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Abstract. We study soliton collisions in the Dyachenko–
Zakharov equation for the envelope of gravity waves in deep
water. The numerical simulations of the soliton interactions
revealed several fundamentally different effects when com-
pared to analytical two-soliton solutions of the nonlinear
Schrodinger equation. The relative phase of the solitons is
shown to be the key parameter determining the dynamics of
the interaction. We find that the maximum of the wave field
can significantly exceed the sum of the soliton amplitudes.
The solitons lose up to a few percent of their energy dur-
ing the collisions due to radiation of incoherent waves and in
addition exchange energy with each other. The level of the
energy loss increases with certain synchronization of soliton
phases. Each of the solitons can gain or lose the energy after
collision, resulting in increase or decrease in the amplitude.
The magnitude of the space shifts that solitons acquire af-
ter collisions depends on the relative phase and can be either
positive or negative.

1 Introduction

The existence and interactions of coherent structures like
solitons and breathers on the surface of a deep water are a re-
markably rich and fascinating subject for both experimental
and theoretical studies. The exact mathematical model de-
scribing gravity waves in the ocean is the Euler equation,
yet it is often rather complicated to study it by analytic or
numerical means. Instead, various reduced models for water
waves have demonstrated good agreement with the experi-
mental data and have been widely adopted in the fluid dy-
namics and geophysics communities.

The most prominent and widely used model for weakly
nonlinear surface waves in deep water is the nonlinear
Schrödinger (NLS) equation. It describes time evolution
of the envelope of a quasi-monochromatic wave train (Za-
kharov, 1968) and is integrable via the inverse scattering
transform (IST) in 1-D (Zakharov and Shabat, 1972). Other
models for weakly nonlinear waves include the Dysthe equa-
tion (Dysthe, 1979), and the compact Dyachenko–Zakharov
equation (DZ) (Dyachenko and Zakharov, 2011), neither of
which is known to be integrable by the IST.

By means of the IST one can find NLS soliton solutions
and track their evolution in time until their collision and be-
yond analytically. The collision of the NLS solitons is per-
fectly elastic; that is, no loss of the energy occurs. The equa-
tions which are not integrable by the IST may have exact sta-
tionary solitary solutions interacting inelastically. For exam-
ple, the Dysthe equation is known to admit solitary solutions
whose existence has been demonstrated by other approaches
unrelated to the IST (see Akylas, 1989; Zakharov and Dy-
achenko, 2010).

Both the NLS and Dysthe equations are formulated to de-
scribe the evolution of the envelope function. They require
that the steepness of the wave train is small and that it is
modulated weakly, i.e., that there are sufficiently many car-
rier wavelengths in the characteristic scale of the modula-
tion. In terms of the Fourier transform of the surface eleva-
tion this is equivalent to having a sufficiently narrow band
concentrated in the vicinity of the carrier wave number. The
DZ equation is formulated for the wave train itself and is
free from the assumptions of the weak nonlinearity and nar-
row bandness (Dyachenko and Zakharov, 2011, 2012). More
precisely, the DZ equation describes the evolution of the
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surface displacement and the surface velocity potential in
terms of special canonical variables discussed below. The
solitary-type solutions to the DZ equation are commonly re-
ferred to as the breather solutions, or simply breathers. The
DZ breathers are found numerically and their interaction has
been the subject of works by Fedele and Dutykh (2012a, b)
and Dyachenko et al. (2013). The following work by Fedele
(2014) investigated the properties of the DZ equation for var-
ious values of wave steepness. In particular it was shown
that the dynamics of the DZ equation becomes a modified
Korteweg–de Vries (mKdV) equation type when the value of
steepness is large enough, providing a possible mechanism
of wave breaking.

In the work Zakharov et al. (2006) solitons of the NLS
equation were found to be a fair model for propagating soli-
tary wave groups in the Euler equation at small steepness.
The strongly nonlinear breather solutions of the Euler equa-
tion were found numerically in Dyachenko and Zakharov
(2008), and subsequent works (Slunyaev, 2009; Slunyaev
et al., 2013, 2017) study propagation and interaction of these
breathers numerically and in water tank experiments.

The study of soliton (or breather) interactions in the re-
duced deep water models is an important step in the under-
standing of the surface waves’ dynamics and the fundamen-
tal properties of the Euler equation. In this work we focus
on the DZ equation in the form suggested by Dyachenko
et al. (2017a) which describes the wave train envelope with-
out any assumptions about its spectral width. Hereafter we
refer to this equation as the Dyachenko–Zakharov envelope
equation, or the DZe equation. The envelope form of the DZ
equation allows a direct comparison with the more restricted
but more established integrable NLS equation. In this work
we always use the term “solitons” to describe the envelope
solutions of the NLS equation, the Dysthe equation and the
DZe equation; we also refer to the solitary solutions of the
DZ equation and the Euler equation as “breathers” when we
imply the wave train itself rather than its envelope.

The soliton interactions in the NLS equation depend dras-
tically on their relative complex phases; e.g., the maximum
amplification of the amplitude in a collision is determined by
the synchronization of the phases of the solitons. The phase
synchronization plays an important role in the formation of
the waves of extreme amplitude, the rogue waves, and has
been studied in water wave theory (Kharif et al., 2009) as
well as in other contexts like optical pulses in fibers (An-
tikainen et al., 2012). In the recent works by Sun (2016)
and Gelash (2018) phase synchronization in multisoliton en-
sembles has been studied analytically. The role of the soli-
ton phase parameters has been extensively studied for other
integrable models, including the mKdV equation for long
waves (Slunyaev and Pelinovsky, 2016).

In the present work we study soliton interactions in the
DZe equation and their dependence on the phases of inter-
acting solitons. We demonstrate how the amplitude amplifi-
cation, the energy exchange between the solitons, the energy

loss to emission of incoherent radiation and the space shift
of the solitons after collisions reveal fundamental differences
from the NLS equation.

2 The envelope equations for deep water gravity waves

A one-dimensional potential flow of an ideal fluid of infinite
depth in the presence of gravity is a Hamiltonian system. The
surface elevation η(x, t) and the velocity potential ψ(x, t) at
the surface are canonically conjugated variables (Zakharov,
1968).

Dyachenko and Zakharov (2011, 2012) suggested a canon-
ical transformation from the physical real-valued Hamilto-
nian variables η(x, t) andψ(x, t) to the complex normal vari-
able b(x, t). The DZ equation is found by taking a fourth-
order expansion of the Hamiltonian in powers of |b(x, t)| and
assuming that all waves propagate in a single direction. Re-
cently Dyachenko et al. (2016a, 2017b) introduced the new
canonical variable c(x, t), such that the DZ equation can be
written in x space in the following “super” compact form:

∂c

∂t
+ iω̂kc− i∂

+
x

(
|c|2

∂c

∂x

)
= ∂+x

(
k̂(|c|2)c

)
. (1)

Here g is the free-fall acceleration and the operators k̂ and ω̂
are Fourier multipliers by the wave number |k| and the lin-
ear wave frequency

√
g|k|, respectively. The operator ∂+x in

the Fourier space is ikθ(k), where θ(k) is the Heaviside step
function. The physical variables η and ψ can be recovered a
posteriori by the canonical transformation. The surface ele-
vation η(x, t) to the order |c|2 is the following:

η(x, t)=
1
√

2g
1
4
(k̂−

1
4 c(x, t)+ k̂−

1
4 c(x, t)∗)

+
k̂

4
√
g

[
k̂−

1
4 c(x, t)− k̂−

1
4 c(x, t)∗

]2
, (2)

where the operator k̂α is a Fourier multiplier by |k|α , and the
star denotes a complex conjugate quantity.

Equation (1) has a breather solution:

c(x, t)= cbr(x−V t)e
i(̃kx−ω̃t), (3)

where k̃ is the carrier wave number, V = 1
2

√
g/̃k is the group

velocity in the laboratory frame of reference, ω̃ is a nonlinear

frequency close to
√
gk̃, and the subscript “br” stands for

the term “breather”. In Fourier space this solution has the
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following form:

ck(t)=
1
√

2π

∫
cbr(x−V t)e

i(̃k−k)xe−iω̃tdx

=
1
√

2π

∫
cbr(ξ)e

i(̃k−k)ξ e−i(ω̃−k̃V+kV )tdξ

= ϕke
−i(�+V k)t , (4)

where

ϕk =
1
√

2π

∫
cbr(ξ)e

i(̃k−k)ξdξ. (5)

In formula (4) instead of ω̃ we use the new frequency param-
eter �:

�= ω̃− k̃V = ω̃−

√
gk̃

2
. (6)

Breather solutions can be found numerically by the Petvi-
ashvili method (Petviashvili, 1976) and the details are given
in Dyachenko et al. (2017b). The solution ϕk can be found
numerically by iterations:

ϕ
(n+1)
k =

NL
(n)
k

Mk

[ ∑
k′(ϕ

(n)

k′
NL

(n)

k′
)∑

k′(ϕ
(n)

k′
Mk′ϕ

(n)

k′
)

]− 3
2

. (7)

Here ϕ(n)k is the breather solution ϕk on the nth iteration,

Mk =�+V k−ωk. (8)

The symbol NL(n) denotes the nonlinear part of Eq. (1) on
the nth iteration in the x space:

NL(n) =−
∂+

∂x

(
|ϕ(n)|2

∂ϕ(n)

∂x

)
+ i

∂+

∂x

(
k̂
(
|ϕ(n)|2

)
ϕ(n)

)
, (9)

and NL(n)k is the discrete Fourier transform of NL(n). The
breather solution is determined by two independent param-
eters: the group velocity V and the frequency �. The value

of the first parameter V = 1
2

√
g/̃k defines the carrier wave

number k̃ (and the carrier wavelength λ= 2π/̃k) of the soli-
tary group. The second parameter � has the value close to
1
2

√
gk̃ (or g/4V ; see formula 6) and implicitly defines the

shape and the amplitude of the breather. The breather solu-
tions found by the Petviashvili method (7) are determined up
to an arbitrary phase factor eiφ .

Recently Dyachenko et al. (2017a) derived the envelope
version of the super compact Eq. (1) using the envelope func-
tion C(x, t):

c(x, t)= C(x, t)ei(k0x−ωk0 t), (10)

where k0 is an arbitrary characteristic wave number and
ωk0 =

√
gk0 is the corresponding linear frequency. The

Dyachenko–Zakharov envelope (DZe) equation written in
the reference frame moving with the group velocity V0 =
∂ω
∂k
|k0 =

ωk0
2k0

has the following form:

∂C

∂t
+ i

[
ωk0+k −ωk0 −

∂ωk0

∂k0
k̂

]
θ̂k0+kC+ ik

2
0 θ̂k0+k

[
|C|2C

]
+ k0θ̂k0+k

[
C
∂

∂x
|C|2+ 2|C|2

∂C

∂x
− ik̂(|C|2)C

]
− θ̂k0+k

∂

∂x

[
k̂(|C|2)C+ i|C|2

∂C

∂x

]
= 0. (11)

The DZe equation (11) is Hamiltonian, and the Hamiltonian
is

H=
∫
C∗V̂kC dx+

1
2

∫
|C|2

·

[
k0|C|

2
+
i

2
(CC′

∗
−C∗C′)− k̂|C|2

]
dx, (12)

where the operator V̂k has the following form in k space:

Vk =

[
ωk0+k −ωk0 −

∂ωk0
∂k0

k
]

k0+ k
. (13)

The DZe equation was derived without any assumptions
about the spectral width of the wave packet. Moreover,
Eq. (11) is the exact envelope form of Eq. (1) and has the
same range of applicability. Solutions of Eq. (11) and Eq. (1)
are linked by the transformation (10). The solutions (3) writ-
ten in terms of the envelope function C(x, t) have the follow-
ing soliton form:

Cbr(x, t)= cbr(x−V t)e
i(̃k−k0)x−i(ω̃−ωk0 )t . (14)

The DZe equation (11) reduces to the Dysthe equation and
further to the NLS equation as the Fourier spectrum of c(x, t)
becomes increasingly localized at k0.

In this work we study only the model (11) itself and the
NLS equation which can be extracted from Eq. (11) as

∂C

∂t
+
iωk0

8k2
0

∂2C

∂x2 + ik
2
0

[
|C|2C

]
= 0. (15)

Soliton solutions of Eqs. (11) and (15) will be compared in
the next sections.

3 Soliton solutions of the NLS equation and the DZe
equation

We consider solitons in the frame moving with the veloc-
ity V0 =

∂ω
∂k
|k0 =

ωk0
2k0

. The one-soliton solution of the NLS
Eq. (15) moving in the frame with velocity U can be written
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as

Cs(x, t)= C0sech

[
2C0k

2
0

√
ωk0

((x− x0)−Ut)

]
(16)

exp

[
−i

4k2
0

ωk0

U(x− x0)+ i
2U2k2

0
ωk0

t − i
C2

0k
2
0

2
t + iφ0

]
,

where the subscript “s” stands for the term “soliton”, C0 is
the soliton amplitude, x0 is the soliton location at t = 0, and
φ0 is an arbitrary soliton phase. The shape and width of NLS
soliton for a fixed wave number k0 (and velocity V0) is de-
fined by a single independent parameter C0.

In this work we focus on the interactions of the NLS soli-
tons and the DZe solitons of equal amplitude C0 and various
velocities V = V0+U . To describe soliton collisions using
the NLS model analytically we hold the carrier wave number
k0 fixed and vary the relative velocity U . Thus in our studies
all the NLS solitons have the same modulus |Cs(x)|.

The dynamics of DZe soliton collisions can be investigated
only by numerical simulations. We study interactions of the
DZe solitons of the same amplitudes C0 and different veloc-
ities V = V0+U , like in the case of the NLS solitons. The
amplitude of the DZe soliton C0 is uniquely determined by
parameters V and � of the Petviashvili method. However,
there are no analytical relations between soliton amplitude,
V and �. Therefore to find the DZe soliton with the given
velocity V and amplitude C0 we fix V and vary parameter
� (Eq. 6) in the Petviashvili method. The shape of the soli-
ton solutions of the DZe equation found in this way differ
from each other. More precisely, these solitons have different
characteristic widths (see curves 1, 2 and 3 in Fig. 1). When
V = V0 the soliton solution (14) of the DZe equation almost
coincides with the NLS soliton (16) – see curves 3 and 4 in
Fig. 1. The soliton solution (14) with V > V0 is the enve-
lope of the wave group with the carrier wave number k̃ < k0,
while in the case V < V0 the carrier wave number k̃ > k0.
The characteristic steepness of the wave group of amplitude
C0 is proportional to k̃3/4C0 (see formula 2). Thus the wave
group with V < V0 is steeper (and has higher nonlinearity)
than the wave groups with V = V0 and V > V0. The steeper
waves need stronger dispersion to balance the solitary wave
group, and hence the soliton represented by curve 2 is shorter
than solitons represented by curves 3 and 1.

4 The interactions of the solitons

We fix a carrier wave number k0 for the DZe Eq. (11) and
for the NLS model Eq. (15), i.e., consider the dynamics of
solitons in a frame moving with the velocity V0 =

∂ω
∂k
|k0 =

ωk0
2k0

. We study interactions of two solitons having (in the
laboratory reference frame) close unidirectional velocities
V = V0+U0 and V = V0−U0. We compare four cases of
two-soliton interactions that correspond to four values of the
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Figure 1. Comparison of DZe solitons and NLS solitons with am-
plitude C0 = 1.11× 10−1√ωk0/k0. The curves show the absolute
value of the envelope function |C(x)| for the DZe solitons with
parameters U = 0.04V0, �1 = 4.86× 10−1ωk0 (dashed curve 1);
U =−0.04V0, �2 = 5.28× 10−1ωk0 (dash–dotted curve 2); and
U = 0,�0 = 5.06×10−1ωk0 (solid curve 3). Dots 4 show the abso-
lute value of the envelope function for the NLS soliton with U = 0.

maximum wave steepness µ (and amplitudes C0 correspond-
ingly):

– µ≈ 0.05 (amplitude C0 = 3.16× 10−2
√
ωk0
k0

),

– µ≈ 0.1 (amplitude C0 = 7.12× 10−2
√
ωk0
k0

),

– µ≈ 0.15 (amplitude C0 = 8.85× 10−2
√
ωk0
k0

),

– µ≈ 0.2 (amplitude C0 = 1.11× 10−1
√
ωk0
k0

).

The steepnessµ is determined as the maximum of the deriva-
tive of the surface elevation:

µ=max |η′(x)|,

and η(x) is recovered from the transformation (2). The di-
mensionless wave steepness µ∼ C0

k0
√
ωk0

(see formula 2) is
why we measure the wave field amplitude C(x) in the units
√
ωk0
k0

. For each case the size of the computational domain
was x/λ0 ∈ [0,100], where λ0 = 2π/k0. The relative veloc-
ity was U0 = 0.04V0 and at the initial time the solitons are
located at x = 25λ0 and x = 75λ0. For the sake of brevity
we label the soliton that was initially located at 25λ0 and the
other soliton by the indices 1 and 2, respectively. The total
simulation time is 50λ0/U0 = 2500T0, where T0 = 2π/ωk0

is the time period for the base wave number k0.
The NLS equation is a completely integrable model and an

exact multisoliton solution is available (see the work by Za-
kharov and Shabat, 1972). We use this analytic solution to
study the collision of solitons for the NLS case. In Fig. 2 we
present an example of interacting solitons and illustrate how
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their collision leads to a space shift in the positions of the
solitons as well as the formation of a nonlinear wave profile
with a peak amplitude 2C0. In the NLS model the space shift
δx is determined by the soliton amplitudes and velocities,
and it does not depend on the phase. Each soliton acquires a
positive shift in the direction of its propagation (as we men-
tioned above, we consider the system of reference moving
with velocity V0 where the solitons propagate in different di-
rections) and is calculated from the formula (see Novikov
et al., 1984)

δx =
ωk0

2C0k
2
0

lg

(
1+

ωk0

4

(
C0

U0

)2
)
. (17)

In the case illustrated in Fig. 2, δx = 1.55λ0. In addition to
the space shift (17) the solitons acquired a phase shift δφ that
is calculated using a similar expression:

δφ = arg
(

1− i
√
ωk0

2
C0

U0

)
. (18)

As one can see from Eq. (16), the dependence of the soliton
phase at its center on time is

φ(t)= φ0−

(
2U2k2

0
ωk0

+
C2

0k
2
0

2

)
t. (19)

Thus for the two solitons of equal amplitudes C0 and the rel-
ative velocities ±U0 the phase difference is time-invariant:
1φ(t)≡ φ02−φ01, where φ01 and φ02 are the initial phases
of the soliton 1 and 2, respectively. For the case of the NLS
solitons of equal amplitudes the space and the phase shifts
given by Eqs. (17) and (18) are mutually compensated.

The maximal amplitude 2C0 is achieved when the phase
difference between the colliding NLS solitons is equal to
zero: 1φ = 0 (see, e.g., Antikainen et al., 2012). The value
of the maximum amplitude amplification depends on the rel-
ative phase of the interacting solitons 1φ. We use the nor-
malized definition of the maximum amplitude amplification
function A(1φ) given by

A(1φ)=

max
(x,t)

(|C(x, t)|)

2C0

∣∣∣∣∣∣
1φ

. (20)

In other words we find the maximum amplitude of the wave
field formed during the whole collision process and normal-
ize it to the sum of the soliton amplitudes.

In the NLS model the amplitude amplification function de-
creases when the |1φ| grows and achieves its minimum at
1φ =±π (see Fig. 3). In a more general case of the collision
of NLS solitons of unequal amplitudes the phase difference
1φ is time-dependent. In such a case we must choose a time
tc when 1φ is defined. We choose tc = 25λ0/U0 = 1250T0,
which is the time when either of the solitons reaches the cen-
ter of the domain in the absence of the other. In this case
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Figure 2. Collision of NLS solitons with amplitudes C0 = 1.11×
10−1√ωk0/k0, velocities U =±0.04V0 and phase difference
1φ = 0. The curves show the absolute value of the envelope func-
tion |C(x)| at the moment in time, t = 0 (solid curve 1), at the mo-
ment of maximum amplitude amplification during the collision pro-
cess (dashed curve 2) and the moment in time t = 50 λ0

U0
= 2500T0

(dotted curve 3), i.e., after soliton collision.
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Figure 3. The maximum amplification A of the wave field ampli-
tude of colliding NLS solitons depending on the relative phase 1φ.
The values of the wave steepnesses (and amplitudes) of the soli-
tons are the following: µ≈ 0.2, C0 = 1.11× 10−1√ωk0/k0 (solid
curve 1); µ≈ 0.15, C0 = 8.85× 10−2√ωk0/k0 (dashed curve 2);
µ≈ 0.1, C0 = 7.12× 10−2√ωk0/k0 (dash–dotted curve 3); µ≈
0.05, C0 = 3.16× 10−2√ωk0/k0 (solid curve 4 with dots).

the amplitude amplification A(1φ) is similar to the ampli-
tude amplification presented in the Fig. 3 with the exception
that the maximum is shifted from 1φ = 0. This is caused by
unequal values of the soliton space shifts δx1 and δx2, and
phase shifts δφ1 and δφ2 that are not compensated anymore.
The shift of the maximum is established from the analytical
expressions for the space and phase shifts acquired by the
NLS solitons of unequal amplitudes (Novikov et al., 1984).
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The numerical simulations of the soliton interactions in
the DZe equation were carried out in a periodic domain
x ∈ [0,100λ0]. In order to study the influence of the relative
phase on the value of the maximum amplification A(1φ), a
sequence of simulations was performed with various values
of the initial phase φ01. By using the formulas (14) and (6),
we find the dependence of the DZe soliton phase at its center
on time:

φ(t)= φ0− (�+ k0V −ωk0)t. (21)

The relative phase of the solitons having different parameters
�1, �2 and velocities V = V0±U0 is given by the following
expression:

1φ(t)= φ02−φ01− (�2−�1)t + 2k0U0t, (22)

and is not time-invariant. Thus, we define the phase differ-
ence of the solitons at the moment of time tc = 25λ0/U0 =

1250T0 as

1φ = (φ02−φ01)−
25λ0(�2−�1)

U0
+ 50k0λ0. (23)

In addition, the solitons acquire space and phase shifts which
cannot simply be accounted for in 1φ.

4.1 Soliton collisions: amplitude amplification and
energy loss

Our numerical simulations show that the dependences
A(1φ) in the DZe equation and in the NLS equation are
similar when soliton amplitudes are small (µ≈ 0.05). In this
case the maximum and the minimum of the amplitude ampli-
fication function for the DZe model are observed at 1φ ≈ 0
and at 1φ ≈±π , respectively, i.e., similar to the NLS case
– compare the solid curves with dots (curves 4) in Figs. 3
and 4. At larger values of the wave steepness the position of
maximum of A(1φ) is shifted from 1φ = 0 more signifi-
cantly – see Fig. 4. We believe that the shift of the maximum
of A(1φ) can be compensated for by choosing a more pre-
cise definition of the soliton phase difference (23), which is
a subject for further studies.

We found that the maximum value of amplitude amplifica-
tion A(1φ) increases with the initial amplitude (and steep-
ness) of the DZe solitons and exceeds A= 1 by almost 20 %
for the maximum value of the wave steepness studied in this
work (µ≈ 0.2) – see again Fig. 4. As shown in Figs. 3 and 4,
the minimum value of the amplitude amplification for steep
solitons is A≈ 0.6; thus, in this case the wave field slightly
increases the soliton amplitudes. The envelope profiles of
colliding DZe solitons with the wave steepness µ≈ 0.2 are
shown in Figs. 5 and 6 for the values of the relative phase1φ
corresponding to the minimum and maximum amplifications
A(1φ).

The interactions of solitons (or breathers) in the DZ model
are inelastic (Dyachenko et al., 2013), which is manifested
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Figure 4. The maximum amplification A of the wave field ampli-
tude of colliding DZe solitons depending on the relative phase 1φ.
The values of the wave steepnesses (and amplitudes) of the soli-
tons are the following: µ≈ 0.2, C0 = 1.11× 10−1√ωk0/k0 (solid
curve 1); µ≈ 0.15, C0 = 8.85× 10−2√ωk0/k0 (dashed curve 2);
µ≈ 0.1, C0 = 7.12× 10−2√ωk0/k0 (dash–dotted curve 3); µ≈
0.05 C0 = 3.16× 10−2√ωk0/k0 (solid curve 4 with dots).
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Figure 5. Collision of DZe solitons with the wave steepness µ≈
0.2 and the phase difference 1φ ≈ 0.7. Snapshots show the abso-
lute value of the envelope function |C(x)| at the initial moment of
simulation t = 0 (snapshot a); at the moment of maximum ampli-
tude amplification t = 1214.35T0 (snapshot b) and at the final mo-
ment of simulation t = 2500T0 (snapshot c). The zoom of the final
amplitude profile is shown in the inset of snapshot (c).

by radiation of incoherent waves as can be seen from Figs. 5
and 6. We have observed that level of the radiation is strongly
dependent on the relative phase – compare the lower pictures
in Figs. 5 and 6.

We quantitatively study the dependence of soliton energy
losses 1Eloss on the relative phase 1φ. The total Hamilto-
nian of the wave field in the laboratory frame of reference is
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Figure 6. Collision of DZe solitons with the wave steepness µ≈
0.2 and the phase difference 1φ ≈−2.5. Snapshots show the ab-
solute value of the envelope function |C(x)| at the initial moment
of simulation t = 0 (snapshot a); at the moment of maximum am-
plitude amplification t = 1193.66T0 (snapshot b) and at the final
moment of simulation t = 2500T0 (snapshot c). The zoom of the
final amplitude profile is shown in the inset of snapshot (c).

defined by the following expression:

H =H+
ωk0

2
N +

ωk0

2k0
P. (24)

Here, the Hamiltonian H in the framework moving with the
group velocity V0 =

ωk0
2k0

is defined by formula (12). N and
P are the number of waves and the horizontal momentum in
the laboratory frame of reference:

N =

∞∫
−k0

|Ck|
2

k0+ k
dk,

P =

∞∫
−k0

|Ck|
2dk. (25)

Note that the number of waves and the horizontal momentum
are additional integrals of motion of the DZe equation (11).
We denote the total energy of our system (i.e., the value of
the Hamiltonian (24) at the whole spatial interval [0,100λ0])
as E, and the initial energies of the first and second solitons
as E1 and E2. The values of energy change of each of the
solitons after collision we denote as δE1 and δE2. As men-
tioned above, we mark the parameters of the soliton initially
located at 25λ0 by the index 1 and the parameters of the soli-
ton initially located at 75λ0 by the index 2. To estimate δE1
and δE2, we cut out each soliton after collision by a window
function and then calculate the value of the Hamiltonian (24)
for each part of the wave field. The window function was
chosen so that being applied to a soliton propagating in the
absence of another soliton allows us to estimate the value of
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Figure 7. The total energy losses 1Eloss (in percent – see for-
mula 26) of DZe solitons after their collision depending on the rel-
ative phase 1φ. The wave steepness of the solitons µ≈ 0.2.

the soliton energy with accuracy 0.01%. We define the to-
tal energy losses caused by the radiation of incoherent waves
relative to the total energy of the system:

1Eloss =−
δE1+ δE2

E
. (26)

Figure 7 shows the energy losses as a function of the rela-
tive phase for the steepness of the colliding solitons µ≈ 0.2.
We have found that the value of the energy losses can reach
≈ 3 % at a certain value of 1φ. As one can see from Figs. 4
and 7, the positions of maximum amplitude amplification and
maximum energy losses are strongly correlated.

4.2 Soliton collisions: space shifts and energy
interchange

In this paragraph we describe the individual changes in DZe
solitons after collision. We measure the energy changes in
soliton 1 and soliton 2 relative to their individual energies:

1E1 =
δE1

E1
, 1E2 =

δE2

E2
. (27)

We have found that solitons of the DZe equation exchange
energy with each other. Each of the solitons can gain or lose
the energy after collision in dependence on the relative phase
1φ – see Fig. 8. As one can see, the maximum energy gain of
the first soliton is achieved at1φ ≈ 1.5, while the maximum
energy gain of the second soliton is achieved at 1φ ≈ 0. It
is interesting to note that the energy exchange between the
solitons is absent at the values of the relative phase close to
the maximum (i.e., at 1φ ≈ 0.7; see Fig. 4) and to the min-
imum (i.e., at 1φ ≈ 0.7−π ; see Fig. 4) of the wave field
amplification. More precisely, at the point 1φ ≈ 0.7 we ob-
serve the intersection of the curves1E1(1φ) and1E2(1φ)

– see Fig. 8. In the intersection point 1E1 =1E2 =1E
′
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Figure 8. The individual energy change (in percent – see for-
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tive phase1φ. The dashed curve 1 shows dependence of the energy
change for the first soliton 1E1(1φ), while the dash–dotted curve
2 corresponds to dependence of the energy change for the second
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and thus 1Eloss =−1E
′ (see formulas 26 and 27), the en-

ergy changes in each soliton are caused only by the radiation.
The same situation is observed at the point1φ ≈ 0.7−π , but
now the soliton energy loses are almost completely absent.

The energy exchange and energy losses result in the in-
crease or decrease in the soliton amplitudes, which is demon-
strated by Fig. 9a and b. For each soliton we additionally
simulate its propagation in the absence of the another soli-
ton (i.e., in the absence of the interaction). In Fig. 9a and
b we show the envelope profiles of the solitons after colli-
sion in comparison with non-interacting solitons at the same
moment in time (t = 2500T0). Figure 9a corresponds to the
relative phase 1φ ≈ 1.5 and Fig. 9b to the relative phase
1φ ≈ 0.

In addition, Fig. 9a and b demonstrate that the space po-
sitions of solitons after the interaction also depend on the
relative phase 1φ. We calculate the space shifts of the soli-
tons δx1 and δx2 in the direction of soliton propagation (as
we mentioned above, we consider the system of reference
moving with velocity V0 where the solitons propagate in dif-
ferent directions) as the difference in space positions between
interacting and freely propagating solitons at the same time
t = 2500T0. We demonstrate the dependence of δx1 and δx2
on the relative phase 1φ in Fig. 10 for the values of the
wave steepness µ≈ 0.05,0.1,0.15, and 0.2. In contrast to
the NLS model the space shifts of solitons of the DZe equa-
tion can be either positive or negative at high values of µ –
see Fig. 10c, d. The curves δx1,2(1φ) become almost straight
in the limit of small steepness (at µ≈ 0.05) – see Fig. 10a.
We also show in Fig. 10 the corresponding values of space
shifts calculated using the NLS formula (17) for each value
of µ. Even at small steepness we observe a difference be-

tween soliton space shifts in the DZe and NLS equations that
we explain by the above-mentioned difference between two-
soliton wave groups in these two models.

5 Conclusions

In this work we have studied how the relative phase of soli-
tons in the DZe model affects the key properties of their in-
teraction. All results presented here for solitons of the DZe
equation are valid also for breathers of the DZ equation since
solutions of these two models are linked by the transforma-
tion (10). In the first works devoted to numerical simulations
of breather interactions in the DZ equation (Fedele and Du-
tykh, 2012a, b; Dyachenko et al., 2013) the phase-dependent
effects were not studied and the wave steepness was taken to
be small. For the chosen breather phases and steepnesses in
the mentioned works, a single collision of breathers does not
lead to visible radiation of incoherent waves. However, the
minor energy radiation was registered after multiple breather
collisions (Dyachenko et al., 2013). Thus the breather inter-
actions are not purely elastic, which demonstrates the non-
integrability of this model. The analytical proof of the non-
integrability of the DZ equation was also given in the work
of Dyachenko et al. (2013). Here we have studied the influ-
ence of the relative phase of the colliding solitons on the level
of the radiation. We have found that the total energy loss due
to the radiation is enhanced at a certain synchronization of
the relative phase between solitons. In this case the incoher-
ent radiation becomes clearly visible even after a single col-
lision – see Fig. 5. We explain the latter in the following way.
The maximum amplitude amplification is accompanied also
by the formation of the wave profile of high steepness. We
have found that the maximum steepness reaches the value
µ≈ 0.7 during the collision process and thus the deviation
of wave dynamics from the integrable model becomes sig-
nificant.

Interactions of the breathers in the DZ equation at a certain
phase synchronization can lead to the formation of extreme
amplitude waves. It is well known that the maximum value
of a wave field as a result of soliton interactions in the NLS
model is equal to the sum of the soliton amplitudes. In this
work we have found that in the DZe equation the maximum
amplification can be higher than the sum of amplitudes of
the solitons. Interestingly, at large values of the wave field
steepness this effect is enhanced, which can be a valuable
complement in extreme amplitude wave studies.

We have also studied the phenomena of the energy ex-
change between the colliding solitons. This energy exchange
is caused by inelasticity of the soliton interactions. The uni-
versal long-term consequences of this process were studied
in different nonintegrable models (Krylov and Iankov, 1980;
Dyachenko et al., 1989). It was shown that the numerous
collisions and interactions with waves of radiation lead to
formation of the powerful single solitary-type wave (see the
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review by Zakharov and Kuznetsov, 2012). Here we have
found that the dynamics of a single collision is not univer-
sal: the direction of energy swap is determined by the soliton
phases.

Furthermore, we have studied space shifts that solitons ac-
quire after the collision. Solitons of the NLS equation always
acquire a positive constant shift δx to their space position
after interaction with another soliton moving with a differ-
ent velocity. The value of δx is defined only by the ampli-
tudes and velocities of the colliding solitons. The interaction
of solitons in the DZe equation also leads to the appearance
of the space shifts. We show that the character of this effect
is not universal (δx can be positive or negative) and is deter-
mined in addition by the soliton phases.

The inelasticity of soliton collisions in nonintegrable mod-
els may destroy the initially coherent wave groups. However,
as we have demonstrated here the total energy loss for inter-
actions described by Eq. (1) does not exceed a few percent of
energy of the solitons and we expect that observation of sev-
eral subsequent soliton collisions will be possible. The study
of the influence of the relative phase of the colliding soli-
tons in the fully nonlinear model is of fundamental interest.
As was shown by Dyachenko et al. (2016b), the DZ equa-
tion quantitatively describes strongly nonlinear phenomena
at the surface of deep fluid. Thus we believe that the effects
reported here for the solitons of the DZe equation can also be
observed for the fully nonlinear Euler equations.

Pairwise collisions of solitons (or breathers) is an impor-
tant elementary process that can be observed in the wave dy-
namics of an arbitrarily disturbed fluid surface. For example,
the recent numerical simulations of the DZe equation demon-
strate that an ensemble of interacting solitons can appear as
a result of modulation instability driven by random perturba-
tions of an unstable plane wave (Dyachenko et al., 2017a).
Another important field of studies is the turbulence of rari-
fied soliton gas where pairwise collision processes play the
key role in the formation of wave field statistics (see the re-
cent works of Pelinovsky et al., 2013; Shurgalina and Peli-
novsky, 2016). We believe that the results presented here can
serve as a starting point in the analytical description of such
processes. Moreover, the reported dependence of soliton in-
teraction dynamics on the relative phase is to be verified in
laboratory experiments.
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