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Abstract. Data assimilation is considered as a problem in
Bayesian estimation, viz. determine the probability distri-
bution for the state of the observed system, conditioned by
the available data. In the linear and additive Gaussian case,
a Monte Carlo sample of the Bayesian probability distribu-
tion (which is Gaussian and known explicitly) can be ob-
tained by a simple procedure: perturb the data according to
the probability distribution of their own errors, and perform
an assimilation on the perturbed data. The performance of
that approach, called here ensemble variational assimilation
(EnsVAR), also known as ensemble of data assimilations
(EDA), is studied in this two-part paper on the non-linear
low-dimensional Lorenz-96 chaotic system, with the assimi-
lation being performed by the standard variational procedure.
In this first part, EnsVAR is implemented first, for reference,
in a linear and Gaussian case, and then in a weakly non-linear
case (assimilation over 5 days of the system). The perfor-
mances of the algorithm, considered either as a probabilis-
tic or a deterministic estimator, are very similar in the two
cases. Additional comparison shows that the performance
of EnsVAR is better, both in the assimilation and forecast
phases, than that of standard algorithms for the ensemble
Kalman filter (EnKF) and particle filter (PF), although at a
higher cost. Globally similar results are obtained with the
Kuramoto–Sivashinsky (K–S) equation.

1 Introduction

The purpose of assimilation of observations is to reconstruct
as accurately as possible the state of the system under obser-
vation, using all the relevant available information. In geo-

physical fluid applications, such as meteorology or oceanog-
raphy, that relevant information essentially consists of the
physical observations and of the physical laws which govern
the evolution of the atmosphere or the ocean. Those physi-
cal laws are in practice available in the form of a discretized
numerical model. Assimilation is therefore the process by
which the observations are combined together with a numer-
ical model of the dynamics of the observed system in order
to obtain an accurate description of the state of that system.

All the available information, the observations as well as
the numerical model, is affected (and, as far as we can tell,
will always be affected) with some uncertainty, and one may
wish to quantify the resulting uncertainty in the output of the
assimilation process. If one chooses to quantify uncertainty
in the form of probability distributions (see e.g. Jaynes, 2004,
or Tarantola, 2005, for a discussion of the problems which
underlie that choice), assimilation can be stated as a prob-
lem in Bayesian estimation. Namely, determine the proba-
bility distribution for the state of the observed system, con-
ditioned by the available information. That statement makes
sense only under the condition that the available information
is described from the start in the form of probability distri-
butions. We will not discuss here the difficult problems as-
sociated with that condition (see Tarantola, 2005, for such a
discussion) and will assume below that it is verified.

There is one situation in which the Bayesian probability
distribution is readily obtained in analytical form. That is
when the link between the available information on the one
hand, and the unknown system state on the other, is linear,
and affected by additive Gaussian error. The Bayesian prob-
ability distribution is then Gaussian, with explicitly known
expectation and covariance matrix (see Sect. 2 below).
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Now, the very large dimension of the numerical models
used in meteorology and oceanography (that dimension can
lie in the range 106 to 109) forbids explicit description of
probability distributions in the corresponding state spaces. A
widely used practical solution is to describe the uncertainty
in the form of an ensemble of points in state space, with the
dispersion of the ensemble being meant to span the uncer-
tainty. Two main classes of algorithms for ensemble assimi-
lation exist at present. The ensemble Kalman filter (EnKF),
originally introduced by Evensen (1994) and further stud-
ied by many authors (Evensen, 2003 and Houtekamer and
Mitchell, 1998, 2001), is a heuristic extension to large dimen-
sions of the standard Kalman filter (KF) Kalman (1960). The
latter exactly achieves Bayesian estimation in the linear and
Gaussian case that has just been described. It explicitly de-
termines the expectation and covariance matrix of the (Gaus-
sian) conditional probability distribution and evolves those
quantities in time, updating these with new observations as
they become available.

The EnKF, contrary to the standard KF, evolves an ensem-
ble of points in state space. One advantage is that it can be
readily, if empirically, implemented on non-linear dynamics.
On the other hand, it keeps the same linear Gaussian proce-
dure as KF for updating the current uncertainty with new ob-
servations. EnKF exists in many variants and, even with en-
semble sizes of relatively small size (O(10–100)), produces
results of high quality. It has now become, together with vari-
ational assimilation, one of the two most powerful algorithms
used for assimilation in large-dimension geophysical fluid
applications.

Concerning the Bayesian properties of EnKF, Le Gland
et al. (2011) have proven that, in the case of linear dynam-
ics and in the limit of infinite ensemble size, EnKF achieves
Bayesian estimation, in that it determines the exact (Gaus-
sian) conditional probability distribution. In the case of non-
linear dynamics, EnKF has a limiting probability distribu-
tion, which is not in general the Bayesian conditional distri-
bution.

Contrary to EnKF, which was from the start developed
for geophysical applications (but has since extended to other
fields), particle filters (PFs) have been developed totally in-
dependently of such applications. They are based on gen-
eral Bayesian principles and are thus independent of any hy-
pothesis of linearity or Gaussianity (see Doucet et al., 2000,
2001, and van Leeuwen, 2017, for more details). Like the
EnKF, they evolve an ensemble of (usually weighted) points
in state space and update them with new observations as
these become available. They exist in numerous variants,
many of which have been mathematically proven to achieve
Bayesianity in the limit of infinite ensemble size (Crisan and
Doucet, 2002). On the other hand, no results exist to the au-
thors’ knowledge in the case of finite ensemble size. They
are actively studied in the context of geophysical applica-
tions as presented in van Leeuwen (2009, 2017), but have

not at this stage been operationally implemented on large-
dimension meteorological or oceanographical models.

There exist at least two other algorithms that can be uti-
lized to build a sample of a given probability distribution. The
first one is the acceptance–rejection algorithm described in
Miller et al. (1999). The other one is the Metropolis–Hastings
algorithm (Metropolis et al., 1953), which itself possesses a
number of variants (Robert, 2015). These algorithms can be
very efficient in some circumstances, but it is not clear at
this stage whether they could be successfully implemented
in large-dimension geophysical applications.

Coming back to the linear and Gaussian case, not only, as
said above, is the (Gaussian) conditional probability distribu-
tion explicitly known, but a simple algorithm exists for deter-
mination of independent realizations of that distribution. In
succinct terms, perturb additively the data according to their
own error probability distribution, and perform the assimila-
tion for the perturbed data. Repetition of this procedure on
successive sets of independently perturbed data produces a
Monte Carlo sample of the Bayesian posterior distribution.

The present work is devoted to the study of that algorithm,
and of its properties as a Bayesian estimator, in non-linear
and/or non-Gaussian cases. Systematic experiments are per-
formed on two low-dimensional chaotic toy models, namely
the model defined by Lorenz (1996) and the Kuramoto–
Sivashinsky (K–S) equation (Kuramoto and Tsuzuki, 1975,
1976). Variational assimilation, which produces the Bayesian
expectation in the linear and Gaussian case, and is routinely,
and empirically, implemented in non-linear situations in op-
erational meteorology, is used for estimating the state vector
for given (perturbed) data. The algorithm is therefore called
ensemble variational assimilation, abbreviated to EnsVAR.

This algorithm is not new. There exist actually a rather
large number of algorithms for assimilation that are varia-
tional (at least partially) and build (at least at some stage)
an ensemble of estimates of the state of the observed sys-
tem. A review of those algorithms has been recently given
by Bannister (2017). Most of these algorithms are actually
different from the one that is considered here. They have not
been defined with the explicit purpose of achieving Bayesian
estimation and are not usually evaluated in that perspective.

EnsVAR, as defined here, has been specifically studied un-
der various names and in various contexts by several authors
(Oliver et al., 1996; Bardsley, 2012; Bardsley et al., 2014;
Liu et al., 2017). Bardsley et al. (2014) have extended it in
to what they call the randomize-then-optimize (RTO) algo-
rithm. These works have shown that EnsVAR is not in gen-
eral Bayesian in the non-linear case, but can nevertheless lead
to a useful estimate.

EnsVAR is also used operationally at the European Centre
for Medium-Range Weather Forecasts (ECMWF) (Isaksen et
al., 2010) in the definition of the initial conditions of ensem-
ble forecasts. It is also used, both at ECMWF and at Météo-
France (see respectively Bonavita et al., 2016, and Berre et
al., 2015), under the name ensemble of data assimilations
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(EDA) for defining the background error covariance matrix
of the variational assimilation system. And ECMWF, in its
latest reanalysis project ERA5 (Hersbach and Dee, 2016)
uses a low-resolution ensemble of data assimilations system
in order to estimate the uncertainty in the analysis.

None of the above ensemble methods seems however to
have been systematically and objectively evaluated as a prob-
abilistic estimator. That is precisely the object of the present
two papers.

The first of these is devoted to the exactly linear and
weakly non-linear cases, and the second to the fully non-
linear case. In this first one, Sect. 2 describes in detail the
EnsVAR algorithm, as well as the experimental set-up that is
to be used in both parts of the work. Section 3 describes the
statistical tests to be used for objectively assessing EnsVAR
as a probabilistic estimator. EnsVAR is implemented in
Sect. 4, for reference, in an exactly linear and Gaussian case
in which theory says it achieves exact Bayesian estimation.
It is implemented in Sect. 5 on the non-linear Lorenz sys-
tem, over a relatively short assimilation window (5 days),
over which the tangent linear approximation remains basi-
cally valid and the performance of the algorithm is shown
not to be significantly altered. Comparison is made in Sect. 6
with two standard algorithms for EnKF and PF. Experiments
performed on the Kuramoto–Sivashinsky equation are sum-
marized in Sect. 7. Partial conclusions, valid for the weakly
non-linear case, are drawn in Sect. 8.

The second part is devoted to the fully non-linear situation,
in which EnsVAR is implemented over assimilation windows
for which the tangent linear approximation is no longer valid.
Good performance is nevertheless achieved through the tech-
nique of quasi-static variational assimilation (QSVA), de-
fined by Pires et al. (1996) and Järvinen et al. (1996). Com-
parison is made again with EnKF and PF.

The general conclusion of both parts is that EnsVAR can
produce good results which, in terms of performance as a
probabilistic estimator and of numerical accuracy, are at least
as good as the results of EnKF and PF.

In the sequel of the paper we denote byN (m,P) the multi-
variate Gaussian probability distribution with expectation m
and covariance matrix P (for a univariate Gaussian probabil-
ity distribution, we will use the similar notation N (m, r)). E
will denote statistical expectation, and Var will denote vari-
ance.

2 The method of ensemble variational assimilation

We assume the available data make up a vector z, belonging
to data space D with dimension Nz, of the form

z= 0x+ ζ . (1)

In this expression, x is the unknown vector to be determined,
belonging to state space S with dimension Nx , while 0 is a
known linear operator from S intoD, called the data operator

and represented by an Nz×Nx matrix. As for the Nz vector
ζ , we will call it an “error”, even though it may not represent
an error in the usual sense, but any form of uncertainty. It
is assumed to be a realization of the Gaussian probability
distributionN (0,6) (in case the expectation E(ζ )were non-
zero, but known, it would be necessary to first unbias the
data vector z by subtracting that expectation). It should be
stressed that all available information about x is assumed to
be included in the data vector z. For instance, if one, or even
several, Gaussian prior estimatesN (xb,Pb) are available for
x, they must be introduced as subsets of z, each with Nx
components, in the form

xb = x+ ζ b, ζ b ∼N (0,Pb).

In those conditions the Bayesian probability distribution
P(x|z) for x conditioned by z is the Gaussian distribution
N (xa,Pa) with{
xa = (0T6−10)−10T6−1z

Pa = (0T6−10)−1 . (2)

At first glance, the above equations seem to require the in-
vertibility of the Nz×Nz matrix 6 and then of the Nx ×Nx
matrix 0T6−10. Without going into full details, the need
for invertibility of 6 is only apparent, and invertibility of
0T6−10 is equivalent to the condition that the data operator
0 is of rankNx . This in turn means that the data vector z con-
tains information on every component of x. This condition is
known as the determinacy condition. It implies thatNz ≥Nx .
We will call p =Nz−Nx the degree of over-determinacy of
the system.

The conditional expectation xa can be determined by min-
imizing the following scalar objective function defined on
state space S

ξ ∈ S −→ J (ξ)=
1
2
[0ξ − z]T6−1

[0ξ − z]. (3)

In addition, the covariance matrix Pa is equal to the inverse
of the Hessian of J

Pa =
[
∂2J
∂ξ2

]−1

. (4)

In the case where the error ζ , while still being random with
expectation 0 and covariance matrix 6, is not Gaussian, the
vector xa defined in Eq. (2) is not the conditional expectation
of x for a given z, but only the least-variance linear estimate,
or best linear unbiased estimate (BLUE), of x from z. Sim-
ilarly, the matrix Pa is no longer the conditional covariance
matrix of x for a given z, but the covariance matrix of the
estimation error associated with the BLUE, averaged over all
realizations of the error ζ .

Minimization of Eq. (3) can also been performed, at least
in favourable circumstances, with a non-linear data opera-
tor 0. This is what is done, heuristically but with undis-
putable usefulness, in meteorological and oceanographical
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variational assimilation. The latter is routinely implemented
in a number of major meteorological centres on non-linear
dynamical models with non-linear observation operators. For
more on minimization of objective functions of Eq. (3) with
non-linear 0, see e.g. Chavent (2010).

Coming back to the linear and Gaussian case, consider the
perturbed data vector z′ = z+ ζ ′, where the perturbation ζ ′

has the same probability distribution N (0,6) as the error ζ .
It is easily seen that the corresponding estimate

xa
′
= (0T6−10)−10T6−1z′ (5)

is distributed according to the Gaussian posterior distribu-
tion N (xa,Pa) (Eq. 2). This defines a simple algorithm for
obtaining a Monte Carlo sample of that posterior distribu-
tion. Namely, perturb the data vector z according to its own
error probability distribution, compute the corresponding es-
timate (Eq. 5), and repeat the same process with independent
perturbations on z.

That is the ensemble variational assimilation, or EnsVAR,
algorithm that is implemented below in non-linear and non-
Gaussian situations, with the analogue of the estimate xa ′

being computed by minimization of Eq. (3). In general, this
procedure, as already mentioned in the introduction, does not
achieve Bayesian estimation, but it is interesting to study the
properties of the ensembles thus obtained.

Remark. In the case when, the data operator 0 being linear,
the error ζ in Eq. (1) is not Gaussian, the quantity xa ′ defined
by Eq. (5) has expectation xa (BLUE) and covariance matrix
Pa (see Isaksen et al., 2010). The probability distribution of
the xa ′ is in general not Bayesian, but it has the same ex-
pectation and covariance matrix as the Bayesian distribution
corresponding to a Gaussian ζ .

All the experiments presented in this work are of the stan-
dard identical twin type, in which the observations to be as-
similated are extracted from a prior reference integration of
the assimilating model. And all experiments presented in this
first part are of the strong-constraint variational assimilation
type, in which the temporal sequence of states produced by
the assimilation are constrained to satisfy exactly the equa-
tions of the assimilating model.

That model, which will emanate from either the Lorenz or
the Kuramoto–Sivashinsky equation, will be written as

xt+1 =M(xt ), (6)

where xt is the model state at time t , belonging to model
space M, with dimension N (in the strong-constraint case
considered in this first part, the model spaceM will be iden-
tical with the state space S). For each model, a “truth”, or
reference, run xr

t has first been produced. A typical (strong-
constraint) experiment is as follows.

Choosing an assimilation window [t0, tT ] with length T
(it is mainly the parameter T that will be varied in the ex-
periments), synthetic observations are produced at successive

times (t0 < t1 < .. . < tk < .. . < tK = tT ), of the form

yk =Hkx
r
k + εk, (7)

where Hk is a linear observation operator, and εk ∼N (0,Rk)
is an observation error. The εk’s are taken to be mutually
independent.

The following process is then implemented Nens times
(iens= 1, · · ·,Nens).

i. Perturb the observations yk,k = 0, . . .,K according to

(yiens
k )′ = yk + δk, (8)

where δk ∼N (0,Rk) is an independent realization of
the same probability distribution that has produced εk .
The notation ′ stresses, as in Eq. (5), the perturbed char-
acter of (yiens

k )′.

ii. Assimilate the perturbed observations
(
yiens
k

)′ by mini-
mization of the following objective function:

ξ0 ∈M−→ J iens(ξ0)= (9)

1
2

K∑
k=0

[
Hkξ k −

(
yiens
k

)′]T
R−1
k

[
Hkξ k −

(
yiens
k

)′]
,

where ξ k is the value at time tk of the solution of Eq. (6)
emanating from ξ0.

The objective function (Eq. 9) is of type (Eq. 3), with the
state space S being the model space M (N =Nx) and the
data vector z consisting of the concatenation of the K + 1
perturbed data vectors

(
yiens
k

)′.
The process (i)–(ii), repeated Nens times, produces an en-

semble ofNens model solutions over the assimilation window
[t0, tT ].

In the perspective taken here, it is not the properties of
those individual solutions that matter the most, but the prop-
erties of the ensemble considered as a sample of a probability
distribution.

The ensemble assimilation process, starting from Eq. (7),
is then repeated over Nwin assimilation windows of length T
(taken sequentially along the true solution xrt ).

In variational assimilation as it is usually implemented, the
objective function to be minimized contains a so-called back-
ground term at the initial time t0 of the assimilation window.
That term consists, together with an associated error covari-
ance matrix, of a climatological estimate of the model state
vector, or of a prior estimate of that vector at time t0 com-
ing from assimilation of previous observations. An estimate
of the state vector at t0 is explicitly present in Eq. (9), in
the form of the perturbed observation

(
yiens

0
)′. But that is not

a background term in the usual sense of the expression. In
particular, no cycling of any type is performed from one as-
similation window to the next. The question of a possible cy-
cling of ensemble variational assimilation will be discussed
in Part 2 (Jardak and Talagrand, 2018).
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The covariance matrix Rk in Eq. (9) is the same as the co-
variance matrix of the perturbations δk in Eq. (8). The situa-
tion in which one used in the assimilation assumed statistics
for the observation errors that were different from the real
statistics has not been considered.

We sum up the description of the experimental proce-
dure and define precisely the vocabulary to be used in the
sequel. The output of one experiment consists of Nwin en-
semble variational assimilations. Each ensemble variational
assimilation produces, through Nens minimizations of form
(Eq. 9), or individual variational assimilations, an ensemble
of Nens model solutions corresponding to one set of observa-
tions yk(k = 0, · · ·,K) over one assimilation window. These
model solutions will be simply called the elements of the
ensemble. The various experiments will differ through vari-
ous parameters and primarily the length T of the assimilation
windows.

The minimizations (Eq. 9) are performed through an iter-
ative limited-memory BFGS (Broyden–Fletcher–Goldfarb–
Shanno) algorithm (Nocedal and Wright, 2006), started from
the observation y0 at time t0 (which, as said below, is taken
here as bearing on the entire state vector xr0). Each step of
the minimization algorithm requires the explicit knowledge
of the local gradient of the objective function J iens with re-
spect to ξ0. That gradient is computed, as usual in variational
assimilation, through the adjoint of Eq. (6). Unless speci-
fied otherwise, the size of the assimilation ensembles will
be Nens = 30, and the number Nwin of ensemble variational
assimilations for one experiment will be equal to 9000.

3 The validation procedure

We recall the general result that, among all deterministic
functions from data space into state space, the conditional
expectation z→ E(x|z) minimizes the variance of the esti-
mation error on x.

What should ideally be done here for the validation of re-
sults is objectively assess (if not on a case-by-case basis, at
least in a statistical sense) whether the ensembles produced
by EnsVAR are samples of the corresponding Bayesian prob-
ability distributions. In the present setting, where the proba-
bility distribution of the errors εk in Eq. (7) is known, and
where a prior probability distribution is also known, through
the observation y0, for the state vector x0, one could in prin-
ciple obtain a sample of the exact Bayesian probability dis-
tribution by proceeding as follows.

Through repeated independent realizations of the process
defined by Eqs. (6) and (7), build a sample of the joint prob-
ability distribution for the couple (x, z). That sample can
then be read backwards for a given z and, if large enough,
will produce a useful sample estimate of the corresponding
Bayesian probability distribution for x. That would actually
solve numerically the problem of Bayesian estimation. But it
is clear that the sheer numerical cost of the whole process,

which requires explicit exploration of the joint space (x, z),
makes this approach totally impossible in any realistic situa-
tion.

We have evaluated instead the weaker property of relia-
bility (also called calibration). Reliability of a probabilistic
estimation system (i.e. a system that produces probabilities
for the quantities to be estimated) is the statistical consis-
tency between the predicted probabilities and the observed
frequencies of occurrence.

Consider a probability distribution π (the words probabil-
ity distribution must be taken here in the broadest possible
sense, meaning as well discrete probabilities for the occur-
rence of a binary or multi-outcome event, as continuous dis-
tributions for a one- or multi-dimensional random variable),
and denote π ′(π) the distribution of the reality in the circum-
stances when π has been predicted. Reliability is the property
that, for any π , the distribution π ′(π) is equal to π .

Reliability can be objectively evaluated, provided a large
enough verification sample is available. Bayesianity clearly
implies reliability. For any data vector z, the true state vec-
tor x is distributed according to the conditional probability
distribution P(x|z), so that a probabilistic estimation system
which always produces P(x|z) is reliable. The converse is
clearly not true. A system which, ignoring the observations,
always produces the climatological probability distribution
for x will be reliable. It will however not be Bayesian (at
least if, as one can reasonably hope, the available data bring
more than climatological information on the state of the sys-
tem).

Another desirable property of a probabilistic estimation
system, although not directly related to Bayesianity, is res-
olution (also called sharpness). It is the capacity of the sys-
tem for a priori distinguishing between different outcomes.
For instance, a system which always predicts the climato-
logical probability distribution is perfectly reliable, but has
no resolution. Resolution, like reliability, can be objectively
evaluated if a large enough verification sample is available.

We will use several standard diagnostic tools for valida-
tion of our results. We first note that the error in the mean
of the predicted ensembles is itself a measure of resolution.
The smaller that error, the higher the capacity of the system
to a priori distinguish between different outcomes. Concern-
ing reliability, the classical rank histogram and the reduced
centred random variable (RCRV) (the latter is described in
Appendix A) are (non-equivalent) measures of the reliabil-
ity of probabilistic prediction of a scalar variable. The re-
liability diagram and the associated Brier score are relative
to probabilistic prediction of a binary event. The Brier score
decomposes into two parts, which measure respectively the
reliability and the resolution of the prediction. The defini-
tion used here for those components is given in Appendix A
(Eqs. A4 and A5 respectively). Both scores are positive, and
are negatively oriented, so that perfect reliability and reso-
lution are achieved when the corresponding scores take the
value 0. For more on these diagnostics and, more generally,
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Figure 1. Root-mean-square errors from the truth as functions of time along the assimilation window (linear and Gaussian case). Blue curve:
error in individual minimizations. Red curve: error in the means of the ensembles. Green curve: error in the assimilations performed with
the unperturbed observations yk (Eq. 7). Dashed–dotted horizontal curve: standard deviation of the observation error. Each point on the blue
curve corresponds to an average over a sample of Nx ·Nwin ·Nens = 1.08× 107 elements and each point on the red and green curves to an
average over a sample of Nx ·Nwin = 3.6× 105 elements.

on objective validation of probabilistic estimation systems,
see e.g. chap. 8 of the book by Wilks (2011), as well as the
papers by Talagrand et al. (1997) and Candille and Talagrand
(2005).

4 Numerical results: the linear case

We present in this section results obtained in an exactly lin-
ear and Gaussian case, in which theory says that EnsVAR
must produce an exact Monte Carlo Bayesian sample. These
results are to be used as a benchmark for the evaluation of
later results. The numerical model (Eq. 6) is obtained by lin-
earizing the non-linear Lorenz model, which describes the
space–time evolution of a scalar variable denoted x, about
one particular solution (the Lorenz model will be described
and discussed in more detail in Sect. 5; see Eq. 12 below).
The model space dimension N is equal to 40. The length T
of the assimilation windows is 5 days, which covers Nt = 20
timesteps (the “day” will be defined in the next section). The
complete state vector (Hk = I in Eq. 7) is observed every
0.5 days (K = 10). The data vector z has therefore dimension
(K + 1)N = 440. The observation errors are Gaussian, spa-
tially uncorrelated, with constant standard deviation σ = 0.1

(Rk = σ 2I,∀k). However, because of the linearity, the abso-
lute amplitude of those errors must have no impact.

Since conditions for exact Bayesianity are verified, any de-
viation in the results from exact reliability can be due to only
the finiteness Nens of the ensembles (except for the rank his-
togram, which takes that finiteness into account), the finite-
nessNwin of the validation sample, or numerical effects (such
as resulting from incomplete minimization or round-off er-
rors).

Figure 1 shows the root-mean-square errors from the truth
along the assimilation window, averaged at each time over
all grid points and all realizations. The upper (blue) curve
shows the average error in the individual minimizing solu-
tions of J iens (Eq. 9). The lower (red) curve shows the er-
ror in the mean of the individual ensembles, while the green
curve shows the error in the fields obtained in minimizations
performed with the raw unperturbed observations yk (Eq. 7).

All errors are smaller than the observation error (horizon-
tal dashed–dotted line). The estimation errors are largest at
both ends of the assimilation window and smallest at some
intermediate time. As known, and already discussed by var-
ious authors (Pires et al., 1996; Trevisan et al., 2010), this
is due to the fact that the error along the stable components
of the flow decreases over the assimilation window, while
the error along the unstable components increases. The ratio
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Figure 2. Diagnostics of statistical performance (linear and Gaussian case). (a) Rank histogram for the model variable x. (b) Reliability
diagram for the event E = {x > 1.14} (black horizontal dashed–dotted line: frequency of occurrence of the event). (c) Variation with threshold
τ of the reliability and resolution components of the Brier score for the events E = {x > τ } (red and blue curves respectively; note the
logarithmic scale on the vertical). The diagnostics have been computed over all grid points, timesteps, and realizations, making up a sample
of size 7.56× 106.

between the values on the blue and green curves, averaged
over the whole assimilation window, is equal to 1.414. This
is close to

√
2 as can be expected from the linearity of the

process and the perturbation procedure defined by Eqs. (7)–
(8) (actually, it can be noted that the value

√
2 is itself, in-

dependently of any linearity, a test for reliability, since the
standard deviation of the difference between two indepen-
dent realizations of a random variable must be equal to

√
2

times the standard deviation of the variable itself). The green
curve corresponds to the expectation of (what must be) the
Bayesian probability distribution, while the red curve cor-
responds to a sample expectation, computed over Nens ele-

ments. The latter expectation is therefore not, as can be seen
on the figure, as accurate an estimate of the truth. The rela-
tive difference must be about 1

2Nens
≈ 0.017. This is the value

obtained here.
For a reliable system, the reduced centred random vari-

able, which we denote s, has expectation 0 and variance 1
(see Appendix A). The sample values, computed over all grid
points, times, and assimilation windows (which amounts to a
set of sizeNx ·(Nt+1)·Nwin = 7.56×106), are E(s)= 0.0035
and Var(s)= 1.00.

Figure 2 shows other diagnostics of the statistical perfor-
mance of the system, performed again over all 7.56× 106
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Figure 3. Histogram of (half) the minima of the objective function (Eq. 9), along with the corresponding mean (vertical black line) and
standard deviation (horizontal blue line) (linear and Gaussian case).

individual ensembles in the experiment. The top-left panel
is the rank histogram. The top-right panel is the reliability
diagram relative to the event {x > 1.14}, which occurs with
frequency 0.32 (black horizontal dashed–dotted line in the
diagram). Both panels visually show high reliability (flatness
for the histogram, closeness to the diagonal for the reliability
diagram), although that reliability is obviously not perfect.
More accurate quantitative diagnostics are given by the lower
panel, which shows, as functions of the threshold τ , the two
components (reliability and resolution; see Eqs. A4 and A5
respectively) of the Brier score for the events {x > τ }. The re-
liability component is about 10−3; the resolution component
is about 5× 10−2. A further diagnostic has been made by
comparison with an experiment in which the validating truth
has been obtained, for each of the Nwin windows, from an
additional independent (Nens+ 1)st variational assimilation.
That procedure is by construction perfectly reliable, and any
difference with Fig. 2 could result only from the fact that the
validating truth is not defined by the same process. The reli-
ability (not shown) is very slightly improved in comparison
with Fig. 2 (this could be possibly due to a lack of full conver-
gence of the minimizations). The resolution is not modified.

It is known that the minimum Jmin = J (xa) of the objec-
tive function (Eq. 3) takes on average the value

E(Jmin)=
p

2
, (10)

where p =Nz−Nx has been defined as the degree of over-
determinacy of the minimization. This result is true provided
the following two conditions are verified: (i) the operator 0 is
linear and (ii) the error ζ in Eq. (1) has expectation 0 and the
covariance matrix 6 used in the objective function (Eq. 3). It
is independent of whether ζ is Gaussian or not. But when ζ
is Gaussian, the quantity 2Jmin follows a χ2 probability dis-
tribution of order p (for that reason, Eq. 10 is often called the
χ2 condition, although it is verified in circumstances where
2Jmin does not follow a χ2 distribution). As a consequence,
the minimum Jmin has standard deviation

σ (Jmin)=
√
p/2. (11)

In the present case, Nx = 40 and Nz = (K+ 1)Nx = 440, so
that p/2= 200 and

√
p/2≈ 14.14.

The histogram of the minima Jmin (corrected for a mul-
tiplicative factor 1/2 resulting from the additional perturba-
tions, Eq. 8) is shown in Fig. 3. The corresponding empirical
expectation and standard deviation are 199.39 and 14.27 re-
spectively, in agreement with Eqs. (10)–(11). It can be noted
that, as a consequence of the central limit theorem, the his-
togram in Fig. 3 is in effect Gaussian. Indeed the value of
negentropy, a measure of Gaussianity that will be defined in
the next section, is 0.0012.

For the theoretical conditions of exact Bayesianity consid-
ered here, reliability should be perfect and should not be de-
graded when the information content of the observations de-
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Figure 4. Diagnostics relative to the non-linear and Gaussian case, with assimilation over 5 days. (a) and (b) are relative to one particular
assimilation window. (a) (horizontal coordinate: spatial position j ) Reference truth at the initial time of the assimilation window (black
dashed curve), observations (blue circles), and minimizing solutions (full red curves). (b) (horizontal coordinate: time along the assimilation
window) Truth (dashed curve) and minimizing solutions (full red curves) at three points in space. (c) Overall diagnostics of estimation errors
(same format as in Fig. 1).

creases (through increased observation error and/or degraded
spatial and/or temporal resolution of the observations). Sta-
tistical resolution should, on the other hand, be degraded. Ex-
periments have been performed to check this aspect (the ex-
act experimental procedure is described in Sect. 5). The nu-
merical results (not shown) are that both components of the
Brier score are actually degraded and can increase by 1 or-
der of magnitude. The reliability component always remains
much smaller than the resolution component, and the degra-
dation of the latter is much more systematic. This is in good
agreement with the fact that the degradation of reliability can
be due to only numerical effects, such as less efficient mini-
mizations.

The above results, obtained in the case of exact theoretical
Bayesianity, are going to serve as reference for the evaluation
of EnsVAR in non-linear and non-Gaussian situations where
Bayesianity does not necessarily hold.

5 Numerical results: the non-linear case

The non-linear Lorenz-96 model (Lorenz, 1996; Lorenz and
Emanuel, 1998) reads

dxj
dt
=
(
xj+1− xj−2

)
xj−1− xj +F, (12)

where j = 1, . . .,N represent the spatial coordinate (longi-
tude), with cyclic boundary conditions. As in Lorenz (1996),
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Figure 5. Same as Fig. 2, for the non-linear case (for the event E = {x < 1.}, which occurs with frequency 0.33, as concerns the reliability
diagram on the top-right panel).

we choose N = 40 and F = 8. For these values, the model
is chaotic with 13 positive Lyapunov exponents, the largest
of which has a value of (2.5 day)−1, where 1 day is equal
to 0.24 time unit in Eq. (12). This is the definition of “day”
we will use hereafter. It is slightly different from the choice
made in Lorenz (1996), where the day is equal to 0.2 time
unit in Eq. (12). The difference is not critical for the sequel,
nor for possible comparison with other works.

Except for the dynamical model, the experimental setup
is fundamentally the same as in the linear case. In particu-
lar, the model time step 0.25 days (our definition), the ob-
servation frequency 0.5 days, and the values Nens = 30 and
Nwin = 9000 are the same. The observation error is uncor-
related in space and time, with constant variance σ 2

= 0.4
(Rk = σ 2I,∀k). The associated standard deviation σ = 0.63

is equal to 2 % of the variability of the reference solution (it
is because of the different range of variability that the value
of σ has been chosen different from the value in the linear
case). We mention again that no cycling is present between
successive assimilation windows.

The results are shown on Fig. 4. The top panels are rela-
tive to one particular assimilation window. In the left panel,
where the horizontal coordinate is the spatial position j , the
black dashed curve is the reference truth at the initial time
of the assimilation window, the blue circles are the corre-
sponding observations, and the full red curves (Nens = 30 of
them) are the minimizing solutions at the same time. The
right panel, where the horizontal coordinate is time along the
assimilation window, shows the truth (dashed curve) and the
Nens minimizing solutions (full red curves) at three differ-
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Figure 6. Impact of the informative content of observations on the two components of the Brier score (non-linear case). The format of each
panel is the same as the format of the bottom panels of Figs. 2 and 5 (red and blue curves: reliability and resolution components respectively).
(a) Impact of the temporal density of the observations. Observations are performed every grid point, with error variance σ 2

= 0.4; every time
step (full curves); and every second and fourth timestep (dashed and dashed–dotted curves respectively). (b) Impact of the spatial density
of the observations. Observations are performed every timestep, with error σ 2

= 0.4; at every grid point (full curves); and every second
and fourth grid point (dashed and dashed–dotted curves respectively). (c) Impact of the variance σ 2 of the observation error. Observations
are performed every second timestep and at every grid point with observation error SD σ =

√
0.4,2

√
0.4, and 4

√
0.4 (full, dashed, and

dashed–dotted curves respectively.

ent points in space. Both panels show that the minimizations
reconstruct the truth with a high degree of accuracy.

The bottom panel, which shows error statistics accumu-
lated over all assimilation windows, is in the same format as
Fig. 1 (note that, because of the different dynamics and ob-
servational error, the amplitude on the vertical axis is differ-
ent from Fig. 1). The conclusions are qualitatively the same.
The estimation error, which is smaller than the observational

error, is maximum at both ends of the assimilation window
and minimum at some intermediate time. The ratio between
the blue and red curves, equal on average to 1.41, is close
to the value

√
2, which, as already said, is in itself an indi-

cation of reliability. But a significant difference is that the
green curve lies now above the red curve. One obtains a bet-
ter approximation of the truth by taking the average of the
Nens minimizing solutions than by performing an assimila-
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Figure 7. Values of (half) the minima of the objective function for all realizations (non-linear case) (horizontal coordinate: realization
number; vertical coordinate: value of the minima).

tion on the raw observations (Eq. 7). This is an obvious non-
linear effect. One can note it is fully consistent with the fact
that the expectation of the a posteriori Bayesian probability
distribution is the variance-minimizing estimate of the truth.
The expectation and variance of the RCRV are respectively
E(s)= 0.012 and Var(s)= 1.047.

Figure 5, which is in the same format as Fig. 2, shows
similar diagnostics: rank histogram; reliability diagram for
the event {x < 1.0}, which occurs with frequency 0.33; and
the two components of the Brier score for events of the form
{x > τ }. The general conclusion is the same as in the linear
case. High level of reliability is achieved. Actually, the relia-
bility component of the Brier score (bottom panel) is now de-
creased below 10−3. That improvement, in the present situa-
tion where exact Bayesianity cannot be expected, can only be
due to better numerical conditioning than in the linear case.
The resolution component of the Brier score, on the other
hand, is increased.

Figure 6 is relative to experiments in which the informa-
tive content of the observations, i.e. their temporal density,
spatial density, and accuracy (top, middle, and bottom pan-
els respectively), has been varied. Each panel shows the two

components of the Brier score, in the same format as in the
bottom panels of Figs. 2 and 5 (but with more curves cor-
responding to different informative contents). The reliability
component (red curves) always remains significantly smaller
than the resolution component (blue curves). With the ex-
ception of the reliability component in the top panel, both
components are systematically degraded when the informa-
tion content of the observations decreases. This is certainly to
be expected for the resolution component, but not necessar-
ily for the reliability component. The degradation of the lat-
ter is significantly larger than in the linear case (not shown),
where we concluded that it could be due only to degrada-
tion of numerical conditioning. The degradation of reliability
in the lower two panels may therefore be due here to non-
linearity. One noteworthy feature is that the degradation of
the resolution scores, for the same total decrease in the num-
ber of observations, is much larger for the decrease in spatial
density than for the decrease in temporal density (middle and
top panels respectively). Less information is therefore lost in
degrading the temporal than the spatial density of observa-
tions.
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Figure 8. Cross section of the objective function J iens, for one particular minimization, between the starting point of the minimization and
the minimum of J iens (black curve). Parabola going through the starting point and having the same minimum (red curve).

Figure 7 shows the distribution of (half) the minima of the
objective function (it contains the same information as Fig. 3,
in a different format). Most values are concentrated around
the linear value 200, but a small number of values are present
in the range 600–1000. Excluding these outliers, the expec-
tation and standard deviation of the minima are 199.62 and
14.13 respectively. These values are actually in better agree-
ment with the theoretical χ2 values (200 and 14.14) than
the ones obtained above in the theoretically exact Bayesian
case (199.39 and 14.27). This again suggests better numeri-
cal conditioning for the non-linear situation.

In view of previous results, in particular results obtained
by Pires et al. (1996), a likely explanation for the presence
of the larger minima in Fig. 7 is the following. Owing to the
non-linearity of Eq. (12), and more precisely to the folding
which occurs in state space as a consequence of the chaotic
character of the motion, the uncertainty in the initial state is
distributed along a folded subset in state space. It occasion-
ally happens that the minimum of the objective function falls
in a secondary fold, which corresponds to a larger value of
the objective function. This aspect will be further discussed
in the second part of the paper. In any case, the presence of
larger minima of the objective function is an obvious sign of
non-linearity.

Non-linearity is also obvious in Fig. 8, which shows, for
one particular minimization, a cross section of the objective
function between the starting point of the minimization and
the minimum of the objective function (black curve), as well

as a parabola going through the starting point and having the
same minimum (red curve). The two curves are distinctly dif-
ferent, while they would be identical in a linear case.

We have evaluated the Gaussian character of univariate
marginals of the ensembles produced by the assimilation by
computing their negentropy. The negentropy of a probability
distribution is the Kullback–Leibler divergence of that dis-
tribution with respect to the Gaussian distribution with the
same expectation and variance (see Appendix B). The negen-
tropy is positive and is equal to 0 for exact Gaussianity. The
mean negentropy of the ensembles is here≈ 10−3, indicating
closeness to Gaussianity (for a reference, the negentropy of
the Laplace distribution is 0.072). Although non-linearity is
present in the whole process, EnsVAR produces ensembles
that are close to Gaussianity.

Experiments have been performed in which the observa-
tional error, instead of being Gaussian, has been taken to
follow a Laplace distribution (with still the same variance
σ 2
= 0.4). No significant difference has been observed in the

results in comparison with the Gaussian case. This suggests
that the Gaussian character of the observational error is not
critical for the conclusions obtained above.
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Figure 9. (a) Identical with the top-right panel of Fig. 4, repeated for comparison with figures that follow. The other panels show the same
diagnostics as in Fig. 5 but performed at the final time of the assimilation windows. (b) Rank histogram. (c) Reliability diagram for the event
E = {x > 1.33}, which occurs with frequency 0.42. (d) Components of the Brier score for the events E = {x > τ } (same format as in the
bottom panels of Figs. 2 and 5).

6 Comparison with the ensemble Kalman filter and the
particle filter

We present in this section a comparison with results obtained
with the ensemble Kalman filter (EnKF) and the particle filter
(PF). As used here, those filters are sequential in time. Fair
comparison is therefore possible only at the end of the as-
similation window. Figure 9 shows the diagnostics obtained
from EnsVAR at the end of the window (the top-left panel,
identical with the top-right panel of Fig. 4, is included for
easy comparison with the figures that will follow). Compar-

ison with Fig. 5 shows that the reliability (as measured by
the rank histogram, the reliability diagram, and the reliability
component of the Brier score) is significantly degraded. It has
been verified (not shown) that this degradation is mostly due
not to a really degraded performance at the end of the win-
dow, but to the use of a smaller validation sample (by a factor
of Nt+1 = 21, which leads to a sample with size 3.6× 105).

Figure 10, which is in the same format as Fig. 9, shows
the same diagnostics for the EnKF. The algorithm used is the
one described by Evensen (2003). It is stochastic in the sense
that observations have been perturbed randomly, for updat-
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Figure 10. Same as Fig. 9, for the ensemble Kalman filter.

ing the background ensembles, according to the probabil-
ity distribution of the observation errors. Spatial localization
of the background error covariance matrix has been imple-
mented by Schur-multiplying the sample covariance matrix
by a squared exponential kernel with length scale 12.0 (the
positive definiteness of the periodic kernel has been ensured
by removing its negative Fourier components). And multi-
plicative inflation with factor r = 1.001 has been applied, as
in Anderson and Anderson (1999), on the ensemble after
each analysis.

Comparison with Fig. 9 shows that the individual ensem-
bles, after a warm-up period, tend to remain more dispersed
than in EnsVAR (top-left panel). Reliability, as measured by
the reliability diagram and the Brier score, is similar to what

it is in Fig. 9. But it is significantly degraded as evaluated
by the rank histogram. The ensembles, although they have
larger absolute dispersion than in EnsVAR, tend to miss re-
ality more often.

Following comments from referees, we have made a few
experiments not using localization in the EnKF. The RMSE
and the RCRV are significantly degraded, while the rank his-
togram and the resolution component of the Brier score are
improved. The reliability component of the Brier score re-
mained the same. All this is true for both assimilation and
forecast. These results, not included in the paper, would de-
serve further studies which are postponed for a future work.

Figure 11 (again in the same format as Fig. 9) shows the
same diagnostics for a particle filter. The algorithm used

www.nonlin-processes-geophys.net/25/565/2018/ Nonlin. Processes Geophys., 25, 565–587, 2018



580 M. Jardak and O. Talagrand: Ensemble variational assimilation – Part 1

−5 −4 −3 −2 −1 0
−15

−10

−5

0

5

10

15

Time (days)

PF trajectories and respective reference solutions

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Predicted probability

O
bs

er
ve

d 
re

la
tiv

e 
fre

qu
en

cy

Brier skill scores

−2 −1 0 1 2 3 4 5 6
10−3

10−2

10−1

100

Threshold

Lo
g(

Br
ie

r s
ki

ll 
sc

or
es

)
Brier skill scores

 

 
Resolution
Reliability

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Bins

Fr
eq

ue
nc

y

Rank histogram 

Figure 11. Same as Fig. 9, for the particle filter.

here is the “Sampling Importance Particle Filter” presented
in Arulampalam et al. (2002). Comparison with Fig. 10
shows first that the individual ensembles are still more dis-
persed than in EnKF (top-left panel). It also shows a slight
degradation of the reliability component of the Brier score
(and, incidentally, a significant degradation of the resolu-
tion component), but no visible difference on the reliability
diagram. Concerning the rank histogram, PF produces un-
equally weighted particles, and the standard histogram could
not be used. A histogram has been built instead on the quan-
tiles defined by the weights of the particles. This shows, as
for EnKF, a significant tendency to miss the truth.

The left column of Table 1 shows the mean root-mean-
square error in the means of the ensembles as obtained from

Table 1. RMS errors at the end of 5 days of assimilation (left col-
umn) and of 5 days of forecast (right column) for the three algo-
rithms.

Assimilation Forecasting

EnsVAR 0.22 1.49
EnKF 0.24 1.67
PF 0.76 2.63

the three algorithms. The performance of EnsVAR and EnKF
(0.22 and 0.24) is comparable by that measure, while the per-
formance of PF is significantly worse (0.76).
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Figure 12. Same as Fig. 9, but at the end of 5-day forecasts. On the top-left panel the horizontal axis spans both the assimilation and the
forecast intervals.

Figures 12–14 are relative to ensemble forecasts per-
formed, for each of the three assimilation algorithms, from
the ensembles obtained at the end of the 5-day assimilations.
They are in the same format as Fig. 9 and show diagnostics
at the end of 5-day forecasts. One can first observe that the
dispersion of individual forecasts (top-left panels) increases,
as can be expected, with the forecast range, but much less
with the EnsVAR than with EnKF and PF. Reliability, as
measured by the Brier score, is slightly degraded in all three
algorithms with respect to the case of the assimilations. It is
slightly worse for EnKF than for EnsVAR and significantly
worse for PF. Resolution is, on the other hand, significantly
degraded in all three algorithms. This is associated with the

dispersion of ensembles and corresponds to what could be
expected. Concerning the rank histograms, the histogram of
EnsVAR, although still noisy, shows no systematic sign of
over- or underdispersion of the ensembles. The EnKF and
PF histograms both present, as before, what appears to be a
significant underdispersion.

Finally, the right column of Table 1 shows that RMS er-
rors, which are of course now larger, still rank comparatively
in the same order as before, i.e. EnsVAR<EnKF<PF.
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Figure 13. Same as Fig. 12, but for EnKF.

7 The Kuramoto–Sivashinsky equation

Similar experiments have been performed with the
Kuramoto–Sivashinsky (K–S) equation. It is a one-
dimensional spatially periodic evolution equation, with an
advective non-linearity, a fourth-order dissipation term, and
a second-order anti-dissipative term. It reads


∂u

∂t
+
∂4u

∂x4 +
∂2u

∂x2 + u
∂u

∂x
= 0, x ∈ [0,L]

∂ iu

∂xi
(x+L,t)=

∂ iu

∂xi
(x, t) for i = 0,1, . . .,4, ∀t > 0

u(x,0)= u0(x)

,

(13)

where the spatial period L is a bifurcation parameter for
the system. The K–S equation models pattern formations
in different physical contexts and is a paradigm of low-
dimensional behaviour in solutions to partial differential
equations. It arises as a model amplitude equation for inter-
facial instabilities in many physical contexts. It was orig-
inally derived by Kuramoto and Tsuzuki (1975, 1976) to
model small thermal diffusive instabilities in laminar flame
fronts in two space dimensions. Equation (13) has been used
here with the value L= 32π and has been discretized to 64
Fourier modes. In accordance with the calculations of Man-
neville (1985), we observe chaotic motion with 27 positive
Lyapunov exponents, with the largest one being λmax ≈ 0.13.
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Figure 14. Same as Fig. 12, but for PF.

With L= 32π and the initial condition

u(x,0)= cos
( x

16

)(
1+ sin

( x
16

))
, (14)

Equation (13) is known to be stiff. The stiffness is due to
rapid exponential decay of some modes (the dissipative part)
and to rapid oscillations of other modes (the dispersive part).
Figure 15, where the two panels are in the same format as
Fig. 1, shows the errors in the EnsVAR assimilations, in both
a linearized (top panel) and a fully non-linear (bottom panel)
cases. The length of the assimilation window, marked as 1
on the figure, is equal to 1

λmax
≈ 7.7 in units of Eq. (13), i.e.

a typical predictability time of the system. The shapes of the
curves show that the K–S equation has globally more stabil-
ity and less instability than the Lorenz equation. The figure
shows similar performance for the linear and non-linear sit-
uation. Other results (not shown) are also qualitatively very
similar to those obtained with the Lorenz equation: high re-

liability of the ensembles produced by EnsVAR and slightly
superior performance over EnKF and PF.

8 Summary and conclusions

Ensemble variational assimilation (EnsVAR) has been imple-
mented on two small-dimension non-linear chaotic toy mod-
els, as well as on linearized versions of those models.

One specific goal of the paper was to stress what is in
the authors’ mind a critical aspect, namely to systematically
evaluate ensembles produced by ensemble assimilation as
probabilistic estimators. This requires us to consider these
ensembles as defining probability distributions (instead of
evaluating them principally, for instance, by the error in their
mean).
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Figure 15. Same as Fig. 1, for variational ensemble assimilations performed on the Kuramoto–Sivashinsky equation, i.e. root-mean-square
error from the truth along the assimilation window, averaged at each time over all grid points and all realizations, for both the linear and
non-linear cases (a and b respectively).

In view of the impossibility of objectively validating the
Bayesianity of ensembles, the weaker property of reliability
has been evaluated instead. In the linear and Gaussian case,
where theory says that EnsVAR is exactly Bayesian, the re-
liability of the ensembles produced by EnsVAR is high, but
not numerically perfect, showing the effect of sampling er-
rors and, probably, of numerical conditioning.

In the non-linear case, EnsVAR, implemented on temporal
windows on the order of magnitude of the predictability time
of the systems, shows as good (and in some cases slightly
better) performance as in the exactly linear case. Comparison
with the ensemble Kalman filter (EnKF) and the particle filter
(PF) shows EnsVAR is globally as good a statistical estimator
as those two other algorithms.

On the other hand, EnsVAR, at it has been implemented
here, is numerically more costly than either EnKF or PF.
And the specific algorithms used for the latter two methods

may not be the most efficient. But it is worthwhile to evaluate
EnsVAR in the more demanding conditions of stronger non-
linearity. That is the object of the second part of this work.

Data availability. No data sets were used in this article.
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Appendix A: Methods for ensemble evaluation

This Appendix describes in some detail two of the scores that
are used for evaluation of results in the paper, namely the re-
duced centred random variable and the reliability–resolution
decomposition of the classical Brier score. Given a predicted
probability distribution for a scalar variable x and a verify-
ing observation ξ , the corresponding value of the reduced
centred random variable is defined as

s ≡
ξ −µ

σ
, (A1)

where µ and σ are respectively the mean and the standard
deviation of the predicted distribution. For a perfectly reli-
able prediction system, and over all realizations of the sys-
tem, s, by the very definition of expectation and standard
deviation, has expectation 0 and variance 1. This is true in-
dependently of whether or not the predicted distribution is
always the same. An expectation of s that is different from
0 means that the system is globally biased. If the expecta-
tion is equal to 0, a variance of s that is smaller (respectively
larger) than 1 is a sign of global overdispersion (respectively
underdispersion) of the predicted distribution. One can note
that, contrary to the rank histogram, which is invariant in any
monotonous one-to-one transformation on the variable x, the
RCRV is invariant only in a linear transformation.

We recall the Brier score for a binary event E is defined by

B= E
[
(p−p0)

2
]
, (A2)

where p is the probability predicted for the occurrence of
E in a particular realization of the probabilistic prediction
process, p0 is the corresponding verifying observation (p0 =

1 or 0 depending on whether E has been observed to occur
or not), and E denotes the mean taken over all realizations
of the process. Denoting by p′(p), for any probability p, the
frequency with which E is observed to occur in the circum-
stances when p has been predicted, B can be rewritten as

B= E
[
(p−p′)2

]
+E

[
p′(1−p′)

]
. (A3)

The first term on the right-hand side, which measures the
horizontal dispersion of the points on the reliability diagram
about the diagonal, is a measure of reliability. The second
term, which is a (negative) measure of the vertical dispersion
of the points, is a measure of resolution (the larger the dis-
persion, the higher the resolution, and the smaller the second
term on the right-hand side). It is those two terms, divided
by the constant pc(1−pc), where pc = E(p0) is the overall
observed frequency of occurrence of E , that are taken in the
present paper as measures of reliability and resolution:

Breli =
E
[
(p−p′)2

]
pc(1−pc)

, (A4)

Breso =
E
[
p′(1−p′)

]
pc(1−pc)

. (A5)

Both measures are negatively oriented and have 0 as op-
timal value. Breli is bounded above by 1/pc(1−pc), while
Breso is bounded by 1.

Remark. There exist other definitions of the reliability and
resolution components of the Brier score. In particular, con-
cerning resolution, the uncertainty term pc(1−pc) (which
depends on the particular event E under consideration) is of-
ten subtracted from the start from the raw score (Eq. A2).
This leads to slightly different scores.

As said in the main text, more on the above diagnostics
and, more generally, on objective validation of probabilistic
estimation systems can be found in e.g. chap. 8 of the book
by Wilks (2011), or in the papers by Talagrand et al. (1997)
and Candille and Talagrand (2005).

Appendix B: Negentropy

The negentropy of a probability distribution with density
f (y) is the Kullback–Leibler divergence, or relative entropy,
of that distribution with respect to the Gaussian distribution
with the same expectation and variance. Denoting by fG(y)

the density of that Gaussian distribution, the negentropy can
be expressed as

N(f )=

∫
f (y) ln

[
f (y)

fG(y)

]
dy. (B1)

The negentropy is always positive and is equal to 0 if and
only if the density f (y) is Gaussian. As examples, a Laplace
distribution has negentropy 0.072, while the empirical negen-
tropy of a 30-element random Gaussian sample is≈ 10−6. In
the case of small skewness s and normalized kurtosis k, the
negentropy can be approximated by

N(f )≈
1
12
s2
+

1
48
k2. (B2)

It is this formula that has been used in the present paper.
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