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Abstract. The climatic response to time-dependent parame-
ters is revisited from a nonlinear dynamics perspective. Some
general trends are identified, based on a generalized stabil-
ity criterion extending classical stability analysis to account
for the presence of time-varying coefficients in the evolution
equations of the system’s variables. Theoretical predictions
are validated by the results of numerical integration of the
evolution equations of prototypical systems of relevance in
atmospheric and climatic dynamics.

1 Introduction

The climatic impact of systematic variations of certain key
parameters in time arising from anthropogenic effects such
as increasing CO2 concentration constitutes currently a ma-
jor scientific, economic and societal issue (Goodie and Guff,
2001). There exists a vast literature on the subject culminat-
ing in the derivation of a number of scenarios of future cli-
matic change, based on the integration of detailed numerical
models and on the intercomparison of their respective pre-
dictions (Andrews et al., 2012).

On the other hand, it is widely recognized that the atmo-
sphere and climate are highly nonlinear systems subjected
to intricate feedbacks giving rise to a rich variety of com-
plex dynamical behaviors such as self-generated periodic-
ities, deterministic chaos, or transitions between different
states (Nicolis and Nicolis, 1987; Dijkstra, 2013). A major
advance of nonlinear dynamics has been to show that these
behaviors often rest on a limited number of generic, global
features independent of details concerning individual pro-
cesses (Guckenheimer and Holmes, 1983). This suggests that
it might be of interest to search for regularities likely to re-

cur across different models and scenarios that could possi-
bly be masked in a detailed full-scale analysis. In this work
we revisit the climatic response to time-dependent parame-
ters from such a nonlinear dynamics perspective, extending
an early investigation in this direction by the present author
(Nicolis, 1988).

The starting point is a set of equations governing the evo-
lution of the atmospheric and climatic variables. We consider
a reference state corresponding to a solution of these equa-
tions for some particular values of the parameters. We next
switch on a systematic variation of these parameters in time
and follow the subsequent transient response of the reference
state to this forcing. The questions we raise are whether and
if so for how long the system will follow passively this varia-
tion while remaining in the same branch of states; under what
conditions it will jump to a new regime and if so when this
transition will occur; and finally, whether states that would
otherwise prevail in the absence of parameter variation are
altered significantly or missed altogether.

A general formulation for addressing these questions is
outlined in Sect. 2, where a generalized stability criterion for
remaining or not in the vicinity of the reference state is de-
rived and some general scenarios of subsequent evolution are
discussed. In the light of these ideas the response to time-
varying parameters is analyzed in Sects. 3 to 5 in situations
giving rise to oscillatory behavior, to chaotic behavior and to
transitions between simultaneously stable states. The main
conclusions are summarized in Sect. 6.

Throughout her career Anna Trevisan managed to com-
bine harmoniously theoretical ideas and tools and large-scale
numerical approaches to tackle fundamental problems of
concern in atmospheric physics. This paper is dedicated to
her memory.
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2 Formulation

Let {xi}, i = 1, · · ·,n be the set of atmospheric/climatic vari-
ables and λα , α = 1, · · ·, r a set of parameters characteristic
of the rates of the various processes involved in the evolution
of these variables. The rate of change of {xi} in time will be
given by a set of equations of the form

dxi
dt
= Fi

(
{λα}, {xj }

)
, i,j = 1, · · ·,n, (1)

where the evolution laws {Fi} are, typically, nonlinear func-
tions of the {xj }.

We are interested in situations in which one of these pa-
rameters varies systematically in time as a result of an ex-
ternally induced forcing of natural or anthropogenic origin.
The particular form of variation we shall focus on is a slow
variation in the form of a ramp,

λ(t)= λ0+ εt, ε� 1, (2)

where t is the time and λ0 the value of λ prevailing at a stage
where the evolution of the {xi} is started. Introducing the
slow timescale

τ = εt, (3a)

one may cast Eqs. (1) in the form

ε
dxi
dτ
= Fi

(
λ(τ), {xj }

)
, (3b)

where from now on we will discard all parameters other than
the time-varying one λ(τ).

Following the procedure outlined in the Introduction we
consider now a particular, possibly time-dependent state {xi}
lying at t = 0 on an invariant attracting set of states corre-
sponding to the value λ0 of parameter λ and switch on next
the change of λ in time according to Eq. (2). We are inter-
ested in the response of the reference state {xi} to this change
as defined by the instantaneous deviations from it, {δxi}, ini-
tially assumed to be small. Writing

xi = xi + δxi (4a)

and substituting into Eq. (3b), one obtains then a linearized
set of equations of the form

ε
dδxi
dτ
=

∑
j

Jij (τ )δxj , (4b)

where Jij =
(
∂Fi/∂xj

)
{xj }

are the elements of the Jaco-
bian matrix associated to Fi . These quantities depend on
τ through the time dependence of λ (Eq. 2) and possibly
through the fact that the reference state {xi}may itself be part
of a periodic or chaotic attractor. In what follows we will be
especially interested in the dependence on τ induced by λ.

Equations (4b) constitute a set of coupled equations
with slowly varying coefficients. Generalizing the time-
exponential solutions familiar from classical stability anal-
ysis, we seek solutions of these equations of the WKB form
(Kevorkian and Cole, 1996):

δxi(τ )= exp
[

1
ε
8(τ)

]
Ai(ε,τ ), (5)

where the amplitudes Ai depend smoothly on ε. Substituting
into Eqs. (4b) we obtain, to the dominant order in ε,

Ai
d8
dτ
=

∑
j

Jij (τ )Aj .

It follows that the quantity

w(τ)=
d8
dτ

(6a)

satisfies the generalized characteristic equation

det|Jij (τ )−w(τ)δkr
ij | = 0 (6b)

and plays thus the role of a generalized eigenvalue of the
(time-dependent) Jacobian matrix J(τ ).

We are now in the position to derive the condition under
which the response {δxi(τ )} will remain bounded or will, on
the contrary, show explosive behavior. Taking Eq. (5) into ac-
count one sees straightforwardly that the threshold separating
these two regimes is given by the relation

Re8(τc)=

τc∫
0

dτ ′Rew
(
τ ′
)
= 0. (7)

This relation, if satisfied, defines a critical time tc = ετc
and a corresponding critical value λc = λ0+ εtc of parame-
ter λ beyond which the system will depart from the reference
state and evolve toward a new branch of solutions. We expect
that these solutions will be part of the bifurcation diagram of
the dynamical system defined by Eqs. (1). The question will
then be how these solutions are reached if one moves across
this bifurcation diagram according to Eq. (2), starting from
a stable branch of solutions. In particular, are the transitions
toward the new states taking place in the “static” bifurcation
points of Eq. (1), and if not, in the “dynamical” view of bi-
furcation adopted here, are the transitions advanced, delayed
or skipped altogether (Erneux and Mandel, 1986; Baer et al.,
1989; Benoit, 1991; Nicolis and Nicolis, 2004, 2014). Failure
to satisfy relation (7) for any τ within a certain range, start-
ing at τ = 0 from a stable branch of solutions, would on the
other hand imply that the system will remain on this branch
of solutions for this time period. One would then like to know
how the structure of this solution is affected as the parameter
λ is varying in time. In particular, can this time dependence
lead eventually to catastrophic behavior, by, e.g., enabling the
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system to cross threshold values that would otherwise never
be reached.

In what follows these questions will be addressed for se-
lected classes of systems giving rise to periodic behavior,
to chaotic dynamics and to transitions between simultane-
ously stable steady states. We stress that the logic under-
lying our formulation differs from the one adopted in typ-
ical general circulation model-based experiments (Gregory
et al., 2015) in which, e.g., CO2 concentration is suddenly
increased (CMIP5 abrupt n×CO2 experiments where n is
typically 2 or 4) and the system is subsequently left to relax
to its final state, keeping this concentration constant.

3 Periodic behavior

A dynamical system giving rise to sustained oscillations must
involve at least two coupled variables. The onset of oscilla-
tory behavior will occur through a Hopf bifurcation, in the
vicinity of which the Jacobian matrix associated to the rate
functions {Fi} in Eqs. (1) possesses two complex conjugate
eigenvalues whose real parts become positive beyond the bi-
furcation point (Guckenheimer and Holmes, 1983). An in-
teresting example of Eqs. (1) of relevance in climate theory
giving rise to this type of behavior is the sea ice–ocean sur-
face temperature model developed by Saltzman, Sutera and
Hansen (Saltzman et al., 1982) which in appropriate rescaled
variables reads as (Nicolis, 1984)

dη
dt
=−η+ θ,

dθ
dt
=−aη+ bθ − η2.θ (8)

Here η represents the deviation of the sine of the latitude
of sea ice extent from the reference steady state and θ the
excess mean ocean surface temperature. a and b are positive
parameters describing, respectively, the negative feedback of
ice extent on temperature and the positive feedback of tem-
perature on itself. Finally, η2θ accounts for nonlinear restor-
ing mechanisms.

Previous studies have shown that as long as a > b the
steady-state solution η = θ = 0 of Eqs. (8) is stable for values
of the parameter b less than 1 and loses its stability through a
Hopf bifurcation toward time-periodic solutions at a critical
value b(0)c = 1.

In the context of the present work it will be natural to
choose b as the time-dependent parameter

b = b0+ εt. (9)

We choose again as a reference state the steady-state solu-
tion η = θ = 0 and a starting value b0 for which this state is
stable (b0 < 1) and seek solutions of Eq. (8) when the time
dependence of b is switched on according to Eq. (9) in the
WKB forms of Eq. (5). One obtains then straightforwardly

the following explicit form of the generalized characteristic
equation (Eq. 6b):(

d8
dτ

)2

− (b0+ τ − 1)
d8
dτ
+ (a− (b0+ τ))= 0, (10)

where we have again set τ = εt . In view of our choice b0 < 1
and a > b there exists a range of values of τ for which this
equation admits complex conjugate roots: (d8/dτ)±. The
stability criterion expressed by Eq. (7) in terms of the real
part of these solutions leads then to the explicit form

Re8± (τc)=

τc∫
0

dτ ′Re
(

d8
dτ ′

)

=
1
2

τc∫
0

dτ ′
(
b0− 1+ τ ′

)
=

1
2

[
(b0− 1)τc+

τc
2

2

]
= 0. (11)

This relation determines a critical time

tc =
2(1− b0)

ε
(12a)

and a new critical parameter value

bc = b0+ εtc = 2− b0 (12b)

independent of ε, beyond which the system will leave the
reference state and evolve toward a periodic solution. The
point is that (a), unless b0 = 1, bc is different from the value
b
(0)
c = 1 corresponding to the “static” Hopf bifurcation point,

and (b), as a result the transition to the instability region is
postponed for a time interval proportional to the distance of
b
(0)
c from the starting value b0 and inversely proportional to

the smallness parameter ε. During this delay the system will
keep following the initial branch of states, which in the clas-
sical setting of time-independent parameter b would be un-
stable and is now temporarily stabilized. In a climate dynam-
ics perspective one could rephrase this result by the state-
ment that rather than precipitating the system to the insta-
bility that was bound to occur at b(0)c = 1 and to the large
deviations in the form of oscillations that would follow, the
time-dependent forcing has on the contrary postponed this
“catastrophe”. Everything happens as if the presence of the
time-dependent forcing during the time spent in the stable
region enhances the “inertia” of the system and hence its fur-
ther stabilization into this region. This realization illustrates
how long-term predictions can interfere in a subtle and unex-
pected manner with the dynamical complexity of the under-
lying system.

We now confront these predictions to the results of direct
numerical integration of Eqs. (8) with parameter b varying
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Figure 1. Evolution of variable η versus the instantaneous value of
the feedback parameter b as obtained numerically from model (8)
in the presence of a time dependence b = b0+εt with b0 = 0, a = 4
and ε = 0.01.

according to Eq. (9). Figure 1 depicts the evolution of vari-
able η in a representation where time enters through the pa-
rameter b = b0+εt , with a = 4, b0 = 0 and ε = 0.01. As can
be seen the system follows the state η = 0, runs across the
static Hopf bifurcation point b(0)c = 1 as if nothing was hap-
pening and finally jumps to an oscillatory state at a time cor-
responding to b = 2, in full agreement with the theoretical
result of Eqs. (12a) and (12b). On the other hand, when the
transition is finally taking place the system is rapidly precipi-
tated in a regime of large-amplitude oscillations, much larger
than those that would start smoothly at b(0)c = 1 in the classi-
cal setting of a static Hopf bifurcation. We witness, in some
sense, a payoff between the postponement and the extent of
a potentially catastrophic event.

These results hold for a wide range of values of ε, but
at some point one witnesses deviations from the asymptotic
regime as captured by the WKB type of solutions. The trend,
as illustrated in Fig. 2, is that for increasing ε (here ε = 0.1)
the transition to oscillations is further postponed beyond the
value predicted by our theoretical estimate. We conjecture
that this is due to the fact that the bifurcation diagram is
now traversed faster than the characteristic growth rates of
perturbations that would otherwise remove the system from
the reference state. These perturbations are thus temporarily
quenched until their growth rate becomes substantial and can
no longer be counteracted by moving across the bifurcation
diagram.

A question related to the foregoing observations and of in-
terest in the context of atmospheric and climate dynamics is
when a particular variable of relevance in a system subjected
to a systematic time-dependent forcing will cross for the first
time a certain prescribed level. Figure 3 summarizes the re-
sults obtained by numerically integrating Eqs. (8) and (9) for
a wide range of values of the ramp parameter ε and for a
threshold value |η| = 1 set for the variable η of the model. We
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Figure 2. As in Fig. 1 but ε = 0.1.
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Figure 3. Instantaneous value of parameter b corresponding to the
first passage of variable η from threshold |η| = 1 versus the intensity
ε of the ramp parameter with b0 = 0. Other parameter values as in
Fig. 1.

observe an ascending trend with increasing ε values, which
can be explained qualitatively by the arguments advanced in
connection with Fig. 2.

4 Chaotic dynamics

Chaotic dynamics is ubiquitous in the atmosphere, where it is
responsible for the growth of prediction errors arising from
small uncertainties in the initial conditions (Lorenz, 1984).
There are strong arguments supporting the view that it also
underlies a host of large-scale phenomena responsible for cli-
matic variability (Tsonis, 1992; Essex and McKitrick, 2007).
In the present section we analyze the effect of a systematic
time variation of parameters on a simplified model of ther-
mal convection giving rise to chaotic behavior due to Lorenz
(Lorenz, 1963) in which the velocity and temperature fields
are expanded in Fourier series keeping one Fourier mode for
the vertical component of the velocity (variable x; see below)
and two Fourier modes for the temperature variation (vari-
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ables y and z). One arrives then at the equations

dx
dt
= σ(−x+ y),

dy
dt
= rx− y− xz,

dz
dt
= xy− bz. (13)

The parameters σ and r are scaled Prandtl and Rayleigh
numbers, respectively, and b accounts for the geometry of
the convective pattern.

Equations (13) have been studied extensively in the litera-
ture (Sparrow, 1982). We briefly summarize some results that
will be relevant for our purposes.

– (i) The steady state x = y = z= 0 (where convection is
absent) is stable for r < 1 and loses its stability at r = 1
through a pitchfork bifurcation.

– (ii) Beyond r = 1 a pair of non-trivial steady states rep-
resentative of convection emerges, given by x± = y± =
±
√
b(r − 1), z= r−1. These states remain stable for r

less than a threshold value r(0)T = σ(σ+b+3)/(σ−b−
1).

– (iii) At r = r(0)T a Hopf bifurcation is occurring, but the
branches of periodic solutions are subcritical (i.e., exist
for r < r(0)T ) and thus unstable.

– (iv) Beyond r
(0)
T one observes a variety of complex

chaotic behaviors which emerge suddenly as global,
finite-amplitude solutions.

In what follows it will be natural to consider r , which in-
corporates the effect of the thermal constraints acting on the
system, as a time-dependent parameter.

Setting

r = r0+ εt (14)

we choose as the reference state one of the convective states,
say (x−, y−, z), and a starting value r0 for which this state
is stable, i.e., 1< r0 < r

(0)
T . Similarly to Sect. 3 we seek

solutions of Eqs. (13) with time-dependent r according to
Eq. (14) in the WKB form of Eq. (5). We obtain in this way
the following explicit form of the generalized characteristic
Eq. (6) associated to the Jacobian matrix of Eqs. (13) around
(x−, y−, z):(

d8
dτ

)3

+ (σ + b+ 1)
(

d8
dτ

)2

+ b (σ + r0+ τ)

(
d8
dτ

)
+ 2bσ (r0+ τ − 1)= 0, (15)

where τ = εt . The system will leave the reference state at a
critical time tc = τc/ε and a critical, ε-independent parameter

25
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40

10 15 20 25r
0

r
c

Figure 4. Theoretical estimate of the onset of chaotic solutions ver-
sus the initial value of parameter r0 (Eq. 15) for model (13) in
the presence of a time dependence in the form of r = r0+ εt with
ε = 0.01. Other parameter values are σ = 10 and b = 8/3.

value rc = r0+ εtc determined by relation (7),

Re8(τc)=

τc∫
0

dτ ′Re
(

d8
dτ ′

)
= 0, (16)

where d8/dτ as a function of τ is given by Eq. (15).
Figure 4 summarizes the results obtained by numerical

evaluation of the integral in Eq. (16). We have set for this pur-
pose σ = 10, b = 8/3 in Eq. (15). The static Hopf bifurcation
point r(0)T corresponding to these values is r(0)T ≈ 24.74. We
choose r0 values in the interval (10, 24) prior to this value,
for which Eq. (15) in the absence of a time-dependent pa-
rameter possesses a real negative root and a pair of complex
conjugate roots with a negative real part. We then plot in the
figure the critical value of r of the onset of chaotic solutions,
rc = r0+ τc, as a function of r0. As can be seen rc decreases
quasi-linearly with r0, from a value of about 45 at r0 = 10 to
a value of about 25.5 at r0 = 24.

Figure 5, to be compared with Fig. 1, depicts the evolution
of variable x versus time (expressed in terms of parameter
r = r0+ εt) as obtained from direct numerical integration of
Eqs. (13) and (14) for r0 = 20 and ε = 0.01. Once again the
system runs across the static transition point r(0)T ≈ 24.74, re-
mains close to the reference state (x−, y−, z) and eventually
evolves toward a chaotic state at a time corresponding to a
value rc between 29 and 30, in excellent agreement with the
theoretical predictions summarized in Fig. 4. This result re-
mains robust in the sense that rc is essentially determined by
r0 independent of ε for a wide range of ε values. But as ε is
increased one witnesses deviations from the theoretical esti-
mate as illustrated in Fig. 6, where for the same value of r0
as before and for ε = 0.1 the transition to the chaotic regime
occurs at a value of r of about 32.

Related to the foregoing observations is the question when
the variable x will cross for the first time a certain prescribed
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Figure 5. Time evolution of variable x of model (13) expressed
in terms of the instantaneous value of r with ε = 0.01 and initial
condition x = x−, y = y−, z= r0− 1.
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Figure 6. As in Fig. 5 but with ε = 0.1.

level higher than its value in the reference state. Figure 7
summarizes the results obtained by numerically integrating
Eqs. (13) and (14) for a wide range of values of ε and for
a threshold value of |x/x±| = 1.5. We observe an increas-
ing trend similar to the one reported in Fig. 3, reflecting
the enhancement of stabilization of the reference state upon
increasing the rate at which the bifurcation diagram is tra-
versed.

Assuming now that the system has settled in the chaotic
regime, we wish to quantify in some way the effect of the
time variation of parameter r on the behavior of the principal
variables involved. A first result in this direction is reported
in Fig. 8a, where the instantaneous ensemble averages over
100 000 initial conditions lying on the initial attractor of x,
y and z are plotted against time as measured again by r =
r0+ εt for values between 26 and 36, for which the system
shows chaotic behavior. We see that x and y hardly perceive
the time-dependent forcing, whereas z follows it in a rather
straightforward manner. This shows how subtle the response
of system to a parameter may be. Notice, however, that a

30

35

40

0 0.2 0.4 0.6 0.8 1

r

Figure 7. As in Fig. 3 but for model (13) with r0 = 20 and threshold
value |x/x±| = 1.5. Other parameter values as in Fig. 4.

further increase in r may bring the system to a new attractor
and change the qualitative features of the dynamics.

Figure 8b depicts the time evolution (again via the de-
pendence on r(t)) of the variances of x, y and z variables
around their means. We see that they all follow a systematic
increasing trend. This suggests the possibility that variance
can serve as a key quantity and as an early warning of future
changes induced by a time-dependent forcing, especially as
far as the occurrence of extreme events is concerned (Chavez
et al., 2016).

5 Transitions between states and limit point
bifurcations

There is ample evidence of large-scale climatic transitions
between glacial and interglacial regimes (Berger, 1981). On
a shorter timescale transitions between different global cir-
culation patterns associated to the phenomenon of persistent
flow regimes at mid-latitudes, also referred to as “blocking”
in contrast to the familiar zonal flows, are well documented
and constitute one of the principal elements of low-frequency
atmospheric variability.

In this section we analyze the effect of systematic time
variations of parameters in the classic three-variable model
of the zonal to blocking transitions that goes back to the
pioneering work of Charney (Charney and De Vore, 1979).
The model consists in expanding the stream function ψ as-
sociated to the horizontal velocity field in series of orthogo-
nal functions and, upon substituting into the equation for the
potential vorticity, truncating the resulting infinite system of
equations for the coupled modes to the first three ones. One
obtains in this way a system of equations of the form

Nonlin. Processes Geophys., 25, 649–658, 2018 www.nonlin-processes-geophys.net/25/649/2018/
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Figure 8. Ensemble averages (a) and variances (b) of variables x, y, and z of model (13) in the chaotic regime versus the instantaneous value
of the ramp parameter r starting from r0 = 26 with ε = 0.01. The number of initial conditions is 100 000.
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Figure 9. Bifurcation diagram of model (17) as parameter ψ∗
A

in-
creases from 0.05 to 7. Full lines represent the two stable solu-
tions, blocked (lower), zonal (upper) and dashed line the inter-
mediate unstable state. Parameter values k = 10−2, β = 0.1, h1 =
1.6
√

2/(3π), h2= h1/5 and α = 8h1.

dψA
dt
=−k

(
ψA−ψ

∗

A

)
+h1ψL,

dψK
dt
=−(αψA−β)ψL− kψK ,

dψL
dt
= (αψA−β)ψK −h2ψA− kψL. (17)

Here ψA, ψK , and ψL denote the amplitudes of the three
retained modes, ψ∗A is a forcing parameter of the flow and k
accounts for the effect of the dissipation. The remaining pa-
rameters are related to the topography and to the mean height
of the fluid layer. Higher-order truncation schemes have been
developed by Ghil and coworkers (Legras and Ghil, 1985).

Figure 9 depicts the bifurcation diagram of model (17)
in which the zonally averaged velocity mode ψA is plotted
against the forcing parameter ψ∗A, keeping the other parame-
ters fixed (see caption). One observes two branches of stable
solutions (full lines) colliding and terminating with an in-

termediate unstable branch (dashed line) at two critical val-
ues corresponding to a limit point bifurcation. Going back to
the space dependence of the velocity field, one finds that the
lower branch corresponds to the state of atmospheric block-
ing, whereas the upper branch is representative of zonal flow
(Charney and De Vore, 1979; Egger, 1981; Nicolis, 2002).

In what follows we choose ψ∗A as the forcing parameter,
setting

ψ∗A = ψ
∗

0 + εt. (18)

Figure 10 summarizes the results of numerical simulations
of the full Eqs. (17) and (18) for three different initial con-
ditions that in the absence of time variation of ψ∗A would
all be attracted by the lower (stable) branch of solutions.
We see that in actual fact this branch is skipped altogether
and the trajectories evolve to the upper stable branch passing
through the intermediate unstable one. Interestingly, they are
all significantly delayed before reaching eventually the up-
per branch. Part of this delay can be attributed to the slowing
down of the dynamics in the vicinity of the limit point, where
the generalized eigenvalues of the Jacobian around the upper
branch tend to zero for ψ∗A tending to its value at the limit
point.

A second series of numerical simulations is reported in
Fig. 11, starting this time from a state in the vicinity of the
lower stable branch. For very small ε we see that the branch
is followed up to the rightmost point, whereupon the trajec-
tory jumps to the upper branch with practically no delay. But
as ε is increased, one witnesses increasingly early departures
from the reference state. The corresponding trajectories pass
through the intermediate unstable branch and tend to the up-
per one, reaching it with delays that increase markedly with
ε. This behavior reflects undoubtedly the weak stability prop-
erties of the lower branch, which comes increasingly closer
to the intermediate unstable one for increasing ψ∗A values.
Furthermore, perturbations around the lower branch undergo
damped oscillations. Because of this, the trajectory, entrained
to a higher ψ∗A value under the effect of the ramp, may tem-
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Figure 10. Time evolution of variable ψA of model (17) in the pres-
ence of a time-dependent forcing (Eq. 18). Initial conditions (a), (b)
and (c) evolve to the zonal state (upper stable branch of the bifurca-
tion diagram), although in the absence of the time-dependent forc-
ing the system is bound to follow the blocked circulation solution
(low stable branch of the bifurcation diagram). Parameter values
ε = 0.01 and as in Fig. 9.
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Figure 11. As in Fig. 10 but for initial conditions in the vicinity of
the lower stable branch of the bifurcation diagram and three differ-
ent ε values.

porarily pass a threshold beyond which it starts being at-
tracted by the upper branch.

A more quantitative explanation, albeit limited to the
vicinity of the limit points, appeals to the fundamental result
that in the vicinity of a limit point bifurcation the dynam-
ics simplifies considerably. Specifically, there exists a single
variable z related to combinations of the three original vari-
ables appearing in Eq. (17), to which one refers as the order
parameter, satisfying a universal equation of the form (Guck-
enheimer and Holmes, 1983)

dz
dt
= µ(t)− z2, (19)

where µ is a combination of ψ∗A and of the other parameters
appearing in Eqs. (17) and (18).

Setting again µ(t)= µ0+ εt , one can show that upon ap-
propriate scaling of variables and parameters Eq. (19) can be
transformed to an Airy equation (Davies and Krishna, 1996).
The solution in terms of the original variable z is then

z= ε1/3
Ai′
(
µ0+εt

ε2/3

)
+CBi′

(
µ0+εt

ε2/3

)
Ai
(
µ0+εt

ε2/3

)
+CBi

(
µ0+εt

ε2/3

) . (20)

Here Ai and Bi are the Airy functions, the prime denotes
the derivative with respect to the whole argument and C is
determined by the initial condition z(0)= z0. Carrying out
at the level of Eq. (19) the numerical experiments summa-
rized in Fig. 10, one can now delimit the initial conditions
that will evolve to the upper stable branch z=

√
µ(t) of the

quasi-static solution of Eq. (19), by requiring that the denom-
inator in Eq. (20) remains different from zero, which in turn
requires that C be positive. This yields trajectories behaving
for the original dynamical system according to Fig. 10 (Nico-
lis and Nicolis, 2014). Notice that the approach outlined in
Sect. 2 and applied successfully in Sects. 3 and 4 is not ap-
propriate in the presence of a limit point, since the reference
stable state does not continue beyond the bifurcation point as
an unstable branch of solutions, but disappears altogether.

6 Conclusions

In this work we identified some universal trends underlying
the response of a system to systematic changes of parame-
ters in time. Most prominent among them are that, starting
with a stable branch of states, transitions to new regimes that
would occur in the “static” case of absence of time variation
of parameters tend to be delayed; states that in the static case
are unstable are temporarily stabilized; and states that in the
static case are stable can be skipped altogether. As a corol-
lary, the times at which threshold values are first crossed have
been obtained as a function of the rate of increase of the pa-
rameters in time.

These conclusions were based on a generalized stability
criterion extending classical stability analysis to account for
the presence of time-varying coefficients in the evolution
equations of the system’s variables, as well as on analytic
solutions prevailing in the vicinity of transition points. They
were validated by the results of numerical integration of the
evolution equations of prototypical systems of relevance in
atmospheric and climate dynamics giving rise to periodic be-
havior, to chaotic dynamics and to transitions between si-
multaneously stable steady states. As it turned out for suf-
ficiently small rates ε of parameter change a universal, ε-
independent regime is reached in which the transition occurs
at a parameter value depending entirely on the initial value
and the critical value corresponding to the limit ε = 0. But as
ε is increased one observes rate-dependent deviations from
this regime as illustrated in Figs. 2, 6 and 11. Rate-dependent
behavior was also reported by Ashwin et al. (2012).
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The extended stability analysis followed in this work be-
longs to the class of linear response theories, in the sense
that it is focussing on the conditions under which perturba-
tions, initially assumed to be small, will at some stage start to
grow in time. On the other hand it is purely deterministic, as
random external perturbations or intrinsic fluctuations have
not been incorporated into the description. A different class
of linear response theories was recently developed in the cli-
mate literature (see, e.g., Lucarini, 2012; Nicolis and Nicolis,
2015) in which the change in the fluctuation properties of a
system due to the presence of noise and the response of the
noise-free system to deterministic forcings were linked. Im-
plicit in these approaches is the existence of a well-defined
invariant probability measure of the reference system with re-
spect to which statistical averages are carried out. Our anal-
ysis suggests that this can be so under the conditions that
the system is operating around a well-defined, single stable
regime, i.e., (a), that the range of variations of the forcing
is nested between two successive bifurcation points; and (b),
that the rate ε is sufficiently small so that the instantaneous
perturbation to the invariant probability brought by the forc-
ing remains small.

Throughout our approach the time variation of the param-
eters has been fully and consistently incorporated into the
intrinsic time evolution of the system’s variables as given by
the appropriate rate equations. Our results depend critically
on this view of parameter-system co-evolution, a scenario
reflecting, we believe, the way a natural system is actually
evolving in time. This scenario differs from those adopted in
current studies on climatic change based on the integration
of large numerical models, where parameters are suddenly
set at a different level and the system is subsequently left to
relax under these new conditions. It would be interesting to
allow for different scenarios beyond the standard ones, closer
to our fully dynamical approach, and to test the robustness of
the conclusions reached under these different conditions.
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