first approach could be to scale the regularisation with
the locally resampled ensemble, since in this case all weights
are equal. This is the approach followed by Reich (2013)
and Chustagulprom et al. (2016) under the name “particle re-
juvenation”. However, this approach systematically leads to
higher RMSEs for the S(IR)xR algorithm (not shown here).
This can be potentially explained by two factors. First, the
resampling could introduce noise in the computation of the
anomaly matrix X. Second, the fact that the resampling is
performed independently for each block perturbs the propa-
gation of multivariate properties (such as sample covariance)
over different blocks.

In a second approach, the anomaly matrix X is defined by
the weighted ensemble before resampling, i.e. using the local

weights win, as follows:

[X]n, i =

√√√√√√ ĥwin

1−
Ne∑
i=1

(
win
)2
(
xin− xn

)
. (50)

In this case, the Gaussian regularisation jitter has the follow-
ing covariance matrix:

[6]n,m =
Ne∑
i=1

ĥ
√
winw

i
m

(
xin− xn

)(
xim− xm

)√√√√(1−
Ne∑
i=1

(
win
)2)(1−

Ne∑
i=1

(
wim
)2) , (51)

which is a generalisation of Eq. (46). This method can also
be seen as a generalisation of the adaptative inflation used
by Penny and Miyoshi (2016). For their adaptative inflation,
Penny and Miyoshi (2016) only computed the diagonal of
the matrix X and fixed the bandwidth parameter ĥ to 1. Our
approach yields a lowest RMSE in all tested cases, which is
most probably due to the tuning of the bandwidth parameter
ĥ.

5.8.3 Numerical complexity and asymptotic limit

The coloured regularisation step has complexity O
(
NxN

2
e
)
.

It is slightly more costly than using the white noise regulari-
sation step, due to the matrix product Eq. (49).

The exact LPF is recovered in the limit ĥ→ 0.

5.8.4 Illustrations

We experiment with the S(IR)xRc algorithm, in which the
regularisation jitter is colourised as described by Eqs. (49)
and (50). In this algorithm, the parameter s (regularisation
jitter standard deviation) is replaced by the bandwidth pa-
rameter ĥ, hereafter simply called regularisation jitter. The
evolution of the RMSE as a function of ĥ for the S(IR)xRc
algorithm (not shown here) is very similar to the evolution of
the RMSE as a function of s for the S(IR)xR algorithm. In
the following, when using the coloured regularisation jitter
method, ĥ is systematically tuned to yield the lowest RMSE
score.

Figure 11 shows the evolution of the RMSE as a function
of the ensemble size Ne for the S(IR)xR and the S(IR)xRc
algorithms. These two variants only differ by the regularisa-
tion method. The S(IR)xR algorithm uses white regularisa-
tion jitter, while the S(IR)xRc algorithm uses coloured regu-
larisation jitter. For small ensembles, the S(IR)xRc algorithm
yields higher RMSEs, whereas it shows slightly better RM-
SEs for larger ensembles. Depending on the block size, the
transition between both regimes happens when the ensem-
ble size Ne is between 32 to 64 particles. The higher RM-
SEs of the S(IR)xRc algorithm for small ensembles may have
two potential explanations. First, even if the L96 model in its
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Figure 11. RMSE as a function of the ensemble size Ne for the
S(IR)xR and the S(IR)xRc algorithms with Nb = 40 and 10 blocks
of size 1 and 4 grid points, respectively. The scores are displayed in
units of the RMSE of the S(IR)xR algorithm with Nb = 40 blocks
of size 1 grid point.

standard configuration is characterised by short-range corre-
lations, the covariance matrix 6 is a high-dimensional object
that is poorly represented with a weighted ensemble. Sec-
ond, the analysis distribution for small ensemble may be too
different from a Gaussian for the coloured regularisation jit-
ter method to yield better results, even though in this mildly
nonlinear configuration, the densities are close to Gaussian.

5.9 Applying a smoothing-by-weights step

In this section, we look for the potential benefits of adding
a smoothing-by-weights step as presented in Sect. 4.4.1, by
testing the S(IR)xSPMR and the S(IR)xSPMRc algorithms.
These algorithms only differ from the S(IR)xR and the
S(IR)xRc algorithms by the fact that they add a smoothing-
by-weights step as specified in Algorithm 2.

Alongside the smoothing-by-weights step come two addi-
tional tuning parameters: the smoothing strength αs and the
smoothing radius rs. We first investigate the influence of the-
ses parameters. Figure 12 shows the evolution of the RMSE
as a function of the smoothing radius rs for the S(IR)xSPMR
with Ne = 10 particles and Nb = 40 blocks of size 1 grid
point for several values of the smoothing strength αs. As be-
fore, the localisation radius r and the regularisation jitter s
are optimally tuned.

At a fixed smoothing strength αs > 0, starting from rs =

1 grid point (no smoothing), the RMSE decreases when rs
increases. It reaches a minimum and then increases again. In
this example, the optimal smoothing radius rs lies between 5
and 6 grid points for a smoothing strength αs = 1, with a cor-
responding optimal localisation radius r between 2 and 3 grid
points and optimal regularisation jitter s around 0.45 (not
shown here). For comparison, the optimal tuning parameters
for the S(IR)xR algorithm in the same configuration were r
between 4 and 5 grid points and s around 0.2.

Figure 12. RMSE as a function of the smoothing radius rs for
the S(IR)xSPMR algorithms with Ne = 16 particles and Nb =
40 blocks of size 1 grid point for several values of the smoothing
strength αs. The scores are displayed in units of the RMSE of the
S(IR)xR algorithm with Ne = 16 particles and Nb = 40 blocks of
size 1 grid point.

Based on extensive tests of the S(IR)xSPMR and the
S(IR)xSPMRc algorithms with Ne ranging from 8 to 128 par-
ticles (not shown here), we draw the following conclusions:

– In general αs = 1 is optimal, or at least only slightly sub-
optimal.

– Optimal values for r and s are larger with the
smoothing-by-weights step than without it.

– Optimal values for r and rs are not related and must be
tuned separately.

In the following, when using the smoothing-by-weights
method, we take αs = 1, and rs is tuned to yield the lowest
RMSE score – alongside the tuning of the localisation radius
r and the regularisation jitter s or ĥ. Figure 13 shows the
evolution of the RMSE as a function of the ensemble size
Ne for the S(IR)xSPMR and the S(IR)xSPMRc algorithms.
The S(IR)xSPMR algorithm yields systematically lower RM-
SEs than the standard S(IR)xR. However, as the ensemble
size Ne grows, the gain in RMSE score becomes very small.
With Ne = 512 particles, there is almost no difference be-
tween both scores. In this case, the optimal smoothing ra-
dius rs is around 5 grid points, much smaller than the op-
timal localisation radius r around 15 grid points, such that
the smoothing-by-weights step does not modify the analy-
sis ensemble much. The S(IR)xSPMRc algorithm also yields
lower RMSEs than the S(IR)xRc algorithm. Yet, in this case,
the gain in RMSE is still significant for large ensembles, and
with Ne = 512 particles, the RMSEs are even comparable to
those of the EnKF.

From these results, we conclude that the smoothing-by-
weights step is an efficient way of mitigating the unphysical
discontinuities that were introduced when assembling the lo-
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Figure 13. RMSE as a function of the ensemble size Ne for
S(IR)xR, the S(IR)xRc, the S(IR)xSPMR, and the S(IR)xSPMR al-
gorithms.

cally updated particles, especially when combined with the
coloured noise regularisation jitter method.

5.10 Using optimal transport in ensemble space

In this section, we evaluate the efficiency of using the optimal
transport in ensemble space as a way to mitigate the unphys-
ical discontinuities of the local resampling step by experi-
menting the S(ITR)xR and the S(ITR)xRc algorithms. These
algorithms only differ from the S(IR)xR and the S(IR)xRc al-
gorithms by the fact that they use optimal ensemble coupling
for the local resampling as described by Algorithm 3.

For each block, the local linear transformation is computed
by solving the minimisation problem Eq. (33), which can be
seen as a particular case of the minimum-cost flow problem.
We choose to compute its numerical solution using the net-
work simplex algorithm implemented by the graph library
LEMON (Dezső et al., 2011). As described in Sect. 4.4.3,
this method is characterised by an additional tuning parame-
ter: the distance radius rd. We have investigated the influence
of the parameters Nb and rd by performing extensive tests
of the S(ITR)xR and the S(ITR)xRc algorithms with Ne rang-
ing from 8 to 128 particles (not shown here) and draw the
following conclusions.

Optimal values for the distance radius rd are much smaller
than the localisation radius and are even smaller than 2 grid
points most of the time. Using rd = 1 grid point yields RM-
SEs that are only very slightly suboptimal. Moreover, all
other things being equal, using Nb = 20 blocks of size 2 grid
points systematically yields higher RMSEs than using Nb =

40 blocks of size 1 grid point.
In the following, when using the optimal ensemble

coupling algorithm, we take rd = 1 grid point and Nb =

40 blocks of size 1 grid point. Figure 14 shows the evolution
of the RMSE as a function of the ensemble size Ne for the
S(ITR)xR and the S(ITR)xRc algorithms. Using optimal en-
semble coupling for the local resampling step always yields
significantly lower RMSEs than using the SU sampling al-
gorithm. Yet in this case, using the coloured noise regular-
isation jitter method does not improve the RMSEs for very
large ensembles.

We have also performed extensive tests with Ne rang-
ing from 8 to 128 particles on the S(ITR)xSPMR and
the S(ITR)xSPMRc algorithms in which the optimal en-
semble coupling resampling method is combined with the
smoothing-by-weights method (not shown here). Our imple-
mentations of these algorithms are numerically more costly.
For small ensembles (Ne ≤ 32 particles), the RMSEs of the
S(ITR)xSPMR and the S(ITR)xSPMRc algorithms are barely
smaller than those of the S(ITR)xR and the S(ITR)xRc algo-
rithms. With larger ensembles, we could not find a configu-
ration where using the smoothing-by-weights method yields
better RMSEs.

The fact that neither the use of larger blocks nor the
smoothing-by-weights step significantly improves the RMSE
score when using optimal ensemble coupling indicates that
this local resampling method is indeed an efficient way of
mitigating the unphysical discontinuities inherent to assem-
bling the locally updated particles.

5.11 Using continuous optimal transport

In this section, we test the efficiency of using the optimal
transport in state space as a way to mitigate the unphysical
discontinuities of the local resampling step by experimenting
the S(ITs)xR and the S(ITs)xRc algorithms. These algorithms
only differ from the S(IR)xR and the S(IR)xRc algorithms by
the fact that they use anamorphosis for the local resampling,
as described by Algorithm 4.

As mentioned in Sect. 4.4.4, the local resampling algo-
rithm based on anamorphosis uses blocks of size 1 grid point.
Hence, when using the S(ITs)xR and the S(ITs)xRc algo-
rithms, we take Nb = 40 blocks of size 1 grid point. The
definition of the state transformation map T is based on the
prior and corrected densities given by Eqs. (39) and (40)
using the Student’s t distribution with two degrees of free-
dom for the regularisation kernel K . It is characterised by
an additional tuning parameter: h, hereafter called regulari-
sation bandwidth – different from the regularisation jitter ĥ.
We have investigated the influence of the regularisation band-
width h by performing extensive tests of the S(ITs)xR and the
S(ITs)xRc algorithms, with Ne ranging from 8 to 128 parti-
cles (not shown here). For small ensembles (Ne ≤ 16 parti-
cles), optimal values for h lie between 2 and 3, the RMSE
score obtained with h= 1 being very slightly suboptimal.
For larger ensembles, we did not find any significant differ-
ence between h= 1 and larger values.
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Figure 14. RMSE as a function of the ensemble size Ne for the
S(IR)xR, the S(IR)xRc, the S(ITR)xR, and the S(ITR)xRc algo-
rithms.

In the following, when using the anamorphosis resampling
algorithm, we take the standard value h= 1. Figure 15 shows
the evolution of the RMSE as a function of the ensemble size
Ne for the S(ITs)xR and the S(ITs)xRc algorithms. These al-
gorithms yield RMSEs even lower than the algorithms us-
ing optimal ensemble coupling. However in this case, using
the coloured noise regularisation jitter method always yields
significantly higher RMSEs than using the white noise regu-
larisation method. It is probably a consequence of the fact
that some coloured regularisation is already introduced in
the nonlinear transformation process through the kernel rep-
resentation of the densities with Eqs. (39) and (40). It may
also be a consequence of the fact that the algorithms using
anamorphosis for the local resampling step cannot be written
as a local LET algorithm, contrary to the algorithms using the
SU sampling or the optimal ensemble coupling algorithms.

We have also performed extensive tests with Ne rang-
ing from 8 to 128 particles on the S(ITs)xSPMR algorithm,
in which the anamorphosis resampling method is combined
with the smoothing-by-weights method (not shown here).
As for the S(ITR)xSPMR and the S(ITR)xSPMRc algorithms,
our implementation is significantly numerically more costly,
and adding the smoothing-by-weights step only yields minor
RMSE improvements.

These latter remarks, alongside significantly lower RM-
SEs for the S(ITs)xR algorithm than for the S(IR)xR, indicate
that the local resampling method based on anamorphosis is,
as well as the method based on optimal ensemble coupling,
an efficient way of mitigating the unphysical discontinuities
inherent to assembling the locally updated particles.

Figure 15. RMSE as a function of the ensemble size Ne for the
S(IR)xR, the S(IR)xRc, the S(ITs)xR, and the S(ITs)xRc algo-
rithms.

5.12 Summary

To summarise, Fig. 16 shows the evolution of the RMSE as
a function of the ensemble size Ne for the main LPFxs tested
in this section. For small ensembles (Ne ≤ 32 particles), the
algorithms using OT-based resampling methods clearly yield
lower RMSEs than the other algorithms. For large ensemble
(Ne ≥ 128 particles), combining the smoothing-by-weights
method with the coloured noise regularisation jitter methods
yields equally good scores as the algorithms using OT. For
Ne = 512 particles (the largest ensemble size tested with the
L96 model), the best RMSE scores obtained with LPFxs be-
come comparable to those of the EnKF.

In this standard, mildly nonlinear configuration where er-
ror distributions are close to Gaussian, the EnKF performs
very well, and the LPFx algorithms tested in this section do
not clearly yield lower RMSE scores than the ETKF and the
LETKF. There are several potential reasons for this. First,
the ETKF and the LETKF rely on more information than the
LPFxs because they use Gaussian error distributions, which
is a good approximation in this configuration. Second, the
values of the optimal localisation radius r for the LPFxs are,
in most cases, smaller than the value of the optimal local-
isation radius r for the LETKF, because localisation has to
counteract the curse of dimensionality. This means that, in
this case, localisation introduces more bias in the PF than in
the EnKF. Third, using a non-zero regularisation jitter is nec-
essary to avoid the collapse of the LPFxs without model error.
This method introduces an additional bias in the LPFx anal-
ysis. In practice, we have found, in this case, that the values
of the optimal regularisation jitter for the LPFxs are rather

www.nonlin-processes-geophys.net/25/765/2018/ Nonlin. Processes Geophys., 25, 765–807, 2018



788 A. Farchi and M. Bocquet: Comparison of local particle filters and new implementations

Figure 16. RMSE as a function of the ensemble size Ne for the
main LPFxs tested in this section.

large, whereas the optimal inflation factor in the ETKF and
the LETKF is small.

Note that our objective is not to design LPF algorithms that
beat the EnKF in all situations, but rather to incrementally
improve the PF. However, specific configurations in which
the EnKF fails and the PF succeeds can easily be conceived
by increasing nonlinearities. Such a configuration is studied
in Appendix C.

As a complement to this RMSE test series, rank his-
tograms for several LPFs are computed, reported, and dis-
cussed in Appendix D.

6 Numerical illustration of the LPFx algorithms with a
barotropic vorticity model

6.1 Model specifications

In this section, we illustrate the performance of LPFxs with
twin simulations of the barotropic vorticity (BV) model in
the coarse-resolution (CR) configuration described in Ap-
pendix A4.1. Using this configuration yields a DA prob-
lem of sizes Nx = 1024 and Ny = 256. As mentioned in Ap-
pendix A4.1, the spatial resolution is enough to capture the
dynamics of a few vortices, and the model integration is not
too expensive, such that we can perform extensive tests with
small to moderate ensemble sizes.

As with the L96 model, the distance between the truth and
the analysis is measured with the average analysis RMSE.
The runs are 9× 1031t long with an additional 1031t spin-
up period, more than enough to ensure the convergence of
the statistical indicators.

For the localisation, we use the underlying physical space
with the Euclidean distance. The geometry of the blocks and

domain are constructed as described by Fig. 2. Specifically,
blocks are rectangles and local domains are disks, with the
difference that the doubly periodic boundary conditions are
taken into account.

6.2 Scores for the EnKF and the PF

As a reference, we first compute the RMSEs of the EnKF
with this model. Figure 17 shows the evolution of the RMSE
as a function of the ensemble size Ne for the ETKF and the
LETKF. For each value ofNe, the inflation parameter and the
localisation radius (only for the LETKF) are optimally tuned
to yield the lowest RMSE.

The ETKF requires at least Ne = 12 ensemble members
to avoid divergence. The best RMSEs are approximately 20
times smaller than the observation standard deviation (σ =
0.3). Even with only Ne = 8 ensemble members, the LETKF
yields RMSEs at least 10 times smaller than the observation
standard deviation, showing that, in this case, localisation is
working as expected. In this configuration, the observation
sites are uniformly distributed over the spatial domain. This
constrains the posterior probability density functions to be
close to Gaussian, which explains the success of the EnKF in
this DA problem.

With Ne ≤ 1024 particles, we could not find a combina-
tion of tuning parameters with which the bootstrap filter or
the ETPF yield RMSEs significantly lower than 1. In the fol-
lowing figures related to this BV test series, we draw a base-
line at σ/20, which is roughly the RMSE of the ETKF and
the LETKF with Ne = 12 particles. Note that slightly lower
RMSE scores can be achieved with larger ensembles.

6.3 Scores for the LPFx algorithms

In this section, we test the LPFx algorithms with Ne ranging
from 8 to 128 particles. The nomenclature for the algorithms
is the same as in Sect. 5. In particular, all algorithms tested
in this Section are in the list reported in Table 2.

For each ensemble size Ne, the parameter tuning methods
are similar to those in the L96 test series and can be described
as follows:

– We take zero integration jitter (q = 0).

– The localisation radius r is systematically tuned to yield
the lowest RMSE score.

– The regularisation jitter s (or ĥ when using the coloured
noise regularisation jitter method) is systematically
tuned as well.

– For the algorithms using the SU sampling algorithm (i.e.
the S(IR)x

∗∗ variants), we test four values for the num-
ber of blocks Nb, and we keep the best RMSE score:

– 1024 blocks of shape 1× 1 grid point,

– 256 blocks of shape 2× 2 grid points,
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Figure 17. RMSE as a function of the ensemble size Ne for the
ETKF and the LETKF. The scores are displayed in units of the ob-
servation standard deviation σ .

– 64 blocks of shape 4× 4 grid points,

– 16 blocks of shape 8× 8 grid points.

– For the algorithms using optimal ensemble coupling or
anamorphosis (i.e. the S(IT∗)x

∗ variants), we only test
blocks of shape 1× 1 grid point.

– When using the smoothing-by-weights method, we take
the smoothing strength αs = 1, and the smoothing ra-
dius rs is optimally tuned to yield the lowest RMSE
score.

– When using the optimal ensemble coupling for the lo-
cal resampling step, the distance radius rd is optimally
tuned to yield the lowest RMSE score.

– When using the anamorphosis for the local resampling
step, we take the regularisation bandwidth h= 1.

Figure 18 shows the evolution of the RMSE as a function
of the ensemble size Ne for the LPFxs. Most of the conclu-
sions related to the L96 model remain true to the BV model.
The best RMSE scores are obtained with algorithms using
OT-based resampling methods. Combining the smoothing-
by-weights method with the coloured noise regularisation jit-
ter methods yields almost equally good scores as the algo-
rithms using OT. Yet some differences can be pointed out.

With such a large model, we expected the coloured
noise regularisation jitter method to be much more effective
than the white noise method, because the colourisation re-
duces potential spatial discontinuities in the jitter. We ob-
serve indeed that the S(IR)xRc and the S(IR)xSPMRc algo-
rithms yield significantly lower RMSEs than the S(IR)xR
and the S(IR)xSPMR algorithms. Yet the S(ITR)xRc and the

Figure 18. RMSE as a function of the ensemble size Ne for the
LPFxs. The scores are displayed in units of the observation standard
deviation σ .

S(ITs)xRc algorithms are clearly outperformed by both the
S(ITR)xR and the S(ITs)xR algorithms in terms of RMSEs.
This suggests that there is room for improvement in the de-
sign of regularisation jitter methods for PF algorithms.

Due to relatively high computational times, we restricted
our study to reasonable ensemble sizes, Ne ≤ 128 particles.
In this configuration, the RMSE scores of LPFxs are not yet
comparable with those of the EnKF (see Fig. 18).

Finally, it should be noted that for the S(ITR)xR and the
S(ITR)xRc algorithms with Ne ≥ 32 particles, optimal values
for the distance radius rd lie between 3 and 6 grid points (not
shown here), contrary to the results obtained with the L96
model, for which rd = 1 grid point could be considered opti-
mal. More generally for all LPFxs, the optimal values for the
localisation radius r (not shown here) are significantly larger
(in number of grid points) for the BV model than for the L96
model.

7 Sequential–observation localisation for particle
filters

In the SBD localisation formalism, each block of grid
points is updated using the local domain of observation
sites that may influence these grid points. In the sequential–
observation (SO) localisation formalism, we use a different
approach. Observations are assimilated sequentially, and as-
similating the observation at a site should only update nearby
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grid points. LPF algorithms using the SO localisation formal-
ism will be called LPFy algorithms3.

In this section, we set q ∈
{
1. . .Ny

}
, and we describe how

to assimilate the observation yq . In Sect. 7.1, we introduce
the state space partitioning. The resulting decompositions of
the conditional density are discussed in Sect. 7.2. Finally,
practical algorithms using these principles are derived in
Sect. 7.3 and 7.4.

These algorithms are designed to assimilate one observa-
tion at a time. Hence, a full assimilation cycle requires Ny
sequential iterations of these algorithms, during which the
ensemble is gradually updated: the updated ensemble after
assimilating yq will be the prior ensemble to assimilate yq+1.

7.1 Partitioning the state space

Following Robert and Künsch (2017) the state space RNx is
divided into three regions:

1. The first region U covers all grid points that directly
influence yq : if H is linear, it is all columns of H that
have non-zero entries on row q.

2. The second region V gathers all grid points that are
deemed correlated to those in U .

3. The third region W contains all remaining grid points.

The meaning of “correlated” is to be understood as a prior
hypothesis, where we define a valid tapering matrix C that
represents the decay of correlations. Non-zero elements of
C should be located near the main diagonal and reflect the
intensity of the correlation. A popular choice for C is the one
obtained using the Gaspari–Cohn function G:

[C]m,n =G
(
dm,n

r

)
, (52)

where dm,n is the distance between the mth and nth grid
points and r is the localisation radius, a free parameter simi-
lar to the localisation radius defined in the SBD localisation
formalism (see Sect. 4.2.2).

The UVW partition of the state space is a generalisation
of the original LG partition introduced by Bengtsson et al.
(2003), in which U and V are gathered into one region L, the
local domain of yq , andW is calledG (for global). Figure 19
illustrates this UVW partition. We emphasise that both the
LG and the UVW state partitions depend on the site of ob-
servation yq . They are fundamentally different from the (lo-
cal state) block decomposition of Sect. 4.2.1. Therefore they
shall simply be called “partition” to avoid confusion.

3The y exponent emphasises the fact that we perform one anal-
ysis per observation.

Figure 19. Example of the UVW partition for a two-dimensional
space. The site of observation yq lies in the middle. The local re-
gionsU and V are circumscribed by the thick green and blue circles
and contain 1 and 20 grid points, respectively. The global region W
contains all remaining grid points. In the case of the LG partition,
the local region L gathers all 21 grid points in U and V .

7.2 The conditional density

For any region A of the physical space, let xA be the restric-
tion of vector x to A, i.e. the state variables of x whose grid
points are located within A.

7.2.1 With the LG partition

Without loss of generality, the conditional density is decom-
posed into

p
(
x|yq

)
= p

(
xL, xG|yq

)
= p

(
xL|xG, yq

)
p
(
xG|yq

)
. (53)

In a localisation context, it seems reasonable to assume that
xG and yq are independent, that is

p
(
xG|yq

)
= p(xG) , (54)

and the conditional pdf of the L region can be written as

p
(
xL|xG, yq

)
=
p
(
yq |xG, xL

)
p(xG, xL)

p
(
xG, yq

) , (55)

=
p
(
yq |xL

)
p(xG, xL)

p
(
xG, yq

) . (56)

This yields an assimilation method for yq described by Al-
gorithm 5.
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7.2.2 With the UV W partition

With the UVW partition, the conditional density is factored
as

p
(
x|yq

)
= p

(
xU , xV , xW |yq

)
, (57)

=
p
(
xU , xV , xW , yq

)
p
(
yq
) , (58)

=
p
(
yq |x

)
p(xV |xU , xW )p (xU , xW )

p
(
yq
) , (59)

=
p
(
yq |xU

)
p(xV |xU , xW )p (xU , xW )

p
(
yq
) . (60)

If one assumes that the U and W regions are not only un-
correlated but also independent, then one can make the addi-
tional factorisation:

p(xU , xW )= p(xU )p (xW ) . (61)

Finally, the conditional density is

p
(
x|yq

)
= p

(
xU |yq

)
p(xV |xU , xW )p (xW ) . (62)

The assimilation method for yq is now described by Algo-
rithm 6.

7.2.3 The partition and the particle filter

So far, the SO formalism looks elegant. The resulting assim-
ilation schemes avoid the discontinuity issue inherent to the
SBD formalism by using conditional updates of the ensem-
ble.

However, this kind of update seems hopeless in a PF con-
text. Indeed the factors p(xG, xL) and p(xV |xU , xW ) in

Eqs. (56) and (60) will be non-zero only if the updated parti-
cles are copies of the prior particles, which spoils the entire
purpose of localising the assimilation. Hence potential solu-
tions need to make approximations of the conditional density.

7.2.4 The multivariate rank histogram filter

Similar principles were used to design the multivariate rank
histogram filter (MRHF) of Metref et al. (2014), with the
main difference that the state space is entirely partitioned as
follows. Assuming that yq only depends on x1, the condi-
tional density can be written as

p
(
x|yq

)
= p

(
x1|yq

)
p(x2|x1) . . .p (xn+1|xn. . .x1) . . . (63)

In the MRHF analysis, the state variables are up-
dated sequentially according to the conditional density
p(xn+1|xn. . .x1). Zero factors in p(xn+1|xn. . .x1) are
avoided by using a kernel representation for the condition-
ing on xn. . .x1 in a similar way as in Eqs. (39) and (40), with
top-hat functions for the regularisation kernel K . The result-
ing one-dimensional density along xn+1 is represented using
histograms, and the ensemble members are transformed us-
ing the same anamorphosis procedure as the one described in
Sect. 4.4.4.

The MRHF could be used as a potential implementation
of the SO localisation formalism. However, assimilating one
observation requires the computation ofNx different anamor-
phosis transformations.

7.2.5 Implementing the SO formalism

In the following sections, we introduce two different algo-
rithms that implement the SO formalism (with the UVW
partition) to assimilate one observation. Both algorithms are
based on an “importance, resampling, propagation” scheme
as follows. Global unnormalised importance weights are first
computed as

wi = p
(
yq |x

i
)
. (64)

Using these weights, we compute a resampling in the U re-
gion (essentially at the observation site). The update is then
propagated to the V region using a dedicated propagation al-
gorithm.

7.3 A hybrid algorithm for the propagation

The first algorithm that we introduce to implement the SO
formalism using the “importance, resampling, propagation”
scheme is the LPF of Poterjoy (2016) (hereafter Poterjoy’s
LPF). In this algorithm, the update is propagated using a hy-
brid scheme that mixes a (global) PF update with the prior
ensemble.
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7.3.1 Step 1: importance and resampling

Using the global unnormalised importance weights Eq. (64),
we compute a resampling map φ, using, for example, the SU
sampling algorithm.

7.3.2 Step 2: update and propagation

The resampling map φ is used to update the ensemble in the
U region, and the update is propagated to all grid points as

xin = xn+ω
a
n

(
xφ(i)n − xn

)
+ωf

n

(
xin− xn

)
, (65)

where xn is the ensemble mean at the nth grid point, ωa

is the weight of the PF update, and ωf is the weight of the
prior. If the resampling algorithm is adjustment-minimising,
the number of updates that need to be propagated is minimal.
Finally, the ω∗ (either ωf or ωa) weights are chosen such that
the updated ensemble yields correct statistics at the first and
second orders.

At the observation site, ωa
= 1 and ωf

= 0, such that the
update of the U region is the PF update and is Bayesian. Far
from the observation site, ωa

= 0 and ωf
= 1, such that there

is no update of the W region. Hence, the ith updated particle
is a composite particle between the ith prior particle (in W )
and the hypothetical ith updated particle (in U ) that would
be obtained with a PF update. In-between (in V ) disconti-
nuities are avoided by using a smooth transition for the ω∗

weights, which involves the localisation radius r . A single
analysis step according to Poterjoy’s LPF is summarised by
Algorithm 7.

The formulas for the ω∗ weights are summarised in Ap-
pendix B. Their detailed derivation can be found in Poter-
joy (2016), where ωa and ωf are called r1 and r2. Poterjoy
(2016) included a weight inflation parameter in his algorithm
that can be ignored to understand how the algorithm works.
Moreover, theNy sequential assimilations are followed by an
optional KDDM step. As explained in Sect. 4.4.4, we found
the KDDM step to be better suited for the local resampling
step of LPFx algorithms. Therefore, we have not included it
in our presentation of Poterjoy’s LPF.

7.4 A second-order algorithm for the propagation

The second algorithm that we introduce to implement the
SO formalism using the “importance, resampling, propaga-
tion” scheme is based on the ensemble Kalman particle fil-
ter (EnKPF), a Gaussian mixture hybrid ensemble filter de-
signed by Robert and Künsch (2017). In this algorithm, the
updated is propagated using second-order moments.

7.4.1 Preliminary: the covariance matrix

Since the update is propagated using second-order moments,
one first needs to compute the covariance matrix of the prior
ensemble:

6f
= cov(x) . (66)

In a localisation context, it seems reasonable to use a tapered
representation of the covariance. Therefore, we use the co-
variance matrix 6 defined by

6 = C ◦6f, (67)

where C is the valid tapering matrix mentioned in Sect. 7.1
(defined using the localisation radius r), and ◦ means the
Schur product for matrices.

7.4.2 Step 1: importance and resampling

Using the global unnormalised importance weights Eq. (64),
we resample the ensemble in the U region and compute the
update 1xiU . For this resampling step, any resampling algo-
rithm can be used:

– An adjustment-minimising resampling algorithm can be
used to minimise the number of updates 1xiU that need
to be propagated.

– The resampling algorithms based on OT in ensemble
space or in state space, as derived in Sect. 4.4.3 and
4.4.4 can be used. As for the LPFx methods, we expect
them to create strong correlations between the prior and
the updated ensembles.

7.4.3 Step 2: propagation

For each particle the update on V , 1xiV , depends on the up-
date on U , 1xiU , through the linear regression:

1xiV =6VU6−1
U 1xiU , (68)

where 6VU and 6U are submatrices of 6. The full derivation
of Eq. (68) is available in Robert and Künsch (2017). Note
that 6 is a Nx×Nx matrix, but only the submatrices 6VU

and 6U need to be computed.
A single analysis step according to this second-order al-

gorithm is summarised by Algorithm 8 in a generic context,
with any resampling algorithm.
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7.5 Summary for the LPFy algorithms

7.5.1 Highlights

In this section, we have introduced a generic SO localisation
framework, which we have used to define the LPFys, our sec-
ond category of LPF methods. We have presented two algo-
rithms, both based on an “importance, resampling, propaga-
tion” scheme:

1. The first algorithm is the LPF of Poterjoy (2016). It uses
a hybrid scheme between a (global) PF update and the
prior ensemble to propagate the update from the obser-
vation site to all grid points.

2. The second algorithm was inspired by the EnKPF of
Robert and Künsch (2017). It uses tapered second-order
moments to propagate the update.

Both algorithms derived in this section include some spatial
smoothness in the construction of the updated particles. In
Poterjoy’s LPF, the smoothness comes from the definition
of the ω∗ weights. In the second-order propagation scheme,
the smoothness comes from the prior correlations. Therefore,
we expect the unphysical discontinuities to be less critical
with these algorithms than with the LPFx algorithms, which
is why the partition was introduced in the first place.

7.5.2 Numerical complexity

Let NU and NV be the maximum number of grid points in
U and V , respectively, and let NUV =NU +NV . The com-
plexity of assimilating one observation using Poterjoy’s LPF
is

– O (Ne) to compute the analysis weights Eq. (64) and the
resampling map φ,

– O (NeNUV ) to compute the ω∗ weights and to propa-
gate the update to the U and V regions.

The complexity of assimilating one observation using the
second-order propagation algorithm is the sum of the com-
plexity of computing the update on the U region and on the

V region and of applying these updates to the ensemble. The
complexity of computing the update on the U region is

– O (NeNU ) when using the adjustment-minimising SU
sampling algorithm,

– O
(
N2

eN
`
x (rd)+N

3
e +N

2
eNU

)
when using the optimal

ensemble coupling derived in Sect. 4.4.3 with a distance
radius rd,

– O
(
NUNeNp

)
when using the anamorphosis derived in

Sect. 4.4.4 with a fixed one-dimensional resolution of
Np points.

Using Eq. (68), the complexity of computing the update on
the V region is

– O
(
N3
U

)
to compute 6−1

U ,

– O
(
NeN

2
U +NeNVNU

)
to apply 6VU6−1

U to all
1xiU , i = 1. . .Ne.

Finally, the complexity of applying the update on the U and
V regions is O (NeNUV ).

With LPFy algorithms, observations are assimilated se-
quentially, which means that these algorithms are to be ap-
plied Ny times per assimilation cycle. This also means that
the LPFy algorithms are, by construction, non-parallel. This
issue was discussed by Robert and Künsch (2017): some
level of parallelisation could be introduced in the algorithms,
but only between observation sites for which the U and V re-
gions are disjoint. That is to say, one can assimilate the obser-
vation at several sites in parallel as long as their domains of
influence (in which an update is needed) do not overlap. This
would require a preliminary geometric step to determine the
order in which observation sites are to be assimilated. This
step would need to be performed again whenever the locali-
sation radius r is changed. Moreover, when r is large enough,
all U and V regions may overlap, and parallelisation is not
possible.

7.5.3 Asymptotic limit

By definition of the ω∗ weights, the single analysis step
for Poterjoy’s LPF is equivalent to the analysis step of the
(global) PF for a single observation in the limit r→∞. This
is not the case for the algorithm based on the second-order
propagation scheme. Indeed, using second-order moments to
propagate the update introduces a bias in the analysis. On the
other hand, second-order methods are, in general, less sensi-
tive to the curse of dimensionality. Therefore, we expect the
algorithm based on the second-order propagation scheme to
be able to handle larger values for the localisation radius r
than the LPFxs.

7.6 Gathering observation sites into blocks

The LPFys can be extended to the case where observation
sites are compounded into small blocks as follows:
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– The unnormalised importance weights Eq. (64) are
modified such that they account for all sites inside the
block.

– Any distance that needs to be computed relative to the
site of observation yq (for example for the ω∗ weights
for Poterjoy’s LPF) is now computed relatively to the
block centre.

– In the algorithm based on the second-order propagation
scheme, the UVW partition is modified: the U region
has to cover all grid points that directly influence every
site inside the block.

Gathering observation sites into blocks reduces the num-
ber of sequential assimilations from Ny to the number of
blocks, hence reducing the computational time per cycle.
However, it introduces an additional bias in the analysis.
Therefore, we do not use this method in the numerical ex-
amples of Sects. 8 and 9.

8 Numerical illustration of the LPFy algorithms

8.1 Experimental setup

In this section, we illustrate the performance of the LPFy al-
gorithms using twin simulations with the L96 and the BV
models. The model specifications for this test series are the
same as for the LPFx test series: the L96 model is used in the
standard configuration described in Appendix A3, and the
BV model is used in the CR configuration described in Ap-
pendix A4.1. In a manner consistent with Sects. 5 and 6, the
LPFy algorithms are named S(IαPβ )yγ – sampling, impor-
tance, resampling, propagation, regularisation, the y expo-
nent meaning that steps in parentheses are performed locally
for each observation – with the conventions detailed in Ta-
ble 3. Table 4 lists all LPFy algorithms tested in this section
and reports their characteristics according to the convention
of Table 3.

8.1.1 Regularisation jitter

For the same reasons as with LPFxs, jittering the LPFys is
necessary to avoid a fast collapse. As we eventually did for
the LPFxs, the model is not perturbed (no integration jitter),
and regularisation noise is added at the end of each assimila-
tion cycle, either by using the white noise method described
by Eq. (45) or by using the coloured noise method described
in Sect. 5.8. With the latter method, the local weights re-
quired for the computation of the covariance matrix of the
regularisation noise are computed with Eq. (29).

Table 3. Nomenclature conventions for the S(IαPβ )yγ algorithms.
Capital letters refer to the main algorithmic ingredients: “I” for
importance, “R” for resampling or regularisation, “T” for trans-
port, and “P” for propagation. Subscripts are used to distinguish
the methods in two different ways. Lower-case subscripts refer to
explicit concepts used in the method: “s” stands for state space, “c”
for colour. Upper-case subscripts refer to the work that inspired the
method: “P” stands for Poterjoy (2016) and “RK” for Robert and
Künsch (2017). For simplicity, some subscripts are omitted: “amsu”
for adjustment-minimising stochastic universal and “w” for white.

α Local resampling algorithm

R Adjustment-minimising SU sampling algorithm
TR Optimal transport in ensemble space (Sect. 4.4.3)
Ts Optimal transport in state space (Sect. 4.4.4)

β Propagation method

P Poterjoy’s LPF (Algorithm 7)
RK Second-order propagation (Algorithm 8)

γ Regularisation method (Sect. 5.2 and 5.8)

R White noise method
Rc Coloured noise method

8.1.2 The S(IRPP)yR algorithm and its variant

With the regularisation method described in Sect. 8.1.1, the
S(IRPP)yR has three parameters:

– the ensemble size Ne,

– the localisation radius r used to compute the ω∗ weights
(step 4 of Algorithm 7) as defined by Eqs. (B1) to (B4),

– the standard deviation s of the regularisation jitter, here-
after simply called “regularisation jitter” to be consis-
tent with the LPFxs.

For each value of the ensemble size Ne, the localisation ra-
dius r and the regularisation jitter s are systematically tuned
to yield the lowest RMSE score.

As mentioned in Sect. 7.3.2, the original algorithm de-
signed by Poterjoy (2016) included another tuning param-
eter, the weight inflation, which serves the same purpose as
the regularisation jitter. Based on extensive tests in the L96
model with 8 to 128 particles (not shown here), we have
found that using weight inflation instead of regularisation
jitter always yields higher RMSEs. Therefore, we have not
included weight inflation in the S(IRPP)yR algorithm.

In the S(IRPP)yRc algorithm, the regularisation jitter pa-
rameter s is replaced by ĥ, according to the coloured noise
regularisation jitter method. The parameter tuning method is
unchanged.
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Table 4. List of all LPFy algorithms tested in this article. For each algorithm, the main characteristics are reported with appropriate references.

Algorithm Resampling algorithm Section Propagation algorithm Regularisation method
(Sect. 4.4) (Sect. 7.3 and 7.4) (Sect. 5.2 and 5.8)

Algorithm 7 Algorithm 8 Eq. (45) Eq. (49)
(Poterjoy’s LPF) (Second-order) (White) (Colour)

S(IRPP)yR Adjustment-minimising SU sampling 4.4.2 X X
S(IRPP)yRc Adjustment-minimising SU sampling 4.4.2 X X

S(IRPRK)yR Adjustment-minimising SU sampling 4.4.2 X X
S(IRPRK)yRc Adjustment-minimising SU sampling 4.4.2 X X

S(ITRPRK)yR Optimal ensemble coupling 4.4.3 X X
S(ITRPRK)yRc Optimal ensemble coupling 4.4.3 X X

S(ITsPRK)yR Anamorphosis 4.4.4 X X
S(ITsPRK)yRc Anamorphosis 4.4.4 X X

8.1.3 The S(IRPRK)yR algorithm and its variants

With the regularisation method described in Sect. 8.1.1, the
S(IRPRK)yR has three parameters:

– the ensemble size Ne,

– the localisation radius r used to define the valid tapering
matrix C required for the computation of the prior co-
variance submatrices (step 2 of Algorithm 8) as defined
by Eq. (67),

– the regularisation jitter s.

For each value of the ensemble size Ne, the localisation ra-
dius r and the regularisation jitter s are systematically tuned
to yield the lowest RMSE score.

When using optimal ensemble coupling for the local re-
sampling (step 4 of Algorithm 8), the local minimisation co-
efficients are computed using Eq. (35). This gives an addi-
tional tuning parameter, the distance radius rd, which is also
systematically tuned to yield the lowest RMSE score. When
using anamorphosis for the local resampling step, the cumu-
lative density functions of the state variables in the region
U are computed in the same way as for LPFx algorithms,
with a regularisation bandwidth h= 1. Finally, when using
the coloured noise regularisation jitter method, the parame-
ter s is replaced by ĥ, and the tuning method stays the same.

8.2 RMSE scores for the L96 model

The evolution of the RMSE as a function of the ensemble
sizeNe for the LPFy algorithms with the L96 model is shown
in Fig. 20. The RMSEs obtained with the S(IRPP)yR algo-
rithm are comparable to those obtained with the S(IR)xR al-
gorithm. When using the second-order propagation method,
the RMSEs are, as expected, significantly lower. The algo-
rithm is less sensitive to the curse of dimensionality than the
LPFx algorithms: optimal values of the localisation radius r

Figure 20. RMSE as a function of the ensemble size Ne for the
LPFys.

are significantly larger and less regularisation jitter s is re-
quired. Similarly to the LPFxs, combining the second-order
propagation method with OT-based resampling algorithms
(optimal ensemble coupling or anamorphosis) yields impor-
tant gains in RMSE scores as a consequence of the minimi-
sation of the update in the region U that needs to be propa-
gated to the region V . With a reasonable number of particles
(e.g. 64 for the S(ITsPRK)yR algorithm), the scores are sig-
nificantly lower than those obtained with the reference EnKF
implementation (the ETKF). Finally, we observe that using
the coloured noise regularisation jitter method improves the
RMSEs for large ensembles when the local resampling step
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is performed with the SU sampling algorithm, in a similar
way as for the LPFxs. However when the local resampling
step is performed with optimal ensemble coupling or with
anamorphosis, the coloured noise regularisation jitter method
barely improves the RMSEs.

8.3 RMSE scores for the BV model

The evolution of the RMSE as a function of the ensemble size
Ne for the LPFy algorithms with the BV model is shown in
Fig. 21. Most of the conclusions drawn with the L96 model
remain true with the BV model. However, in this case, as
the ensemble size Ne grows, the RMSE decreases signifi-
cantly more slowly for the S(IRPP)yR and the S(IRPP)yRc
algorithms than for the other algorithms. Finally, with an
ensemble size Ne ≥ 64 particles, the S(ITsPRK)yR and the
S(ITsPRK)yRc algorithms yield RMSEs almost equivalent to
those of the reference LETKF implementation.

9 Numerical illustration with a high-dimensional
barotropic vorticity model

9.1 Experimental setup

In this section, we illustrate the performance of a selection
of LPFxs and LPFys using twin simulations of the BV model
in the high-resolution (HR) configuration described in Ap-
pendix A4.2. Using this configuration yields a higher dimen-
sional DA problem (Nx = 65536 and Ny = 4096) for which
the analysis step is too costly to perform exhaustive tests.
Therefore, in this section, we take Ne = 32 ensemble mem-
bers and we monitor the time evolution of the analysis RMSE
during 501 assimilation steps.

As with the CR configuration, all geometrical considera-
tions (blocks and domains, UVW partition, etc.) use the Eu-
clidean distance of the underlying physical space.

9.2 Algorithm specifications

For this test series, the selection of algorithms is listed in Ta-
ble 5. Each algorithm uses the same initial ensemble obtained
as follows:

xi0 = x0+ 0.5×u+ui, i = 1. . .Ne, (69)

where u and the ui are random vectors whose coefficients are
distributed according to a normal law. Such an ensemble is
not very close to the truth (in terms of RMSE), and its spread
is large enough to reflect the lack of initial information. The
LPFs use zero integration jitter and Nb =Nx blocks of size
1 grid point. Approximate optimal values for the localisation
radius r and the regularisation jitter (s or ĥ depending on the
potential colourisation of the noise) are found using several
twin experiments with a few hundred assimilation cycles (not
shown here). The localisation radius r and the multiplicative
inflation for the LETKF are found in a similar manner. When

Figure 21. RMSE as a function of the ensemble size Ne for the
LPFys. The scores are displayed in units of the observation standard
deviation σ .

using OT in state space, we only test a few values for the
regularisation bandwidth h. When using the smoothing-by-
weights method, we take the smoothing strength αs = 1 and
the smoothing radius rs is set to be equal to the localisation
radius r .

9.3 RMSE time series

Figure 22 shows the evolution of the instantaneous analy-
sis RMSE for the selected algorithms. Approximate optimal
values for the tuning parameters, alongside the average anal-
ysis RMSE, computed over the final 300 assimilation steps
and wall-clock computational times, are reported in Table 5.
In terms of RMSE scores, the ranking of the methods is un-
changed, and most of the conclusions for this test series are
the same as with the CR configuration.

Thanks to the uniformly distributed observation network,
the posterior probability density functions are close to Gaus-
sian. Therefore the LETKF algorithm can efficiently re-
construct a good approximation of the true state. As ex-
pected with this high-dimensional DA problem, the algo-
rithms using a second-order truncation (the LETKF and the
S(I∗PRK)yR algorithms) are more robust. Optimal values of
the localisation radius are qualitatively large, which allows
for a better reconstruction of the system dynamics.

For the S(IR)xR and the S(IRPP)xR algorithms, the opti-
mal localisation radius r needs to be very small to counteract
the curse of dimensionality. With such small values for r , the
local domain of each grid point contains only 4 to 13 ob-
servation sites. This is empirically barely enough to recon-
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Table 5. Characteristics of the algorithms tested with the BV model in the HR configuration (Fig. 22). The LPFxs use zero integration jitter
(q = 0) andNb =Nx blocks of size 1 grid point. The LPFys also use zero integration jitter (q = 0). For the LETKF, the optimal multiplicative
inflation is reported in the regularisation jitter column. For the S(IR)xSPMRc algorithm, the optimal regularisation jitter bandwidth ĥ is
reported in the regularisation jitter column as well. The average RMSE is computed over the final 300 assimilation steps and is given in
units of the observation standard deviation σ . The wall-clock computational time is the average time spent per analysis step. The simulations
are performed on a single core of a double Intel Xeon E5-2680 platform (for a total of 24 cores). For comparison, the average time spent
per forecast (1t = 0.5) for the 32-member ensemble is 0.94s. The bold font indicates that the local analyses can be carried out in parallel,
allowing a theoretical gain in computational time of up to a factor of 65536. For these algorithms, the average time spent per analysis step
for the parallelised runs on this 24-core platform, as well as the acceleration factor, are reported in the last column.

Algorithm Loc. radius r Reg. jitter s Other parameters Average RMSE 1-core wall-clock 24-core wall-clock
(in units of L) (in units of σ ) time (in s) time (in s)

S(IRPP)yR 0.03 0.70 – 0.90 122.18 –
S(IR)xR 0.02 0.55 – 0.78 7.58 0.54 (×14.04)
S(IRPRK)yR 0.07 0.25 – 0.46 52.97 –
S(IR)xSPMRc 0.05 1.00 αs = 1, rs = r 0.38 226.20 12.50 (×18.10)
S(ITs)xR 0.08 0.11 h= 3 0.33 13.94 0.86 (×16.21)
S(ITsPRK)yR 0.20 0.01 h= 1 0.13 64.79 –
LETKF 0.35 1.04 – 0.10 103.90 5.09 (×20.41)

Figure 22. Instantaneous analysis RMSE for the selection of algorithms detailed in Table 5. The scores are displayed in units of the observa-
tion standard deviation σ .

struct the true state with an RMSE score lower than the ob-
servation standard deviation σ . As in the previous test series,
using OT-based local resampling methods or the smoothing-
by-weights step yields significantly lower RMSEs. The RM-
SEs of the S(ITs)xR and the S(IR)xSPMRc algorithms, though
not as good as that of the LETKF algorithm, show that the
true state is reconstructed with an acceptable accuracy. The
RMSEs of the S(ITsPRK)yR and the LETKF algorithms are
almost comparable. Depending on the algorithm, the condi-
tioning to the initial ensemble more or less quickly vanishes.

Without parallelisation, we observe that the Nx local anal-
yses of the LPFxs are almost always faster than both the Nx
local analyses of the LETKF and the Ny sequential assim-
ilations of the LPFys. The second-order propagation algo-
rithm is slower because of the linear algebra involved in the

method. Poterjoy’s propagation algorithm is slower because
computing the ω∗ weights is numerically expensive. The
LETKF is slower because of the matrices inversion in ensem-
ble space. Finally, the S(IR)xSPMRc algorithm is even slower
because, in this two-dimensional model, the smoothing-by-
weights step is numerically very expensive.

The difference between the LPFxs and the LPFys is even
more visible on our 24-core platform. The LPFys are not par-
allel, that is why they are more than 70 times slower than the
fastest LPFxs.
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10 Conclusions

The curse of dimensionality is a rather well-understood phe-
nomenon in the statistical literature, and it is the reason why
PF methods fail when applied to high-dimensional DA prob-
lems. We have recalled the main results related to weight de-
generacy of PFs, and why the use of localisation can be used
as a solution. Yet implementing localisation in PF analysis
raises two major issues: the gluing of locally updated parti-
cles and potential physical imbalance in the updated parti-
cles. Adequate solutions to these issues are not obvious, wit-
ness the few but dissimilar LPF algorithms developed in the
geophysical literature. In this article we have proposed a the-
oretical classification of LPF algorithms into two categories.
For each category, we have presented the challenges of lo-
cal particle filtering and have reviewed the ideas that lead to
practical implementation of LPFs. Some of them, already in
the literature, have been detailed and sometimes generalised,
while others are new in this field and yield improvements in
the design of LPF methods.

With the LPFx methods, the analysis is localised by allow-
ing the analysis weights to vary over the grid points. We have
shown that this yields an analysis pdf from which only the
marginals are known. The local resampling step is manda-
tory for reconstructing global particles that are obtained by
assembling the locally updated particles. The quality of the
updated ensemble directly depends on the regularity of the
local resampling. This is related to unphysical discontinu-
ities in the assembled particles. Therefore we have presented
practical methods to improve the local resampling step by
reducing the unphysical discontinuities.

In the LPFy methods, localisation is introduced more gen-
erally in the conditional density for one observation by the
means of a state partition. The goal of the partition is to build
a framework for local particle filtering without the discon-
tinuity issue inherent to LPFxs. However, this framework is
irreconcilable with algorithms based on pure “importance,
resampling” methods. We have shown how two hybrid meth-
ods could yet be used as an implementation of this frame-
work. Besides, we have emphasised the fact that with these
methods, observations are, by construction, assimilated se-
quentially, which is a great disadvantage when the number
of observations in the DA problem is high.

With localisation, a bias is introduced in the LPF analyses.
We have shown that, depending on the localisation param-
eterisation, some methods can yield an analysis step equiv-
alent to that of global PF methods, which are known to be
asymptotically Bayesian.

We have implemented and systematically tested the LPF
algorithms with twin simulations of the L96 model and the
BV model. A few observations could be made from these
experiments. With these models, implementing localisation
is simple and works as expected: the LPFs yield acceptable
RMSE scores, even with small ensembles, in regimes where
global PF algorithms are degenerate. In terms of RMSEs,

there is no clear advantage of using Poterjoy’s propagation
method (designed to avoid unphysical discontinuities) over
the (simpler) LPFx algorithms, which have a lower compu-
tational cost. As expected, algorithms based on the second-
order propagation method are less sensitive to the curse of
dimensionality and yield the lowest RMSE scores. We have
shown that using OT-based local resampling methods always
yields important gains in RMSE scores. For the LPFxs, it is a
consequence of mitigating the unphysical discontinuities in-
troduced in the local resampling step. For the LPFys, it is a
consequence of the minimisation of the update at the obser-
vation site that needs to be propagated to nearby grid points.

The successful application of the LPFs to DA problems
with a perfect model is largely due to the use of regularisa-
tion jitter. Using regularisation jitter introduces an additional
bias in the analysis alongside an extra tuning parameter. For
our numerical experiments, we have introduced two jitter-
ing method: either using regularisation noise with fixed sta-
tistical properties (white noise) or by scaling the noise with
the ensemble anomalies (coloured noise). We have discussed
the relative performance of each method and concluded that
there is room for improvement in the design of regularisation
jitter methods for PFs.

In conclusion, introducing localisation in the particle filter
is a relatively young topic that can benefit from more theo-
retical and practical developments.

First, the resampling step is the main ingredient in the
success, or failure, of an LPF algorithm. The approaches
based on optimal transport offer an elegant and quite effi-
cient framework to deal with the discontinuity issue inher-
ent to local resampling. However, the algorithms derived in
this article could be improved. For example, it would be de-
sirable to avoid the systematic reduction to one-dimensional
problems when using optimal transport in state space. Be-
sides this, other frameworks for local resampling based on
other theories could be conceived.

Second, the design of the regularisation jitter methods can
be largely improved. Regularisation jitter is mandatory when
the model is perfect. Even with stochastic models, it can be
beneficial, for example, when the magnitude of the model
noise is too small for the LPFs to perform well. Ideally,
the regularisation jitter methods should be adaptive and built
concurrently with the localisation method.

Third, with the localisation framework presented in this ar-
ticle, one cannot directly assimilate non-local observations.
The ability to assimilate non-local observations becomes in-
creasingly important with the prominence of satellite obser-
vations.

Finally, our numerical illustration with the BV model in
the HR configuration is successful and shows that the LPF
algorithms have the potential to work with high-dimensional
systems. Nevertheless further research is needed to see if
the LPFs can be used with realistic models. Such an ap-
plication would require an adequate definition of the model
noise and the observation error covariance matrix. Even if the
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local resampling methods have been designed to minimise
the unphysical discontinuities, this will have to be carefully
checked, because this is a critical point in the success of the
LPF. Last, the regularisation jitter method has to be chosen
and tuned in adequation with the model noise. In particular,
the magnitude of the jitter will almost certainly depend on
the state variable.

Data availability. No data sets were used in this article.
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Appendix A: Numerical models

A1 The Gaussian linear model

The Gaussian linear model is the simplest model with size
Nx whose prior distribution is

x0 ∼N
(

0, p2I
)
, (A1)

whose transition distribution is

xk+1− axk = wk ∼N
(

0, q2I
)
, (A2)

and whose observation distribution is

yk −hxk = vk ∼N
(

0, σ 2I
)
. (A3)

A2 Generic model with Gaussian additive noise

The Gaussian linear model can be generalised to include non-
linearity in the model M and in the observation operator H.
In this case, the transition distribution is

xk+1−M(xk)= wk ∼N (0, Q) , (A4)

and the observation distribution is

yk −H (xk)= vk ∼N (0,R) , (A5)

where Q and R are the covariance matrices of the additive
model and observation errors.

A3 The Lorenz 1996 model

The Lorenz 1996 model (Lorenz and Emanuel, 1998) is
a low-order one-dimensional discrete chaotic model whose
evolution is given by the following set of ODEs:

dxn
dt
= (xn+1− xn−2)xn−1− xn+F, n= 1. . .Nx, (A6)

where the indices are to be understood with periodic bound-
ary conditions: x−1 = xNx−1, x0 = xNx , and x1 = xNx+1,
and where the system size Nx can take arbitrary values.
These ODEs are integrated using a fourth-order Runge–Kutta
method with a time step of a 0.05 time unit.

In the standard configuration, Nx = 40 and F = 8, which
yields a chaotic dynamics with a doubling time around a 0.42
time unit. The observations are given by

yk = xk + vk, vk ∼N (0, I) , (A7)

and the time interval between consecutive observations is a
1t = 0.05 time unit, which represents 6h of real time and
corresponds to a model autocorrelation around 0.967.

A4 The barotropic vorticity model

The barotropic vorticity model describes the evolution of the
vorticity field of a two-dimensional incompressible homoge-
neous fluid in the x1− x2 plane. The time evolution of the
unknown vorticity field ζ is governed by the scalar equation

∂ζ

∂t
+ J(ψ, ζ )=−ξζ + ν1ζ +F, (A8)

and ζ is related to the stream function ψ through

1ψ = ζ. (A9)

In these equations, J(ψ, ζ ) is the advection of the vorticity
by the stream, defined as

J(ψ, ζ )=
∂ψ

∂x1

∂ζ

∂x2
−
∂ψ

∂x2

∂ζ

∂x1
, (A10)

where ξ ∈ R+ is the friction coefficient, ν ∈ R+ is the diffu-
sion coefficient, and F is the forcing term, which may depend
on x1, x2, and t . The system is characterised by homogeneous
two-dimensional turbulence. The friction extracts energy at
large scales, the diffusion dissipates vorticity at small scales
and the forcing injects energy in the system. The number of
degrees of freedom in this model can be roughly considered
to be proportional to the number of vortices (Chris Snyder,
personal communication, 2012).

The equations are solved with P 2 grid points regularly dis-
tributed over the simulation domain [0, L]2 with doubly pe-
riodic boundary conditions. Our time integration method is
based on a semi-Lagrangian solver with a constant time step
δt as follows:

1. At time t , solve Eq. (A9) for ψ .

2. At time t , compute the advection velocity with second-
order centred finite differences of the field ψ .

3. The advection of ζ during t and t + δt is computed
by applying a semi-Lagrangian method to the left-hand
side of Eq. (A8). The solver cannot be more precise
than first-order in time, since the value of ψ is not up-
dated during this step. Therefore, our semi-Lagrangian
solver uses the first-order forward Euler time integra-
tion method. The interpolation method used is the cu-
bic convolution interpolation algorithm, which yields a
third-order precision with respect to the spatial discreti-
sation. In this step, the right-hand side of Eq. (A8) is
ignored.

4. Integrate ζ from t to t + δt by solving Eq. (A8) with an
implicit first-order time integration scheme in which the
advection term is the one computed in the previous step.

For the numerical experiments of this article, the spatial dis-
cretisation is fine enough that the spatial interpolation error
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in the semi-Lagrangian step is negligible when compared to
the time integration error. As a consequence, the overall inte-
gration method is first-order in time. For the DA experiments
with this model, we define and use two configurations.

A4.1 Coarse-resolution configuration

The coarse-resolution configuration is based on the following
set of physical parameters:

L= 1, (A11)

ξ = 10−2, (A12)

ν = 5× 10−5. (A13)

The deterministic forcing is given by

F (x1, x2)= 0.25 sin(4πx1)sin(4πx2) , (A14)

and the space–time discretisation is

δt = 0.1, (A15)

δx =
L

P
=

1
32
, (A16)

which yields Nx = (L/δx)
2
= 1024. The spatial discretisa-

tion is enough to allow a reasonable description of a few
(typically five to ten) vortices inside the domain. The tempo-
ral discretisation is empirically enough to ensure the stability
of the integration method and allows a fast computation of
the trajectory. The physical parameters are chosen to yield a
proper time evolution of the vorticity ζ .

The initial true vorticity field for the DA twin experiments
is the vorticity obtained after a run of 100 time units start-
ing from a random, spatially correlated field. The system is
partially observed on a regular square mesh with one ob-
servation site for every 2 grid points in each direction, i.e.
Ny = 256 observation sites forNx = 1024 grid points. At ev-
ery cycle k, the observation at site (q1, q2) ∈ {1. . .P/2}2 is
given by

yq1, q2 = ζ2q1−1, 2q2−1+ vq1, q2 , (A17)

vq1, q2 ∼N
(

0, σ 2
)
, (A18)

with σ = 0.3, about one tenth of the typical vorticity vari-
ability. The time interval between consecutive observations
is a 1t = 0.5 time unit, which was chosen to match approxi-
mately the model autocorrelation of 0.967 of the L96 model
in the standard configuration.

We have checked that the vorticity flow remains stationary
over the total simulation time of our DA twin experiments
chosen to be 1041t . Due to the forcing F , the flow remains
uniformly and stationarily turbulent during the whole sim-
ulation. Compared to other experiments with the barotropic
vorticity model (e.g. van Leeuwen and Ades, 2013; Ades and
van Leeuwen, 2015; Browne, 2016), 1t is smaller and σ is
larger, but the number of vortices is approximately the same,
with much fewer details.

A4.2 High-resolution configuration

For the high-resolution configuration, the physical parame-
ters are

L= 1, (A19)

ξ = 5× 10−5, (A20)

ν = 10−6. (A21)

The deterministic forcing is given by

F (x1, x2)= 0.75 sin(12πx1)sin(12πx2) , (A22)

and the space–time discretisation is

δt = 0.1, (A23)

δx =
L

P
=

1
256

, (A24)

which yields Nx = (L/δx)
2
= 65536. Compared to the

coarse-resolution configuration, this set of parameters yields
a vorticity field with more vortices (typically several dozens).
The associated DA problem therefore has many more appar-
ent or effective degrees of freedom. The initial true vorticity
field for the DA twin experiments is the vorticity obtained
after a run of 100 time units starting from a random, spatially
correlated field. The system is partially observed on a reg-
ular square mesh with one observation site for every 4 grid
points in each direction, i.e. Ny = 4096 observation sites for
Nx = 65536 grid points. At every cycle k, the observation at
site (q1, q2) ∈ {1. . .P/4}2 is given by

yq1, q2 = ζ4q1−1, 4q2−1+ vq1, q2 , (A25)

vq1, q2 ∼N
(

0, σ 2
)
, (A26)

and we keep the values1t = 0.5 time units and σ = 0.3 from
the coarse-resolution configuration. We have checked that
the vorticity flow remains stationary over the total simulation
time of our DA twin experiments chosen to be 5001t . Due
to the forcing F , the flow remains uniformly and stationarily
turbulent during the whole simulation.

Appendix B: Update formulae of Poterjoy’s LPF

Following Poterjoy (2016), we derived the following formu-
las for the ω∗ weights required in the propagation step of
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Poterjoy’s LPF described in Sect. 7.3.2:

W =

Ne∑
i=1

wi =

Ne∑
i=1

p
(
yq |x

i
)
, (B1)

cn =
αNe

(
1−G

(
dq, n
r

))
WG

(
dq, n
r

) , (B2)

ωa
n =

√√√√√√ σ 2
n

1
Ne−1

Ne∑
i=1

{
x
φ(i)
n − xn+ cn

(
xin− xn

)}2
, (B3)

ωf
n = cnω

a
n, (B4)

whereW and cn are ancillary variables, α is the constant used
for the computation of the local weights (see Eq. 28),G is the
tapering function, dq, n is the distance between the qth obser-
vation site and the nth grid point, r is the localisation radius,
xn is the mean, and σn the standard deviation of the weighted
ensemble

{(
xin, w

i
)
, i = 1. . .Ne

}
. The particles are then up-

dated using Eq. (65).
In Poterjoy (2016), the probability density functions are

implicitly normalised, such that the constant α is 1. There-
fore, our update Eqs. (B1) to (B4) are equivalent to the up-
date Eqs. (A10), (A11), (A5), and (A3) derived by Poterjoy
(2016). Note that there is a typing mistake which renders one
update equation in Algorithm 1 of Poterjoy (2016) incorrect
(last equation on p. 66).

Appendix C: Nonlinear test series with the L96 model

As a complement to the mildly nonlinear test series of
Sects. 5, 6, 8, and 9, we provide here a strongly nonlinear test
series. We consider the L96 model in the standard configura-
tion described in Appendix A3, with the only difference be-
ing that the Ny =Nx observations at each assimilation cycle
are now given by

∀n ∈ {1. . .Nx} , yn = ln |xn| + vn, vn ∼N (0, 1) . (C1)

This strongly nonlinear configuration has been used, e.g. by
Poterjoy (2016).

Similarly to the mildly nonlinear test series, the distance
between the truth and the analysis is measured with the av-
erage analysis RMSE. The runs are 9× 1031t long, with an
additional 1031t spin-up period. Optimal values for the tun-
ing parameters of each algorithms are found using the same
method as for the mildly nonlinear test series. Figure C1
shows the evolution of the RMSE as a function of the en-
semble size Ne for the LETKF and for the main LPFx and
LPFy algorithms.

As expected in this strongly nonlinear test series, the EnKF
fails at accurately reconstructing the true state. By contrast,
all LPFs yield, at some point, an RMSE under σ = 1 (the ob-
servation standard deviation). Regarding the ranking of the

Figure C1. RMSE as a function of the ensemble size Ne for the
LETKF and the main LPFs, with the L96 model in the strongly non-
linear configuration. Note that the ultimate increase of the RMSE of
the LETKF with the ensemble size could have been avoided by us-
ing random rotations in ensemble space.

methods, most conclusions from the mildly nonlinear case
remain true. The best RMSE scores are obtained with algo-
rithms using OT-based resampling methods. Combining the
smoothing-by-weights method with the coloured noise reg-
ularisation jitter method yields almost equally good scores
as the LPFx algorithms using OT. Finally, using the second-
order propagation method yields the lowest RMSEs, despite
the non-Gaussian error distributions that result from nonlin-
earities.

Appendix D: Rank histograms for the L96 model

As a complement to the RMSE test series, we compute
rank histograms of the ensembles (Anderson, 1996; Hamill,
2001). For this experiment, the DA problem is the same as
the one in Sects. 5 and 8: the L96 model is used in its stan-
dard configuration.

Several algorithms are selected with characteristics de-
tailed in Table D1. The histograms are obtained separately
for each state variable by computing the rank of the truth in
the unperturbed analysis ensemble (i.e. the analysis ensem-
ble before the regularisation step for the LPFs). To ensure the
convergence of the statistical indicators, the runs are 1051t

long with a 1031t spin-up period. The mean histograms (av-
eraged over the state variables) are reported in Fig. D1.

The histogram of the EnKF is quite flat in the middle, and
its edges reflect a small overdispersion. The histogram of the
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Table D1. Rank histograms computed with the L96 model in the standard configuration (see Appendix D). All LPFs use zero integration
jitter (q = 0). The localisation radii are given in number of grid points. For the ETKF, the optimal multiplicative inflation is reported in the
regularisation jitter column. The bold font in the RMSE column indicates that the algorithm parameters have been tuned to yield the lowest
RMSE score. The first column indicates the corresponding panel in Fig. D1.

Panel Algorithm Ens. size Ne Loc. radius r Reg. jitter s Other parameters RMSE

(a) ETKF 20 ∞ 1.02 – 0.188
(b) S(IR)xR 128 8 10.0× 10−2 Nb = 10 0.289
(c) S(ITs)xR 128 20 4.5× 10−2 h= 1 0.215
(d) S(ITsPRK)yR 128 80 1.0× 10−2 h= 1 0.180
(e) S(IR)xR 128 5 8.0× 10−2 Nb = 40 0.500
(f) S(ITs)xR 128 10 3.0× 10−2 h= 1 0.228

Figure D1. Rank histograms for the selection of algorithms detailed in Table D1. The frequency is normalised by Ne+ 1 (the number of
bins).

tuned S(IR)xR algorithm is characterised by a large hump,
showing that the ensemble is overdispersive. At the same
time, the high frequencies at the edges show that the algo-
rithm yields a poor representation of the distribution tails (as
most PF methods). The overdispersion of the ensemble is a
consequence of the fact that the parameters have been tuned
to yield the best RMSE score, regardless of the flatness of the
rank histogram. With a different set of parameter, the untuned
S(IR)xR algorithm yields a rank histogram much flatter. In
this case, the regularisation jitter is lower (which explains
the fact that the ensemble is less overdispersive) and the lo-
calisation radius smaller (to avoid the filter divergence). Of
course, the RMSE score for the untuned S(IR)xR algorithm is
higher than for its tuned version. Similar conclusions can be
found with the histograms of the tuned and untuned S(ITs)xR
algorithm. Note that in this case the histograms are signif-

icantly flatter than with the S(IR)xR algorithm. Finally, the
histogram of the (tuned) S(ITsPRK)yR is remarkably flat.

In summary, the rank histograms of the LPFs are in general
rather flat. The ensemble are more or less overdispersive; this
is a consequence of the use of regularisation jitter, necessary
for avoiding the filter divergence. As most PF methods, the
LPFs yield a poor representation of the distribution tails.

Appendix E: The multinomial and the SU sampling
algorithms

We describe here the multinomial and the SU sampling algo-
rithms, which are the most common resampling algorithms.
In this algorithms, highly probable particles are selected
and duplicated, while particles with low probability are dis-
carded. Algorithms 9 and 10 describe how to construct the
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resampling map φ according to the multinomial resampling
and the SU sampling algorithms, respectively. The resam-
pling map φ is the map such that φ (i) is the index of the ith
particle selected for resampling.

Both algorithms only require the cumulative weights ci

that can easily be obtained from the importance weights wi

using

ci =

i∑
j=1

wj , (E1)

and both algorithms use random number(s) generated from
U (0, 1), the uniform distribution over the interval [0, 1]. Be-
cause of these random numbers, both algorithms introduce
sampling noise. Moreover, it can be shown that the SU sam-
pling algorithm has the lowest sampling noise (see, e.g. van
Leeuwen, 2009).
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