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Abstract. We study scaling laws of stratified shear flows by
performing high-resolution numerical simulations of invis-
cid compressible turbulence induced by Kelvin–Helmholtz
instability. An implicit large eddy simulation approach
is adapted to solve our conservation laws for both two-
dimensional (with a spatial resolution of 16 3842) and three-
dimensional (with a spatial resolution of 5123) configura-
tions utilizing different compressibility characteristics such
as shocks. For three-dimensional turbulence, we find that
both the kinetic energy and density-weighted energy spec-
tra follow the classical Kolmogorov k−5/3 inertial scaling.
This phenomenon is observed due to the fact that the power
density spectrum of three-dimensional turbulence yields the
same k−5/3 scaling. However, we demonstrate that there is
a significant difference between these two spectra in two-
dimensional turbulence since the power density spectrum
yields a k−5/3 scaling. This difference may be assumed
to be a reason for the k−7/3 scaling observed in the two-
dimensional density-weight kinetic every spectra for high
compressibility as compared to the k−3 scaling tradition-
ally assumed with incompressible flows. Further inquiries are
made to validate the statistical behavior of the various config-
urations studied through the use of the Helmholtz decompo-
sition of both the kinetic velocity and density-weighted ve-
locity fields. We observe that the scaling results are invari-
ant with respect to the compressibility parameter when the
density-weighted definition is used. Our two-dimensional re-
sults also confirm that a large inertial range of the solenoidal
component with the k−3 scaling can be obtained when we
simulate with a lower compressibility parameter; however,
the compressive spectrum converges to k−2 for a larger com-
pressibility parameter.

1 Introduction

Turbulence is a highly nonlinear multiscale phenomenon
which is ubiquitous in nature. It poses some of the most chal-
lenging problems in classical physics as well as in computa-
tional mathematics. Understanding the nature of compress-
ible turbulence is of paramount importance. Highly com-
pressible turbulence plays an important role in star forma-
tion control in dense molecular clouds (Padoan and Nord-
lund, 2002; Mac Low and Klessen, 2004; Mac Low et al.,
1998) and is responsible for important design considerations
in many engineering applications. Therefore, there have been
several investigations into its statistical behavior. Kida and
Orszag (1990) studied the mechanics of energy transfer and
distribution and examined small-scale spectra in compress-
ible turbulence with root mean square Mach numbers up to
0.9. Theoretical laws have also been advanced for the statis-
tical behavior of turbulence quantities under the influence of
compressibility effects (Shivamoggi, 1992; Lele, 1994; Shiv-
amoggi, 2011; Wang et al., 2013). Kritsuk et al. (2007) uti-
lized an adaptive mesh refinement (AMR) algorithm along
with a piecewise parabolic approach for numerical dissipa-
tion to obtain scaling tendencies at high Mach number values
for both kinetic energy and density-weighted kinetic energy,
and density power spectra. In addition, structure functions of
different orders were also studied and compared to the limit-
ing case of incompressibility. Aluie (2013) provided a theo-
retical justification of the presence of an inertial scale which
is devoid of any effects of molecular viscosity for supersonic
turbulence similar to the classical Richardson–Kolmogorov
cascade in homogeneous isotropic incompressible turbulence
(Kolmogorov, 1941; Vassilicos, 2015). Magnetic effects on
the statistical behavior of supersonic turbulence have also
been studied keenly due to implications for astrophysical
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processes such as in Banerjee and Galtier (2013), where two-
point correlation function relations were studied.

Scaling laws incorporating magnetic effects in hydrody-
namic turbulence have also been proposed, for instance in
Iroshnikov–Kraichnan theory (Iroshnikov, 1964; Kraichnan,
1965), where arguments similar to those used in Kolmogorov
theory are used to explain statistical properties of small-scale
components in velocity and magnetic fields. Extensions to
account for the rather tenuous assumption of isotropy in
compressible magnetohydrodynamics (MHD) have also been
studied by Goldreich and Sridhar (1997). A generalization
of the Iroshnikov–Kraichnan and Goldreich–Sridhar spec-
tra to compressible magnetohydrodynamics has been pre-
sented by Shivamoggi (2008), where it is also shown to
merge with the MHD shockwave spectrum in the limit of
infinite compressibility (Kadomtsev and Petviashvili, 1973).
A recent review which examines both hydrodynamic and
magnetohydrodynamic implementations of supersonic com-
pressible turbulence on statistical quantities can be found in
Falceta-Gonçalves et al. (2014). In this work, we follow the
vast majority of investigations (Shivamoggi, 1992; Ottaviani,
1992; Domaradzki and Carati, 2007; Falkovich et al., 2010;
Kuznetsov and Sereshchenko, 2015; Shivamoggi, 2015; Sun,
2016; Westernacher-Schneider et al., 2015; Qiu et al., 2016;
Bershadskii, 2016; Sun, 2017; Westernacher-Schneider and
Lehner, 2017) by utilizing the phenomenological descrip-
tion of turbulence in Fourier space as well as the utiliza-
tion of two-point velocity structure functions for the statis-
tical examination of our high-fidelity numerical simulations.
One of our goals is to investigate scaling laws using a com-
putational framework with moderately high resolutions. We
note that several modified energy spectra and anisotropic
behaviors have been recently discussed within the context
of the Rayleigh–Taylor and Richtmyer–Meshkov instability-
induced flows (Zhou, 2017a, b). In terms of reference scaling
behavior, we shall be comparing our numerical results of the
stratified shear layer turbulence simulations against the the-
ories under the assumption of isentropic flow by solving the
Euler equations triggered by stratified shear layers in a peri-
odic box domain.

In this work, we shall examine the stratified compress-
ible turbulence that emerges from a classical Kelvin–
Helmholtz instability (KHI) formulation. Similar problems
have been studied extensively for their incompressible ver-
sions (Hopfinger, 1987; Werne and Fritts, 1999; Peltier and
Caulfield, 2003; Boffetta and Mazzino, 2017). In this work,
both two- and three-dimensional versions of stratification
will be examined for their effects on scaling. It must be noted
here that two-dimensional turbulence may be assumed to be
an appropriate framework for many geophysical applications
which exhibit extremely high aspect ratios and, indeed, in-
compressible two-dimensional turbulence forms the corner-
stone of geostrophic turbulence theory (Boffetta and Ecke,
2012; Shivamoggi, 1998). Astrophysical considerations have
also been explored in Biskamp and Schwarz (2001), where

the effects of a magnetohydrodynamic coupling have also
been examined on scaling behavior. Our focus shall primar-
ily rest on a comparison of numerically obtained behavior
of the density power spectrum, the averaged kinetic energy
spectrum and the density-weighted kinetic energy spectrum
along with second- and third-order velocity structure func-
tions with their theoretical predictions. Some reference scal-
ing laws (in the incompressible limit) we shall be using
for comparison are the classical Kolmogorov scaling (Kol-
mogorov, 1941) for isotropic three-dimensional (3-D) tur-
bulence and Kraichnan scaling (Kraichnan, 1967) for two-
dimensional (2-D) isotropic turbulence.

A common strategy for the numerical examination of the
statistics of highly compressible turbulence is the use of
the Eulerian hydrodynamic conservation laws implemented
through an implicit large eddy simulation (ILES) method-
ology (Passot et al., 1988; Blaisdell et al., 1993). This is
because it is commonly accepted that an ILES formulation
of the Euler equations provides a good estimation for the
Navier–Stokes equations in the limit of infinite Reynolds
numbers (Bos and Bertoglio, 2006; Zhou et al., 2014; Sytine
et al., 2000). However, two conditions must be enforced in
order to satisfy the aforementioned assumption. Firstly, vor-
ticity must be introduced via either boundary and/or initial
conditions since the Euler equations are incapable of gener-
ating vorticity from irrotational flows. Secondly, an artificial
viscosity must be incorporated into the simulation mecha-
nism to mimic the preservation of dissipative behavior of the
Navier–Stokes equations in the inviscid limit (Moura et al.,
2017). The ILES mechanism is a suitable approach for artifi-
cial dissipation through the use of numerical truncation errors
and is our simulation algorithm of choice for the high-fidelity
numerical experiments in this investigation.

The question we attempt to address through this work is
related to the difference between purely averaged kinetic en-
ergy spectra scaling and density-weighted spectra scaling for
both two- and three-dimensional compressible turbulence.
Our observations suggest a different “packaging” of density
in the spectral space for the two-dimensional turbulence case.
This is proven conclusively by comparing the differences in
density power spectrum behavior for both two- and three-
dimensional configurations. It is proposed that the density
power spectrum (or in other words the packaging of den-
sity at different wavenumbers) may be a reason that causes
a variation in the k−3 scaling of the density-weighted kinetic
energy cascade with changing compressibility (higher com-
pressibilities are observed to show k−7/3 scaling) for two-
dimensional turbulence as against the constant k−5/3 cascade
in three-dimensional turbulence. Our results are also vali-
dated through the use of the second-order structure function
behavior with varying compressibility. High-fidelity simula-
tion data are generated by utilizing 5123 and 16 3842 degrees
of freedom for the three- and two-dimensional cases, respec-
tively. We demonstrate that there is no difference in energy
spectrum scalings between kinematic and density-weighted
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velocities in three-dimensional simulations since both the
power density and velocity spectra scale with the k−5/3 scal-
ing. However, we have demonstrated that the difference be-
comes pronounced in two-dimensional simulations because
the power density spectrum scales with k−5/3, which is dif-
ferent than the scaling of the kinetic energy spectrum. Fur-
thermore, we have decomposed both the kinetic velocity
and density-weighted velocity fields into compressive (curl-
free) and solenoidal (divergence-free) components in order
to study the effects of compressibility in our two- and three-
dimensional setups. Ultimately, it is our aim to link these
analyses to nonlinear processes exhibiting very high aspect
ratios for astrophysical, heliophysical and plasma physics ap-
plications.

2 Compressible turbulence

The governing laws utilized for our numerical experiments
are given by the Euler equations which may be expressed in
their dimensionless differential form as

∂ρ

∂t
+∇ · (ρu)= 0, (1)

∂(ρu)

∂t
+∇ · (ρu⊗u+pI )= 0, (2)

∂(ρE)

∂t
+∇ · (ρEu+pu)= 0, (3)

where ρ is the fluid density, u= {u,v}T ∈ R2 and u=

{u,v,w}T ∈ R3 are the flow velocity in a Cartesian co-
ordinate system, p is the static pressure, and E is the total
energy per unit mass. Assuming a perfect gas with a ratio of
specific heats γ , the pressure can be determined by an equa-
tion of state which closes our coupled governing equations
given by

p = ρ(γ − 1)
(
E−

1
2
(u ·u)

)
, (4)

where we have set γ = 7/5 in our study. Note that the as-
sumption of the classical equation of state for relating the
pressure and total energy of the flow ensures the interaction
of solely acoustic and vortical modes (Shivamoggi, 1992).
Our computational domain also exhibits periodic boundary
conditions in all directions.

2.1 Stratified Kelvin–Helmholtz instability

The stratified Kelvin–Helmholtz instability (KHI) test case is
a famous problem which manifests itself when there is a ve-
locity difference at the interface between two fluids of differ-
ent densities (Thomson, 1871). It can commonly be observed
through experimental observation and numerical simulation,
and it is also visible in many natural phenomena, for exam-
ple in situations with wind flow over bodies of water causing

wave formation and in the planet Jupiter’s atmosphere be-
tween atmospheric bands moving at different speeds (Hwang
et al., 2012). The study of this instability in a benchmark for-
mulation reveals key information about the transition to tur-
bulence for two fluids moving at different speeds. For these
practical applications, it is common to choose a double shear
layer problem to simulate the formation of KHI in a peri-
odic two-dimensional computational setting with unit side
length. This stratified shear layer instability problem is used
to demonstrate the evolution of linear perturbations into a
transition to nonlinear two-dimensional hydrodynamic tur-
bulence. The instability triggers small-scale vortical struc-
tures at the sharp density interface initially, which eventually
transitions through nonlinear interactions to a completely tur-
bulent field.

2.2 Two-dimensional simulations

A two-dimensional implementation of the dual-shear layer
KHI problem is devised through our aforementioned unsta-
ble perturbed compressible shear layer. This may be imple-
mented through our computational domain which is a square
of unit side length with the following initial conditions:

ρ(x,y)=

{
1.0, if |y| ≥ 0.25

2.0, if |y|< 0.25
(5)

u(x,y)=

{
α, if |y| ≥ 0.25

−α, if |y|< 0.25
(6)

v(x,y)= λsin(2πnx/L), (7)
p(x,y)= 2.5. (8)

We can observe that the vertical component of the velocity is
perturbed using a single-mode sine wave (n= 2, L= 1) with
an amplitude λ= 0.01. Our two-dimensional numerical ex-
periments are solved to a final dimensionless time of t = 5.
We clarify that the R2 simulation domain for all experiments
is set in (x,y) ∈ [−0.5,0.5]×[−0.5,0.5] withN2

= 163842

degrees of freedom. Figure 1 represents a schematic ex-
pressing the initial conditions of our two-dimensional sim-
ulation. We remark that in this study we perform implicit
large eddy simulation (ILES) simulations by using a finite-
volume framework. Our numerical scheme utilizes the fifth-
order accurate, weighted essential non-oscillatory (WENO)
reconstructions equipped with Roe’s approximate Riemann
solver (Roe, 1981) at the cell interfaces. It is well known that
the utilization of the artificial dissipation mechanism of ILES
schemes (from the numerical viscosity of upwind biased state
reconstructions) mimics the physical viscosity of the Navier–
Stokes equations in the limit of infinite Reynolds numbers.
We utilize a parallel approach for the computational solution
of our governing laws implemented in the OpenMPI frame-
work. Details about the implementation and the computa-
tional performance of our solver may be found in Maulik
and San (2017), additionally showing weak and strong scal-
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Figure 1. The stratified Kelvin–Helmholtz instability problem in a
periodic square box of side length L= 1. Our initial condition reads
as a single-mode perturbation to the y-component of the velocity to
trigger the instability with n= 2 and the amplitude λ= 0.01. We
extend this two-dimensional domain along the z direction to per-
form our three-dimensional simulations in a triply-periodic domain
with size L in each side where we also use an initial perturbation to
the z-component of the velocity given by w = λsin(2πnz/L).

ing tests. Our three-dimensional simulations employ a simi-
lar approach.

Figure 2 describes snapshots in time of the density field for
this two-dimensional compressible turbulence test case when
α = 1.0. One can notice a transition to turbulence once an
initial instability has developed. The shearing velocity mag-
nitude given by α controls the compressibility which is ap-
parent from comparisons with Figs. 3 and 4 where smaller
values lead to formation of much smoother structures and
consequently lead to shock-free fields in the incompressible
limit. Evidence from Fig. 4 also shows a delay in the on-
set of turbulence due to a reduced shearing velocity. Table 1
also demonstrates the mean and maximum Mach number val-
ues at the final computational time t = 5. It is clear that the
case for α = 0.25 corresponds to a perfectly subsonic regime
with lower compressibility (i.e., the mean Mach number of
M = 0.15).

Figure 5 demonstrates the time evolution characteristics
of the 2-D KHI problem. On the left, we illustrate the time
series of the domain-integrated velocity amplitude (i.e., the
root mean square values of the kinetic velocity) normalized
with its initial condition with each α value. It is clear that
the KHI instability starts earlier for larger α values. We also
demonstrate the evolution of the compensated kinetic energy
spectrum on the right for α = 1.0. Similar statistical trends
are observed at each time. Therefore, we will only focus on
the results at the final time t = 5 in our statistical analysis
presented in the next section.

Table 1. The mean and maximum Mach numbers computed at final
time t = 5.

Resolution α M t=5
mean M t=5

max

16 3842 1.0 0.55 1.40
16 3842 0.5 0.30 1.28
16 3842 0.25 0.15 0.73

2.3 Three-dimensional simulations

While two-dimensional compressible turbulence investiga-
tions are valuable for insight into the physical processes
of systems which exhibit extreme aspect ratios (Boffetta
and Ecke, 2012), it is well known that the process of
energy transfer between scales is fundamentally different
when compared to that of three-dimensional flows (Clercx
and van Heijst, 2017). Isotropic, homogeneous, incompress-
ible three-dimensional turbulence is characterized by the fa-
mous Kolmogorov–Richardson cascade of energy where the
largest vortices continuously inject energy into an inertial
cascade which terminates in the Kolmogorov length scale
(Kolmogorov, 1941) where viscous effects dissipate this en-
ergy. This is particularly applicable for engineering flows,
where it has been established that turbulence “decays” in the
absence of forcing due to viscous dissipation. In contrast,
two-dimensional turbulence exhibits the presence of an in-
verse energy cascade (given by Kraichnan–Batchelor–Leith
theories; Kraichnan, 1967; Leith, 1971; Batchelor, 1969)
where energy from the smallest scales is transferred to the
largest scales. This has implications for the restoration of lo-
cal isotropy (since large-scale structures created by the in-
verse energy cascade affect the amount of enstrophy in the
field and thus affect the energy dissipation rate). In the pres-
ence of periodic boundary conditions (a subject of future in-
vestigations), these newly created large-scale structures may
lead to significant alteration in scaling laws.

Our computational domain for the three-dimensional tur-
bulence case is analogous to that of the two-dimensional do-
main. We utilize a domain given by a R3 set in (x,y,z) ∈
[−0.5,0.5]× [−0.5,0.5]× [−0.5,0.5] with N3

= 5123 de-
grees of freedom. Our initial conditions are given by

ρ(x,y,z)=

{
1.0, if |y| ≥ 0.25

2.0, if |y|< 0.25
(9)

u(x,y,z)=

{
α, if |y| ≥ 0.25

−α, if |y|< 0.25
(10)

v(x,y,z)= λsin(2πnx/L), (11)
w(x,y,z)= λsin(2πnz/L), (12)
p(x,y,z)= 2.5, (13)

and periodic boundary conditions in all directions. We keep
our parameters n, L and λ similar to those used in the two-
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Figure 2. Time evolution of the density field for 2-D KHI turbulence with α = 1.0 demonstrating results at t = 1 (a) and t = 5 (b) obtained
by a grid resolution of N2

= 163842.

Figure 3. Time evolution of the density field for 2-D KHI turbulence with α = 0.5 demonstrating results at t = 1 (a) and t = 5 (b) obtained
by a grid resolution of N2

= 163842.

dimensional case and utilize N3
= 5123 degrees of freedom

for the simulation of our computational domain.
Figure 6 shows the density field at times t = 1 and t = 5

for a shearing velocity magnitude of α = 1.0. One can ob-
serve how the solution domain has transitioned almost en-
tirely to a turbulent field for this case as against the very vis-
ible stratification observed in lower compressibility simula-
tions given by α = 0.5 and α = 0.25 shown in Figs. 7 and 8,
respectively. Our aim is to quantify the effect of the shearing
velocity on the compressibility and scaling laws of these co-
designed two- and three-dimensional configurations. Similar
to the two-dimensional case, we have plotted the time evo-
lution of the domain-integrated velocity in Fig. 9 between
t = 0 and t = 5. The decay rates in three-dimensional sim-
ulations are substantially higher than those obtained in two-
dimensional simulations. This can be attributed to the use

of a lesser number of grid points sampled in each direction.
However, the energy spectrum trend is similar and yields a
k−5/3 spectrum at each time. In the following section, we
thus present a systematic analysis based on data obtained at
t = 5.

3 Turbulence statistics and scaling exponents

3.1 Kinetic energy spectrum

The first statistical measure we investigate is given by the
classical kinetic energy spectra. To obtain these spectra, we
start with an expression for the spatial kinetic energy in
wavenumber space given by (Kida et al., 1990)

E(k, t)=
1
2
|û(k, t)|2, (14)
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Figure 4. Time evolution of the density field for 2-D KHI turbulence with α = 0.25 demonstrating results at t = 1 (a) and t = 5 (b) obtained
by a grid resolution of N2

= 163842.

Figure 5. Time evolution of 2-D KHI turbulence field characteristics with a resolution of N2
= 163842, showing normalized root mean

square values of velocity u for various α values (a), and compensated energy spectra computed from u at various times for α = 1.0 (b).

where û(k, t) is the Fourier transform of the velocity vec-
tor in the wavenumber space. Equation (14) can also be
rewritten in terms of velocity components (assuming a two-
dimensional Cartesian domain) as

E(k, t)=
1
2

(
|û(k, t)|2+ |v̂(k, t)|2

)
, (15)

where we compute velocity components û(k, t) and v̂(k, t)
using a fast Fourier transform algorithm (Press et al., 1996).
Finally, the spectra can be calculated by integrating over a
unit bandwidth (i.e., angle-averaged) in the following man-
ner:

E(k, t)=
∑

k−
1
2
≤|k′|<k+

1
2

E(k′, t), (16)

where k = |k| =
√
k2
x + k

2
y in R2. Extensions to three dimen-

sions are straightforward.

3.2 Density-weighted kinetic energy spectrum

The kinetic energy spectrum is generally utilized for charac-
terizing the energy content of scales in incompressible tur-
bulent flows and does not take the localized scale content of
the density into consideration. To include these density ef-
fects, following Lele (1994) and Kritsuk et al. (2007), we de-
fine an energy spectrum built on density-weighted velocity
ω =
√
ρu, i.e., through using

E(k, t)=
1
2
|ω̂(k, t)|2, (17)

where we can apply the same angle-averaged rule given by
Eq. (16) to obtain one-dimensional spectra.
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Figure 6. Time evolution of the density field for 3-D KHI turbulence with α = 1.0 demonstrating results at t = 1 (a) and t = 5 (b) obtained
by a grid resolution of N3

= 5123.

Figure 7. Time evolution of the density field for 3-D KHI turbulence with α = 0.5 demonstrating results at t = 1 (a) and t = 5 (b) obtained
by a grid resolution of N3

= 5123.

Figure 10 describes the spherical-averaged energy spec-
tra for the three-dimensional test case. Note here that the
spherical average implies that the local energy content in the
Fourier domain is integrated over a spherical shell of radius
k in three dimensions. One can observe a scaling behavior
that corresponds to classical Kolmogorov theory in the infi-
nite Reynolds number limit (i.e., an inertial range with k−5/3

scaling) for both purely kinetic energy spectra and density-
weighted kinetic energy spectra. The finer dissipative scales
are seen to display a k−6 scaling behavior for both these sta-
tistical quantities as well. We have also plotted the compen-
sated energy spectra, which illustrate the scaling laws more
quantitatively following the horizontal lines.

The data presented in Fig. 10 have been obtained by per-
forming a three-dimensional fast Fourier transform (FFT)

procedure. From a practical implementation point of view,
we perform a slightly different approach to compute energy
spectra. The main advantage of this procedure is that it is
naturally suited to any parallel computing architecture. For
an analogy with the two-dimensional test cases, we present
transversely averaged energy spectra in Fig. 11 wherein the
circular averaging of the energy in the Fourier domain is car-
ried out over different two-dimensional z planes which are
then spatially averaged over the depth of the domain. Simi-
lar trends to the spherical averaging spectral scaling are ob-
served for this case. However, we note that the obtained spec-
tra are less noisy when using a direct three-dimensional FFT
procedure. This can be interpreted by the quasi-homogeneity
of the flow after the onset of turbulence.
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Figure 8. Time evolution of the density field for 3-D KHI turbulence with α = 0.25 demonstrating results at t = 1 (a) and t = 5 (b) obtained
by a grid resolution of N3

= 5123.

Figure 9. Time evolution of 3-D KHI turbulence field characteristics with a resolution of N3
= 5123, showing normalized root mean square

values of velocity u for various α values (a), and compensated energy spectra computed from u at various times for α = 1.0 (b).

We investigate the performance of the same metrics for
the two-dimensional test case and obtain scaling behavior
as seen in Fig. 12 where a k−3 scaling behavior is obtained
in accordance with the direct cascade of enstrophy espoused
by Kraichnan–Batchelor–Leith (KBL) theory for the inertial
range, especially for the lower compressibility ratio. A higher
magnitude of α is seen to yield a more flattened spectrum
towards k−7/3 scaling and also delay the formation of the
k−6 cascade in the dissipation range. Figure 12 also shows
the spectral scaling obtained from the density-weighted ki-
netic energy spectra where scaling behavior corresponding
to k−7/3 is seen for all α values. This suggests that the two-
dimensional configuration of the test case is affected by the
packaging of density content at different scales. The dissipa-
tion zone shows a similar behavior using this metric where

a delay in scaling with k−6 is obtained by an increase in the
magnitude of α. We can conclude that the density-weighted
spectrum becomes a more universal representation for vari-
ous degrees of compressibility.

Figure 13 shows the effect of the parameter α on the com-
pressibility of the two-dimensional turbulence case through
the use of compensated energy spectra where the distance
from the origin in the Fourier space (in other words k) is used
to weight instantaneous energy content. We only present the
compensated energy distribution in the first quadrant of the
Fourier space. At α = 1.0 one can observe a distinct loss of
isotropy in the energy content of the solution field (in spectral
space) which corresponds to an enhanced compressibility. In
comparison, α = 0.5 and α = 0.25 display a behavior which
is rather isotropic in nature, indicating weak compressibility.
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Figure 10. Spherical-averaged energy spectra for 3-D KHI turbulence. (a) Spectra built on using the velocity u, (b) spectra built on using
the density-weighted velocity ω =

√
ρu, (c) compensated spectra built on using the velocity u, and (d) compensated spectra built on using

the density-weighted velocity ω =
√
ρu.

To demonstrate the effect of density more clearly, we
present the difference spectra for the 2-D KHI turbulence in
Fig. 14. Here, we compute the spectrum of the difference be-
tween the velocity u and the normalized density-weighted
velocity

√
ρu/〈
√
ρ〉, where

√
ρ refers to the spatial average

of the square root of density. The results show a clear inertial
range with the k−5/3 scaling. This is a manifestation of the
density effect in 2-D KHI turbulence.

3.3 Helmholtz decomposition

To study the effect of compressibility in more detail we per-
form the Helmholtz decomposition to compute energy spec-
tra from the curl-free and divergence-free components of the
velocity field. This decomposition has been extensively used
in turbulence studies (i.e., see Sagaut and Cambon, 2008; Ja-
gannathan and Donzis, 2016; Wang et al., 2017; Falkovich
and Kritsuk, 2017; Wang et al., 2018). In our present work,

we investigate the behavior of energy spectra using both the
kinematic velocity and density-weighted velocity fields in 2-
D and 3-D KHI turbulence problems. Let v be a vector field
in ∈ Rn (e.g., v could be the kinetic velocity field u or the
density-weighted velocity field ω =

√
ρu); then, v can be de-

composed into a curl-free component and a divergence-free
component (Aris, 2012):

v =∇φ+∇ ×A, (18)

which can be rewritten as

v = vc
+ vs, (19)

where vc
=∇φ is the compressive (curl-free) component

since the curl of a gradient of any scalar field φ is zero,
and vs

=∇ ×A is the solenoidal (divergence-free) compo-
nent since the divergence of a curl of any vector field A is
zero. Taking the divergence of Eq. (18) yields the following
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Figure 11. Transversely averaged energy spectra for 3-D KHI turbulence. An angle-averaged kinetic energy spectrum is first computed at
each z plane using a 2-D FFT transform and then followed by a spatial averaging procedure along the z direction. (a) Spectra built on using
the velocity u, (b) spectra built on using the density-weighted velocity ω =

√
ρu, (c) compensated spectra built on using the velocity u, and

(d) compensated spectra built on using the density-weighted velocity ω =
√
ρu.

Poisson equation:

∇ · v =∇2φ, (20)

which can be solved for φ efficiently using an FFT procedure
since v is provided as a quantity of interest that we would
like to decompose into two parts. Once φ is computed, the
compressive and solenoidal parts can be easily computed as
follows:

vc
=∇φ, (21)

vs
= v− vc. (22)

We note that there would be infinitely many candidates for
the compressive component since the multiplication of φ
by any arbitrary constant after solving the Poisson equation
would still yield a curl-free velocity field. However, the en-
ergy spectrum scaling behaviors would remain identical for
each realization.

Figure 15 presents the compensated energy spectra for the
3-D KHI problem using both definitions of the velocity vec-
tor field (i.e., the kinematic velocity and the density-weighted
velocity). We have obtained a k−5/3 dominant scaling for
the solenoidal component in both definitions. However, the
compressive component demonstrates an anomalous spec-
trum especially when we use the kinetic velocity definition.
This anomaly can also be linked to the results of the pres-
sure power spectra that we present in the next section. Fig-
ure 16 presents the same analysis for the case of 2-D KHI tur-
bulence. Both compressive and solenoidal components scale
with the k−5/3 slope for the density-weighted velocity field.
However, there is a clear difference for the results with vari-
ous values of α when we look at the Helmholtz decomposi-
tion of the kinetic velocity field. The solenoidal inertial range
scaling becomes k−3 for lower α values, which is consis-
tent with Kraichnan theory. However, the scaling steepens
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Figure 12. Angle-averaged energy spectra for 2-D KHI turbulence. (a) Spectra built on using the velocity u, (b) spectra built on using the
density-weighted velocity ω =

√
ρu, (c) compensated spectra built on using the velocity u, and (d) spectra built on using the density-weighted

velocity ω =
√
ρu.

Figure 13. Compensated, k4E(k, t = 5), kinetic energy spectra for 2-D KHI turbulence for α = 1.0 (a), α = 0.5 (b) and α = 0.25 (c).
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Figure 14. The difference spectra for 2-D KHI turbulence. (a) Difference spectra between the kinetic velocity field and the normalized
density-weighted velocity field (i.e., E(k) is obtained from the g = u−

√
ρu/〈
√
ρ〉 vector field), and (b) its compensated representation.

and gets closer to k−2 for increasing α, which is also consis-
tent with the Kadomtsev–Petviashvili spectrum for acoustic
turbulence.

3.4 Density power spectrum

Observations on the density power spectrum have played
an important role in astrophysics applications (Armstrong
et al., 1981). Although it has been established that the density
power spectrum has an inertial scaling of k−5/3 (Shaikh and
Zank, 2010; Donzis and Jagannathan, 2013), similar to the
Kolmogorov energy spectrum, Bayly et al. (1992) demon-
strated that it depends on the flow regime as well as the ini-
tial conditions by considering a three-dimensional weakly
compressible hydrodynamic turbulence setup. By studying
weakly compressible two-dimensional flows, Terakado and
Hattori (2014) showed that the density spectrum scales be-
tween k−1 and k−5 for nonuniform and uniform entropy
cases, respectively. They presented a great discussion for
state-of-the-art computations and scaling law observations
for the density power spectrum.

In order to quantify the effect of the scale content of den-
sity alone, we devise a power spectrum that reflects the av-
erage packaging of density over different scales at any given
time in the simulation. This may be given by the following
expression:

0(k, t)=
1
2
|ρ̂(k, t)|2, (23)

followed by angle averaging which leads to

0(k, t)=
∑

k−
1
2
≤|k′|<k+

1
2

0(k′, t). (24)

Observations regarding the difference in scaling behav-
ior of the kinetic energy and density-weighted kinetic en-
ergy spectra give us a cause to compare the scaling behav-
ior of the density power spectra for both our two- and three-
dimensional test cases. Figure 17 shows the density power
spectra for the three-dimensional turbulence test case where
it can be seen that a five-thirds law is followed for the ar-
rangement of density content in the solution field. A dissi-
pation range scaling of k−6 can also be observed. It can be
seen that the variation of parameter α does not seem to affect
scaling behavior appreciably. Figure 18 shows a similar ex-
amination for the two-dimensional test case where a consid-
erable difference in scaling behavior is observed. The impo-
sition of two-dimensional turbulence leads to a considerable
alteration in the scaling behavior of the density power spec-
trum with a k−5/3 scaling observed in the inertial range and
a k−3 scaling in the dissipation range. In fact, this packaging
of density consequently affects the density-weighted kinetic
energy spectra described in Fig. 12. The intercomparison
of the two- and three-dimensional statistical quantities sug-
gests that the density power spectrum (i.e., the arrangement
of density at different wavenumbers) plays an important role
with increased compressibility of any simulation wherein the
k−5/3 scaling causes a deviation from k−3 scaling associated
with two-dimensional incompressibility to k−7/3 scaling for
α = 1.0 for the same test case. In contrast, the k−5/3 density
power spectrum of three-dimensional turbulence causes no
variation in scaling behavior with increased compressibility
and also causes similar scaling behaviors for both averaged
kinetic energy spectra as well as averaged density-weighted
kinetic energy spectra as seen in Fig. 10. This is one of the
central conclusions of this investigation.
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Figure 15. Helmholtz decomposition of energy spectra into compressive (curl-free) and solenoidal (divergence-free) parts for 3-D KHI
turbulence. (a) Compensated compressive spectra from u, (b) compensated compressive spectra from ω =

√
ρu, (c) compensated solenoidal

spectra from u, and (d) compensated solenoidal spectra from ω =
√
ρu.

3.5 Pressure power spectrum

Similar to the density power spectrum defined in Eq. (23),
the pressure power spectrum can be computed as

5(k, t)=
1
2
|p̂(k, t)|2, (25)

and its angle-averaged form reads as

5(k, t)=
∑

k−
1
2
≤|k′|<k+

1
2

5(k′, t). (26)

As discussed in Lesieur et al. (1999), the pressure spec-
trum can be expressed by 5(k)∝ kE(k)2 by considering di-
mensional arguments. Indeed, this yields a pressure spectra
scaling of k−7/3 for the Kolmogorov regime and a pressure
spectra scaling of k−5 for the Kraichnan regime. Figures 19

and 20 demonstrate the pressure power spectra for the 3-D
and 2-D KHI problems, respectively. In the 3-D case, it is
clear that our results are consistent with the theoretical esti-
mate of k−7/3 scaling for all values of the compressibility pa-
rameter α. However, in 2-D turbulence we only observe k−5

scaling for smaller scales (i.e., higher wavenumbers). Par-
ticularly for weaker compressibility, given by the α = 0.25
case, the k−5 scaling starts earlier. Figure 20 clearly illus-
trates that the pressure power spectrum inertial scaling be-
comes k−5/3 for stronger compressibility. These results indi-
cate that the pressure power spectrum can be a useful tool for
characterizing two-dimensional compressible turbulence.

3.6 Velocity structure functions

Statistical inferences about the nature of compressible turbu-
lence may also be drawn through the use of velocity struc-
ture functions which also show scaling tendencies according
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Figure 16. Helmholtz decomposition of energy spectra into compressive (curl-free) and solenoidal (divergence-free) parts for 2-D KHI
turbulence. (a) Compensated compressive spectra from u, (b) compensated compressive spectra from ω =

√
ρu, (c) compensated solenoidal

spectra from u, and (d) compensated solenoidal spectra from ω =
√
ρu.

Figure 17. Spherical-averaged density power spectra for 3-D KHI turbulence (a) and its compensated form (b).
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Figure 18. Angle-averaged density power spectra for 2-D KHI turbulence (a) and its compensated form (b).

Figure 19. Spherical-averaged pressure power spectra for 3-D KHI turbulence (a) and its compensated form (b).

to the physics of the solution field (Moin and Yaglom, 1975).
A velocity structure function may be expressed as (Babiano
et al., 1985; Boffetta and Ecke, 2012; Iyer et al., 2017)

Sp(r)= 〈(u(x+ r)−u(x))p〉, (27)

where the ensemble averaging is taken over all positions x

and all orientations of r within the computational domain to
yield statistics for the length scale r = |r|. Our choice of p
determines the order of the structure function we are exam-
ining and this investigation looks at p = 2 for the character-
ization of turbulence in both two and three dimensions. The
second-order structure function has been used to characterize
the turbulence in both 2-D (e.g., see Babiano et al., 1985) and
3-D (e.g., see Kritsuk et al., 2007) turbulent flows. We note
that some researchers have preferred to use the absolute value
definition, which might change the results for odd values of p
(e.g., see Arneodo et al., 1996, for a great discussion on vari-

ous definitions of the structure functions). For the 2-D turbu-
lence setting, Babiano et al. (1985) predicted a scaling law of
rn−1 where n refers to the scaling component of the energy
spectrum (i.e.,E(k)∝ k−n). In 3-D turbulence, the scaling of
rp/3 has been established for the pth structure function. Both
longitudinal (u ‖ r) and transverse (u⊥ r) third-order veloc-
ity structure functions are computed in the present study. In
our assessments, a range of 10−2

≤ r ≤ 10−1 is assumed to
represent the general vicinity of the inertial range.

We utilize the high-fidelity data of the previously
described numerical experiments for two- and three-
dimensional turbulence to obtain structure function statis-
tics at time t = 5. Figure 21 shows the second-order velocity
structure function for the longitudinal and transverse direc-
tions for the 3-D test case. One can observe a steadily in-
creasing alignment with r2/3 with a decreasing value of α,
implying weaker compressibility. It is worth mentioning here
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Figure 20. Angle-averaged pressure power spectra for 2-D KHI turbulence (a) and its compensated form (b).

Figure 21. Second-order velocity structure functions for 3-D KHI turbulence. (a) Longitudinal structure function (u ‖ r), (b) transverse
structure function (u⊥ r), (c) compensated form of the longitudinal one, and (d) compensated form of the transverse one.
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Figure 22. Second-order velocity structure functions for 2-D KHI turbulence. (a) Longitudinal structure function (u ‖ r), (b) transverse
structure function (u⊥ r), (c) compensated form of the longitudinal one, and (d) compensated form of the transverse one.

that Kolmogorov theory dictates a cascade given by p/3.
Similar trends are observed for both longitudinal and trans-
verse directions, suggesting that a certain degree of isotropy
now characterizes the system. For ranges of r below 10−2,
it is observed that both longitudinal and transverse structure
functions scale according to r2 for the second-order structure
function.

We undertake a similar statistical examination for our two-
dimensional test case where second-order longitudinal and
transverse structure functions are given by Fig. 22, where it
is observed that at low r , a scaling corresponding to r2 is
observed. This is in accordance with findings in Grossmann
and Mertens (1992). At larger values of r , the r2 scaling tran-
sitions to a r4/3 scaling at relatively higher compressibility
(i.e., α = 1.0) and r scaling at α = 0.25. Eventually, it is ex-
pected that an r2/3 behavior must emerge with perfect incom-
pressibility. The aforementioned observations hold true for
both longitudinal and transverse second-order structure func-

tions and are consistent with the definition of S(r)∝ rn−1.
It can be observed that the velocity structure functions for
three-dimensional simulations generally obey the prediction
of the Kolmogorov theory (for lower values of α indicat-
ing weak compressibility) as against their two-dimensional
counterparts.

4 Conclusions

In this investigation, data from high-fidelity numerical ex-
periments are utilized to study scaling behavior for statistical
quantities such as spectra and structure functions. We study
two test cases given by the Kelvin–Helmholtz instability
problem in two and three dimensions to study spectral scal-
ing laws for compressible shear layer turbulence. Our spectra
are given by the averaged kinetic energy magnitude and the
averaged density-weighted kinetic energy magnitude, and it
is observed that while both quantities exhibit similar trends in
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three dimensions, the density-weighted kinetic energy spec-
tra show varying scaling tendencies in two dimensions. This
is demonstrated by a flattening of the density-weighted en-
ergy spectra, expected to exhibit k−3 scaling in the incom-
pressible limit, to k−7/3 scaling for higher compressibility.
Variations are also seen in the scaling of the dissipation
range. This prompts us to investigate the density power spec-
trum and the pressure power spectrum for both two- and
three-dimensional cases, and it is observed that two distinct
inertial and dissipation range behaviors can be observed. For
the density power spectrum, both the three-dimensional and
two-dimensional cases show a five-thirds scaling behavior
in the inertial range with a k−6 scaling in the dissipation
range. This basically demonstrates that the scaling laws for
both kinetic energy and power density spectra coincide with
each other only for three-dimensional flows. The pressure
power spectrum analysis also demonstrates that the results
are less invariant to variations in the compressibility param-
eter for the two-dimensional KHI problem. The scaling be-
havior exhibited by the density and pressure power spectra
for the two-dimensional test, combined with the trends ob-
served in the energy spectrum and structure function analy-
ses, indicates that nonlinear processes exhibiting extreme as-
pect ratios may have a fundamentally different set of nonlin-
ear interactions as compared to moderate aspect ratios (which
may be classified as three-dimensional). Incorporating the ef-
fect of boundary conditions, which inevitably leads to large-
scale anisotropy into the scaling tendencies exhibited here,
would account for further interesting deviations from three-
dimensional counterparts. This remains a topic of focus for
future investigation.
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