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Abstract. Trajectory encounter volume – the volume of fluid
that passes close to a reference fluid parcel over some time in-
terval – has been recently introduced as a measure of mixing
potential of a flow. Diffusivity is the most commonly used
characteristic of turbulent diffusion. We derive the analyti-
cal relationship between the encounter volume and diffusiv-
ity under the assumption of an isotropic random walk, i.e.,
diffusive motion, in one and two dimensions. We apply the
derived formulas to produce maps of encounter volume and
the corresponding diffusivity in the Gulf Stream region of
the North Atlantic based on satellite altimetry, and discuss
the mixing properties of Gulf Stream rings. Advantages of-
fered by the derived formula for estimating diffusivity from
oceanographic data are discussed, as well as applications to
other disciplines.

1 Introduction

The frequency of close encounters between different objects
or organisms can be a fundamental metric in social and me-
chanical systems. The chances that a person will meet a new
friend or contract a new disease during the course of a day
is influenced by the number of distinct individuals that he or
she comes into close contact with. The chances that a preda-
tor will ingest a poisonous prey, or that a mushroom hunter
will mistakenly pick up a poisonous variety, is influenced by
the number of distinct species or variety of prey or mush-
rooms that are encountered. In fluid systems, the exchange of
properties such as temperature, salinity or humidity between

a given fluid element and its surroundings is influenced by
the number of other distinct fluid elements that pass close by
over a given time period. In all these cases it is best to think
of close encounters as providing the potential, if not neces-
sarily the act, of transmission of germs, toxins, heat, salinity,
etc.

In cases of property exchange within continuous media
such as air or water, it may be most meaningful to talk about
a mass or volume passing within some radius of a reference
fluid element as this element moves along its trajectory. Ryp-
ina and Pratt (2017) introduce a trajectory encounter volume,
V , the volume of fluid that comes in contact with the refer-
ence fluid parcel over a finite time interval. The increase in V
over time is one measure of the mixing potential of the ele-
ment, “mixing” being the irreversible exchange of properties
between different water parcels. Thus, fluid parcels that have
large encounter volumes as they move through the flow field
have large mixing potential, i.e., an opportunity to exchange
properties with other fluid parcels, and vice versa.

In order to formally define the encounter volume V , Ryp-
ina and Pratt (2017) subdivide the entire fluid into infinites-
imal fluid elements with volumes dVi , and define the en-
counter volume for each fluid element to be the total volume
of fluid that passes within a radius R of it over a finite time
interval t0 < t < t0+ T , i.e.,

V (x0; t0,T ,R)= lim
dVi→0

6idVi . (1)

In practice, for dense uniform grids of trajectories,
xk (x0k; t0,T ) ,k = 1, . . .,K , where t0 is the starting time,
T is the trajectory integration time, and x0k is the trajec-
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tory initial position satisfying x (x0; t0,T = 0)= x0, both
the limit and the subscript in the above definition Eq. (1)
can be dropped. In this case, the encounter volume can be
approximated by

V ≈ N δV, (2)

where the encounter number,

N (x0ref; t0,T ,R)=

K∑
k = 1
k 6= ref

I (min(|xk (x0k; t0,T )− xref (x0ref; t0,T )|)≤ R), (3)

is the number of trajectories that come within a radius R of
the reference trajectory, xref (x0ref; t0,T ), over a time t0 <
t < t0+ T . Here the indicator function I is 1 if true and 0 if
false, and K is the total number of particles. As in Rypina
and Pratt (2017), we define encounter volume based on the
number of encounters with different trajectories, not the to-
tal number of encounter events (see the schematic diagram
of trajectory encounters in Fig. 1). Rypina and Pratt (2017)
discuss how the encounter volume can be used to identify La-
grangian coherent structures (LCS) such as stable and unsta-
ble manifolds of hyperbolic trajectories and regions foliated
by the KAM-like tori surrounding elliptic trajectories in re-
alistic geophysical flows. A detailed comparison between the
encounter volume method and some other Lagrangian meth-
ods of LCS identification, as well as the dependences on pa-
rameters, t0,T ,R, and on grid spacing (or on the number of
trajectories,K), and the relative advantages of different tech-
niques, was given in Rypina and Pratt (2017). The interested
reader is referred to that earlier paper for details. The current
paper is concerned only with the question of finding the con-
nection between the encounter volume and diffusivity, rather
than identifying LCS.

Given the seemingly fundamental importance of close en-
counters, it is of interest to relate metrics such as V to other
bulk measures of interactions within the system. For exam-
ple, in some cases it may be more feasible to count encoun-
ters rather than to measure interactions or property exchanges
directly, whereas in other cases the number of encounters
might be most pertinent to the process in question but dif-
ficult to measure directly. In many applications, including
ocean turbulence, the most commonly used metric of mix-
ing is the eddy diffusivity, κ , a quantity that relates trans-
port of fluid elements by turbulent eddies to diffusion (La-
Casce, 2008; Vallis, 2006; Rypina et al., 2012; Kamenkovich
et al., 2015). The underlying assumption is that the eddy field
drives downgradient tracer transfer, similar to molecular dif-
fusion but with a different (larger) diffusion coefficient. This
diffusive parameterization of eddies has been implemented
in many non-eddy-resolving oceanic numerical models. The
diffusivity can be measured by a variety of means, including
dye release (Ledwell et al., 2000; Sundermeyer and Ledwell,

Figure 1. Schematic diagram of trajectory encounters, showing tra-
jectories of nine particles, with dots indicating positions of particles
at three time instances, at the release time, t0, and at two later times,
t0+T1 and t0+T2. The reference trajectory and the encounter sphere
are shown in black, trajectories that do not encounter the reference
trajectory are in grey, and trajectories that encounter the reference
trajectory are in green if encounters occur at t0+ T1, and in blue if
encounters occur at t0+T2. Time slices are schematically shown by
dashed rectangles, and the encounter number, N , is indicated at the
top of each time slice.

2001; Rypina et al., 2016), surface drifter dispersion (Okubo,
1971; Davis, 1991; LaCasce, 2008; La Casce et al., 2014;
Rypina et al., 2012, 2016), and property budgets (Munk,
1966). In numerical models κ is often assumed constant in
both time and space, or related in some simplified manner to
the large-scale flow properties (Visbeck et al., 1997).

Because the purpose of the diffusivity coefficient κ is to
quantify the intensity of the eddy-induced tracer transfer, i.e.,
the intensity of mixing, it is tempting to relate it to the en-
counter volume, V , which quantifies the mixing potential of
a flow and thus is closely related to tracer mixing. Such an
analytical connection between the encounter volume and dif-
fusivity could potentially also be useful for the parameteri-
zations of eddy effects in numerical models. The main goal
of this paper is to develop a relationship between V and κ
in one and two dimensions. Specifically, we seek an analyti-
cal expression for the encounter volume, V , i.e., the volume
of fluid that passed within radius R from a reference par-
ticle over time, as a function of κ . The relationship is not
as straightforward as one might first imagine, but can nev-
ertheless be written down straightforwardly in the long-time
limit. This is opportune, since the concept of eddy diffusivity
is most relevant in the long-time limit.

2 Connection between encounter volume and
diffusivity

This problem was framed in mathematical terms in Rypina
and Pratt (2017), who outlined some initial steps towards de-
riving the analytical connection between encounter volume
and diffusivity but did not finish the derivation. In this sec-
tion, we complete the derivation.
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2.1 Main idea for the derivation

Let us start by considering the simplest diffusive random
walk process in one or two dimensions, where particles take
steps of fixed length 1x in random directions along the x-
axis in 1-D or along both the x- and y-axes in 2-D, respec-
tively, at fixed time intervals 1t .

The single particle dispersion, i.e., the ensemble-averaged
square displacement from the particle’s initial position, is
D1-D = 〈(x− x0)

2
〉 andD2-D = 〈(x− x0)

2
+(y− y0)

2
〉 in 1-

D or 2-D, respectively. For a diffusive process, the dispersion
grows linearly with time, and the constant proportionality co-
efficient is related to diffusivity. Specifically, D1-D = 2κ1-Dt

with κ1-D =1x
2/(21t), and D2-D = 4K2-Dt with κ2-D =

1x2/(41t).
It is convenient to consider the motion in a reference frame

that is moving with the reference particle. In that reference
frame, the reference particle will always stay at the origin,
while other particles will still be involved in a random walk
motion, but with a diffusivity twice that in the stationary
frame, κmoving

=2κstationary (Rypina and Pratt, 2017).
The problem of finding the encounter number is then re-

duced to counting the number of randomly walking particles
(with diffusivity κmoving) that come within radius R of the
origin in the moving frame. This is related to a classic prob-
lem in statistics – the problem of a random walker reaching
an absorbing boundary, usually referred to as “a cliff” (be-
cause once a walker reaches the absorbing boundary, it falls
off the cliff), over a time interval from 0 to t .

In the next section we will provide formal solutions; here
we simply outline the steps to streamline the derivation. We
start by deriving the appropriate diffusion equation for the
probability density function, p(x, t), of random walkers in
1-D or 2-D:

∂p

∂t
= κ∇2p. (4)

We place a cliff, xc, at the perimeter of the encounter sphere,
i.e., at a distance R from the origin, and impose an absorbing
boundary condition at a cliff,

p(xc, t)= 0, (5a)

which removes (or “absorbs”) particles that have reached the
cliff (see Fig. 2 for a schematic diagram). We then consider
a random walker that is initially located at a point x0 outside
the cliff at t = 0, i.e.,

p(x, t = 0)= δ (x− x0) , (5b)

and we write an analytical solution for the probability density
function satisfying Eqs. (4)–(5),

G(x, t;x0, xc) , (6)

that quantifies the probability of finding a random walker ini-
tially located at x0 at any location x outside of the cliff at a

(a) (b)

Figure 2. Schematic diagram in 1-D (a) and 2-D (b). Hatched areas
show semi-infinite domains outside of the cliff.

later time t > 0. In mathematical terms, G is Green’s func-
tion of the diffusion equation.

The survival probability, which quantifies the probability
that a random walker initially located at x0 at t = 0 has “sur-
vived” over time t without falling off the cliff, is

S (t;x0,xc)=

∫
G(x, t;x0,xc)dx (7)

where the integral is taken over all locations outside of the
cliff. The encounter, or “non-survival”, probability can then
be written as the conjugate quantity,

Pen (t;x0,xc)= 1− S (t;x0,xc) , (8)

which quantifies the probability that a random walker ini-
tially located at x0 at t = 0 has reached, or fallen off, the
cliff over time t . This allows one to write the encounter vol-
ume, i.e., the volume occupied by particles that were initially
located outside of the cliff and that have reached the cliff by
time t , as

V (t;xc)=

∫
Pen (t;x0,xc)dx0 (9)

where the integral is taken over all initial positions outside of
the cliff.

2.2 1-D case

Consider a random walker initially located at the origin, who
takes, with a probability of 1/2, a fixed step 1x to the right
or to the left along the x-axis after each time interval 1t .
Then the probability of finding a walker at a location x =
n1x after (m+ 1) steps is

p(n1x,(m+ 1)1t)= 1/2[p((n− 1)1x,m1t)
+p((n+ 1)1x,m1t)]. (10)

Using a Taylor series expansion in 1x and 1t , we can write
down the finite-difference approximation to the above ex-
pression as

p(x, t)+1t
∂p

∂t
=

1
2

[
p(x, t)−1x

∂p

∂x
+
1x2

2
∂2p

∂x2 +p(x, t)
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+1x
∂p

∂x
+
1x2

2
∂2p

∂x2 +O
(
1x4

)]
= p(x, t)+

1x2

2
∂2p

∂x2 +O
(
1x4

)
, (11)

yielding a diffusion equation

∂p

∂t
= κ

∂2p

∂x2 (12)

with diffusivity coefficient κ = 1x2

21t .
Green’s function for the 1-D diffusion equation without

a cliff is a solution with initial condition p(x, t = 0;x0)=

δ(x− x0) in an unbounded domain. It takes the form

Gunbounded(x, t;x0)=
1

√
4πκt

e−
(x−x0)

2

4κt . (13)

Green’s function with the cliff (see Fig. 2 for a schematic
diagram), i.e., a solution to the initial-value problem with
p(x, t = 0;x0)= δ(x− x0) in a semi-infinite domain, x ∈
[−∞;xc], with an absorbing boundary condition at a cliff,
p(x = xc, t;x0)= 0, can be constructed by the method of
images from two unbounded Green’s functions as

G(x, t;x0,xc)=
1

√
4πκt

(
e−

(x−x0)
2

4κt − e−
(x−(2xc−x0))

2

4κt

)
.

(14)

It follows from Eqs. (7) to (9) that the survival or non-
encounter probability is

S(t;x0,xc)=

∫ xc

−∞

G(x, t;x0,xc)dx = Erf
[
xc− x0

2
√
κt

]
, (15)

the encounter probability is

Pen (t;x0,xc)= 1− S (t)= 1−Erf
(
xc− x0

2
√
κt

)
, (16)

and the encounter volume is

V (t;xc)=

∫ xc

−∞

Pen (t;x0,xc)dx0

=

∫ xc

−∞

(
1−Erf

[
xc− x0

2
√
κt

])
dx0 =

2
√
π

√
κt. (17)

The above formula accounts for the randomly walking par-
ticles that have reached the cliff from the left over time t .
By symmetry, if the cliff was located to the right of the ori-
gin, the same number of particles would be reaching the cliff
from the right, so the total encounter volume is

V (t;xc)=
4
√
π

√
κt. (18)

Note that formula (18) gives the encounter volume, i.e., the
volume of fluid coming within radius R from the origin, in
a reference frame moving with the reference particle, so the
corresponding diffusivity on the right-hand side of Eq. (18)
is κmoving

= 2κstationary.

2.3 2-D case

Consider a random walker in 2-D, who is initially located at
the origin and who takes, with a probability of 1/4, a fixed
step of length 1x to the right, left, up or down after each
time interval 1t . Then the probability of finding a walker at
a location x = n1x,y =m1y at time t = (l+ 1)1t is

p(n1x,m1y, (l+ 1)1t)=
1
4

[
p((n− 1)1x,m1y,l1t)

+p((n+ 1)1x,m1y,l1t)
+p(n1x,(m− 1)1y, l1t)
+p(n1x,(m+ 1)1y, l1t)

]
. (19)

Using a Taylor series expansion in1x,1y and1t , the finite-
difference approximation leads to a diffusion equation

∂p

∂t
= κ

(
∂2p

∂x2 +
∂2p

∂y2

)
(20)

with diffusivity coefficient κ = 1x2

41t .
To proceed, we need an analytical expression for Green’s

function of Eq. (20) with a cliff at a distance R from the ori-
gin, i.e., a solution to the initial-value problem with p(x, t =
0;x0)= δ(x−x0) for the above 2-D diffusion equation on a
semi-infinite plane (r ≥ R, 0< θ ≤ 2π), bounded internally
by an absorbing boundary (a cliff) located at r = R, so that
p(r = R,θ, t;x0)= 0 (see Fig. 2 right for a schematic dia-
gram). Here (r,θ) are polar coordinates.

Carlslaw and Joeger (1939) give the answer as

G(r,θ, t;r0,θ0,R)= u+w =
∑
∞

n=−∞
(un(r, t;r0,R)

+wn(r, t;r0,R))cosn(θ − θ0) (21)

where r0(≥ R),θ0 denote the source location, and

{un, wn} = L
−1
{un,wn} =

1
2πi

lim
T→∞

∫ γ+iT

γ−iT

est
{un,wn}ds

are the inverse Laplace transforms of

un =
1

2πκ

{
In (qr)Kn (qr0) , R < r < r0
In (qr0)Kn (qr) , r > r0

and wn =−
In (qR)

Kn (qR)
Kn (qr0)Kn (qr) (22)

with q =
√
s
κ

.
The survival probability (from Eq. 7) is

S (t;r0,R)=

∫
R2

G(x, t;x0,R)d
2x

=

2π∫
0

∞∫
R

∞∑
n=−∞

(un+ vn)cosn(θ − θ0) r dr dθ
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= 2π

∞∫
R

(u0+ v0)rdr. (23)

Next, we take the Laplace transform of the survival probabil-
ity and write it in terms of a Laplace variable s as

S (s;r0,R)=

∫
∞

0
e−stS (t;r0,R)dt = 2π

∫
∞

R

(u0+w0)rdr

=
1
κ

∫ r0

R

I0 (qr)K0 (qr0)rdr

+
1
κ

∫
∞

r0

I0 (qr0)K0 (qr)rdr

−
1
κ

∫
∞

R

I0 (qR)

K0 (qR)
K0(qr)K0 (qr0)rdr. (24)

Using
∫
rI0 (r)dr = rI1(r) and

∫
rK0 (r)dr =−rK1 (r),

and limx→∞xK1 (x)= 0 we find

S (s;r0,R)=
1
κ
K0 (qr0)

[
r

q
I1 (qr)

]∣∣∣∣r
′

R

+
1
κ
I0 (qr0)

[
−
r

q
K1 (qr)

]∣∣∣∣∞
R

−
1
κ

I0 (qr0)

K0 (qR)
K0 (qr0)

[
−
r

q
K1 (qr)

]∣∣∣∣∞
R

=
1
κ

{
r0

q
(I1 (qr0)K0 (qr0)+ I0 (qr0)K1 (qr0))

−
a

q

K0 (qr0)

K0 (qR)
(I1 (qR)K0 (qR)

+I0 (qR)K1 (qR))} . (25)

But I1 (x)K0 (x)+ I0 (x)K1 (x)=
1
x

, so

S (s;r0,R)=
1
κ

(
1
q2 −

1
q2
K0 (qr0)

K0 (qR)

)
=

1
s

(
1−

K0 (qr0)

K0 (qR)

)
. (26)

From Eq. (8), the encounter probability Pen (t;x0,R)= 1−
S (t;x0,R), and from Eq. (9) the encounter volume is

V (t;R)=

∫
R2
Pend

2x0 =

∫ 2π

0

∫
∞

R

Pen r0 dr0

= 2π
∫
∞

R

[1− S(t;r0,R)]r0 dr0. (27)

We now take the Laplace transform of the encounter number
to get

V (s;R)=

∫
∞

0
e−stV (t;R)dt = 2π

∫
∞

R

[
1
s
− S(s;R)

]
r0 dr0

= 2π
∫
∞

R

K0 (qr0)

K0 (qR)

r0

s
dr0

=
2π

sK0 (qR)

[
−
r0

q
K1 (qr0)

]∣∣∣∣∞
R

=
2πR
sq

K1 (qR)

K0 (qR)
=

2πR

s3/2 κ−
1
2

K1

(√
s
κ
R
)

K0

(√
s
κ
R
) (28)

where we used
∫
∞

0 e−stdt = 1
s
,
∫
K0 (z)zdz=−zK1(z), and

limz→∞K1 (z)=0.
The explicit connection between the encounter volume and

diffusivity is thus given by the inverse Laplace transform of
the above expression (28),

V (t;R)= L−1 {V (s;R)} . (29)

Although numerically straightforward to evaluate, a non-
integral analytic form does not exist for this inverse Laplace
transform. To better understand the connection between V
and κ and the growth of V with time, we next look at the
asymptotic limits of small and large time. The small-t limit
is transparent, while the long-t limit is more involved.

a. small-t asymptotics

In the small-t limit, the corresponding Laplace coordi-
nate s is large, giving

V (s;R) ∼ 2πRκ
1
2

1
s3/2 (30)

because limz→∞
K1(z)
K0(z)

= 1. Noting that L−1
{
s−

3
2

}
=

2
√
t

√
π

, the inverse Laplace transform of the above gives
the following simple expression connecting the en-
counter volume and diffusivity at short times:

V (t;R)
t→0
−−→ 4R

√
π
√
κt. (31)

b. large-t asymptotics

In the large-t limit, the Laplace coordinate s is small and
the asymptotic expansions for K0 and K1 take the form

limz→0K0 (z)=−γ − ln
( z

2

)
+O

(( z
2

)2
ln
( z

2

))
, (32)

limz→0K1 (z)=
1
z
+
z

2

[
ln
( z

2

)
+ γ −

1
2

]
+O(z3 lnz), (33)

where γ is the Euler–Mascheroni constant, giving

lim
s→0

V (s;R)=−
4πκ

s2 ln(τ s)
−
πR2

s
+O

(
1

s ln(τ s)

)
, (34)

where

τ =
R2e2γ

4κ
. (35)

We now need to take an inverse Laplace transform of V .
The second term on the right-hand side gives L−1

{
πR2

s

}
=
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πR2. Llewelyn Smith (2000) discusses the literature for in-
verse Laplace transforms of the form (sα lns)−1 for small
s. For our problem, the discussion in Olver (1974, Chap. 8,
Sect. 11.4) is the most helpful approach. His result (11.13),
discarding the exponential term which is not needed here,
shows that the inverse Laplace transform of

(
s2 lns

)−1 has
the asymptotic expansion

L−1
{

1
s2 lns

}
t→∞
−−−→−t

(
1

ln t
+

1− γ
(ln t)2

+O
(
(ln t)−3

))
. (36)

Using L−1 {F(τs)} = 1
τ
f (t/τ ), we thus obtain the desired

connection between the encounter volume and diffusivity at
long times:

V (t;R)
t→∞
−−−→ 4πκt

(
1

ln t
τ

+
1− γ
(ln t

τ
)2

)
−πR2

+O

(
t

(ln t
τ
)3

)
+O

(
1

ln t
τ

.

)
. (37)

Physically, the timescale τ (Eq. 35) defines the time at which
the dispersion of random particles, D = 4κτ , is comparable
to the volume of the encounter sphere, i.e., R2e2γ ∼= πR2 in
2-D. Thus for t � τ , particles are coming to the encounter
sphere “from far away.”

For practical applications, it is sufficient to only keep the
leading-order term of the expansion, yielding a simpler con-
nection between encounter volume and diffusivity,

V (t;R)
t→∞
−−−→

4πκt
ln t
τ

+O

(
t

(ln t
τ
)2

)
. (38)

Note again that the diffusivity on the right-hand side of
Eqs. (28)–(29), (31) and (38) is κmoving, which is equal to
2κstationary.

2.4 Numerical tests of the derived formulas in 1-D and
2-D

Before applying our results to the realistic oceanic flow, we
numerically tested the accuracy of the derived formulas in
idealized settings by numerically simulating a random walk
motion in 1-D and 2-D, as described in the beginning of
Sects. 2.1 and 2.2, respectively. We then computed the en-
counter number and encounter volume using definitions (2)–
(3), and compared the result with the derived exact formulas
(18) and (28)–(29) and with the asymptotic formulas (31)
and (38). Note that although formulas (28)–(29) are exact,
the inverse Laplace transform still needs to be evaluated nu-
merically and thus is subject to numerical accuracy, round-
off errors, etc.; these numerical errors are, however, small,
and we will refer to numerical solutions of (28)–(29) as “ex-
act,” as opposed to the asymptotic solutions (31) and (38).

The comparison between numerical simulations and the-
ory is shown in Fig. 3. Because the numerically simulated

random walk deviates significantly from the diffusive regime
over short (< O(1001t)) timescales, the agreement between
numerical simulation and theory is poor at those times in
both 1-D and 2-D. Once the random walkers have executed
> 100 time steps, however, the dispersion reaches the diffu-
sive regime, and the agreement between the theory (red) and
numerical simulation (black) rapidly improves for both the 1-
D and 2-D cases, with the two curves approaching each other
at long times. In 2-D, the long-time asymptotic formula (38)
works well at long times, t � τ , as expected. The 2-D short-
time asymptotic formula (green) agrees well with the exact
formula (red) at short times but not with the numerical sim-
ulations (black) for the same reason as discussed above, i.e.,
because the numerically simulated random walk has not yet
reached the diffusive regime at those times.

3 Application to the altimetric velocities in the Gulf
Stream region

Sea surface height measurements made from altimetric satel-
lites provide nearly global estimates of geostrophic cur-
rents throughout the World Oceans. These velocity fields,
previously distributed by AVISO, are now available from
the Copernicus Marine and Environment Monitoring Ser-
vice (CMEMS) website (http://marine.copernicus.eu/), both
along satellite tracks and as a gridded mapped product in both
near-real and delayed time. Here we use the delayed-time
gridded maps of absolute geostrophic velocities with 1/4
deg spatial resolution and a temporal step of 1 day, and fo-
cus our attention on the Gulf Stream extension region of the
North Atlantic Ocean. There, the Gulf Stream separates from
the coast and starts to meander, shedding cold- and warm-
core Gulf Stream rings from its southern and northern flanks.
These rings are among the strongest mesoscale eddies in the
ocean. However, their coherence, interaction with each other
and with other flow features, and their contribution to trans-
port, stirring and mixing are still not completely understood
(Bower et al., 1985; Cherian and Brink, 2016).

Maps showing the encounter volume for fluid parcel tra-
jectories in the region, and the corresponding diffusivity es-
timates (Fig. 4), could be useful both for understanding and
interpreting the transport properties of the flow, as well as
for benchmarking and parameterization of eddy effects in
numerical models. In our numerical simulations, trajectories
were released on a regular grid with dx = dy ∼= 10 km on
11 January 2015 and were integrated forward in time for 90
days using a fifth-order variable-step Runge–Kutta integra-
tion scheme with bi-linear interpolation between grid points
in space and time. The encounter radius was chosen to be
R = 30 km in both the zonal and meridional directions, i.e.,
about a third of a radius of a typical Gulf Stream ring. Similar
parameter values were used in Rypina and Pratt (2017), al-
though our new simulation was carried out using more recent
2015 velocities instead of 1997 as in that paper.
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Figure 3. Comparison between theoretical expression (red, green, blue) and numerical estimates (black) of the encounter volume for a
random walk in 1-D (a) and 2-D (b). In both, κ = 5 and 1t = 05. In 2-D, τ ∼= 20.

Figure 4. Encounter volume (a, b), exact diffusivity (c, d), long-time diffusivity (e, f) and diffusive timescale (g, h) for the full flow (a, c,
e, g) and for the eddy component of the flow (b, d, f, h). White shows land and the thick black curve shows the coastline. The encounter
volume was computed on 11 January 2015 over 90 days with an encounter radius of 30 km.

The encounter volume field, shown in the top left panel
of Fig. 4, highlights the overall complexity of the flow and
identifies a variety of features with different mixing poten-
tial, most notably several Gulf Stream rings with spatially
small low-V (blue) cores and larger high-V (yellow) pe-
ripheries. Although the azimuthal velocities and vorticity-to-
strain ratio are large within the rings, the coherent core re-
gions with inhibited mixing potential are small, suggesting
that the coherent transport by these rings might be smaller

than anticipated from the Eulerian diagnostics such as the
Okubo–Weiss or closed-streamline criteria (Chelton et al.,
2011; Abernathey and Haller, 2018). On the other hand, the
rings’ peripheries, where the mixing potential is elevated
compared to the surrounding fluid, cover a larger geograph-
ical area than the cores. Thus, while rings inhibit mixing
within their small cores, the enhanced mixing on the periph-
ery might be their dominant effect. This is consistent with the
results from Rypina and Pratt (2017), but a more thorough
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analysis is needed to test this hypothesis. Notably, the en-
counter volume is also large along the northern and southern
flanks of the Gulf Stream jet, with two separate yellow curves
running parallel to each other and a valley in between (al-
though the curves could not be traced continuously through-
out the entire region). This enhanced mixing on both flanks
of the Gulf Stream extension current is reminiscent of chaotic
advection driven by the tangled stable and unstable mani-
folds at the sides of the jet (del-Castillo-Negrete and Morri-
son, 1993; Rogerson et al., 1999; Rypina et al., 2007; Rypina
and Pratt, 2017), and is also consistent with the existence of
critical layers (Kuo, 1949; Ngan and Sheppard, 1997).

We now apply the asymptotic formula (38) to convert the
encounter volume to diffusivity. Because Eq. (38) is not in-
vertible analytically, we converted V to κ numerically us-
ing a look-up table approach. More specifically, we used
Eq. (38) to compute theoretically predicted V values at time
T = 90 days for a wide range of κs spanning all possible
oceanographic values from 0 up to 109 cm2 s−1, and we used
the resulting look-up table to assign the corresponding κ val-
ues to V values in the third row of Fig. 4. Note that, instead of
the long-time asymptotic formula (38) (as in the third row of
Fig. 4), it is also possible to use the exact formulas (28)–(29)
to convert V to κ via a look-up table approach. The result-
ing exact diffusivities, shown in the second row of Fig. 4,
are similar to the long-time asymptotic values (third row).
Because both exact and asymptotic formulas were derived
under the assumption of a diffusive random walk, neither
should work well in regions with a non-diffusive behavior.
The asymptotic formula has the advantage of being simpler
and it also provides for a numerical estimate of the “long-
time-limit” timescale, τ , shown in the bottom row of Fig. 4.

As expected, the diffusivity maps in the second and third
rows of Fig. 4, which resulted from converting V to κ using
(28)–(29) or (38), respectively, have the same spatial variabil-
ity as the V -map, with large κ at the peripheries of the Gulf
Stream rings and at the flanks of the Gulf Stream and small
κ at the cores of the rings, near the Gulf Stream centerline
and far away from the Gulf Stream current, where the flow is
generally slower. The diffusivity values range from O

(
105)

to O
(
107) cm2 s−1. Using the 1971 Okubo’s diffusivity di-

agram and scaling law, κOkubo[cm2 s−1]= 0.0103 L[cm]1.15,
our diffusivity values correspond to spatial scales from 10 to
650 km, thus spanning the entire mesoscale range. This is not
surprising considering the Lagrangian nature of our analysis,
where trajectories inside the small (< 50 km) low-diffusion
eddy cores stay within the cores for the entire integration du-
ration (90 days), whereas trajectories in the high-diffusivity
regions near the ring peripheries and at the flanks of the Gulf
Stream jet cover large distances, sometimes > 650 km, over
90 days.

The performances of the exact and asymptotic diffusive
formulas vary greatly throughout the domain, with bet-
ter/poorer performances in high-/low-V areas. This is be-
cause in the low-V areas, the behavior of fluid parcels is non-
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Figure 5. Comparison between numerically computed V (solid)
and the exact (dotted) and long-time diffusive formulas (dashed)
with the corresponding κ for the three reference trajectories located
in the core, periphery and outside (black, red, blue) of a Gulf Stream
ring.

diffusive, so the diffusive theoretical formulas work poorly.
The breakdown of the long-time asymptotic formula is ev-
ident in the fourth row of Fig. 4, which shows the corre-
sponding long-time scales, τ (from Eq. 35), throughout the
domain. As suggested by our 2-D random walk simulations,
the long-time asymptotic diffusive formula only works well
when t � τ , but in reality τ values are < 9 days (1/10 of
our integration time) only in the highest-V regions, and are
much larger everywhere else, reaching values of ∼= 90 days
within the cores of the Gulf Stream rings. More detailed com-
parison between theory, both exact and asymptotic, and nu-
merical V (t) is shown in Fig. 5 for three reference trajecto-
ries that are initially located inside the core, on the periph-
ery, and outside of a Gulf Stream ring (black, red, and blue,
respectively) centered at approximately 36.8◦ N and 60◦W.
Clearly, the diffusive theory works poorly for the trajectory
inside the eddy core (black curve). The agreement is better
for the blue curves and even better for the red curves, corre-
sponding to trajectories outside and on the periphery of the
eddy, although deviations between the theory and numerics
are still visible, raising questions about the general validity
of the diffusive approximation in ocean flows on timescales
of a few months.

The non-diffusive nature of the parcel motion over
90 days is because ocean eddies have finite lengthscales and
timescales, so a variety of different transport regimes gener-
ally occur before separating parcels become uncorrelated and
transport becomes diffusive, as in a random walk. At very
short times the motion of fluid parcels is largely governed by
the local velocity shear, so the resulting transport regime is
ballistic, i.e., D ∝ T 2 and V ∝ T (Rypina and Pratt, 2017).
At longer times, when velocity shear can no longer be as-
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sumed constant in space and time, the regime may transi-
tion to a local Richardson regime (i.e., D ∝ t3), where sep-
aration at a given scale is governed by the local features
of a comparable scale (Richardson, 1926; Bennett, 1984;
Beron-Vera and LaCasce, 2016), or to a non-local chaotic-
advection spreading regime (i.e., D ∝ exp(λt)), where sepa-
ration is governed by the large-scale flow features (Bennett,
1984; Rypina et al., 2010; Beron-Vera and LaCasce, 2016).
The kinetic energy spectrum of a flow indicates whether a
local or non-local regime will be relevant. The chaotic trans-
port regime is generally expected to occur in mesoscale-
dominated eddying flows, such as, for example, AVISO ve-
locity fields, over timescales of a few eddy winding times.
At times long enough for particles to sample many different
flow features, such as Gulf Stream meanders or mesoscale
eddies in the AVISO fields, the velocities of the neighbor-
ing particles become completely uncorrelated, and transport
finally approaches the diffusive regime. With the mesoscale
eddy turnover time being on the order of several weeks, it
often takes longer than 90 days to reach the diffusive regime.

A number of diffusivity estimates other than Okubo’s have
been made for the Gulf Stream extension region (e.g., Zhur-
bas and Oh, 2004; LaCasce, 2008; Rypina et al., 2012; Aber-
nathey and Marshall, 2013; Klocker and Abernathey, 2014;
or Cole et al., 2015). These estimates are based on surface
drifters (Zhurbas and Oh, 2004; LaCasce, 2008; Rypina et
al., 2012), satellite-observed velocity fields (Abernathey and
Marshall, 2013; Klocker and Abernathey, 2014; Rypina et
al., 2012), and Argo float observations (Cole et al., 2015),
and they use either the spread of drifters or the evolution
of simulated or observed tracer fields to deduce diffusivity.
The resulting diffusivities are spatially varying and span 2
orders of magnitude, from 2× 104 m2 s−1 in the most ener-
getic regions in the immediate vicinity of the Gulf Stream
and its extension, to 103 m2 s−1 in less energetic areas, to
200 m2 s−1 in the coastal areas of the Slope Sea. Diffusivity
estimates vary significantly depending on the initial tracer
distribution used (Abernathey and Marshall, 2013) and de-
pend on whether the suppression by the mean current has
been taken into account (Klocker and Abernathey, 2014).
The diffusivity tensor has also been shown to be anisotropic,
with a large anisotropy ratio near the Gulf Stream (Ryp-
ina et al., 2012). Data resolution and coverage, as well as
the choice of timescales and lengthscales also play a role in
defining κ value (Cole at al., 2015). All of these issues com-
plicate the reconciliation of different diffusivity estimates.
Nevertheless, ignoring these complications for a moment,
and avoiding the smallest diffusivities in those geographical
areas of Fig. 4 where the diffusive approximation is invalid,
our O(103 m2 s−1) encounter-volume-based diffusivity esti-
mates tend to be in the middle of the range of available esti-
mates for the western North Atlantic. Although not inconsis-
tent with other estimates, the encounter volume method did
not predict diffusivities to reach values of 104 m2 s−1 any-
where within the considered geographical domain.

Because the action of the real ocean velocity field on
drifters or tracers is generally not exactly diffusive, all meth-
ods simply fit the diffusive approximation to the correspond-
ing variable of interest, such as particle dispersion, tracer
variance, or, in our case, encounter volume. The analytic
form of the diffusive approximation is, however, different for
different variables and different flow regimes. For example,
for a diffusive random walk regime, dispersion grows lin-
early with time, whereas the growth of the encounter volume
is nonlinear, as defined by Eq. (38). This generally leads to
different diffusivity estimates resulting from different meth-
ods. In other words, the diffusivity value that fits best to the
observed particle dispersion at 90 days does not necessar-
ily provide the best fit to the observed encounter volume at
90 days, and vice versa.

To illustrate this more rigorously, we consider a linear
strain flow,

u= α x,

v =−α y,

with a constant strain coefficient α. The particle trajectories
are given by x = x0e

αt, y = y0e
−αt where x0, y0 are parti-

cles’ initial positions. The dispersion of a small cluster of
particles that are initially uniformly distributed within a small
square of side length 2dx is

D = 〈
(
X−X

)2
+
(
Y −Y

)2
〉,

where X = x− x0 and Y = y− y0 are displacements of par-
ticles from their initial positions and the overbar denotes the
ensemble mean. Since the linear strain velocity remains un-
changed in a reference frame moving with a particle, without
loss of generality we can restrict our attention to a cluster that
is initially centered at the origin, so X = Y = 0. In the long-
time limit, when eαt

� 1� e−αt, the dispersion becomes

D = 1/3dx2e2αt .

If one is using a diffusive fit,

D = 4κDt,

to approximate diffusivity, then the resulting diffusivity is

κD =
dx2e2αt

12t
.

On the other hand, the encounter volume for the linear strain
flow is

V = 2αR2t,

whereas the long-time diffusive fit is

V =
4πκVt

ln t/τ
,
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yielding

κV =−
αR2ProductLog

(
−
πe2γ

2αt

)
2π

where the function ProductLog(z), also known as the Lam-
bert function, is a solution to z= wew. Because κD is expo-
nential in time, while κV is not, κD always becomes larger
than κV at large t .

Of course, real oceanic flows are more complex than the
simple linear strain example. However, for flows that are in
a state of chaotic advection, exponential separation between
neighboring particles will occur and the dispersion will grow
exponentially in time, as in the linear strain example. Al-
though we do not have a formula for the encounter volume
for a chaotic advection regime, the linear strain example sug-
gests that the encounter volume growth will likely be slower
than exponential. Thus, for a chaotic advection regime, the
dispersion-based diffusivity could be expected to be larger
than the encounter-volume-based diffusivity. This can poten-
tially explain the smaller encounter-volume-based diffusiv-
ity values in Fig. 4 compared to other available estimates
from the literature. Numerical simulations (not shown) us-
ing an analytic Duffing oscillator flow, which features chaotic
advection, indeed produced smaller encounter-volume-based
diffusivity than dispersion-based diffusivity, in agreement
with our arguments above. The AVISO velocities are dom-
inated by the mesoscales rather than submesoscales, and the
90-day time interval is about a few mesoscale eddy wind-
ing times; thus, this flow satisfies all the pre-requisites for
the chaotic advection to occur. Finally, the particle trajec-
tories that we used to produce Fig. 4 can be grouped into
small clusters (we are using the encounter radius R = 30 km
as a cluster radius for consistency) to estimate their disper-
sion and infer diffusivity from its slope. Consistent with our
arguments above, the resulting dispersion-based diffusivities
in Fig. 6 are larger than the encounter-volume-based diffu-
sivities in Fig. 4 and reach values of O(104 m2 s−1) in the
energetic regions of the Gulf Stream and its extension, in
agreement with the previous diffusivity estimates from the
literature. In applications where the number of encounters is
a more important quantity than the spread of particles, the
encounter-volume-based diffusivity might be a more appro-
priate estimate to use.

In the left panels of Fig. 4 we used the full velocity field
to advect trajectories, so both the mean and the eddies con-
tributed to the resulting encounter volumes and the corre-
sponding diffusivities. But what is the contribution of the
eddy field alone to this process? To answer this question, we
have performed an additional simulation in the spirit of Ryp-
ina et al. (2012), where we advected trajectories using the
altimetric time-mean velocity field, and then subtracted the
resulting encounter volume, Vmean, from the full encounter
volume, V . The result characterizes the contribution of ed-
dies, although strictly speaking Veddy 6= V −Vmean because

Figure 6. Dispersion-based diffusivity, κD.

of nonlinearity. Note also that because we are interested in
the Lagrangian-averaged effects of eddies following fluid
parcels, Veddy cannot be estimated by simply advecting par-
ticles by the local eddy field alone (see an extended discus-
sion of this effect in Rypina et al., 2012). Not surprisingly,
the eddy-induced encounter volumes (upper right panel of
Fig. 4) are smaller than the full encounter numbers, with the
largest decrease near the Gulf Stream current, where both
the mean velocity and the mean shear are large. In other ge-
ographical areas, specifically at the peripheries of the Gulf
Stream rings, the decrease in V is less significant, so the
resulting map retains its overall qualitative spatial structure.
The same is true for the diffusivities in the second and third
rows of Fig. 4. The overall spatial structure of the eddy diffu-
sivity is preserved and matches that in the left panels, but the
values decrease, with the largest differences near the Gulf
Stream, where some diffusivity values are now O

(
106) in-

stead of O
(
107) cm2 s−1. In contrast, κ only decreases, on

average, by a factor of 2 (instead of an order of magnitude)
near the peripheries of the Gulf Stream rings. The long-time
diffusive timescale τ generally increases, and the ratio t/τ
generally decreases throughout the domain, but the long-time
asymptotic formula (38) still works well in high-V regions,
specifically on the peripheries of the Gulf Stream rings where
τ is still significantly less than t .

4 Discussion and summary

With many new diagnostics being developed for character-
izing mixing in fluid flows, it is important to connect them
to the well-established conventional techniques. This paper
is concerned with understanding the connection between the
encounter volume, which quantifies the mixing potential of
the flow, and diffusivity, which quantifies the intensity of the
down-gradient transfer of properties. Intuitively, both quanti-
ties characterize mixing, and it is natural to expect a relation-
ship between them, at least in some limiting sense. Here, we
derived this anticipated connection for a diffusive process,
and we showed how this connection can be used to produce
maps of spatially varying diffusivity and to gain new insights
into the mixing properties of eddies and the particle spread-
ing regime in realistic oceanic flows.
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When applied to the altimetry-based velocities in the Gulf
Stream region, the encounter volume and diffusivity maps
show a number of interesting physical phenomena related to
transport and mixing. Of particular interest are the transport
properties of the Gulf Stream rings. The materially coherent
Lagrangian cores of these rings, characterized by very small
diffusivity, are smaller than expected from earlier Eulerian
diagnostics (Chelton et al., 2011). The periphery regions with
enhanced diffusivity are, on the other hand, large, raising a
question about whether the rings, on average, act to preserve
coherent blobs of water properties or to speed up the mix-
ing. The encounter volume, through the derived connection
to diffusivity, might provide a way to address this question
and to quantify the two effects, clarifying the role of eddies
in transport and mixing.

Our encounter-volume-based diffusivity estimates are
within the range of other available estimates from the litera-
ture, but are not among the highest. We provided an intuitive
explanation for why the encounter-volume-based diffusivi-
ties might be smaller than the dispersion-based diffusivities,
and we supported our explanation with theoretical develop-
ments based on a linear strain flow, and with numerical sim-
ulations. We note that in problems where the encounters be-
tween particles are of interest, rather than the particle spread-
ing, the encounter-volume-based diffusivities would be more
appropriate to use than the conventional dispersion-based es-
timates.

Reliable data-based estimates of eddy diffusivity are
needed for parameterizations in numerical models. The con-
ventional estimation of diffusivity from Lagrangian trajec-
tories by calculating particle dispersion requires large num-
bers of drifters or floats (LaCasce, 2008). It would be use-
ful to have a technique that would work with fewer instru-
ments. The derived connection between encounter volume
and diffusivity might help in achieving this goal. Specifi-
cally, one could imagine that if an individual drifting buoy
were equipped with an instrument that would measure its en-
counter volume – the volume of fluid that came in contact
with the buoy over time t – then the resulting encounter vol-
ume could be converted to diffusivity using the derived con-
nection. This would allow estimation of diffusivity using a
single instrument.

In the field of social encounters, it is becoming possible
to construct large data sets by tracking cell phones, smart
transit cards (Sun et al., 2013), and bank notes (Brockmann
et al., 2006). As was the case for the Gulf Stream trajectories,
some of the behavior appears to be diffusive and some not so.
Where diffusive/random walk behavior is relevant, it may be
easier to accumulate data on close encounters rather than on
other metrics using, for example, autonomous vehicles and
instruments that are able, through local detection capability,
to count foreign objects that come within a certain range.
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Sect. 3 are publicly available from the CMEMS website:
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