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Abstract. Here we investigated a statistical feature of earth-
quake time distributions in the southern California earth-
quake catalog. As a main data analysis tool, we used a simple
statistical approach based on the calculation of integral devi-
ation times (IDT) from the time distribution of regular mark-
ers. The research objective is to define whether and when the
process of earthquake time distribution approaches to ran-
domness. Effectiveness of the IDT calculation method was
tested on the set of simulated color noise data sets with the
different extent of regularity, as well as for Poisson process
data sets. Standard methods of complex data analysis have
also been used, such as power spectrum regression, Lempel
and Ziv complexity, and recurrence quantification analysis,
as well as multiscale entropy calculations. After testing the
IDT calculation method for simulated model data sets, we
have analyzed the variation in the extent of regularity in the
southern California earthquake catalog. Analysis was carried
out for different periods and at different magnitude thresh-
olds. It was found that the extent of the order in earthquake
time distributions is fluctuating over the catalog. Particularly,
we show that in most cases, the process of earthquake time
distributions is less random in periods of strong earthquake
occurrence compared to periods with relatively decreased lo-
cal seismic activity. Also, we noticed that the strongest earth-
quakes occur in periods when IDT values increase.

1 Introduction

Time distributions of earthquakes remains one of the impor-
tant questions in present-day geophysics. Nowadays, the re-
sults of theoretical research and the analysis of features of
earthquake temporal distributions from different seismic re-
gions with different tectonic regimes carried out worldwide

can be found in Matcharashvili et al. (2000), Telesca et al.
(2001, 2012), Corral (2004), Davidsen and Goltz (2004),
Martínez et al. (2005), Lennartz et al. (2008), and Chelidze
and Matcharashvili (2007).

Such analyses, among others, often aim at the assessment
of the strength of correlations or the extent of the determin-
ism and/or regularity in the earthquake time distributions.
One of the main conclusions of such analyses is that earth-
quake generation, in general, does not follow the patterns of
a random process. Specifically, well established clustering,
at least in time (and spatial domains), suggests that earth-
quakes are not completely independent and that seismicity is
characterized by slowly decaying correlations (named long-
range correlations); such behavior is commonly exhibited by
nonlinear dynamical systems far from equilibrium (Peng et
al., 1994, 1995). Moreover, it was shown that in the tem-
poral and spatial domains, earthquake distributions may re-
veal some features of a low-dimensional, nonlinear structure,
while in the energy domain (magnitude distribution) distri-
butions are close to a random-like, high-dimensional process
(Goltz, 1998; Matcharashvili et al., 2000). Moreover, accord-
ing to present views, the extent of regularity of the seismic
process should vary in time and space (Goltz, 1998; Matcha-
rashvili et al., 2000, 2002; Abe and Suzuki, 2004; Chelidze
and Matcharashvili, 2007; Iliopoulos et al., 2012).

At the same time, the details of how the extent of random-
ness (or non-randomness) of seismic processes change over
time and space still remain unclear. In the present work, on
the basis of the southern California earthquake catalog, we
aimed to focus on this question and analyzed earthquake time
distributions to find where they are closer to randomness.
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Figure 1. Explanation of the used approach. Triangles – time location of original earthquakes (TEQ(i)), circles – time location of regular
markers (TR(i)). DT(i) denotes the difference between the time of earthquake occurrence (TEQ(i)) in the catalog and the time point of the
regular marker (TR(i)).

2 Data and methods

Our analysis is based on the southern California earthquake
catalog available from http://www.isc.ac.uk/iscbulletin/
search/catalogue/ (last access: 5 July 2018). As far as we
aimed to analyze temporal features of original earthquake
generation, we tried to have a long as possible period of
observation with a low-as-possible representative threshold.
For this purpose, according to results of time completeness
analysis (not shown here), we decided to focus on the time
period from 1975 to 2017 since in the middle of the 1970s
of the last century the magnitude of completeness clearly
decreased. The southern California (SC) earthquake catalog
for the considered period is complete forM = 2.6, according
to the Gutenberg–Richter relationship analysis.

In general, we are presently developing an approach aim-
ing to discern features of the complex data sets (in this case
earthquake, EQ, time distribution) by comparing them with
data sets with the predefined dynamical structures. In the
present work, in the frame of this general idea, we started
from the simplest case, comparing the natural time distribu-
tion of earthquakes in SC catalog with the time distribution
of regular markers, according to the scheme shown in Fig. 1.

Particularly, knowing the duration of the whole period of
observation in the considered catalog (22 167 178 min, from
1 January 1975 to 23 February 2017) and the number of
earthquakes (34 020) with the magnitude above a represen-
tative threshold (M = 2.6), we calculated the time step be-
tween consecutive regular markers (651.6 min), which in fact
is the mean time of earthquake occurrence for the considered
period. Then, for each earthquake in the catalog, we calcu-
lated the difference between original event occurrence time
and the time point of the regular marker. We denoted DT(i)
as the time interval (delay or deviation time) between occur-
rence of the original earthquake TEQ(i) and corresponding
ith regular marker TR(i). It is clear that the original earth-
quake (EQi) may occur prior to or after the corresponding
regular marker (Ri), so by DT(i) with minus or plus sign we
understand that earthquakes occurred prior to or after regular
markers accordingly. More generally, we speak about differ-
ences (deviations) between observed waiting times x(i) and
mean occurrence time x over the considered period. It is clear
that the character of evolution of these deviations should be

closely related with the character of the considered process,
here earthquake time distributions. Thus, alternatively to the
above-mentioned text, integral deviation times (IDTs) can be
calculated as cumulative sums of deviations. In any case, IDT
will depend on the time span of the analyzed period (or the
sum of waiting times, as well as on the number of waiting
time data, n. Therefore, we calculated norm IDT values for
the window span and number of data in analyzed window. It
is expected that when n→∞, IDT will approach zero. Log-
ically, for a random sequence, the sum of the deviation times
should approach zero faster compared to less random ones.
This is the main assumption of the present analysis. From
this point of view, the approach looks close to the cumulative
sums (Cusum) test, where for a random sequence, the sum of
excursions of the random walk should be near zero (Rukhin
et al., 2010).

Prior to using it for the seismic process, we needed to ful-
fill empirical testing of the idea behind the IDT calculation
procedure. Specifically, we aimed to test whether the IDT
calculation can be sensitive to dynamical changes occurring
in complex data sets with known dynamical structures. We
started from the analysis of model data sets with a different
extent of randomness. Specifically, we used simulated noise
data sets of different color with a power spectrum function
(1/f β), where the scale exponent (β) varied from about 0
to 2. These noises, according to generation principles, logi-
cally have to be different, but for purposes of our analysis we
needed to have strong quantitative assessments of such differ-
ences. This is why at first, these noise data sets have been in-
vestigated by several data analysis methods, often used to as-
sess different aspects of changes occurring in dynamical pro-
cesses of interest. Specifically, power spectrum regression,
Lempel and Ziv algorithmic complexity calculation, as well
as recurrence quantification analysis and multiscale entropy
calculation methods have been used for simulated model data
sets. All these popular methods of time series analysis are
well described in a number of research articles and we will
just briefly mention their main principles.

Power spectrum regression exponent calculation enables
us to elucidate scaling features of data set in the frequency
domain. By this method, a fractal property is reflected as a
power law dependence between the spectral power (S(f ))
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and the frequency (f ) by spectral exponent β:

S(f )∼
1
f β
, (1)

where β is often regarded as a measure of the strength of the
persistence or anti-persistence in data sets. As easily calcu-
lated from the log–log power spectrum plot, β is related to
the type of correlations present in the time series (Malamud
and Turcotte, 1999; Munoz-Diosdado et al., 2005; Stadnitski,
2012). For example, β = 0 corresponds to the uncorrelated
white noise, and processes with some extent of memory or
long-range correlations are characterized by nonzero values
of spectral exponents.

Next, we proceeded to the Lempel and Ziv algorithmic
complexity (LZC) calculation (Lempel and Ziv, 1976; Aboy
et al., 2006; Hu et al., 2006), which is a common method
for quantification of the extent of order (or randomness) in
data sets of different origins. LZC is based on the transforma-
tion of an analyzed sequence into a new symbolic sequence.
For this, original data are converted into a 0, 1, sequence by
comparing to a certain threshold value (usually median of the
original data set). Once the symbolic sequence is obtained, it
is parsed to obtain distinct words, and the words are encoded.
Denoting the length of the encoded sequence for those words,
the LZC can be defined as

CLZ =
L(n)

n
, (2)

where L(n) is the length of the encoded sequence and n is
the total length of the sequence (Hu et al., 2006). Parsing
methods can be different (Cover and Thomas, 1991; Hu et
al., 2006). In this work, we used the scheme described in Hu
et al. (2006).

Next, in order to further quantify changes in the dynamical
structure of simulated data sets, we have used the recurrence
quantification analysis (RQA) approach (Zbilut and Webber,
1992; Webber and Zbilut, 1994; Marwan et al., 2007). RQA
is often used for analysis of different types of data sets and
represents a quantitative extension of the recurrent plot con-
struction method. The recurrent plot itself is based on the
fact that returns (recurrence) to the certain condition of the
system (or state space location) is a fundamental property
of any dynamical system with quantifiable extent of deter-
minism in underlying laws (Eckman et al., 1987). In order
to successfully fulfill RQA calculations, the phase space tra-
jectory should be reconstructed from the given scalar data
sets at first. It is important to test the proximity of points of
the phase trajectory by the condition that the distance be-
tween them is less than a specified threshold ε (Eckman et
al., 1987). In this way, we obtain a two-dimensional repre-
sentation of the recurrence features of dynamics, which is
embedded in a high-dimensional phase space. Then, a small-
scale structure of recurrent plots can be quantified (Zbilut
and Webber, 1992; Webber and Zbilut, 1994, 2005; Marwan
et al., 2007; Webber et al., 2009; Webber and Marwan, 2015).

Particularly, the RQA method enables us to quantify features
of a distance matrix of recurrence plot, by means of several
measures of complexity. These measures of complexity are
based on the quantification of diagonally and vertically ori-
ented lines in the recurrence plot. In this research, we cal-
culated one such measure: the percent determinism (%DET)
which is defined as the fraction of recurrence points that form
diagonal lines of recurrence plots and which shows changes
in the extent of determinism in the analyzed data sets.

An additional test, which we used to quantify the extent of
regularity in the modeled data sets, is the composite multi-
scale entropy (CMSE) calculation (Wu et al., 2013a). The
CMSE method represents expansion of the multiscale en-
tropy (MSE) (Costa et al., 2015) method, which in turn orig-
inates from the concept of sample entropy (SampEn; Rich-
man and Moorman, 2000). SampEn is regarded as an estima-
tor of complexity of data sets for a single timescale. In order
to capture the long-term structures in the time series, Costa
et al. (2015) proposed the above-mentioned MSE algorithm,
which uses SampEn of a time series at multiple scales. At
the first step of this algorithm, often used in different fields,
a coarse-graining procedure is used to derive the represen-
tations of a system’s dynamics at different timescales; at the
next step, the SampEn algorithm is used to quantify the regu-
larity of a coarse-grained time series at each timescale factor.
The main problem of MSE is that, for a shorter time series,
the variance in the entropy estimator grows very fast as the
number of data points is reduced. In order to avoid this prob-
lem and reduce the variance of estimated entropy values at
large scales, the method of the CMSE calculation was devel-
oped by Wu and colleagues (Wu et al., 2013a).

3 Results and discussion

3.1 Analysis of model data sets

As we mentioned in the previous section, we first need to as-
certain whether calculation of IDT values is sensitive to dy-
namical changes occurring in analyzed data sets. To this end,
we decided to generate artificial data sets of one and the same
type; for example, noises, which according to the generation
procedure should be measurably different in the frequency
content, representing different types of color noises. We have
started from the analysis of 34 020 data length sequences of
these noise data sets. For clarity, we add here that to test the
robustness of results, the same analyses were performed on
much longer data sets, but here we show results for simulated
noise data sets, which are of the same length as the original
data sets from the used seismic catalogue. The noise data sets
have been generated according to concepts described in Kas-
din (1995), Milotti (2007), and Beran et al. (2013). As met-
rics for these data sets we have used the above-mentioned
power spectrum exponents (β), also referred to as the spec-
tral indexes (Schaefer et al., 2014). Specifically, we have
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Figure 2. Typical plot of the power spectrum of simulated data sets with different spectral regressions, (a) β = 0.001 and (b) β = 1.655.

analyzed seven such data sets having the following spec-
tral exponents: 0.001, 0.275, 0.545, 0.810, 1.120, 1.387, and
1.655. Values of β are often used as a metric for the fractal
characteristics of data sequences (Shlesinger, 1987; Schae-
fer et al., 2014). In our case, different spectrum exponents
of simulated noise data sets indicate that they are different
by the extent of correlations in the frequency content (Schae-
fer et al., 2014). Indeed, the first noise set, with β = 0.001
(Fig. 2a) was closest to the white noise and the last one,
with β = 1.655 (Fig. 2b), manifested the features closer to
colored noises of red or Brownian type, with detectable dy-
namic structure. In addition to this, taking into account that
we aimed to analyze seismic data sets, we regarded it logi-
cal to also consider the random process, which is often used
by seismologists – a Poisson process. We generated the set
of 34 020 data-long sequences of the Poisson process. It was
quite expected that the spectral exponent of such sequences
is close to that of white noise.

For further analysis, in order to differentiate simulated
(noise and Poisson process) data sets by the extent of ran-
domness, we used algorithmic complexity (LZC) and re-
currence quantification analysis methods, as well as testing
based on MSE analysis.

In Fig. 3, we show results of LZC and %DET calculations;
particularly presented here are averages of values calculated
for consecutive 1000 data windows shifted by 100 data. Both
methods, though based on different principles, help to an-
swer the question of how similar or dissimilar the consid-
ered data sets are by the extent of randomness. We see that
the Lempel and Ziv complexity measure decreases from 0.98
to 0.21 when β of noises increases. This means that the ex-
tent of regularity in simulated data sets increases. The same
conclusion is drawn from RQA: the percentage of determin-
ism increases from 25 to 96.5 when the spectral exponent
increases. For both LZC and RQA measures, differences in
compared neighbor groups in figures are statistically signifi-
cant at p = 0.01. Thus, according to Fig. 3, the extent of reg-
ularity in simulated noise sequences clearly increases from
close to white (β = 0.001) to close to Brownian (β = 1.655)
noise. For the Poisson process data sequences, the LZC mea-
sure reaches 0.97–0.98 and %DET is in the range 25–26, i.e.,
these values are close to what we obtain for white noise.

Thus, the results of LZC and %DET calculations confirm
the result of power spectrum exponent calculations, and show
that considered color noise data sets are different from white
noise and the Poisson process by the extent of regularity.

Additional multiscale, CMSE, analysis also shows (Fig. 4)
that the extent of regularity in model noise data sets in-
creases, when they become “more” colored (from β = 0.001
to β = 1.655). We see that for small scales (exactly for scale
one and partly scale two), noise data sets reveal decreases
in the entropy values for simulated data sets, when spectral
indexes rise from β = 0.001 to β = 1.655. This is logical
for simulated data sets, where the extent of order, according
to the above analysis, should slightly increase. At the same
time, while at larger scales, the value of entropy for the noise
data set with β = 0.001 continues to monotonically decrease
like for the coarse-grained white noise time series (Costa et
al., 2015). On the other hand, the value of entropy for 1/f
type processes with the β values close to pink noise (0.81,
1.12) remained almost constant for all scales. As noticed by
Costa et al. (2015), this fact was confirmed in different arti-
cles on multiscale entropy calculation (see e.g., Chou, 2012;
Wu et al., 2013a, b). Costa and coauthors explained this result
by the presence of complex structures across multiple scales
for 1/f type of noises. From this point of view, in a color
noise set closer to a Brownian-type process, the emerging
complex dynamical structures should become more and more
organized. Apparently, these structures are preserved over
multiple scales including small ones. This is clearly indicated
by the gradual decrease in calculated values of entropy for
sequences with β = 1.12 to β = 1.387 and β = 1.654 at all
considered scales (see Fig. 4). Poisson process data sets (not
shown in figure) in the sense of results of multiscale analysis
are close to a white noise sequence with β = 0.001.

Thus, CMSE analysis additionally confirms that the com-
plex model data sets used in this research are characterized
by quantifiable dynamical differences.

Once we had data sets with quantifiable differences in their
dynamical structures, we started to test the ability of the IDT
calculation to detect these differences.

For this, we created cumulative sum sequences of seven
noise data sets and data sets of the Poisson process and re-
garded them as models of time occurrences of consecutive
events. We treated these, 34 020 data-long, sets for time oc-
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Figure 3. LZC and %DET values calculated for seven noise data sets with different spectral indexes.

Figure 4. CMSE values versus scale factor for simulated data se-
quences with different spectral indexes.

currence sequence of real earthquakes and calculated IDT
values for different windows. Taking into consideration that
cumulative sum (or time span in the case of seismic catalog)
of windows may be different (excluding the case when data
sets have been specially generated so that the cumulative sum
is equal) we obtained normed IDT values to the span of win-
dow and the number of data. Results of the calculation are
presented in the lower curve (circles) in Fig. 5a. Here also
we present results of similar calculations on the same data
sets performed for shorter windows (see squares, triangles,
and diamonds in Fig. 5a).

As we see, absolute values of IDTs normed to window
span and number of data, calculated for the model data sets,
indicate stronger deviation from zero, when the extent of or-
der in simulated noise data sets increases (according to the
above analysis). Average values of IDTs calculated for data
sets with spectral exponents closer to Brownian noise signif-
icantly differ from white noise at p = 0.01 (Fig. 5a). It needs
to be pointed out that compared to results obtained by the
above-mentioned methods, IDT calculation looks even more
sensitive to slight dynamical changes occurring in simulated
data sets; note the more than 1.5 difference between se-
quences with β = 0.001 and β = 1.654 for the entire length
of data sets (circles in Fig. 5a). It is also quite logical that
the longer the length of considered the window, the closer to
zero the corresponding IDT value in Fig. 5 is.

Figure 5. (a) Logarithms of, normed to the span of window, abso-
lute values of IDT calculated for different lengths (circles – 34 020,
squares – 20 000, triangles – 10 000, diamonds – 5000 data) of win-
dows of simulated noise data sets with different spectral indexes.
(b) Averages of IDT values calculated for 100 data windows normed
to the span of window simulated noise data sets with different spec-
tral indexes.

It needs to be pointed out that according to IDT calcu-
lations, the Poisson process looks more random than white
noise. Indeed, logarithms of normed to window span IDT
values calculated for random Poisson process data sets were
lower than for white noise (not shown in figures). For further
analysis, it is important to mention that comparing data sets
with different extent of order, we see that the drawn conclu-
sions do not practically depend on the length of used data
sets. No less important is that, as it is shown in Fig. 5b,
differences found for longer windows are preserved for the
short, 100 data-long sequences. For 100 data windows, the
difference between white noise, as well as the Poisson pro-
cess, data sets and colored noises is statistically significant at
p = 0.01. Taking into consideration the importance of results
of IDT calculations for short (100 data) windows, we addi-
tionally present reconstructed PDF curves fitted to the normal
distribution according to real calculations (different markers
in Fig. 6). From this figure, we see that the portion of IDT
values which are closer to zero increase, when the extent of
order in the data sets decrease. Besides, it also becomes clear
that even for short data sets IDT calculation is useful to de-
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Figure 6. PDF of, normed to window length, IDT values calcu-
lated for consecutive 100 data windows of simulated noise data se-
quences, shifted by 100 data. From top to bottom, black curves cor-
respond to β = 0.001 (triangles), β = 0.275 (diamonds), β = 0.545
(squares), β = 0.810 (asterisks), β = 1.120 (circles), β = 1.387
(plus signs), and the grey curve corresponds to β = 1.655 (cross
signs).

tect differences in considered data sets (in this case norming
to the number of data in the window is not necessary because
all windows contain the same number of data).

Thus, based on the analysis of specially simulated data se-
quences we conclude that the IDT calculation method is ef-
fective in detecting small changes occurring in, even short,
complex data sets with different dynamical structures.

3.2 Analysis of earthquake time distributions in the
southern California catalog

In this section we proceeded to the analysis of original data
sets drawn from the southern California seismic catalog us-
ing the IDT calculation approach.

As it was proposed above, for random sequences com-
pared to more regular data sets, the sum of the deviation times
should approach zero faster in the infinite length limit. Re-
sults presented in the previous section confirms this in the
example of model random (or random-like) data sets with
different extent of regularity (or randomness).

In the case of a real earthquake generation process, which
according to present views can not be regarded as completely
random (Goltz, 1998; Matcharashvili et al., 2000, 2016; Abe
and Suzuki, 2004; Iliopoulos et al., 2012), we should as-
sume that the IDTs for the periods with the more random-
like earthquake time distributions will be closer to zero, com-
pared to the less random ones.

To show this, we used the seismic catalog of southern Cal-
ifornia, the most trustworthy database for analysis targeted
in this research. Aiming at the analysis of temporal features
of seismic process, we intentionally avoided any cleaning or
filtering of the catalog in order to preserve its original tempo-
ral structure. Therefore, according to common practice (see
e.g., Christensen et al., 2002; Corral, 2004) we regard the

seismic processes in this catalog as a whole, irrespective of
the details of tectonic features, earthquake location, or their
classification as mainshocks or aftershocks.

It was quite understandable that, for such a catalog, we
logically should expect time clustering of interdependent
events: foreshocks and aftershocks. This, in the context of
our analysis, apparently could lead to a considerable amount
of events occurring prior to corresponding regular markers
(probably mostly aftershocks). Thus, it was interesting to
know how the number of events occurred prior to or after
regular markers and especially how the result of IDT calcu-
lations (which directly depends on the number of events that
occurred prior to and after regular markers) is related with
the time locations of such interdependent events.

Here we underline the fact that both IDT values as well as
the portion of events that occurred prior to or after regular
markers (as defined in the methods section) would strongly
depend on the position and length of a certain time win-
dow in the catalog. Thus, we focused on the whole dura-
tion period of the considered catalog (at the representative
threshold M = 2.6). We found that in this catalog, 55 % of
all earthquakes occurred prior to and 45 % after the regu-
lar time markers. To elucidate the role of dependent events
on this ratio we analyzed the catalog for higher representa-
tive thresholds. At increased M = 3.6 representative magni-
tude threshold, we found that the portion of earthquakes oc-
curred prior to marker decrease (33 % of all earthquakes).
This provided an argument in favor of the assumption that
the prevalence of earthquakes, which occur prior to mark-
ers, may indeed be related with dependent low-magnitude
events (supposedly mostly aftershocks). At the same time,
further increase in representative threshold convinces us that
dependent low-magnitude events in the catalog may not be
the sole cause influencing the amount of earthquakes that oc-
curred prior to markers. Indeed, the portion of events that
occurred prior to markers increased to 42 % at the representa-
tive thresholdM = 4.6. Most noticeable is that at the highest
considered representative threshold, M = 5.6, we observe a
further increase in the portion of earthquakes occurring prior
to regular markers; to the level observed for M = 2.6 thresh-
old (55 % of all events). Thus, it seems unlikely that the ratio
between events that occurred prior to or after regular markers
may be related only with dependent events (aftershocks).

Next, we calculated IDT values for the entire observation
period at different representative thresholds. It was found
that IDT values calculated for the entire observation period
of the southern California earthquake catalog (at representa-
tive threshold M = 2.6) were −14 611 458 375 min (as men-
tioned above, the “minus” sign here denotes the direction
of summary deviation along the time axis). We compare
this value to the IDT values at larger representative thresh-
olds. It was clear that the increase in representative thresh-
old will essentially decrease the umber of earthquakes and
also may somehow change the analyzed period of the cata-
log. Thus, we calculated normed IDT values to the number
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of earthquakes and to the time span of the catalog. Normed
in this way, IDT vales are 0.021, 0.023, 0.022, and−0.030 at
representative thresholds M = 2.6, M = 3.6, M = 4.6, and
M = 5.6 accordingly. It was expected that the increase in the
magnitude threshold will make the time distribution of re-
mained stronger EQs more random. Indeed, calculated val-
ues of IDTs decreased when the representative threshold in-
creased. At the same time, normalization to the time span and
number of events shows that the time distribution features of
stronger earthquakes, in principle, do not differ from smaller
ones.

In this sense, it is logical that decreased probability of de-
pendent events, at increased representative threshold, do not
necessarily cause a proportional increase in the number of
occurred after regular markers events, though absolute val-
ues of IDT drastically decrease. These results also indicate
that the ratio between events, occurred prior to or after regu-
lar markers, found for the entire span of SC catalog, as well
as the IDT value, should not be reduced only to the distribu-
tional features of dependent events.

Further, we needed to clear up whether the ratio of events
occurred prior to or after regular markers and especially ob-
tained IDT values, are characteristics of the time distributions
of earthquakes in the SC catalog or they reflect an influence
of some unknown random effects, which are not directly re-
lated with the seismic process. For this, we started to calcu-
late IDT values for the set of randomized catalogs. In these
artificial catalogs, the original time structure of the south-
ern California earthquake distributions was destroyed prior
to analysis. Specifically, occurrence times of original events
have been randomly shuffled (i.e., earthquake time locations
have been randomly changed over the entire time span of
more than 42 years). We have generated 150 such random-
ized catalogs and for each of them IDT values have been cal-
culated for the whole catalog time span (which was the same
as for the original catalog).

It was found that for the whole period of observation,
earthquakes prevailed in 58 % of all time-randomized cata-
logs, and occurred prior to the corresponding regular mark-
ers. At the same time, unlike the original catalog where 55 %
of earthquakes occurred prior to corresponding regular mark-
ers, in the randomized catalogs the portion of such earth-
quakes, occurred prior to markers, varied in a wide range
(from 51 to 92 %). Thus, in spite of some similarity to the
portion of events occurred prior to and after regular markers,
original and time-randomized catalogs are still different.

Next, comparing the averaged IDT value of random-
ized catalogs (calculated from IDTs of 150 randomly shuf-
fled catalogs) we found that it is also with minus sign
(−159 755 608 min). This was expected since in 58 % of
cases of randomized catalogs, prevailed earthquakes oc-
curred prior to regular markers. Thus, comparing the average
of IDT, calculated for the entire length of randomized cata-
logs, with the IDT value of the original SC catalog, we see
that the last one is 2 orders of magnitude larger. The differ-

Figure 7. Frequency of occurrences of, normed to the span of win-
dow, integral deviation time values (IDTs), calculated for each of
the 150 randomized catalogs for the whole period.

ence between IDT of the whole original catalog and the aver-
age IDT of randomized catalogs was statistically significant,
with Z score= 11.2, corresponding to p = 0.001 (Bevington
and Robinson, 2002; Sales-Pardo et al., 2007). For clarity,
we add here that IDT values from each of the randomized
catalogs was essentially smaller than IDT from the original
catalog and thus effects of averaging cannot play any role.

The difference between IDT values calculated for original
and time-randomized catalogs is further highlighted in Fig. 7,
where normed to the windows span IDT values are presented.
We see that in all cases normed-to-windows-span IDTs are
clearly smaller than for the original catalog (6.59× 102). It
is interesting that in at least 30 % of cases, IDTs calculated
for randomized catalogs are more than 2 orders smaller than
IDT for the original catalog.

From this analysis two important conclusions can be
drawn: (i) IDT value, calculated for the considered period
of the southern California earthquake catalog, expresses the
internal time distribution features of the original seismic pro-
cess, and (ii) random-like earthquake time distributions lead
to lower (closer to zero) IDT values comparing to the whole
original catalog.

All above results obtained for simulated data sets as well
as for the time distributions of earthquakes in the original
catalog undoubtedly shows that the time distribution of earth-
quakes in southern California for the entire period should be
regarded as a strongly nonrandom process (IDT is larger than
for randomly distributed in time earthquakes). Therefore, the
result of this simple statistical analysis is in complete agree-
ment with our earlier results, obtained by contemporary non-
linear data analysis methods, as well as with the results of
similar analysis reported by other authors, which used dif-
ferent methodological approaches, see e.g., Goltz (1998),
Matcharashvili et al. (2000, 2016), Abe and Suzuki (2004),
Telesca et al. (2012), and Iliopoulos et al. (2012).

Thus, we found that for the whole period of the considered
catalog, prevailed earthquakes occurred prior to correspond-
ing regular markers (see also the last point in the upper curve
of Fig. 8b). At the same time, as was also mentioned, the
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Figure 8. Calculated for extending by 10 consecutive data windows in the southern California earthquake catalog, (a) portion of earthquakes
occurred prior to (grey) and after (black) regular markers in each window, (b) normed to the number of EQs and time duration of expanding
windows IDTs (top), cumulative amount of released in window seismic energies (bottom).

number of earthquakes that occurred prior to or after corre-
sponding regular markers may change depending on the time
span of the analyzed catalog. The same can be said about the
values of the IDTs. In order to investigate the character of
the time variation in IDT values of the SC catalog in differ-
ent periods, we fulfilled calculation for the expanding time
windows. Specifically, we have calculated IDT values start-
ing from the first 100 data (earthquakes), expanding initial
window by the consecutive 10 data to the end of the catalog.
In Fig. 8, we see that the number and the time location of
earthquakes (relative to regular markers), undergoes essential
change, when the length of the analyzed part of the catalog
(analyzed window’s length) gradually expands to the end of
the catalog (in our case from 1 January 1975 to 23 February
2017).

As it is shown in Fig. 8a, in most of the analyzed windows
the majority of earthquakes occurred after regular markers,
although there are windows with the opposite behavior. So
far, most earthquakes in the windows occurred after regu-
lar markers, thus it is not surprising that IDTs calculated for
consecutive windows are mostly positive. This is clear from
Fig. 8b (upper curve), where we see windows with negative
IDTs too. Thus, the values of IDTs calculated for extended
windows in different periods vary in a wide range, increasing
or decreasing and sometimes coming close to zero.

Here we point out again that based on results of the above
analysis, accomplished for simulated data sets and random-
ized catalogs, we suppose that when IDT values approache
zero, the dynamical features of the originally nonrandom
seismic process undergoes qualitative changes and becomes
random-like or at least is closer to randomness. In other
cases, when IDT values change over time but are far from
zero, we observe quantitative changes in the extent of regu-
larity of nonrandom earthquake time distributions.

From this point of view it is interesting that earthquake
time distributions look more random-like for the relatively
quiet periods, when the amount of seismic energy calculated

according to Kanamori (1997) decreased comparing to val-
ues released in the neighboring windows prior to or after the
strongest earthquakes. This is noticeable in the lower curve
of Fig. 8b, where we present cumulative values of seismic
energy, calculated for consecutive windows, expanding by
10 events to the end of the catalog. We see that in south-
ern California from 1975 to 2017, the strongest earthquakes
never occurred in periods when the IDT curve comes close to
zero or crosses the abscissa line. To avoid misunderstanding
because of restricted visibility in Fig. 8b, we point out here
that anM = 6.4 earthquake has occurred in the window 256,
from the start of the catalog, and the IDT curve crossed the
abscissa later in the window 266, from the start of the cata-
log. Specifically, this was the nearest expanding window with
the IDT value closest to zero, started 100 events later. In real
time, crossing of the IDT took place in windows ending 2.5–
3 h after the M = 6.4 mainshock.

Results in Fig. 8 also provide interesting knowledge about
the relation between IDT and the amount of released seis-
mic energy. As we see, the three strongest earthquakes in
the southern California earthquake catalog (1975–2017) oc-
curred on the rising branch of the IDT curve close or imme-
diately after local minima. This local decrease in IDT values,
possibly, points to the decreased extent of regularity (or in-
creased randomness) in the earthquake temporal distribution
in periods prior to the strongest earthquakes in California.

Above we already discussed the influence of an increased
representative threshold on the calculated IDT value for en-
tire catalog span. Now it is necessary to check how the
change of representative threshold will influence obtained
results for expanding windows. This was a very important
aspect of our analysis, because there is a well known point
of view that the time distribution of large (considered as in-
dependent events – coupling between which is an exception
rather than a rule) and medium to small earthquakes (for
which time distributions may be governed or triggered by the
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interaction between events) are significantly different (Lom-
bardi and Marzocchi, 2007).

To see how the results of the IDT analysis may be influ-
enced by considering smaller or stronger earthquakes, we
carried out analysis of the southern California catalog for
earthquakes above M = 3.6 and M = 4.6 thresholds. Analy-
sis has been accomplished (see results in Figs. 10 and 11) in
a manner, similar to the scheme for threshold M = 2.6, i.e.,
for the entire available period 1975–2017 (e.g., in Fig. 9).

For better visibility of changes in the process of energy re-
lease in Figs. 10 and 11 (also in Fig. 9, bottom), we show
increments of seismic energy release only calculated for the
last 10 events in each consecutive window, opposite to Fig. 8
where we presented energies released by all earthquakes in
each window. This was done to make the fine structure of
changes in energy release in the expanding (by consecutive
10 events) part of windows more visible, which otherwise
is hidden by the strong background level of the summary
energy release in the whole window. At the same time, we
should not forget that IDTs in Figs. 9–11 are calculated for
the entire length of windows and that real evolution of energy
release looks similar to that presented in Fig. 8b.

As we see from Figs. 10–11, at higher representative
thresholds (similar to lower thresholdM = 2.6, in Fig. 9) the
strongest earthquakes occur on rising branches of the IDT
curve, and that in most cases strong events do no occur in
windows where calculated values of IDT come closer to zero.

Further analysis by the same scheme for higher-threshold
magnitudes (e.g., M = 5.6) was impossible because of the
scarce number of large earthquakes in the considered seis-
mic catalog (just 29 earthquakes above M = 5.6). At the
same time, we point out that even for M = 5.6 representa-
tive threshold, for the entire period 1975–2017, the results
obtained for two or three available windows (29 events at
windows expanding by 9 or 10 data) agree with the above
results.

Thus, again we conclude that the increase in magnitude
threshold (Figs. 10 and 11) practically do not change the
results found for the lower representative threshold. This
means that by increasing the representative threshold we still
deal with the catalog in which relatively small- and medium-
size events prevail. Therefore, conclusions drawn from the
analysis for original representative threshold (M = 2.6) re-
main correct for the case, when we consider a catalog with
relatively stronger events; thus, it seems that there is no prin-
cipal difference in the character of the contribution of smaller
and stronger events to the results of the IDT calculation.
Comparison with the results obtained for time-randomized
catalogs confirms this conclusion.

Next, in order to avoid doubts related to the fixed start-
ing point in the above analysis, we have carried out the same
calculation of IDT values for catalogs which started in 1985,
1990, 1995, 2000, and 2005. As it follows from Tables 1 to 3,
analysis carried out on shorter catalogs confirm the result ob-
tained for the entire period of observation (1975–2017) and

Figure 9. Calculated for the expanding (by consecutive 10 data)
windows, integral deviation times (IDTs) (a) and the increments
of seismic energies released by 10 last events in consecutive win-
dows (b) obtained from the southern California earthquake catalog
(above threshold M = 2.6). By the grey lines we show where the
IDT curve crosses the abscissa. Dashed lines show the occurrence
of largest earthquakes in the catalog.

Figure 10. Calculated for the expanding (by consecutive 10 data)
windows, integral deviation times (IDTs) (a) and the increments
of seismic energies released by 10 last events in consecutive win-
dows (b) obtained from the southern California earthquake catalog
(above threshold M = 3.6). By the grey lines we show where the
IDT curve comes closest to zero value. Dashed lines show the oc-
currence of largest earthquakes in the catalog.
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Table 1. Comparison between expanding by 10 data windows with the strongest earthquakes occurrences and windows with IDT values
closest to zero. Representative threshold M = 2.6.

Catalog Sequential number of expanding windows
time span

1975–2017 256
(M = 6.4)

921
(M = 6.6)

1365
(M = 7.3)

1822
(M = 6.7)

2194
(M = 7.1)

2813
(M = 7.2)

2620 (closest to
zero value)

1980–2017 872
(M = 6.6)

1316
(M = 7.3)

1773
(M = 6.7)

2145
(M = 7.1)

2764
(M = 7.2)

3091 (closest to
zero value)

1985–2017 872
(M = 6.6)

1316
(M = 7.3)

1773
(M = 6.7)

2145
(M = 7.1)

2764
(M = 7.2)

2015 (closest to
zero value)

1990–2017 1316
(M = 7.3)

1773
(M = 6.7)

2145
(M = 7.1)

2764
(M = 7.2)

1963 (closest to
zero value)

1995–2017 2145
(M = 7.1)

2764
(M = 7.2)

2051 (closest to
zero value)

2000–2017 2764
(M = 7.2)

2831 (closest to
zero value)

2005–2017 2764
(M = 7.2)

2640 (closest to
zero value)

Figure 11. Calculated for the expanding (by consecutive 10 data)
windows, integral deviation times (IDTs) (a) and the increments
of seismic energies released by 10 last events in consecutive win-
dows (b) obtained from the southern California earthquake catalog
(above threshold M = 4.6). Dashed lines show the occurrence of
the largest earthquakes in the catalog.

convinces us that the calculated values of IDT practically
never come closer to zero in windows when the strongest
earthquakes occur. The only exception is the case ofM = 6.6
earthquake at representative thresholdM = 3.6 for the period
1975–2017.

Thus, we see that shortening the time span of the analyzed
part of the catalog does not influence the obtained results.

Because of the above-mentioned unclearness in Figs. 9–
11, when we calculated IDTs for the expanding windows
and discuss results for the energy release occurred in the last
10 data windows, we performed additional analysis on the
sliding windows with fixed number of events. In detail, in
the southern California earthquake catalog we have calcu-
lated IDT values for non-overlapping windows of 100 con-
secutive events, shifted by 100 data (Figs. 12, 13). We have
used short-sliding windows of 100 data for two reasons: (i) to
have good resolution of changes occurring in the time distri-
bution of earthquakes and (ii) because even relatively short,
100 data span windows also provide good enough discrimi-
nation in the IDT values, as it is shown in Figs. 5b and 6.

In Fig. 12a, we see that for the entire period of analysis
there are dozens of IDT values that are not far from one-tenth
of the standard deviation (σ ) from zero (given by black cir-
cles in the top figure). Most importantly among them, eight
IDT values are within 0.01σ of zero. These values of IDT
(shown in black in Fig. 12b) can be regarded practically equal
to zero. According to the above results on simulated and
original data sets, the seismic process in the windows with
close-to-zero values of IDT can be regarded as random. If we
compare the occurrence of these practically zero IDT values
with the amount of seismic energy released in consecutive
windows (Fig. 12c), it becomes clear that they occur in pe-
riods of essentially decreased (comparing to observed maxi-
mums) seismic energy release. A similar conclusion is drawn
from the analysis of the catalogs for earthquakes above the
M = 3.6 threshold (Fig. 13). Because of the restricted num-
ber of strong events in the catalog, further increase in the
threshold magnitude was impossible for the case of 100 data
non-overlapping sliding windows.

Nonlin. Processes Geophys., 25, 497–510, 2018 www.nonlin-processes-geophys.net/25/497/2018/



T. Matcharashvili et al.: Simple statistics for complex Earthquake time distributions 507

Table 2. Comparison between expanding by 10 data windows with the strongest earthquakes occurrences and windows with IDT values
closest to zero. Representative threshold M = 3.6.

Catalog Sequential number of expanding windows
time span

1975–2017 64
(M = 6.6)

91
(M = 7.3)

133
(M = 6.7)

173
(M = 7.1)

235
(M = 7.2)

64 (closest to
zero value)

1980–2017 64
(M = 6.6)

91
(M = 7.3)

133 (M =
6.7)

173
(M = 7.1)

235
(M = 7.2)

219 (closest to
zero value)

1985–2017 64
(M = 6.6)

91
(M = 7.3)

133
(M = 6.7)

173
(M = 7.1)

235
(M = 7.2)

254 (closest to
zero value)

1990–2017 91
(M = 7.3)

133
(M = 6.7)

173
(M = 7.1)

235
(M = 7.2)

269 (closest to
zero value)

1995–2017 173
(M = 7.1)

235
(M = 7.2)

202 (closest to
zero value)

2000–2017 235
(M = 7.2)

213 (closest to
zero value)

2005–2017 235
(M = 7.2)

295 (closest to
zero value)

Table 3. Comparison between expanding by 10 data windows with
the strongest earthquakes occurrences and windows with IDT val-
ues closest to zero. Representative threshold M = 4.6.

catalog Sequential number of expanding windows
time span

1975–2017 14
(M = 6.7)

19
(M = 7.1)

26
(M = 7.2)

23 (closest to
zero value)

1980–2017 14
(M = 6.7)

19
(M = 7.1)

26
(M = 7.2)

23 (closest to
zero value)

1985–2017 14
(M = 6.7)

19
(M = 7.1)

26
(M = 7.2)

27 (closest to
zero value)

1990–2017 14
(M = 6.7)

19
(M = 7.1)

26
(M = 7.2)

28 (closest to
zero value)

1995–2017 19
(M = 7.1)

26
(M = 7.2)

26 (closest to
zero value)

2000–2017 26
(M = 7.2)

23 (closest to
zero value)

Results obtained for non-overlapping sliding windows of
fixed length also confirm the results obtained for expanding
windows.

The simple statistical approach used here thus shows that
the extent of randomness in the earthquake time distributions
is changing over time and that it is most random-like at pe-
riods of decreased seismic activity. The results of this analy-
sis provide additional indirect arguments in favor of our ear-
lier suggestion that the extent of regularity in the earthquake
time distributions should decrease in seismically quiet peri-
ods and increase in periods of strong earthquakes preparation
(Matcharashvili et al., 2011, 2013).

Figure 12. Calculated for the non-overlapping 100 data windows
(shifted by 100 data), integral deviation times (IDTs) (circles in pan-
els a and b) and the released seismic energies (c). IDT values in the
vicinity of 0.1σ from zero are given by black circles in panel (a).
IDT values in the vicinity of 0.01σ from zero are given by black
circles in the middle figure. By grey lines we show the location
of closest to zero IDT values relative to the released seismic en-
ergy. Dashed lines show the occurrence of largest earthquakes in
the southern California catalog (above threshold M = 2.6).
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Figure 13. Calculated for the non-overlapping 100 data windows
(shifted by 100 data), integral deviation times (IDTs) (circles in
panel a) and the released seismic energies (triangle in panel b). IDT
values in vicinity of 0.1σ from zero are given by open circles in
panel (a). By grey lines we show location of closest to zero IDT
values relative to the released seismic energy. Dashed lines show
the occurrence of largest earthquakes in the southern California cat-
alog (above threshold M = 3.6).

4 Conclusions

We investigated earthquake time distributions in the south-
ern California earthquake catalog by the method of calcu-
lation of integral deviation times (IDTs) relative to regular
time markers. The main goal of the research was to quan-
tify when the time distribution of earthquakes become closer
to the random process. Together with IDT calculation, stan-
dard methods of complex data analysis such as power spec-
trum regression, Lempel and Ziv complexity, and recurrence
quantification analysis, as well as multiscale entropy calcu-
lations, have been used. Analysis was accomplished for dif-
ferent time intervals and for different magnitude thresholds.
Based on a simple statistical analysis result, we infer that the
strongest earthquakes in southern California occur only in
windows with rising values of IDTs and that the character of
the temporal distributions of earthquakes in these windows is
less random-like compared to the periods of decreased local
seismic activity.
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