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Abstract. In this study, both laboratory and numerical ex-
periments are conducted to investigate stem waves propa-
gating along a vertical wall developed by the incidence of
monochromatic waves. The results show the following fea-
tures: for small-amplitude waves, the wave heights along the
wall show a slowly varying undulation. Normalized wave
heights perpendicular to the wall show a standing wave pat-
tern. The overall wave pattern in the case of small-amplitude
waves shows a typical diffraction pattern around a semi-
infinite thin breakwater. As the amplitude of incident waves
increases, both the undulation intensity and the asymptotic
normalized wave height decrease along the wall. For larger-
amplitude waves with smaller angle of incidence, the mea-
sured data clearly show stem waves. Numerical simulation
results are in good agreement with the results of laboratory
experiments. The results of present experiments favorably
support the existence and the properties of stem waves found
by other researchers using numerical simulations. The char-
acteristics of the stem waves generated by the incidence of
monochromatic Stokes waves are compared with those of the
Mach stem of solitary waves.

1 Introduction

Coastal structures have been increasingly constructed in deep
water regions as the size of ships becomes larger. In such
deep water regions, a vertical-type structure is preferred to

save construction costs. In the case of a vertical structure,
stem waves occur when waves propagate obliquely against
the structure. Thus, there is a need for careful considera-
tion to secure appropriate free board and stability of caisson
blocks.

Based on laboratory experiments of the reflection of a soli-
tary wave propagating obliquely against a vertical wall, Per-
roud (1957) reported the existence of three types of waves
when the angle between incident wave ray and a vertical
wall is below 45◦: incident, reflected, and stem waves. On
the one hand, Berger and Kohlhase (1976) conducted labo-
ratory experiments and found that stem waves appeared also
in the case of sinusoidal waves, and that the properties of
stem waves developed by sinusoidal waves showed similari-
ties to those of solitary waves. On the other hand, according
to laboratory experiments by Melville (1980) with solitary
waves, the width and height of stem waves were found to be
wider and larger, respectively, as waves propagated along the
wall. However, the wave height did not exceed double the
height of incident waves. Yue and Mei (1980) analyzed stem
waves at a constant water depth using parabolic approxima-
tion equations for second-order Stokes waves. They found
that the influence of reflected waves vanished when the in-
cident angle between the structure and the waves was below
20◦ and that only incident waves and stem waves appeared.
Liu and Yoon (1986) showed that stem waves occurred also
in an area along the line of a depth discontinuity, as in the
case of a vertical wall. In addition, Yoon and Liu (1989) in-
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troduced a parabolic approximation equation based on the
Boussinesq equation and analyzed stem waves for the case
of cnoidal incident waves. Yoon and Liu (1989) showed the
importance of the incident wave nonlinearity. Most previ-
ous studies on stem waves focused on the properties of stem
waves depending on the incident angle and wave nonlinearity
of monochromatic waves.

While the stem waves generated by the sinusoidal waves
have drawn less attention in recent years, the Mach stem
induced by the interaction between the line solitons in the
shallow-waters has continuously attracted the attention of the
researchers. Since the pioneering work of Miles (1977a, b)
on the obliquely interacting solitary waves, the soliton in-
teractions have been extensively studied. Miles (1977b) de-
veloped an analytical solution to predict the amplification of
the stem wave along the wall as a function of the interaction
parameter, k∗ = θ0/

√
3H0/h, where H0, h, and θ0 are the

wave height, the water depth, and the incident angle of soli-
tary wave, respectively. When k∗ = 1, the amplification of a
solitary wave can reach 4 times that of the incident wave.
Soomere (2004) investigated the soliton interactions based
on the KP equation (Kadomtsev and Petviashvili, 1970). Ko-
dama et al. (2009) and Kodama (2010) proposed the mod-
ified interaction parameter, κ∗ = tanθ0/(

√
3H0/hcosθ0). Li

et al. (2011) conducted a precision laboratory experiment to
capture the detailed features of Mach reflection using the LIF
(laser-induced fluorescent) technique. The laboratory data of
Li et al. (2011) strongly support the theory of Miles (1977b)
except the cases where the κ∗ value lies in the neighbor-
hood of the 4-fold amplification. Funakoshi (1980), Tanaka
(1993), Li et al. (2011), and Gidel et al. (2017) performed nu-
merical experiments to verify the Miles’ 4-fold amplification.
As summarized by Li et al. (2011) and Gidel et al. (2017)
most of the models underestimated the 4-fold amplification
due to the limitations of the computational resources. The
amplification ratio of 3.6 obtained by Gidel et al. (2017) is
so far the maximum among the numerical results showing
the full development stage of stem waves.

Even though the existence and the properties of stem
waves for sinusoidal waves are well known theoretically via
numerical simulations (e.g., Yue and Mei, 1980; Yoon and
Liu, 1989), they are not yet fully supported by physical ex-
periments. Berger and Kohlhase (1976) conducted hydraulic
experiments to show the existence of stem waves for the
cases of sinusoidal waves. Their experimental data, however,
failed to produce clear stem waves, possibly due to partial re-
flection from the beach, diffraction from the ends of vertical
wall, or insufficient space in the wave basin. Lee et al. (2003),
Lee and Yoon (2006) and Lee and Kim (2007) performed lab-
oratory experiments to investigate stem waves for sinusoidal
waves and compared the measured waves with the numerical
results obtained using a nonlinear parabolic approximation
equation model. Their hydraulic experiments demonstrated
stem waves for some cases with a relatively large incident
wave. However, the stem waves were not clearly developed

Figure 1. Definition sketch of wave field around a vertical wedge.

because of both the narrowness of the wave basin and the
reflected waves from the beach. Only four cases of incident
wave conditions were tested in their experiment. Thus, the
experimental data were not sufficient to investigate the prop-
erties of stem waves. Moreover, the numerical results for the
cases of large angle of incidence were not highly accurate be-
cause of the small-angle parabolic model employed for their
numerical simulations. Thus, there is still need to perform a
precisely controlled experiment to investigate the existence
and the properties of stem waves.

In this study, precisely controlled laboratory experiments
are conducted to investigate the characteristics of stem waves
developed by the incidence of monochromatic waves. The
measured data are compared with numerical simulations and
analytical solutions. In the following section, the numerical
simulation method and the analytical solution employed in
this study are summarized. In Sect. 3, the experimental setup
and procedure are briefly presented. In Sect. 4, the measured
wave heights are compared with numerically simulated re-
sults and analytical solutions. In Sect. 5, the characteristics
of the stem waves generated by the incidence of monochro-
matic Stokes waves are compared with those of the Mach
stem of solitary waves. In the final section, the major find-
ings from this study are summarized.

2 Numerical simulation and analytical solution

In this study, the stem waves that have developed along a
vertical wall over a constant water depth are investigated for
the cases of monochromatic waves. Figure 1 shows a sketch
of the wave field around a vertical wedge. The monochro-
matic waves are symmetrically incident towards the tip of the
wedge. The x axis of the coordinate system is aligned with a
side wall of the wedge. The angle of incidence θ0 is defined
as the angle between the x axis and the incident wave ray.
The computational domain lies in the region of 0 ≤ x and
y ≤ 0.
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Figure 2. Coordinate system for numerical simulations: (a) present, (b) Yue and Mei (1980).

2.1 Numerical simulation method

To compare with our experiments, the latest version of
REF/DIF, a wide-angle nonlinear parabolic approximation
equation model developed by Kirby et al. (2002), is em-
ployed to simulate stem waves. The REF/DIF model can deal
with the refraction–diffraction of Stokes waves of third-order
nonlinearity over a slowly varying depth and current. Due to
the use of parabolic formulation the reflection in the main di-
rection of propagation is forbidden, but not in the transverse
direction. In this study, the water depth is uniform, and no
ambient current is present. With no current and energy dis-
sipation on a constant water depth and by selecting a (1, 1)
Padé approximant in the model, the governing equation of
the REF/DIF model is simplified as

2ik
∂A

∂x
+
∂2A

∂y2 +
i

2k
∂3A

∂x∂y2 −
ωk3

Cg
D|A|2A= 0, (1)

where h is the water depth, i =
√
−1, Cg is the wave group

velocity, A is the complex wave amplitude, and k and ω are
the wave number and the angular frequency, respectively, and
satisfy the following linear dispersion relationship:

ω2
= gk tanhkh, (2)

where g is the gravitational acceleration, and D is given as

D =
cosh4kh+ 8− 2tanh2kh

8sinh4kh
. (3)

The third term of Eq. (1) is the correction term ob-
tained by selecting the (1, 1) Padé approximant for the
wide-angle parabolic approximation. According to Fig. 2
of Kirby (1986) the accuracy of the waves propagating

obliquely to the main direction of propagation, i.e., x direc-
tion, can be maintained up to ±45◦. In this study the range
of the incidence angles of both incident and reflected waves
lies from ±10 to ±40◦. Thus, the sufficient accuracy of the
numerical solution is expected.

The conventional parabolic approximation equation, i.e.,
the nonlinear Schrödinger equation of Yue and Mei (1980),
is obtained if this term is neglected. The last term in Eq. (1)
describes the nonlinear self-interaction of waves. Figure 2
shows the coordinate system for the present numerical sim-
ulation in comparison with that of Yue and Mei (1980).
In the present simulation the incident waves are prescribed
obliquely along the y axis as

A= a0e
ikny sinθ0 , (4)

where a0 is the amplitude of the incident wave, and kn is the
wave number with the nonlinear correction given as

kn = k

(
1−

C

2Cg
D(k |A|)2

)
, (5)

where C(= ω/k) is the phase speed of wave. The no-flux
boundary condition is prescribed along the vertical wall (y =
0) given as

∂A

∂y
= 0. (6)

If the side boundary opposite to the vertical wall is located
far from the wall, the no-flux boundary condition, Eq. (6),
can also be used. However, to save the computational re-
sources the obliquely incident plane wave condition is pre-
scribed along the side boundary at y =−ymax as

A= a0e
i(knx cosθ0−knymax sinθ0). (7)
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Along the outer side no boundary condition is necessary,
because Eq. (1) is a parabolic-type differential equation. The
grid size, 1x and 1y, is L/80 where L is the wave length
of an incident wave. The size of the computational domain is
50L in the x direction, and 400L in the y direction.

For the latter we use the nonlinear parameter,K , proposed
by Yue and Mei (1980) and given as

K =

(
ka0

tanθ0

)2
CD

Cg
. (8)

K is the single parameter representing both the nonlinearity
of incident wave and the angle of incidence on the formation
of stem waves along the vertical wall. This nonlinear parame-
ter was obtained by Yue and Mei (1980) from the dimension-
less form of the small angle version of Eq. (1). The details of
the derivation of K can be found in Yue and Mei (1980).

2.2 Analytical solution

Chen (1987) developed an analytical solution for the
Helmholtz equation in polar coordinates to solve the com-
bined reflection and diffraction of monochromatic waves due
to a vertical wedge. The analytical solution is given in a polar
coordinate as shown in Fig. 1 as

8
(
r, θ∗, z, t

)
=−

iga0

ω

cosh {k (z+h)}
coshkh

F
(
r, θ∗

)
eiωt , (9)

where 8(r,θ∗,z, t) is the velocity potential, and F (r,θ∗) is
a diffraction factor (i.e., A/a0) given as

F
(
r,θ∗

)
(10)

=
2
ν

[
J0 (kr)+ 2

∞∑
n=1

einπ/2νJn/ν (kr)cos
nα∗

ν
cos

nθ∗

ν

]
,

where θ∗ = θ − 2θ0, α∗ = π − θ0, ν = 2(π − θ0)/π , and θ0
is the angle of incidence. J0 (kr) is the Bessel function of
the first kind of order 0. The absolute value of the diffrac-
tion factor |F (r, θ∗)| represents the normalized wave am-
plitude |A|/a0, or the normalized wave height H/H0 where
H0(= 2a0) is the wave height of the incident wave. The ana-
lytical solution of Chen (1987) is linear. Thus, this analytical
solution does not allow the formation of stem waves. The de-
tails of the derivation of the analytical solution can be found
in Chen (1987).

3 Hydraulic experiments

Hydraulic experiments are carried out in the multidirectional
irregular wave generation basin of the Korea Institute of Con-
struction Technology (see Fig. 3). The basin used in the labo-
ratory experiments is 42 m long, 36 m wide, and 1.05 m high.
A snake-type wave generator consisting of 60 wave boards,
each with dimensions of 0.5 m in width and 1.1 m in height

Figure 3. Experimental facility and wave gauge array.

and driven by an electronic servo piston, is installed along the
36 m long bottom wall of the wave basin. Free surface dis-
placements are measured using 0.6 m long capacitance-type
wave gauges with a measuring range of ±0.3 m.

Figure 4 shows the configuration of the experimental setup
and model installation. A 30 m long vertical wall is installed
along the left lateral side of the basin in four different orien-
tations. A dissipating gravel beach with a 1/20 slope is ar-
ranged on the opposite side of the wave generator to reduce
the reflection of waves inside the basin. Another dissipating
beach and wave absorber are also set along the lateral sides
and at the back of the wave generator. Along the lateral side
opposite to the vertical wall a 10 m long wave guide is in-
stalled to avoid diffraction from the side wall. Note that θ0 is
the angle between the vertical wall and the incident waves.
The origin of the spatial coordinate system of the labora-
tory experiments (i.e., x0, y0) is set at the tip of the verti-
cal wall which is located 3 m and 5 m away from the lateral
side and the wave generator, respectively, as shown in Fig. 4.
The width and height of the vertical wall were both 0.6 m.
The experiments are carried out at a constant water depth of
h= 0.25 m. The free board from a still water level to the top
of the vertical wall is 0.35 m in order to prevent overtopping
of waves.

The incident wave conditions are summarized in Table 1.
The title of each test case is composed of three alphabet
characters and a numeric digit. The first letter, M, stands
for “monochromatic” waves. The letters S or L represents
“shorter” or “longer” waves in terms of period, respectively.
The letters S, M, or L represents “small”, “medium”, or
“large” waves in terms of wave height, respectively. Finally,
the numeric digit represents the angle of incidence.

The wave periods of T = 0.7 and 1.1 s are tested. The
wave heights are H0= 0.009, 0.027, and 0.036 m for 0.7 s
waves and H0= 0.018, 0.054, and 0.072 m for 1.1 s waves
so that no wave breaking occurs during the experiments.
The length of the vertical wall in the laboratory experiments
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Table 1. Experimental wave conditions (h= 0.25 m).

Nonlinearity

Test Wave period Wave height Incident angle Wave steepness Nonlinear
case T (s) H0 (m) θ0 (deg.) kH0 parameter K

MSS1 0.7 0.009 10 0.076 0.088
MSS2 20 0.021
MSS3 30 0.008
MSS4 40 0.004
MSM1 0.027 10 0.229 0.793
MSM2 20 0.186
MSM3 30 0.074
MSM4 40 0.035
MSL1 0.036 10 0.305 1.411
MSL2 20 0.331
MSL3 30 0.132
MSL4 40 0.062
MLS1 1.1 0.018 10 0.076 0.123
MLS2 20 0.029
MLS3 30 0.011
MLS4 40 0.005
MLM1 0.054 10 0.228 1.108
MLM2 20 0.260
MLM3 30 0.103
MLM4 40 0.049
MLL1 0.072 10 0.304 1.969
MLL2 20 0.462
MLL3 30 0.184
MLL4 40 0.087

Table 2. Measuring points in hydraulic experiments.

y dir. (normal to the wall)

Wave x dir. at x/L= 6 at x/L= 15
period (T ) (along the wall)

0.7 s x= 0.0 m∼ 11.4 m y= 0.1 m∼ 3.7 m
(1x= 0.2 m) (1y= 0.1 m)

1.1 s x= 0.0 m∼ 22.8 m y= 0.2 m∼ 7.3 m
(1x= 0.4 m) (1y= 0.2 m)

is 40L for the case of T = 0.7 s and 20L for the case of
T = 1.1 s, where L represents the wavelength of monochro-
matic waves corresponding to the given period T . The inci-
dent angles of θ0 = 10, 20, 30, and 40◦ are obtained by ad-
justing the orientation of the vertical wall. Thus, the incident
waves propagate normal to the line of the wave generator.
The nonlinearity of the incident waves are presented in two
dimensionless parameters, wave steepness kH0 and the non-
linear parameter K given by Eq. (8).

In the real world, we can assume the situation where the
swell is incident on a breakwater. Swell waves are the regu-
lar longer period waves created by storms far away from the

beach. Swell waves tend to have longer periods than wind
waves. The wave period of swell lies between 10 to 15 s.
Breakwaters are generally constructed at a depth of about 10
to 20 m. If the wave height is 1 to 3 m, the swell wave con-
ditions can be within the range of Stokes wave, as shown in
Fig. 5. In the figure the empty blue circles represent the swell
wave conditions and the red triangles represent the incident
waves tested in this study. It can be seen that the incident
waves tested in this study belong to the Stokes range. The
dispersion effect of the Stokes waves is much stronger than
that of the solitary waves. Thus, the characteristics of stem
waves in this study should be very different from those of
the solitary waves. In Fig. 5, the x axis represents the relative
water depth (ratio of water depth to deep water wave length,
i.e., the measure of wave dispersion). The y axis represents
the wave steepness (ratio of wave height to deep water wave
length, i.e., the measure of wave nonlinearity).

In the experiments, wave heights are measured along both
the vertical wall (x direction) and normal to the vertical wall
(y direction). Note that wave heights in the x direction are
measured 0.05 m away from the front side of the wall, while
wave heights in the y direction are measured along two lines
of x= 6 and 15L. The intervals of the wave height measure-
ment positions are 1x = 0.2 m and 0.4 m for T = 0.7 and
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Figure 4. Definition sketch of the experimental setup.

1.1 s, respectively, along the wall, and 1y = 0.1 and 0.2 m
for T = 0.7 and 1.1 s, respectively, normal to the wall. Ta-
ble 2 gives a summary of the wave height measurement posi-
tions. The wave heights are extracted from the measured free
surface displacements using the zero-upcrossing method. In
this method a wave is defined when the surface elevation
crosses the zero line or the mean water level upward and
continues until the next crossing point. This method is a
widely accepted method for extracting representative statis-
tics from raw wave data. Figure 6 shows the hexagonal or
beehive wave pattern captured during the experiment in front
of a vertical wall for the case of θ0 = 30◦. This is typical
of the cross sea generated by the oblique interaction of two
or more traveling plane waves (see, e.g., Le Mehauté, 1976;
Mei, 1983; Nicholls, 2001). Postacchini et al. (2014) studied
the dynamics of crossing wave trains on a plane slope in shal-
low waters. The stem waves can develop at the intersection
of two crest lines of the crossing waves. When the crossing
waves propagate towards a shore, they experience shoaling
and break. Postacchini et al. (2014) proposed an analytical
theory based on ray convergence to identify the position and
the crest length of the breaker. The stem waves in the present
study are developed by the oblique nonlinear interaction be-

tween the incident and the reflected waves. Thus, the gener-
ation mechanism is similar to Postacchini et al. (2014).

Prior to the main experiments the performance of the wave
generator was tested. For this test no vertical wall was placed
in the wave basin. After the initiation of wave generation the
time histories of free surface displacement were recorded at
three incident-wave-measuring points, as shown in Fig. 4.
The first part of data with a sufficiently long time is dis-
carded in evaluating the wave height to avoid the start-up
transients, and the wave height and period are obtained using
the zero-upcrossing method. The tests show that the target
waves are well generated, and that the bottom friction is neg-
ligible within the test area of the wave basin. In particular,
three wave gauges aligned in a wave propagation direction
with a specified distance are placed at the incident-wave-
measuring point located near the gravel beach with a 1/20
slope to estimate the wave reflection from the beach. The in-
cident and reflected waves are separated using the three-point
higher-order separation technique. This higher-order tech-
nique is developed for finite-amplitude waves by adding the
second and third harmonics to the linear separation scheme
proposed by Suh et al. (2001). The reflection coefficient due
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Figure 5. The present experiment and wave conditions of the real-
world cases (after Le Méhauté, 1976). The solid red triangles rep-
resent the incident waves tested in this study and empty blue circles
represent the swell wave conditions. The x axis represents the rel-
ative water depth (ratio of water depth to deep water wave length,
i.e., the measure of wave dispersion). The y axis represents the wave
steepness (ratio of wave height to deep water wave length, i.e., the
measure of wave nonlinearity).

Figure 6. Wave pattern in front of a vertical wall (θ0 = 30◦).

to the gravel beach is less than the maintained 3 % for all the
waves considered in the experiments.

4 Results and discussions

In this study, experiments on the formation of stem waves
near a vertical wall are conducted and the measured wave
heights are compared with results calculated using both

Figure 7. Definition sketch for the stem angle and the stem bound-
ary.

the wide-angle parabolic approximation equation numerical
model, REF/DIF, and the analytical solution of Chen (1987).
All the figures for the experimental and calculated data are
presented in the Supplement to avoid an excess of figures.

Prior to presenting the experimental and numerical results,
the definitions of the stem angle and the stem width are dis-
cussed. The definition of stem width is rather controversial.
Yue and Mei (1980) defined the stem width as the distance
from the wall to the edge of the uniform wave amplitude re-
gion. However, it is not an easy task to locate the edge of
the flat region. Berger and Kohlhase (1976) defined the stem
width for the periodic waves as the distance along the stem
crest lines from the wall to the first node line of the standing
wave pattern, which is easier to identify from the measured
data. However, Soomere (2004) obtained the analytical stem
length using the KP equation for the obliquely interacting
two solitary waves. As pointed out by Li et al. (2011) the
crest lines of the stem wave, the incident, and the reflected
solitons measured in their experiment are not straight, and
they do not meet at a point. In reality, the analytical solutions
of the KP equation deviate slightly from the pattern observed
in the experiment. Thus, Li et al. (2011) proposed the edge
of the Mach stem as the intersection of the linear extensions
of the stem and the incident-wave crest lines.

For the periodic waves the wave pattern is more compli-
cated because many wave components are superposed. Thus,
the definitions of the stem boundary and the stem angle
should be different from the case of solitary waves. As shown
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Figure 8. Three-dimensional plots of normalized wave height for (a) MLS1 and (b) MLL1 cases from simulation.

Figure 9. Three-dimensional plots of normalized free surface displacements (a) MLS1 and (b) MLL1 cases from simulation.

in Figs. 2a and 7, when the stem waves are fully developed,
the stem boundary is nearly parallel to the first node line.
Thus, as suggested by Berger and Kohlhase (1976), the ex-
perimental stem angle α is determined in this study as the
angle of node line, αn. The node line is roughly determined
using the node points from the wave height data measured
along two lines of x= 6 and 15L. When the distances be-
tween the first node points and the wall are λ6 and λ15 for
two sections of x= 6 and 15L, respectively (see Figs. S5 and
S6), then the angle of the node line, αn, can be determined as

α ≈ αn = tan−1
(
λ15− λ6

9L

)
. (11)

This αn decreases as the waves propagate along the wall.
It reaches an asymptotic value after the waves propagate ap-

proximately 30 wave lengths. Thus, the experimental αn de-
termined by Eq. (11) is slightly overestimated for x ≤ 30L.

In this study the stem angle, α, is defined as the asymp-
totic angle of node line as shown in Fig. 7. To estimate the
asymptotic αn the numerical calculation is conducted using
the domain extended up to 50L in the x direction, and the
instantaneous free surface displacements are calculated and
plotted as shown in Fig. 7. Using two distances between the
node points and the wall, λ30 and λ50 for two sections of
x= 30 and 50L, respectively, the stem angle α is determined
as

α = αn = tan−1
(
λ50− λ30

20L

)
. (12)
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Figure 10. Contour plots of the instantaneous normalized free surface for (a) MLS1 and (b) MLL1 cases from simulation.

Figure 11. Comparison of calculated and measured normalized wave heights along the wall as a function of nonlinear parameter K. Black
solid curve represents the wave height predicted by shock theory of Yue and Mei (1980), red and blue solid curves denote the calculated
wave heights for θ0 = 10 and 20◦, respectively. Symbols are measured data.

The stem width λs can be determined using the stem angle
α as

λs = x tanα. (13)

4.1 Shorter waves (T = 0.7 s)

Figure S1 shows the comparisons between the measured,
numerically simulated, and analytically calculated wave
heights, H /H0, along the vertical wall for the cases of
H0= 0.009 m with T = 0.7 s (i.e., MSS series). The ampli-

tude of the incident waves is small, as the title of the test
cases indicates. The solid circles represent the results of the
laboratory experiments. The solid and dashed lines represent
the numerical (using REF/DIF) and analytical solution re-
sults, respectively. Various incident angles of θ0 = 10, 20,
30, and 40◦ are presented. For the case of small angle of in-
cidence (MSS1, θ0 = 10◦) the measured wave height along
the vertical wall increases monotonically with the distance
from the tip of the vertical wall. As the angle of incidence
increases, the wave height shows a slowly varying undu-
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Figure 12. Comparison of calculated normalized wave heights along the wall for various nonlinear parameter values of K (θ0 = 10◦).

lation with the average value of H/H0 = 2.0. The maxi-
mum value of undulation is approximately H/H0 ≈ 2.3, and
the location of maximum wave height decreases with in-
creasing angle of incidence. In particular, the overall pat-
tern of wave height distribution does not support the gen-
eration of stem waves, which are characterized by uniform
wave heights smaller than those obtained from linear diffrac-
tion theory (Yue and Mei, 1980; Yoon and Liu, 1989). The
wave heights calculated using the REF/DIF numerical model
(Kirby and Dalrymple, 2002) and the analytical solution of
Chen (1987) agree well with the measured wave heights.
This supports the idea that the effects of nonlinearity of inci-
dent waves are too weak to develop stem waves. In the case
of θ0 = 10◦, the maximum normalized wave heights does
not reach H/H0 ≈ 2.3 because the size of the experimental
area is insufficient. If the vertical wall is sufficiently long, the
same result could apparently be obtained for θ0 = 10◦.

Figures S2 and S3 show the comparisons of wave heights
H/H0 along a line (x= 6, 15L) perpendicular to the ver-
tical wall. The distribution of wave height shows the typ-
ical pattern of standing waves formed by superposition
of the reflected waves on the incident waves. Berger and
Kohlhase (1976) called these standing waves stem waves as
long as they propagated parallel to the wall. If stem waves,
however, are defined as waves with a uniform wave height in
the direction normal to the wall, then the wave height distri-
butions for these small-amplitude waves in MSS series show
no sign of stem waves. The wave amplitude for this MSS se-
ries is too small to generate stem waves along the wall.

Figure S4 shows normalized wave heights along the ver-
tical wall for the cases of MSM series (i.e., H0= 0.027 m,
T = 0.7 s) with various angles of incidence. The amplitude
of the incident waves is 3 times larger than the MSS series

waves. Figures S5 and A6 show normalized wave heights
perpendicular to the vertical wall at positions x= 6 and 15L,
respectively. The results shown in Fig. S4 indicate that, when
the angle of incidence is small (θ0 = 10◦), the normalized
wave height approaches a uniform value of H/H0 ≈ 1.75 as
waves propagate along the vertical wall. At larger incident
angles, the maximum normalized wave heights reach up to
H/H0 ≈ 2.25, and showed a slowly varying undulation.

In the results shown in Figs. S5 and S6 the stem waves
of uniform wave height are found under the conditions of
θ0 = 10◦, x= 6 and 15L, albeit with small stem widths.
However, in the cases of other incident angles, stem waves
do not appear. The red lines shown in the figures represent
the stem waves. For the stem width λs, the stem angle α is
first determined by Eq. (12) using the numerical simulation
result with the using extended domain. The stem width λs is
then calculated using Eq. (13) for given x.

The results from laboratory experiments are in good agree-
ment with those of the results of REF/DIF model. However,
the analytical solutions of Chen (1987) do not agree well
with the measured data, probably because of nonlinear inter-
actions between incident and reflected waves. The discrep-
ancy between the analytical solution of Chen (1987) and the
measured data decreases as the angle of incidence increases.
This can be attributed to the decrease in the intensity of non-
linear interactions between incident and reflected waves as
the angle of incidence increases.

Figures S7, S8, and S9 show the comparisons of the mea-
sured, numerically simulated, and analytically calculated re-
sults for the cases of MSL series (H0= 0.036 m, T = 0.7 s).
The amplitude of the incident waves is the largest among
the shorter wave test cases. For the case of small angle of
incidence, θ0 = 10◦, the normalized wave height increases
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monotonically to reach a constant value ofH/H0 ≈ 1.5, with
a strong indication of stem wave development. In the cases
of larger angle of incidence the wave heights show a slowly
varying undulation. As shown in Figs. S8 and S9, which rep-
resent normalized wave heights in the direction normal to the
vertical wall, stem waves appear clearly for θ0 = 10◦ along
x= 6 and 15L. It can also be seen that the width of stem
waves increases in proportion to the distance from the tip
of vertical wall. In the cases of larger incidence angles, the
normalized wave heights tend to show a distribution pattern
similar to that of standing waves normal to the wall.

4.2 Longer waves (T = 1.1 s)

Figures S10, S11, and S12 show comparisons between the
measured, numerically simulated, and analytically calcu-
lated wave heights H/H0 along the vertical wall (y = 0)
and normal to the wall (x= 6 and 15L) for the cases of
H0= 0.018 m with T = 1.1 s (MLS series). The solid circles
represent the results of laboratory experiments. The solid and
dashed lines represent the numerical and analytical solutions,
respectively. The results from laboratory experiments are in
good agreement with those from the analytical solution and
numerical model. The amplitude of the MLS incident waves
is chosen to provide the same steepness, kH0 = 0.076, as
the MSS waves. Hence, the wave patterns observed in the
MSS series (Fig. S1) are similar to the results of the MLS se-
ries.

Figure S13 shows normalized wave heights along the
vertical wall for the cases of MLM series (H0= 0.054 m,
T = 1.1 s). The incident wave amplitude is twice that of the
cases of MSM series, but the MLM series have the same
wave steepness kH0 as MSM series. For θ0 = 10◦, the max-
imum value of the normalized wave height reached the uni-
form value of H/H0 ≈ 1.65, which shows an indication of
the development of stem waves. Figures S14 and S15 show
normalized wave heights normal to the vertical wall at posi-
tions along x= 6 and 15L for various incident angles. As
shown in Figs. S14 and S15, stem waves appear for the
cases of θ0 = 10◦. The stem widths increase proportionally
with the distance from the tip of the vertical wall. The width
of the stem waves is found to decrease as the incident an-
gle increases. The linear analytical solutions for small in-
cident angles show large deviations from the measured re-
sults, which is consistent with previous results for the cases
of MSM series. However, the simulation results using the
REF/DIF model are generally in good agreement with the
results from laboratory experiments.

Figures S16, S17, and S18 show comparisons of the mea-
sured, numerically simulated, and analytically calculated re-
sults of MLL series (H0= 0.072 m, T = 1.1 s). In the re-
sults from the laboratory experiment, stem waves appear
clearly at positions along x= 6 and 15L for θ0 = 10◦ and
20◦. Such clearly identifiable stem waves for periodic waves
in the physical experiments are observed for the first time

in this study. Berger and Kohlhase (1976) also conducted
laboratory experiments to produce stem waves with a ver-
tical wall. The experiments of Berger and Kohlhase (1976)
were conducted in a constant water depth of h= 0.25 m for
the wave length of L= 1.0 m with various incoming wave
heights of H0 =0.023∼ 0.053 m, and incidence angles of
θ0 = 10, 15, 20, and 25◦. The experimental wave conditions
of Berger and Kohlhase (1976) are similar to those of this
study. The length of vertical wall (less than 9.8L) used in
the experiments of Berger and Kohlhase (1976), however,
is much shorter than that of this study (40L for the case
of T = 0.7 s and 20L for the case of T = 1.1 s). Moreover,
both ends of the vertical wall were open in the experiments
of Berger and Kohlhase (1976), while a wave guide is in-
stalled from the wave generator to the tip of vertical wall
in the present experiments, and the other end of the vertical
wall is extended to the midst of 1/20 gravel beach. As a re-
sult, the wave heights along the wall measured by Berger and
Kohlhase (1976) were contaminated by the parasitic waves
diffracted by both ends of the wall. Thus, the stem waves de-
veloped along the wall were not clear in the results of Berger
and Kohlhase (1976), while the stem waves observed in the
present experiments are clearly noticeable.

Figures 8a and b show the comparison of the three-
dimensional plots of normalized wave height for MLS1 and
MLL1 cases, respectively, based on the numerical results of
REF/DIF. For the nonlinear case, the overall amplitudes are
much smaller and the stem waves are developed along the
wall, as shown in Fig. 8b. The stem wave height is nearly
constant and the width of the stem waves tended to increase
along the wall. Figure 9a and b present the comparison of the
three-dimensional plots of normalized free surface displace-
ments, ζ/a0 = Re((A/a0)e

ikx), for MLS1 and MLL1 cases,
respectively. From Fig. 9b it can be seen that the stem waves
propagate along the wall. Figure 10 shows the contour plots
of the instantaneous normalized free surface for MLS1 and
MLL1 cases. The incident waves are reflected from the wall
for the linear case. However, for the nonlinear cases, they
seem to be both refracted and partially reflected at the edge
of stem region, as is also depicted in Fig. 2. The rigorous in-
terpretation of this refraction and partial reflection is that the
resonant interaction between the incident and reflected waves
generates the stem waves propagating along the wall and also
shifts the phase of the reflected waves outward from the stem
region.

In conclusion, the results of the laboratory experiments are
in good agreement with those of the numerical simulations.
However, the analytical solution cannot reproduce the stem
waves. In addition, given the same incident angle condition,
the stem waves in the cases of MLL series show the largest
stem width. Moreover, the widths of the stem waves tend to
increase as the nonlinear property of the incident waves in-
creases. This further demonstrates the effect of nonlinearity
of incident waves on the development of stem waves as sug-
gested by Yue and Mei (1980) and Yoon and Liu (1989).
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4.3 Effects of nonlinearity

Yue and Mei (1980) proposed that a single parameter, K ,
given by Eq. (8), controls the properties of stem waves
developed along a vertical wedge based on the nonlinear
Schrödinger equation. The K parameter represents both the
nonlinearity of incident waves and the wedge slope. Yue and
Mei (1980) also proposed a theoretical formula to estimate
the amplitude squared of stem waves based on a simple shock
model as

|A∞/a0|
2
=

1
2K

[
2K + 1+

√
8K + 1

]
, (14)

where A∞ is the amplitude of stem waves far from the tip
of wedge along the vertical wall, and a0 is the amplitude
of incident waves. Thus, |A∞/a0| represents the amplifica-
tion ratio of the stem waves. In Fig. 11 the normalized wave
height, H∞/H0, instead of A∞/a0, along the vertical wall
is calculated using Eq. (1) and is compared with both the
measured value and the theoretical one given by Eq. (14).
A black solid line denotes the theoretical prediction by Yue
and Mei (1980), and red and blue solid lines represent the
present numerical values for θ0 = 10 and 20◦, respectively.
The amplification curves obtained from the numerical calcu-
lations forK ≤ 0.45 take a long distance to reach the asymp-
totic value of 2 as shown in Fig. 12. Thus, this asymptotic
value cannot be realized in the laboratory due to the lim-
itation of the experimental facility. However, for K > 0.45
the stem waves are generated and the amplification ratio in-
creases monotonically to reach the asymptotic value in a
relatively short distance. The theoretical prediction of Yue
and Mei (1980) overestimates slightly the stem heights in
comparison with the measured values. The results from the
present numerical simulation show good agreement with the
measured values. Moreover, the present numerical results
show a dependence of stem heights on the angle of incidence.
This implies that K is not a unique single parameter to con-
trol the property of stem waves. It is interesting to note that
the maximum amplification of the stem wave is 2 times that
of the incident waves for Stokes waves, while that of solitary
waves is 4-fold. This indicates that the resonant interaction
between the incident and the reflected waves is weaker for
the case of the Stokes waves.

It is well known that the stem waves are generated by the
nonlinear interactions between the incident and the reflected
waves. When the angle between the incident and the reflected
waves is small and the amplitude of two waves is small but
finite, two waves attract each other and form a new wave with
a single crest: the so-called stem wave. The amplitude of the
stem wave is larger than the incident wave, and that of the
reflected wave is smaller. Three waves meet at a point due
to both the continuous growth of the crest length of the stem
wave and the phase shift of the reflected wave. All the mech-
anisms observed in the formation of a Mach stem wave for
the solitary waves also apply for the monochromatic Stokes

waves, but the intensity of nonlinear interaction is weaker
than that of solitary waves.

Yue and Mei (1980) proposed the slope ratio β of the edge
line, i.e., stem boundary, of the stem region denoted by a
black dashed line in Fig. 2b as a function of K as follows:

β =
1
4

[
3+
√

8K + 1
]
. (15)

This slope ratio β of Yue and Mei (1980) can be converted to
the angle of stem wedge α as follows:

α = tan−1 (βε)− θ0, (16)

where βε is the slope of the stem boundary as shown in
Fig. 2b. Figure 13 shows the comparison of the α values eval-
uated using Eq. (16) of Yue and Mei (1980) and those deter-
mined from the numerical simulation using Eq. (12), along
with the measured data determined using Eq. (11). The theo-
retical prediction of Yue and Mei (1980) generally overesti-
mates the stem angle. In particular, the numerical simulations
and experiments show no stem wave for the range of small
K less than 0.46, while the prediction of Yue and Mei (1980)
still gives a nonzero stem angle. The stem angles measured
in the present experiment are slightly larger than those of the
numerical simulation, because the experimental values are
obtained in the development stage.

5 Comparison with solitary waves

The characteristics of stem waves developed by monochro-
matic Stokes waves investigated in this study are compared
with those of the solitary waves.

For comparison purposes the amplification ratio, H∞/H0,
predicted by Miles (1977) for solitary waves is calculated us-
ing the interaction parameter, κ∗ = tanθ0/(

√
3H0/h cosθ0),

modified by Kodama et al. (2009) as

H∞

H0
=


4

1+
√

1− κ−2
∗

for κ∗ ≥ 1,

(1+ κ∗)2 for κ∗ < 1.

(17)

The interaction parameter κ∗ is inversely proportional to
√
H0/h, while the parameterK is proportional to (kH0)

2. To
properly compare the nonlinear effects on the generation of
stem waves a new parameterK∗ for Stokes waves is proposed
as

K∗ = γK
−1/4
∼ 1/

√
kH0, (18)

where γ is an arbitrary constant to adjust the scale ofK∗. By
taking γ = 0.828 for θ0 = 10◦, and γ = 0.805 for θ0 = 20◦

the critical condition that divides the regular and Mach re-
flections locates at K∗ = 1.0 for Stokes waves. Figure 14
shows the comparison between the amplification ratios for
the present Stokes waves and the solitary waves. A black
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Figure 13. Comparison of calculated and measured stem angle α as a function of nonlinear parameter K. Dashed curves represent the
calculated values using Yue and Mei (1980), solid curves are the calculated values using Eq. (12), symbols are measured data. Red and blue
colors are for θ0 = 10 and 20◦, respectively.

Figure 14. Comparison of amplification ratios,H∞/H0, as a function of nonlinear parameter κ∗ for solitary waves andK∗ for Stokes waves.
Black solid curve represents the Miles’ solution for solitary waves, red and blue solid curves denote the calculated values for Stokes waves
for θ0 = 10◦ and 20◦, respectively. Symbols are measured data for Stokes waves.

solid line denotes the amplification ratio calculated using
Eq. (17) for solitary waves, while red and blue solid lines
represents the amplification ratios obtained from numerical
computations for the Stokes waves. The symbols denote the
measured amplification ratios. As shown in the figure the am-
plification ratios for the Stokes waves are much smaller than
those of solitary waves. And the maximum amplification ra-
tio for the Stokes waves is 2, while that of solitary waves is
4. This indicates that the intensity of the resonant interaction
between the incident and the reflected waves is much weaker

than the case of the solitary waves due to strong frequency
dispersion.

6 Conclusions

In this study, precisely controlled experiments are conducted
to investigate the existence and the properties of stem waves
developed along a vertical wedge for the cases of monochro-
matic Stokes waves. Numerical and analytical solutions are
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also obtained and compared with the measured data. The re-
sults obtained from this study are summarized as follows.

1. For small-amplitude waves, the wave height along the
wall shows slowly varying undulations with the average
value of H/H0 = 2.0. The maximum value of an undu-
lation is approximately H/H0 ≈ 2.3, and the distance
from the tip to the location of maximum wave height de-
creases with increasing angle of incidence. Normalized
wave heights perpendicular to the wall show a standing
wave pattern. In particular, the wave height distributions
for these small-amplitude waves show no sign of stem
waves. Both numerical and linear analytical solutions
agree reasonably well with measured wave heights.

2. As the amplitude of incident waves increases, the un-
dulation intensity decreases along the wall. For larger-
amplitude waves with smaller angle of incidence, i.e.,
larger K values, the measurements show clear stem
waves along the wall. Numerical simulation results are
in good agreement with the results of laboratory experi-
ments, while the analytical solution gives no stem wave,
because it is linear.

3. Stem waves can develop when the nonlinear parameter
K is greater than approximately 0.46. As the nonlinear
parameter K increases, the normalized stem height de-
creases and the stem width increases.

4. The resonant interactions between the incident and re-
flected waves predicted for solitary waves are not ob-
served for the periodic Stokes waves. The amplification
ratios along the wall do not exceed 2 for the case of
Stokes waves, while those can reach 4-fold for the soli-
tary waves.

5. The existence and the properties of stem waves for si-
nusoidal waves found theoretically via numerical sim-
ulations are favorably supported by the physical exper-
iments conducted in this study. Experimental data ob-
tained in this study can be used as a useful tool to verify
nonlinear dispersive wave numerical models.
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