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Abstract. Microseismic signals are generally considered to
follow the Gauss distribution. A comparison of the dynamic
characteristics of sample variance and the symmetry of mi-
croseismic signals with the signals which follow α-stable dis-
tribution reveals that the microseismic signals have obvious
pulse characteristics and that the probability density curve of
the microseismic signal is approximately symmetric. Thus,
the hypothesis that microseismic signals follow the symmet-
ric α-stable distribution is proposed. On the premise of this
hypothesis, the characteristic exponent α of the microseis-
mic signals is obtained by utilizing the fractional low-order
statistics, and then a new method of time difference of arrival
(TDOA) estimation of microseismic signals based on frac-
tional low-order covariance (FLOC) is proposed. Upon ap-
plying this method to the TDOA estimation of Ricker wavelet
simulation signals and real microseismic signals, experimen-
tal results show that the FLOC method, which is based on the
assumption of the symmetric α-stable distribution, leads to
enhanced spatial resolution of the TDOA estimation relative
to the generalized cross correlation (GCC) method, which is
based on the assumption of the Gaussian distribution.

1 Introduction

Microseismic monitoring technology has been widely ap-
plied to mine rock burst monitoring, oil and gas field frac-
turing monitoring, reservoir seismic monitoring, slope sta-
bility evaluation and so on. Seismic source location is one of
the key technologies used (Zhao et al., 2017). The conven-
tional seismic source localization method usually first needs

to pick up the P arrival time of multi-channel seismic signals
and then calculate the time difference of arrival (TDOA) of
the signals to solve the equation to obtain the source loca-
tion (Schwarz et al., 2016). As a result, the accuracy of the
calculated TDOA directly affects the accuracy of the seis-
mic source location. However, in the process of actual oper-
ation, the first arrival time of the microseismic signals is not
obvious, and there is much external noise (Jia et al., 2015).
Therefore, it becomes very difficult to determine the time dif-
ference between waves from the same seismic source.

The basic problem the TDOA solves is to measure and
estimate the TDOA between waves from the same seismic
source accurately and rapidly. Since the classic article on
TDOA written by Knapp and Carter was published in 1976,
this problem has perpetually been a research focus in the field
of international signal processing (Knapp et al., 1976). The
common method of TDOA includes the generalized cross
correlation method (Knapp et al., 1976; Souden et al., 2010;
Jin et al., 2013), the phase spectrum estimation method (Youn
et al., 1982; Qiu et al., 2012), the generalized bi-spectral es-
timation method (Hinich et al., 1992; Hou et al., 2013), the
adaptive estimation method (Gedalyahu et al., 2010; Salvati
and Canazza, 2013), the energy method based on Hilbert–
Huang transform (Sun et al., 2016) and so on. These meth-
ods have been widely used in many fields. However, the vast
majority of these methods assume that the signals and noises
follow the Gaussian distribution. In the case of non-Gaussian
distributions, their algorithm shows serious degradation in
spatial resolution and does not function anymore (Ma and
Nikias, 1996; Cornelis et al., 2010; Park et al., 2011).
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Figure 1. Two-sensor model of TDOA estimation.

Noisy microseismic signals have conspicuous non-
stationary characteristics, such as impulsiveness and random-
ness; therefore, they belong to the category of non-Gaussian
signals. If the microseismic signal is simulated by Gaussian
signal, it is inevitable that the TDOA algorithm will have se-
rious performance degradation. To solve the problem in the-
ory, we intend to introduce the α-stable distribution to de-
scribe the microseismic signal and noise in the distribution
model. The α-stable distribution model has achieved excel-
lence in the field of non-Gaussian signal processing, such
as seismic inversion, speech de-noising and enhancement,
sound source localization and mechanical fault diagnosis (Li
and Yu, 2010; Yue et al., 2012; Zhang et al., 2014). However,
its use is rare in research projects and publications on TDOA
estimation of microseismic signals from the same seismic
source. This paper intends to describe the characteristics of
microseismic signals and noise with α-stable distributions,
studies the impact of non-Gaussian noise on the spatial reso-
lution of TDOA and proposes an improved TDOA algorithm
based on fractional low-order covariance (FLOC). Compared
with the traditional TDOA algorithm, this improved algo-
rithm could inhibit both the Gaussian noise and the α-stable
distribution noise.

2 The TDOA model

2.1 The basic model of TDOA

In order to facilitate data processing, the three component
time travel curve of microseismic is first transformed into a
set of energy gradient time travel curve (He et al., 2016). The
basic model of TDOA is shown in Fig. 1. The original mi-
croseismic signal is represented by s(n). It spreads to the two
seismic geophones S1 and S2 through the rock stratum. Due
to different propagation paths, the time at which the signals
arrive at the geophones are different.

If the microseismic acquisition system is discrete, the sig-
nals received by the geophones S1 and S2 can be expressed
as

{
x1 (n)= λ1s (n)+ b1 (n)

x2 (n)= λ2s (n−D)+ b2 (n)
, (1)

In the above equation, s(n) represents the original signal.
D is the time delay value. b1(n) and b2(n) are the external
Gaussian noises. In addition, s(n), b1(n) and b2(n) are un-
correlated.

Correlation analysis is commonly used to calculate the
TDOA estimation of two signals. In the case that the sub-
stance of the problem is not affected and the calculation is
simplified, we take λ1 = λ2 = 1. Then, the cross correlation
function of the two microseismic signals x1(n) and x2(n) can
be represented as

Rx1x2 (τ )= E [x1 (n)x2 (n+ τ)] (2)
= Rss (τ −D)+Rsb1 (τ −D)+Rsb2 (τ )+Rb1b2 (τ ) ,

where Rss(·) represents the auto-correlation function of the
original signal. Rpq(·) is the cross-correlation function of the
two signals p and q. It is assumed that s(n), b1(n) and b2(n)

are unrelated Gaussian noises. Then

Rsb1 (τ −D)= Rsb2 (τ )= Rb1b2 (τ )= 0. (3)

Eq. (2) can be rewritten as

Rx1x2 (τ )= Rss (τ −D). (4)

The auto-correlation function has the property

|Rss (τ −D)| ≤ Rss (0) . (5)

Therefore, Rss is maximized when τ −D = 0. Thus, the
TDOA estimation between the two seismic geophones can
be expressed by the maximum of Rss (τ −D).

D̂ = arg
{

max
τ

[
Rx1x2 (τ −D)

]}
(6)

When noisy signal follows the Gaussian distribution, the
above method can estimate the time delay by detecting the
peak position of the cross-correlation function of the sig-
nals x1(n) and x2(n). Based on this observation, the authors
propose the generalized cross correlation method (Hertz and
Azaria, 1985; Kang et al., 2012; Zhang et al., 2015), the
phase spectrum estimation method (Harada, 2014; Choud-
huri et al., 2016), the adaptive estimation method (Carrier
and Got, 2014; Wang et al., 2017) and so on to implement
the TDOA estimation, which significantly improves the anti-
noise property, estimation accuracy and resolution of the
algorithm. However, these algorithms are all based on the
second-order statistics and the assumption that the noises fol-
low the Gaussian distribution. In the process of microseismic
monitoring, noisy signals are non-Gaussian and their pulse
characteristics are obvious (Xu et al., 2015; Jia et al., 2016).
Therefore, Eq. (3) is not suitable for them and it is necessary
to introduce other models to describe the distribution charac-
teristics of the microseismic signals and noises, and establish
a new method to estimate the time delay.
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2.2 The model of α-stable distribution

In the process of microseismic monitoring, external noises
are composed of man-made noises, mechanical vibration,
etc. The common characteristics of these noises are that their
time domain waveforms have conspicuous pulse character-
istics, the energy diminishes from low to high frequencies
and their corresponding probability density functions have
a thicker tail than that of Gaussian signals. In the field of
signal processing, this type of non-Gaussian noise is usually
described by the α-stable distribution model.

The α-stable distribution is a random signal model that can
be applied to an extensive range of problems. Except for a
few specific situations, there is no uniform probability den-
sity function expression; therefore, Eq. (7) is used to express
it (Shao and Nikias, 1993).

ϕ(m)= exp
{
jδm− γ |m|α

[
1+ jβsgn(m)ω(m,α)

]}
, (7)

ω(m,α)=

 tan
απ

2
, α 6= 1

π

2
log |m| , α = 1

, (8)

sgn(m)=


1, m > 0
0, m= 0
−1, m < 0

, (9)

where ϕ(m) is the characteristic function of the probabil-
ity density, α represents the characteristic exponent. Smaller
values of α result in thicker tails of the probability density
function. β is the skew parameter, representing the deviation
degree of signals. It is a symmetric α-stable distribution sig-
nal when β = 0, which is also called the SαS distribution.
γ is the scale parameter, representing the dispersion degree
of signal around the location parameters, which is similar to
the variance in the Gaussian distribution. δ is the location
parameter, which is similar to the mean or mid-value in the
Gaussian distribution.

We can infer from Eq. (7) that the corresponding eigen-
function is the same as when α = 2. That is to say, the Gaus-
sian distribution is a special case of the α-stable distribu-
tion. When 0< α < 2, Eq. (7) represents the eigenfunction
of the signals following the non-Gaussian distribution, which
is also called the fractional lower-order α-stable distribution.

2.3 Non-Gaussian property of microseismic signals

The difference in determining a signal between the Gaus-
sian distribution and the α-stable distribution is that the lat-
ter has stronger pulse characteristics. Due to the existence
of the pulse, the secondary moment of the observation data
that follow the α-stable distribution is not convergent, and
there is no limited high-order moment above the second or-
der. However, the observation data that follow the Gaussian
distribution have both stable secondary moment and limited
high-order moment (Sun and Qiu, 2008). Therefore, whether
or not the signal follows the Gaussian distribution can be de-

termined from whether or not the sample variance of the ob-
served data is convergent.

If xi , i = 1,2,3, . . .N represents the observed data se-
quence and N represents the sample number of observed
data. The dynamic sample variance of the first k (1≤ k ≤N)
observed data is defined as

S2
k =

1
k

k∑
i=1

(xi − x,)
2 (10)

x =
1
k

k∑
i=1

xi . (11)

With the continuous increase of k, if S2
k converges to a cer-

tain value, the observed data sequence follows the Gaussian
distribution. Otherwise, it follows the α-stable distribution.
To illustrate the changes of the dynamic sample variance of
the Gaussian signals and the α-stable distribution signals,
three sets of random data are produced for comparison. The
sample length of the three sets of data are all 1000 (Fig. 2),
and Fig. 2a is a Gaussian signal. This means that α = 2.0,
β = 0, γ = 1, δ = 0. Figure 2b is a random signal that fol-
lows the α-stable distribution, and α = 1.6, β = 0, γ = 1,
δ = 0. Figure 2c is another random signal following the α-
stable distribution, and α = 1.2, β = 0, γ = 1, δ = 0. The
figures (Fig. 2d–e) are the dynamic sample variances corre-
sponding to signals (Fig. 2a–c), respectively.

A comparison of the waveform characteristic of the sig-
nals (Fig. 2a–c) shows that with the gradual decrease of the
characteristic exponent α, the pulse characteristic of signals
is enhanced. The signal (Fig. 2a) follows the Gaussian dis-
tribution. Its pulse characteristic is not obvious, and its dy-
namic sample variance converges to a stable value. The char-
acteristic exponent α of the signal (Fig. 2b) is 1.6. It has
a strong pulse characteristic. Its dynamic sample variance
springs stepwise and does not converge to a stable value with
an increase in sample points. The characteristic exponent α
of the signal (Fig. 2c) is 1.2. Its pulse characteristic is more
obvious. The step amplitude of the dynamic sample variance
increases sharply; therefore, it is more difficult to converge
to a stable value.

We select a measured microseismic wave and calculate its
dynamic sample variance according to Eq. (10) (Fig. 3). It
shows that the microseismic signal’s dynamic sample vari-
ance jumps stepwise and also does not converge to a sta-
ble value. Thus, one can conclude that the microseismic sig-
nal follows the fractional lower-order α-stable distribution.
Through the analysis of a large number of seismic signals
and the calculation of characteristic exponents, current liter-
ature (Yue et al., 2013) shows that the characteristic exponent
α of a seismic signal is less than 2, usually between 1.8458
and 1.9301.
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Figure 3. (a) Microseismic wave and (b) its dynamic sample variance.
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Figure 4. (a) The α-stable densities with different skew parameter; (b) the α-stable densities of microseismic signals.

2.4 The determination of symmetry property of
microseismic signal

Before the parameter estimation of the α-stable distribution,
we should determine whether the distribution of the signal is
symmetric. The methods for identifying symmetry are listed
below:

1. Draw the probability density curve of the sample se-
quence and observe the symmetry

2. Count the number of positive and negative values in the
sample sequence. If the number of positive and negative
values are approximately same, the signal is symmetric.

Figure 4a shows that when the skew parameter β = 0, the
probability density curve is symmetric; when β = 0.8, the
probability density curve is right-skewed; when β =−0.8,
the probability density curve is left-skewed. Figure 4b shows
five probability density curves of microseismic signals from
the same seismic source. It is obvious that these curves are
symmetric. As a result, the distribution of microseismic sig-
nal is considered symmetric.

For further validation of the symmetry of microseismic
signal, we randomly select 30 signals from the microseis-
mic records in different places, truncate the continuous 3000
sampling points of each signal and then count the number
of positive and negative values. The absolute value for the
difference between the numbers of positive and negative is
shown in Fig. 5.

According to the data in Fig. 5, we can use estimate max-
imum likelihood estimator for parameters µ (difference of
data number) and δ (standard error), and µ= 1.8667 and
δ = 26.8356 are obtained. Compared with the 3000 of sam-
ple data, the microseismic signal is approximately consid-
ered symmetric.

In conclusion, the microseismic signal follows the sym-
metric α-stable distribution, which is also called the SαS
distribution. Because the α-stable distribution does not have
limited secondary and high-order moment, the above TDOA
method is based on the assumption that the secondary mo-
ment (or high-order moment) and the Gaussian noise shows
serious performance degradation. It is necessary to do some
research on the new TDOA algorithm based on the low-order
statistics.

3 The improved TDOA estimation algorithm

3.1 The TDOA estimation based on FLOC

According to the study of Sect. 2.4, the microseismic signals
and noises are more consistent with the α-stable distribution.
Therefore, this paper is intended to describe the characteris-
tics of microseismic signals and noises by α-stable distribu-
tion. ON this basis, an improved TDOA algorithm based on
fractional low-order covariance (FLOC) is proposed. Com-
pared with the traditional TDOA algorithm, the improved
algorithm has a good suppression effect on the noise of α-
stable distribution noise and Gauss noise.

In the case that the noise follows the α-stable distribu-
tion, an existing study (Ma and Nikias, 1995) puts forward
a TDOA algorithm based on fractional low-order covariance
(FLOC). The FLOC of two signals xi(t) (i = 1,2) is defined
as

Rd (τ )= E
[
x2(t)

<A>x1(t + τ)
<B>

]
, (12)

0≤ A<
α

2
, 0≤ B <

α

2
, 0< α ≤ 2,

and
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x<c> = |x|csgn(x) ,sgn(x)=


1, x > 0
0, x = 0
−1, x < 0

, (13)

where A and B represent the fractional low-order exponents
of the two input signals xi(t) (i = 1,2), respectively. τ is
the translation relative to the signal x1(t) when calculating
FLOC. The TDOA estimation can be obtained by detecting
the peak of the function Rd (τ ).

D =−arg
{

max
τ

[Rd (τ )]
}

(14)

The FLOC algorithm can be used for the TDOA estimation
of microseismic signals. If the two microseismic signal sam-
ples are xi(n) (i = 1,2; n= 1,2, . . .,N), Eq. (12) can be ex-
pressed by

R̂d(τ )=
1
N

N∑
n=1

|x2(n)|
A
|x1 (n+ τ)|

B
· sgn[x2(n)x1 (n+ τ)] ,

0≤ A<
α

2
, 0≤ B <

α

2
, 0< α ≤ 2. (15)

The TDOA estimation can be obtained by detecting the peak
of the functionR̂d (τ ).

D̂ =−arg
{

max
τ

[
R̂d (τ )

]}
(16)

The TDOA method based on FLOC requires very few calcu-
lations and its real-time implementation is simple. However,

the α parameter needs to be estimated in advance; otherwise,
the FLOC algorithm will have serious performance degra-
dation and will lead to incorrect results when A and B are
greater than α/2.

3.2 The estimation of the characteristic exponent α

For the random variable X, which follows the α-stable dis-
tribution, the fractional lower-order moment is defined as
E
(
|X|p

)
, 0< p < α ≤ 2. p is the order of fractional lower-

order moment. From the Zolotarev theorem (Zolotarev,
1966) we obtain

E
(
|X|p

)
= C (p,α)γ p/α, (17)

C (p,α)=
2p0

(
p+1

2

)
0
(
1− p

α

)
√
π0

(
1− p

2

) , (18)

where α represents the characteristic exponent, γ represents
the scale parameter and 0(·) represents the gamma function.

If the random variable X follows the SαS distribution, a
study has found that there is a negative-order moment in the
SαS distribution (Ma and Nikias,1995). Equation (17) can
then be changed to

E
(
|X|p

)
= C (p,α)γ p/α, −1< p < α ≤ 2, (19)

because

E
(
|X|p

)
= E

(
ep log|X|

)
= C (p,α)γ p/α. (20)
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Eq. (20) is continuous at the point p = 0 after the introduc-
tion of negative-order moment. If Y = log |X|, E

(
epY

)
is the

moment-generating function of Y and

E
(
epY

)
=

∞∑
k=0

E
(
Y k
) pk
k!
= C (p,α)γ p/α. (21)

Then any order moments of Y are limited and

E
(
Y k
)
=

dk

dpk

[
C (p,α)γ p/α

] ∣∣
p=0 . (22)

This can be simplified to

E(Y )= Ce

(
1
α
− 1

)
+

1
α

logγ, (23)

where Ce = 0.57721566. . . is a Euler constant. Then

Var(Y )= E
{

[Y −E(Y )]2
}
=
π2

6

(
1
α2 +

1
2

)
. (24)

For the microseismic signals Yi (i = 1,2, . . .,N , N is the
sampling number), and the mean and variance can be ob-
tained by Eqs. (25) and (26), respectively.

Y =
1
N

N∑
i=1

Yi (25)

Var(Y )=
1
N

N∑
i=1

(
Yi −Y

)2
(26)

Plugging in the value gained from Eq. (26) into Eq. (24), we
can obtain an estimated value of α. Then, the value of α is
plugged into Eq. (23), and we obtain the value of γ .

3.3 Algorithm procedures

If xi(n) (i = 1,2; n= 1,2, . . .,N ) represents the sample of
two microseismic signals from the same seismic source, the
TDOA algorithm is shown below:

Step 1: for a given sequence of discrete signal x1(n) and
x2(n), calculate their characteristic exponents α1 and α2
according to Eqs. (24), (25) and (26);

Step 2: assigning A= 0.95×α1
2 and B = 0.95×α2

2 to find that
0≤ A< α1

2 , 0≤ B < α2
2 , 0.95 is an empirical value;

Step 3: add the Hanning window to x1(n) and x2(n),
and set the window lengths to max(size(x1(n))) and
max(size(x2(n))). The cross-correlation function R̂d(τ )

of x1(n) and x2(n) is calculated according to Eq. (15);

Step 4: detect the peak of the function R̂d(τ ). Then, the
TDOA estimation D̂ can be obtained.

4 Simulation and analysis

The signals Ricker1 and Ricker2 used in the simulation are
two Ricker wavelets. Their spectral peak frequency is 25 Hz.
The sampling frequency is 1 kHz, and the number of sam-
pling points is 1000. The time delay between the two Ricker
wavelets is set to 70 ms (Fig. 6a). The generalized signal-to-
noise ratio (GSNR) is defined in Eq. (27) and used to describe
the power ratio of signal and noise (Ma and Nikias, 1996).

GSNR= 10lg
σs

γ
. (27)

In the equation, σs represents the signal power, and γ repre-
sents the noise figure of the α-stable distribution.

4.1 Experiment 1

The spatial resolution on TDOA estimation of the general-
ized cross correlation (GCC), PHAT-GCC (phase transfer–
generalized correlation) method based on the Gaussian dis-
tribution and the FLOC method based on the non-Gaussian
distribution are compared and verified. α-stable distribution
noises to the two Ricker wavelets are added. The parameter
of the α-stable distribution (α, β, γ , δ) is set to (1.2, 0, 1, 0).
Because of the randomness of α-stable distribution noises,
the two noises are independent of each other. The two Ricker
wavelets with added noises are shown in Fig. 6b and c. In
the case of α-stable distribution noises, the TDOA estima-
tion results of the GCC, PHAT-GCC method and the FLOC
method when GSNR= 0 dB and GSNR= 15 dB are shown
in Fig. 6d–j.

It is evident from Fig. 6d, f, h and j that the GCC and
PHAT-GCC method shows serious performance degradation
when GSNR= 0 dB and GSNR= 15 dB. There are several
peak positions in the curve so that the correct result is dif-
ficult to get. However, the FLOC method has a strong anti-
interference ability. The peak appears at 70 ms and can esti-
mate the time delay correctly.

4.2 Experiment 2

The influence of different α to the TDOA estimation results
are verified. The two noises are generated randomly when
α takes different values between 0 and 2 and are added to
Ricker1 and Ricker2, respectively. When GSNR= 0 dB, the
TDOA estimation result of the two signals with noises ob-
tained by the FLOC method is shown in Fig. 7. Figure 7a–d
show the waveforms of Ricker1 and Ricker2 with different
noise signals added to these waveforms. Figure 7a∗–d∗ show
the corresponding TDOA estimation results.

It is evident from Fig. 7 that a smaller α (which implies
that there is a stronger pulse of noise) corresponds to bet-
ter performance in the TDOA estimation of the FLOC al-
gorithm. When α is close or equal to 2, the performance is
degraded (Fig. 7d∗), but it still can obtain the correct TDOA
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Figure 6. Comparison of the TDOA estimation results of GCC, FLOC and PHAT-GCC.

estimation result: 70 ms. Therefore, the FLOC method per-
forms well irrespective of the noise and follows the Gaussian
distribution or the α-stable distribution.

5 Case study

To verify the effectiveness of the FLOC method for TDOA
estimation of real microseismic signals, we select eight mi-
croseismic signals from the same seismic source to do the
experiment. The eight signals come from the ISS microseis-
mic monitoring system of a coal mine in central China. Seis-
mic geophones are laid along the mining roadway every 50 m
in the system. The frequency bandwidth of the seismic geo-
phones is between 3 and 2000 Hz. The data acquisition fre-
quency is 1 kHz. For convenience of comparing and analyz-
ing the experiment results, the first 2000 sampling points of
each waveform are picked as the data object. The P arrival
time of each microseismic signal is recorded manually, and

the time delay between any two of the microseismic signals
as a reference of the experimental result is calculated.

As an example, the microseismic signals in roadway nos. 2
and 7 are selected to explain the result. The waveforms of the
microseismic signals after interception are shown in Fig. 8a
and b. The time delay between the two signals obtained by
manual method is 19 ms. First, when the microseismic signal
follows the Gaussian distribution, the PHAT-GCC method,
which, of the GCC methods, performs best, is chosen for
the TDOA estimation of microseismic signals from the same
seismic source. The result is shown in Fig. 8c. Second, when
the microseismic signal follows the α-stable distribution,
FLOC is used for the TDOA estimation. The characteristic
exponent α of the two picked signals are calculated accord-
ing to Eqs. (23), (24) and (25). α2 = 1.802, α7 = 1.835 are
obtained as results. According to Step 2 in Sect. 3.3, assign
A= 0.85595 and B = 0.87163. The TDOA estimation result
obtained by the FLOC method is shown in Fig. 8d.
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Figure 7. The influence of different α to the TDOA estimation result.

Figure 8c and d show that the two methods both obtain
the correct result, 19 ms, but the peak of the FLOC method
is sharper than the GCC method. This implies that the FLOC
method performs better.

Each of the eight microseismic signals is considered to
be a set of data following the α-stable distribution. Their
characteristic exponent α values are calculated according to
Eqs. (23), (24) and (25) and are shown in the table (Table 1).
The values are between 1.802 and 1.913 (Fig. 9). It can be
seen that the characteristic exponent α values of all of the
signals are less than 2. According to the data in Table 1, we
can use estimate maximum likelihood estimator for parame-
ters µ (difference of data number) and δ (standard error), and
µ= 1.8550, δ = 0.0377 can be obtained.

We can obtain 28 pairs of microseismic signals by the pair
combination of the eight signals in Table 1. The comparison
of TDOA estimations obtained by the PHAT-GCC, FLOC
and manual method is shown in the table (Table 2).

An analysis of tables (Tables 1, 2) indicates that the pulse
of actual microseismic signal is stronger than the one fol-

Table 1. The characteristic exponent α of microseismic signal.

Roadway Characteristic Roadway Characteristic
number exponent α number exponent α

1 1.864 5 1.913
2 1.802 6 1.857
3 1.822 7 1.835
4 1.901 8 1.846

Table 2. The comparison of TDOA estimation results of microseis-
mic signal.

TDOA error= 0 ms error≤ 3 ms error≤ 5 ms
method percentage percentage percentage

FLOC 96.43 % 100 % 100 %
PHAT-GCC 85.71 % 89.29 % 92.86 %
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1# 2# 3# 4# 5# 6# 7# 8#
1.5

1.6

1.7

1.8

1.9

2

Roadway number

α

Figure 9. Comparison of the characteristic exponent α of eight mi-
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lowing the Gaussian distribution. Because the characteristic
exponent of the actual microseismic signal is less than 2, it is
considered to be a signal following the α-stable distribution.
Based on this observation, we can say that the spatial res-
olution of the FLOC method is better than the PHAT-GCC
method at TDOA estimation of microseismic signals.

6 Conclusions

Through the analysis of the convergence of dynamic sam-
ple variance, the microseismic signal with noises is shown
to follow the α-stable distribution. The analysis of the sym-
metry of probability density curve of the sample sequence
proves that the microseismic signal is approximately sym-
metric. Therefore, it is more reasonable to regard the micro-
seismic signal with noises as the α-stable distribution signal.

Because of the absence of second-order statistics of α-
stable distribution, one cannot obtain optimal or correct esti-
mation values via the traditional TDOA method based on the
Gaussian distribution.

Microseismic monitoring data obtained from a coal mine
in central China are used for TDOA estimation based on the
GCC method and the FLOC method to study cases when the
microseismic signals follow the Gaussian distribution and the
α-stable distribution. In the comparison of the results and
the time delay obtained manually, we observe that the FLOC
method performs better than the traditional GCC method ir-
respective of whether the noise follows the Gaussian distri-
bution or the α-stable distribution. This method is suitable
for the TDOA estimation of microseismic signals from the
same seismic source.
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