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Abstract. We consider a plane fault with two asperities em-
bedded in a shear zone, subject to a uniform strain rate ow-
ing to tectonic loading. After an earthquake, the static stress
field is relaxed by viscoelastic deformation in the astheno-
sphere. We treat the fault as a discrete dynamical system
with 3 degrees of freedom: the slip deficits of the asperities
and the variation of their difference due to viscoelastic de-
formation. The evolution of the fault is described in terms
of inter-seismic intervals and slip episodes, which may in-
volve the slip of a single asperity or both. We consider the ef-
fect of stress transfers connected to earthquakes produced by
neighbouring faults. The perturbation alters the slip deficits
of both asperities and the stress redistribution on the fault as-
sociated with viscoelastic relaxation. The interplay between
the stress perturbation and the viscoelastic relaxation signif-
icantly complicates the evolution of the fault and its seis-
mic activity. We show that the presence of viscoelastic re-
laxation prevents any simple correlation between the change
of Coulomb stresses on the asperities and the anticipation or
delay of their failures. As an application, we study the ef-
fects of the 1999 Hector Mine, California, earthquake on the
post-seismic evolution of the fault that generated the 1992
Landers, California, earthquake, which we model as a two-
mode event associated with the consecutive failure of two
asperities.

1 Introduction

Asperity models have long been acknowledged as an effec-
tive means to describe many aspects of fault dynamics (Lay
et al., 1982; Scholz, 2002). In such models, it is assumed

that the bulk of energy release during an earthquake is due to
the failure of one or more regions on the fault characterized
by a high static friction and a velocity-weakening dynamic
friction. The stress build-up on the asperities is governed by
the relative motion of tectonic plates. Earthquakes that have
been ascribed to the slip of two asperities are the 1964 Alaska
earthquake (Christensen and Beck, 1994); the 1992 Landers,
California, earthquake (Kanamori et al., 1992); the 2004
Parkfield, California, earthquake (Twardzik et al., 2012); and
the 2010 Maule, Chile, earthquake (Delouis et al., 2010).

In the framework of asperity models, a critical role is
played by stress accumulation on the asperities, fault slip at
the asperities and stress transfer between the asperities. Ac-
cordingly, fault dynamics can be fruitfully investigated via
discrete dynamical systems whose essential components are
the asperities (Ruff, 1992; Turcotte, 1997). Such an approach
reduces the number of degrees of freedom required to de-
scribe the dynamics of the system, that is, the evolution of
the fault (in terms of slip and stress distribution) during the
seismic cycle; also, it allows the visualization of the state
of the fault and to follow its evolution via a geometrical ap-
proach, by means of orbits in the phase space. Finally, a finite
number of dynamic modes can be defined, each one describ-
ing a particular phase of the evolution of the fault (e.g. tec-
tonic loading, seismic slip, after-slip). Asperity models are
capable of reproducing the essential features of the seismic
source, while sparing the more complicated characterization
based on continuum mechanics.

In a number of recent works, modelling of different me-
chanical phenomena in a two-asperity fault system has been
addressed, such as stress perturbations due to surrounding
faults (Dragoni and Piombo, 2015) and the radiation of seis-
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mic waves (Dragoni and Santini, 2015). In these models, the
fault is treated as a discrete dynamical system with four dy-
namic modes: a sticking mode, corresponding to stationary
asperities, and three slipping modes, associated with the sep-
arate or simultaneous failure of the asperities.

In the framework of a discrete fault model, the impact of
viscoelastic relaxation was first studied by Amendola and
Dragoni (2013) and then further investigated by Dragoni and
Lorenzano (2015), who considered a fault with two asperities
of different strengths. The authors discussed the features of
the seismic events predicted by the model and showed how
the shape of the associated source functions is related to the
sequence of dynamic modes involved. In turn, the observa-
tion of the moment rate provides an insight into the state of
the system at the beginning of the event, that is, the particu-
lar stress distribution on the fault from which the earthquake
takes place.

However, no fault can be considered isolated; in fact, any
fault is subject to stress perturbations associated with earth-
quakes on neighbouring faults (Harris, 1998; Stein, 1999;
Steacy et al., 2005). Whenever a fault slips, the stress field
in the surrounding medium is altered. As a result, the oc-
currence time and the magnitude of next earthquakes may
change with respect to the unperturbed condition, which is
governed by tectonic loading.

The aim of the present paper is to discuss the combined ef-
fects of viscoelastic relaxation and stress perturbations on a
two-asperity fault in the framework of a discrete fault model.
In order to deal with such a problem, we base our work on the
results achieved by Dragoni and Piombo (2015) and Drag-
oni and Lorenzano (2015). In the former work, the authors
considered a two-asperity fault with purely elastic rheology
and discussed the effect of stress perturbations due to earth-
quakes on neighbouring faults. The fault was treated as a
discrete dynamical system whose state is described by two
variables, the slip deficits of the asperities. In the latter work,
viscoelastic relaxation on the fault was dealt with by adding
a third state variable, the variation in the difference between
the slip deficits of the asperities during inter-seismic inter-
vals. In the present paper, we introduce stress perturbations
as modelled by Dragoni and Piombo (2015) in the frame-
work of the two-asperity fault considered by Dragoni and
Lorenzano (2015). Accordingly, the present work represents
a three-dimensional generalization of the model devised by
Dragoni and Piombo (2015). Elastic wave radiation and ad-
ditional constraints on the state of the fault are taken into
account, as further developments with respect to previous
works.

In the framework of the present model, seismic events
generated by the fault are discriminated according to the
number and sequence of slipping modes involved and the
seismic moment released; these features are related to the
particular state of the system at the beginning of the inter-
seismic interval preceding the event. We discuss how stress
perturbations affect the evolution of the fault in terms of

changes in the state of the system and in the duration of
the inter-seismic time, highlighting the complications arising
from the ongoing post-seismic deformation process with re-
spect to the purely elastic case considered by Dragoni and
Piombo (2015). As an application, we consider the stress
perturbation imposed by the 1999 Hector Mine, California,
earthquake (Jónsson et al., 2002; Salichon et al., 2004) to the
fault that caused the 1992 Landers, California, earthquake,
which we model as a two-mode event due to the consecutive
failure of two asperities and that was followed by remark-
able viscoelastic relaxation (Kanamori et al., 1992; Freed and
Lin, 2001). We propose a means to estimate the stress trans-
fer from the knowledge of the relative positions and faulting
styles of the two faults. As a further novelty with respect to
the work presented by Dragoni and Lorenzano (2015), we
show how the knowledge of the time interval elapsed after
the 1999 earthquake can be used to constrain the admissi-
ble set of states that may have given rise to the 1992 event.
We discuss the possible subsequent evolution of the Landers
fault after the stress transfer from the Hector Mine earth-
quake, pointing out the main differences with respect to an
unperturbed scenario.

2 The model

We consider a plane fault containing two asperities of equal
areas A and different strengths that we name asperity 1 and
asperity 2 (Fig. 1). The fault is enclosed in a homogeneous
and isotropic shear zone behaving as a Poisson solid and is
subject to a uniform strain rate owing to the relative motion
of two tectonic plates, taking place at a constant rate V . In
order to describe the viscoelastic relaxation in the astheno-
sphere, we assume a Maxwell viscoelastic behaviour with a
characteristic relaxation time 2. Finally, we characterize the
seismic efficiency of the fault by means of an impedance γ .
All quantities are expressed in non-dimensional form.

In the present model we do not consider aseismic slip on
the fault. It has been treated in the framework of a discrete
fault model by Dragoni and Lorenzano (2017), who consid-
ered a region slipping aseismically for a finite time interval
and calculated the effect on the stress distribution and the
subsequent evolution of the fault. Of course, if the amplitude
of aseismic slip has the same order of magnitude as that of
seismic slip, the fault evolution may be affected.

In accordance with the assumptions of asperity models, we
ascribe the generation of earthquakes on the fault to the fail-
ure of the sole asperities, neglecting any contribution of the
surrounding weaker region to the seismic moment. Also, we
do not describe friction, slip and stress at every point of the
fault, but only consider their average values on each asperity.

The fault is treated as a dynamical system with three state
variables, functions of time T : the slip deficits X(T ) and
Y (T ) of asperity 1 and 2, respectively, and the variable Z(T )
representing the temporal variation of the difference Y −X
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Figure 1. Sketch of the model of a plane fault with two asperities.
The rectangular frame is the fault border. The state of the asperities
is described by their slip deficitsX(T ) and Y (T ), while the variable
Z(T ) represents the temporal variation of the difference between
the slip deficits of the asperities due to viscoelastic deformation in
the inter-seismic interval following an earthquake on the fault.

between the slip deficits of the asperities during inter-seismic
intervals of the fault, due to the stress redistribution associ-
ated with viscoelastic relaxation in the asthenosphere. The
slip deficit of an asperity is defined as the slip that an asperity
should undergo at a given instant in time in order to recover
the relative displacement of tectonic plates that occurred up
to that moment.

We assume the simplest form of rate-dependent friction
and associate the asperities with constant static and dynamic
frictions, the latter considered as the average value during
slip. The static friction on asperity 2 is a fraction β of that on
asperity 1 and dynamic frictions are a fraction ε of static fric-
tions for both asperities. Letting fs1 and fd1 be the static and
dynamic frictions on asperity 1, respectively, and fs2 and fd2
be the static and dynamic frictions on asperity 2, respectively,
we have

β =
fs2

fs1
=
fd2

fd1
, ε =

fd1

fs1
=
fd2

fs2
. (1)

We acknowledge that the values of friction after a seismic
event might be different from the initial ones, even though it
is probable that the change is remarkable only after several
seismic cycles. We neglect this possible change, because we
focus on other sources of irregularity in the seismic cycles.
However, the model could easily incorporate a change in fric-
tion after each event: new values could be given to static and
dynamic frictions after the event and the subsequent evolu-
tion could be calculated accordingly.

During a global stick mode, the tangential forces acting
on the asperities in the slip direction are (in units of static
friction on asperity 1)

F1 =−X+αZ, F2 =−Y −αZ. (2)

In these expressions, the terms −X and −Y represent the
effect of tectonic loading and have the same sign for both
asperities, whereas the terms ±αZ are the contributions of
stress transfer between the asperities. In the framework of

the present model, stress is transferred by one asperity to the
other as a result of co-seismic slip; in the subsequent inter-
seismic interval, the static stress field generated by asperity
slip undergoes a certain amount of relaxation owing to vis-
coelasticity. The parameter α is a measure of the degree of
coupling between the asperities: for smaller values of α, the
stress transfer from one asperity to the other is less efficient.
In the limit case α = 0, the asperities are completely indepen-
dent from one another and the slip of one of them does not
affect the state of the other: the evolution of the asperities is
thus governed by tectonic loading only. By comparison with
a model based on continuum mechanics, the specific value of
α can be estimated as (Dragoni and Tallarico, 2016)

α =
Avs

2ė
, (3)

where A is the area of the asperities, v is the velocity of the
tectonic plates, s is the tangential traction (per unit moment)
imposed on one asperity by the slip of the other and ė is the
tangential strain rate on the fault due to tectonic loading.

An effective way to characterize fault mechanics is pro-
vided by the concept of Coulomb stress (Stein, 1999). It is
defined as the difference between the shear stress σt in the
direction of fault slip and the static friction τs on the fault
surface:

σC = σt− τs. (4)

Accordingly, σC is negative during an inter-seismic interval
and a seismic event occurs when σC vanishes. In our model,
the presence of two asperities makes it necessary to assign a
value of Coulomb stress to each of them. By definition, the
Coulomb forces on asperity 1 and 2 are, respectively,

FC
1 =−F1− 1, FC

2 =−F2−β. (5)

Using Eq. (2), they can be rewritten as

FC
1 =X−αZ− 1, FC

2 = Y +αZ−β. (6)

To sum up, the system is described by the set of six param-
eters α, β, γ , ε, 2 and V , with α ≥ 0, 0< β < 1, γ ≥ 0,
0< ε < 1, 2> 0 and V > 0. At any instant T in time, the
state of the system may be univocally expressed by the tern
(X,Y,Z) or by one of the couples (F1,F2), (F

C
1 ,F

C
2 ).

When considering the fault dynamics during the seismic
cycle, it is possible to identify four dynamic modes, each
one described by a different system of autonomous ODEs
(ordinary differential equations): a sticking mode (00), cor-
responding to stationary asperities, and three slipping modes,
associated with the slip of asperity 1 alone (mode 10), the slip
of asperity 2 alone (mode 01) and the simultaneous slip of the
asperities (mode 11). A seismic event generally consists of n
slipping modes and involves one or both the asperities.
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The sticking region

The sticking region of the system is defined as the set of
states in which both asperities are stationary. During a global
stick phase (mode 00), the rates Ẋ, Ẏ and Ż are negligible
with respect to their values when the asperities are slipping;
thus, the sticking region is a subset of the space XYZ.

The slip of asperity 1 occurs when

F1 =−1, (7)

while the slip of asperity 2 takes place when

F2 =−β. (8)

Combining these conditions with the expressions (2) of the
forces, we obtain two planes in the XYZ space,

X−αZ− 1= 0, (9)
Y +αZ−β = 0, (10)

which we name 51 and 52, respectively. Of course, the
Coulomb forces FC

1 and FC
2 vanish on 51 and 52, respec-

tively; furthermore, their gradients

∇FC
1 = (1,0,−α), ∇F

C
2 = (0,1,α) (11)

are orthogonal to 51 and 52, respectively.
We exclude overshooting during the slipping modes: ac-

cordingly, we assume X ≥ 0 and Y ≥ 0. As a consequence,
the tangential forces on the asperities must always be in the
same direction as the velocity of tectonic plates, i.e. F1 ≤ 0
and F2 ≤ 0. From Eq. (2), the limit cases F1 = 0 and F2 = 0
correspond to two planes in the XYZ space,

X−αZ = 0, (12)
Y +αZ = 0, (13)

which we name 01 and 02, respectively.
To sum up, the sticking region of the system is the subset

of the XYZ space enclosed by the planes X = 0,Y = 0, 01,
02, 51 and 52: a convex hexahedron H. Its vertices are the
origin (0,0,0) and the points

A=

(
0,1,−

1
α

)
, B =

(
β,0,

β

α

)
,

C =

(
β + 1,0,

β

α

)
, (14)

D =

(
0,β + 1,−

1
α

)
, E = (1,0,0) , F = (0,β,0) . (15)

The sticking region is shown in Fig. 2 for a particular choice
of the parameters α and β. Its volume can be expressed as
a function of the parameters of the system as β(β + 1)/2α.
Accordingly, the subset of the state space corresponding to
stationary asperities decreases with the degree of coupling

C

D

F

X

Y

Z

B

A

E

Figure 2. The sticking region of the system, defined as the subset of
the state space XYZ in which both asperities are at rest: a convex
hexahedron H (α = 1,β = 1).

between the asperities and with the asymmetry of the system
(β→ 0). By definition, every orbit of mode 00 is enclosed
within H and eventually reaches one of its faces AECD
or BCDF , belonging to the planes 51 and 52, respec-
tively, where an earthquake starts. In these cases, the system
switches from mode 00 to mode 10 or mode 01, respectively.
In the particular case in which the orbit of mode 00 reaches
the edge CD, the system passes from mode 00 to mode 11.

3 Dynamic modes and slip in a seismic event

Let P0 ∈H be the state of the system at the beginning of
an inter-seismic interval. The specific location of P0 inside
the sticking region allows the prediction of the first slipping
mode involved in the next seismic event on the fault. In fact,
Dragoni and Lorenzano (2015) illustrated the existence of a
transcendental surface 6 within H, expressed by the equation

V2
[
W(γ1)−W(γ2)

]
+Y −X+ 1−β = 0, (16)

where W is the Lambert function with arguments

γ1 =
αZ

V2
e−

1−X
V2 , γ2 =−

αZ

V2
e−

β−Y
V2 . (17)

The surface 6 divides H in two subsets H1 and H2 (Fig. 3).
The seismic event starts with mode 10 if P0 ∈H1 or with
mode 01 if P0 ∈H2; in the particular case in which P0 ∈6,
the seismic event starts with mode 11.

Mode 00 terminates at a point P1 on the face AECD or
BCDF of H. The number and sequence of slipping modes
involved in the subsequent seismic event can be discrimi-
nated from the specific position of P1. If we consider the face
AECD (Fig. 4), the earthquake will be a one-mode event 10
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Figure 3. The surface 6 that splits the sticking region H in two sub-
sets H1 (below) and H2 (above) (α = 1, β = 1, V2= 1). It allows
the first slipping mode during an earthquake to be discriminated.

if P1 belongs to the trapezoid Q1; it will be a two-mode event
10-01 if P1 belongs to the segment s1; it will be a three-
mode event 10-11-01 or 10-11-10 if P1 belongs to the trape-
zoid R1, where the precise sequence must be evaluated nu-
merically and depends on the particular combination of the
parameters α, β, γ and ε. The remaining portion of the face
would lead to overshooting. Analogous considerations can
be made for the subsets Q2, s2 and R2 on the face BCDF .
In the particular case in which P1 belongs to the edge CD,
the earthquake will be a two-mode event 11-01. In fact, by
definition, friction on asperity 2 is smaller than friction on
asperity 1 (0< β < 1); if the asperities start slipping simul-
taneously, asperity 1 is then bound to stop the first, while
asperity 2 continues to slip. As a result, mode 11 is followed
by mode 01 and the slip of the weaker asperity has a longer
duration. The opposite would hold if asperity 2 were stronger
than asperity 1 (β > 1), so that the slip event resulting from
states P1 ∈ CD would be a two-mode event 11-10.

In addition, the knowledge of the position of P1 allows
the total amount of slip of the asperities and the seismic mo-
ment associated with the earthquake to be established. Let
us consider an event made up of n dynamic modes and let
Pi = (Xi,Yi,Zi) be the state of the system at time T = Ti ,
when the ith mode starts (i = 1,2, . . .n). The final slip am-
plitudes of asperity 1 and 2 are, respectively,

U1 =X1−Xn+1, U2 = Y1−Yn+1. (18)

Accordingly, the final seismic moment can be calculated as

M0 =M1
U1+U2

U
, (19)

where M1 and U are the seismic moment and slip amplitude
associated with a one-mode event 10 in the limit case γ = 0,
respectively, with

U = 2
1− ε
1+α

. (20)

The possible values of U1,U2 andM0 are summarized in Ta-
ble 1: the effect of wave radiation is characterized by means

C

D

B

F
E

A

Q1

R1

s1

Q2

R2

s2

Figure 4. The faces AECD and BCDF of the sticking region H,
where seismic events start, and their subsets (α = 1, β = 1, γ = 1,
ε = 0.7). The events taking place on the faceAECD (BCDF) start
with mode 10 (01). The trapezoids Qi correspond to events involv-
ing a single asperity; the segments si correspond to events associ-
ated with the consecutive slips of the asperities; the trapezoids Ri
correspond to events involving the simultaneous slips of the asperi-
ties.

of the quantity

κ =
1
2

(
1+ e−

γ Ts
2

)
, (21)

where Ts is the duration of slip in a one-mode event (Dragoni
and Santini, 2015).

As for the evolution of the variable Z(T ) during the earth-
quake, it changes according to the equation Z̈ = Ÿ−Ẍ, since
the relaxation process is negligible during the slip of the as-
perities.

4 Stress perturbations from neighbouring faults

We now consider the perturbations of the state of the fault
caused by the coseismic slip on surrounding faults. Follow-
ing Dragoni and Piombo (2015), we assume that (1) the
perturbations occur during an inter-seismic interval; (2) the
stress transfer takes place over a time interval negligible with
respect to the duration of the inter-seismic interval; and (3) at
the time of the perturbation, the state of the fault is suffi-
ciently far from the failure conditions and the stress transfer
is small enough that the onset of motion of either asperity is
not achieved immediately.

Let (X,Y,Z) ∈H be the state of the fault at the time of
the perturbation. Generally speaking, the system undergoes a
transition to a new state(
X′,Y ′,Z′

)
= (X,Y,Z)+ (1X,1Y,1Z). (22)
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Table 1. Final slip amplitudes U1 and U2 of asperity 1 and 2 and
seismic moment M0 during a seismic event made up of n slipping
modes, as a function of the state P1 where the event started. The
entry e.n. is the abbreviation for evaluated numerically.

State P1 n U1 U2 M0

P1 ∈Q1 1 κU 0 κM1
P1 ∈Q2 1 0 βκU βκM1
P1 ∈ s1 ∨P1 ∈ s2 2 κU βκU κM1(1+β)
P1 ∈ R1 ∨P1 ∈ R2 3 e.n. e.n. e.n.

Since the stress transfer takes place over a time interval short
with respect to the inter-seismic interval (assumption 2), vis-
coelastic relaxation is negligible during the perturbation and
the rheology can be reasonably considered as purely elastic
as the perturbation takes place. Accordingly, we set

1Z =1Y −1X. (23)

The change of state is then associated with a vector in the
XYZ space:

1R = (1X,1Y,1Z). (24)

The components of 1R generally have different magnitudes
and may have different signs, as a consequence of the in-
homogeneity of the stress field produced by an earthquake.
They can be written in terms of the tangential forces 1F1
and 1F2 exerted by the perturbing source on asperity 1 and
2, respectively: from Eq. (2), we have

1F1 =−1X+α1Z = α1Y − (1+α)1X, (25)
1F2 =−1Y −α1Z = α1X− (1+α)1Y. (26)

Combining these expressions together, we get

1X =−
1+α

1+ 2α
1F1−

α

1+ 2α
1F2, (27)

1Y =−
α

1+ 2α
1F1−

1+α
1+ 2α

1F2, (28)

1Z =
1

1+ 2α
(1F1−1F2) . (29)

We conclude that the variations in tangential stress alter the
orbit of the system.

The components of 1R can also be related to the orienta-
tion of the vector in the state space. With reference to Fig. 5,
we have

1X =1R cosδ cosθ, 1Y =1R cosδ sinθ,
1Z =1R sinδ. (30)

Introducing the assumption (23), the angle δ may be ex-
pressed in terms of the angle θ as

δ = arctan(sinθ − cosθ) . (31)

X

Y

Z
∆R

θ
δ

Figure 5. The vector1R and its orientation in the state spaceXYZ,
characterizing the stress perturbation imposed on the system by
earthquakes produced by neighbouring faults.

In writing Eq. (31), we took into account that

δ 6=
π

2
,

3π
2

(32)

or it would result in

1Z =±1R, 1X =1Y = 0, (33)

which is a meaningless circumstance. From Eq. (30), the tan-
gential forces (25)–(26) can be rewritten as

1F1 =
α sinθ − (1+α)cosθ
√

2− sin2θ
1R, (34)

1F2 =
α cosθ − (1+α)sinθ
√

2− sin2θ
1R. (35)

Following the variations in normal stress, the static and dy-
namic frictions on each asperity are altered. Letting f ′s1 and
f ′s2 be the new static frictions on asperity 1 and 2, respec-
tively, we define

β1 =
f ′s1
fs1
, β2 =

f ′s2
fs1
. (36)

The changes in static frictions are then

1β1 = β1− 1, 1β2 = β2−β (37)

on asperity 1 and 2, respectively.
Since the stress perturbation does not alter the friction co-

efficients of rocks, it is reasonable to assume that the ratio
ε between dynamic and static friction is unchanged on both
asperities. Therefore, letting f ′d1 and f ′d2 be the new dynamic
frictions on asperity 1 and 2, respectively, we have

f ′d1
fs1
= ε

f ′s1
fs1
= εβ1,

f ′d2
fs1
= ε

f ′s2
fs1
= εβ2. (38)

The consequent changes in dynamic frictions are ε1β1 and
ε1β2 on asperity 1 and 2, respectively.
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4.1 Effects of the perturbation

The stress transfer resulting from earthquakes on neighbour-
ing faults alters several parameters of the model. A first re-
markable change concerns the strength of the asperities. Af-
ter the perturbation, we can define a new ratio

β ′ =
f ′s2
f ′s1
=
f ′d2
f ′d1
=
β2

β1
, (39)

which differs from the original value of β given in Eq. (1).
Moreover, the stress transfer may be so intense that the
weaker asperity may become the stronger one: that is, it may
result in β ′ > 1.

The variations in static frictions entail different conditions
for the onset of motion of the asperities. Taking Eq. (36) into
account, Eqs. (7) and (8) become, respectively,

F1 =−β1, F2 =−β2. (40)

By combination with Eq. (2), these conditions define the
planes

X−αZ−β1 = 0, (41)
Y +αZ−β2 = 0 (42)

that we call 5′1 and 5′2, respectively. Conversely, the planes
01 and 02 are not affected by the stress perturbation, since
they do not depend on frictions. We conclude that changes
in normal stress modify the sticking region of the system,
describing a new hexahedron H′ in the state space. The coor-
dinates of its vertices are

A′ =

(
0,β1,−

β1

α

)
, B ′ =

(
β2,0,

β2

α

)
,

C′ =

(
β1+β2,0,

β2

α

)
, (43)

D′ =

(
0,β1+β2,−

β1

α

)
, E′ = (β1,0,0) ,

F ′ = (0,β2,0) . (44)

The volume of H′ is β1β2(β1+β2)/2α: thus, the set of states
corresponding to stationary asperities is enlarged or reduced,
depending on how normal stresses on the asperities are mod-
ified.

Following the changes in static frictions, the surface 6 in
Eq. (16) is replaced by a new surface 6′ expressed by

V2
[
W
(
γ ′1
)
−W

(
γ ′2
)]
+Y −X+β1−β2 = 0, (45)

where

γ ′1 =
αZ

V2
e−

β1−X
V2 , γ ′2 =−

αZ

V2
e−

β2−Y
V2 . (46)

As a result, the sticking region H′ is split in two subsets H′1
and H′2; furthermore, its faces A′E′C′D′ and B ′C′D′F ′ are
divided into subsets Q′1,s

′

1, R′1 and Q′2,s
′

2, R′2, respectively.

As a consequence of the changes in dynamic frictions, the
amount of slip that asperities undergo during a seismic event
is modified. In turn, the perturbation alters the seismic mo-
ment associated with an earthquake. The variations in the fi-
nal slip amplitudes U1 and U2 of asperity 1 and asperity 2,
respectively, and in the final seismic moment M0 associated
with the different seismic events predicted by the model are
listed in Table 2.

4.1.1 Changes in Coulomb forces

The variations in tangential stresses and static frictions dis-
cussed so far entail a change in the Coulomb forces assigned
to the asperities. Combining Eq. (5) with Eqs. (25) and (26),
these changes are given by

1FC
1 =−1F1−1β1 = (1+α)1X−α1Y −1β1, (47)

1FC
2 =−1F2−1β2 = (1+α)1Y −α1X−1β2 (48)

or, exploiting Eqs. (34) and (35),

1FC
1 =

(1+α)cosθ −α sinθ
√

2− sin2θ
1R−1β1, (49)

1FC
2 =

(1+α)sinθ −α cosθ
√

2− sin2θ
1R−1β2. (50)

The sign of 1FC
i (i = 1,2) determines whether the pertur-

bation brings an asperity closer to or farther from the failure;
specifically, positive variations entail that slip is favoured,
and vice versa. Equations (49) and (50) clearly point out that
this effect is regulated by the orientation of the vector 1R

in the state space. Bearing in mind the observations made in
Sect. 2, we find that 1FC

1 is at its maximum when 1R is
perpendicular to plane 51 and points toward it; it vanishes
when 1R is parallel to plane 51, and it is at its minimum
when1R is perpendicular to plane51 and points away from
it. Analogous considerations can be made for 1FC

2 .
On the whole, the effect of the stress perturbation can be

discussed in terms of the quantity

1FC
=1FC

2 −1F
C
1

= (1+ 2α)(1Y −1X)+1β1−1β2. (51)

Let us assume that the system is at a certain state (X, Y, Z) ∈
H1 before the perturbation; accordingly, the next seismic
event on the fault will start with the failure of asperity 1. If
1FC > 0, the perturbation favours the slip of asperity 2 more
than the slip of asperity 1: therefore, the system is brought to
a state closer to the condition for the simultaneous failure of
the asperities and thus to the 6 surface. On the contrary, per-
turbations for which 1FC < 0 take the system farther from
the 6 surface. The opposite holds for an unperturbed state
(X, Y, Z) ∈H2.
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Table 2. Changes in the final slip amplitudes U1 and U2 of asper-
ity 1 and 2 and in the seismic moment M0 associated with the dif-
ferent seismic events predicted by the model, after a stress pertur-
bation from neighbouring faults. The entry e.n. is the abbreviation
for evaluated numerically.

Kind of event 1U1 1U2 1M0

One-mode 10 1β1κU – 1β1κM1
One-mode 01 – 1β2κU 1β2κM1
Two-mode 10-01/01-10 1β1κU 1β2κU κM1(1β1+1β2)
Involving mode 11 e.n. e.n. e.n.

4.1.2 Changes in the duration of the inter-seismic
interval

As already stated, stress perturbations can anticipate or delay
the occurrence of an earthquake produced by a certain asper-
ity. We now quantify this effect in terms of the variation in
the duration of the inter-seismic interval. Generally speaking,
the perturbation vector1R may cross the 6 surface and thus
bring the system from an unperturbed state within H1 (H2) to
a perturbed state within H′2 (H′1). For the sake of simplicity,
we consider here only the particular case in which the pertur-
bation vector 1R does not cross the 6 surface. An example
of a more general case will be shown in Sect. 5 for a real
fault.

Let us first focus on the case in which the unperturbed state
(X, Y, Z) ∈H1. The time required by the orbit of the system
to reach plane 51, triggering the failure of asperity 1, was
calculated by Amendola and Dragoni (2013) as

T1 =2W(γ1)+
1−X
V

, (52)

with γ1 given in Eq. (17). If the stress perturbation brings the
system to a state

(
X′, Y ′, Z′

)
∈H′1 and the static friction on

asperity 1 to β1, the time required by the orbit to reach plane
5′1 is

T ′1 =2W
(
γ ′1
)
+
β1−X

′

V
, (53)

with γ ′1 given in Eq. (46). The difference between the two
times is

1T1 = T
′

1− T1 =2
[
W
(
γ ′1
)
−W (γ1)

]
−
1FC

1 +α1Z

V
,

(54)

where Eq. (47) has been employed.
If instead (X, Y, Z) ∈H2, the time required by the orbit of

the system to reach plane 52, triggering the failure of asper-
ity 2, is given by (Amendola and Dragoni, 2013)

T2 =2W(γ2)+
β −Y

V
, (55)

with γ2 given in Eq. (17). If the stress perturbation takes the
system to a state

(
X′, Y ′, Z′

)
∈H′2 and the static friction on

asperity 2 to β2, the time required to reach plane 5′2 is

T ′2 =2W
(
γ ′2
)
+
β2−Y

′

V
, (56)

with γ ′2 given in Eq. (46). The difference between the two
times is

1T2 = T
′

2− T2 =2
[
W
(
γ ′2
)
−W (γ2)

]
−
1FC

2 −α1Z

V
,

(57)

where Eq. (48) has been employed. Positive values of 1T1
and 1T2 correspond to a delay in the occurrence of an earth-
quake on asperity 1 and 2, respectively, and vice versa.

4.1.3 Discussion

According to the model, rock rheology plays a critical
role in the response to stress perturbations. In the case of
purely elastic coupling between the asperities, Dragoni and
Piombo (2015) showed that the changes in the duration of
the inter-seismic interval prior to the failure of asperity 1 and
2 are, respectively,

1T1 =−
1FC

1
V

, 1T2 =−
1FC

2
V

. (58)

Accordingly, an increase in the Coulomb force associated
with a given asperity (1FC

i > 0) directly yields the anticipa-
tion of the slip of that asperity, and vice versa. What is more,
the variation in the duration of the inter-seismic interval is
proportional to the change in the Coulomb force associated
with the asperity.

Conversely, in the viscoelastic case there is no straightfor-
ward connection between the sign of 1FC

i and the anticipa-
tion or delay of an earthquake on the associated asperity. In
fact, the expressions (54) and (57) obtained for1T1 and1T2
in the previous section indicate that the net effect depends in
a non-trivial way on the particular state of the fault at the time
of the stress perturbation and right after it. This result points
out the complex interplay between the post-seismic evolu-
tion of a fault in the presence of viscoelastic relaxation and
the stress transfer from neighbouring faults.

5 An application: perturbation of the 1992 Landers
fault by the 1999 Hector Mine earthquake

We study the effects of the 16 October 1999 Mw 7.1 Hector
Mine, California, earthquake on the post-seismic evolution
of the fault that generated the 28 June 1992 Mw 7.3 Lan-
ders, California, earthquake. The geometry of the two faults
is shown in Fig. 6.

The 1992 Landers earthquake was a right-lateral strike-
slip event that can be approximated as the result of the slip
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N 
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2 

 

HM 

LAN 

 

Figure 6. Geometry of the Landers (LAN) and Hector Mine (HM),
California, faults that generated the 1992 and 1999 earthquakes, re-
spectively. The stars indicate the hypocentres of the seismic events.
The labels 1 and 2 identify the asperities on the Landers fault.

of two coplanar asperities (Kanamori et al., 1992): a north-
ern one (asperity 1) and a southern one (asperity 2), with
average slips u1 = 6m and u2 = 3m, respectively. Follow-
ing Dragoni and Tallarico (2016), we assume a common
area A= 300km2 for both the asperities. We place the cen-
tres of asperity 1 and asperity 2 at 34.46◦ N, 116.52◦W and
34.20◦ N, 116.44◦W, respectively, with a common depth of
8 km. The earthquake started with the failure of asperity 2,
followed by the failure of asperity 1. We characterize the
event by strike, dip and rake angles of 345, 85 and 180◦, re-
spectively, an average of the values provided by Kanamori et
al. (1992) for the two phases of the earthquake.

The 1992 event was followed by remarkable post-seismic
deformation, which can be interpreted as the result of sev-
eral processes. For the sake of the present application, we
assume viscoelastic relaxation as the most significant mech-
anism. We assign a viscosity η = 5× 1018 Pas to the lower
crust at Landers, averaging the estimates provided by Deng
et al. (1998), Pollitz et al. (2000), Freed and Lin (2001) and
Masterlark and Wang (2002). With a rigidityµ= 30GPa, the
corresponding Maxwell relaxation time is τ = η/µ' 5a.

We model the 1992 earthquake as a two-mode event 01-
10 starting from mode 00. Accordingly, the orbit of the sys-
tem during mode 00 lies inside the subset H2 of the sticking
region and the state P1 at the beginning of the earthquake
belongs to segment s2 (Fig. 4). The coordinates of P1 are

X1 = αZ1+ 1−αβκU, Y1 = β −αZ1, Z1, (59)

with

Za ≤ Z1 ≤ Zb, (60)

where the extreme values Za and Zb correspond to the end
points of s2:

Za =
κU(αβ + 1)− 1

α
, Zb =

β(1− κU)
α

. (61)

At the end of mode 01, the system is at point P2 with coordi-
nates

X2 =X1, Y2 = Y1−βκU, Z2 = Z1−βκU, (62)

where mode 10 starts. As Z1 varies in the interval given in
Eq. (60), an infinite number of points P2 describe a segment
r2 on the subset Q1 of the face AECD and parallel to the
edge CD. Mode 10 terminates at point P3 with coordinates

X3 =X2− κU, Y3 = Y2, Z3 = Z2+ κU. (63)

Again, as Z1 varies in the interval given in Eq. (60), there is
an infinite number of points P3 defining another segment q2
parallel to the edge CD. This segment is situated within the
sticking region and crosses the surface 6 for Z1 = Zc, with
Za < Zc < Zb.

Dragoni and Tallarico (2016) studied the 1992 Landers
earthquake under the hypothesis of purely elastic coupling
between the asperities. Following the authors, we take α =
0.1, β = 0.5, γ = 1.5 and ε = 0.7, a set of values yield-
ing modelled moment rate and seismic spectrum compara-
ble with the observations. Thus, we have U ' 0.546 and
κ ' 0.52. As for viscoelastic relaxation, it can be charac-
terized by the product V2 (Amendola and Dragoni, 2013),
which can be estimated as

V2=
κUvτ

u1
, (64)

where v = 3 cm a−1 is the relative plate velocity at Landers
(Wallace, 1990). Accordingly, we have V2' 0.007.

Every state P1 on segment s2, where the 1992 earthquake
began, corresponds to a specific state P3 on segment q2,
where the 1992 earthquake ended. Exploiting Eq. (62), we
can express the coordinates (63) of P3 as a function of Z1.
Since q2 crosses the surface 6, the state P3 can belong
to H1,H2 or 6, in correspondence to Zc < Z1 ≤ Zb, Za ≤
Z1 < Zc and Z1 = Zc, respectively. In the first case, the next
event will start with the failure of asperity 1; in the second
case, with the failure of asperity 2; in the third case, with the
simultaneous failure of the asperities. With the values of α,
β, κ and U listed above, we find Za '−7.02, Zb ' 3.58 and
Zc ' 0.78. Accordingly, only about one-quarter of segment
q2 lies inside the subset H1 of the sticking region. Without
any further discussion and neglecting the stress perturbation
caused by the Hector Mine earthquake, we would infer that
future events on the 1992 fault are more likely to start with
the failure of asperity 2.

5.1 Stress perturbation by the 1999 Hector Mine
earthquake

The 1999 Hector Mine earthquake was generated by right-
lateral strike-slip faulting located at 34.59◦ N, 116.27◦W,
about 20 km north-east from the Landers fault (Jónsson et
al., 2002; Salichon et al., 2004). We characterize the event
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averaging the data available in the SRCMOD database and
assume strike, dip and rake angles of 330, 80 and 180◦,
respectively; a depth of 10 km; and a seismic moment of
6.62× 1019 Nm.

The stress transferred to the asperities at Landers can be
evaluated employing the model of Appendix A, taking

φ1 = 345◦, φ2 = 330◦, ψ1 = 85◦, ψ2 = 80◦,
λ1 = λ2 = 180◦. (65)

As a result, the normal and tangential components of the per-
turbing stress on asperity 1 are

σ1n ' 0.14MPa, σ1t ' 0.39MPa. (66)

Accordingly, the static friction on asperity 1 is reduced and
right-lateral slip is favoured. As for asperity 2, the compo-
nents of the perturbing stress are

σ2n ' 0.18MPa, σ2t '−0.17MPa, (67)

suggesting that static friction on asperity 2 is reduced and
right-lateral slip is inhibited.

We now introduce the effect of the perturbation in the
framework of the discrete model. The changes in the tangen-
tial forces (2) on the asperities are

1F1 =−
σ1t

fs1
A, 1F2 =−

σ2t

fs1
A. (68)

The static friction fs1 on asperity 1 can be evaluated as
(Dragoni and Santini, 2012)

fs1 =
Ku1

κU
, (69)

where the constant

K =
µA

d
(70)

is an expression of the coupling between the asperities and
the tectonic plates. With d = 80 km (Masterlark and Wang,
2002), it results in fs1/A' 7.9 MPa. Hence, we have

1F1 '−0.05, 1F2 ' 0.02. (71)

From Eqs. (27)–(29), the components of the perturbation
vector 1R are

1X ' 0.043, 1Y '−0.016, 1Z '−0.059. (72)

As a result, the orientation of 1R in the state space is char-
acterized by angles θ '−0.35 rad and δ '−0.91 rad. The
changes in static frictions (37) can be calculated as

1β1 =−
ksσ1n

fs1
A, 1β2 =−

ksσ2n

fs1
A, (73)

where ks is the effective static friction coefficient on asper-
ity 1. Assuming ks = 0.4, we get

1β1 '−0.0073, 1β2 '−0.0092. (74)

Finally, from Eqs. (47) and (48), the changes in Coulomb
forces on the asperities are

1FC
1 ' 0.057, 1FC

2 '−0.012. (75)

At the time of the Hector Mine earthquake, the Landers fault
was at a state P4 resulting from the post-seismic evolution
of any of the possible states P3 ∈ q2 where the 1992 event
ended. The coordinates of P4 can be calculated from the so-
lution to the equations of mode 00 given by Dragoni and
Lorenzano (2015) and taking into account that the time in-
terval t̃ elapsed between the 1992 Landers and 1999 Hector
Mine earthquakes amounts to about 7.3 years:

X4 =X3+V2T̃ , Y4 = Y3+V2T̃ , Z4 = Z3e
−T̃ , (76)

where

T̃ =
t̃

τ
≈ 1.5. (77)

Making use of Eqs. (62) and (63), we can express the co-
ordinates of P4 as a function of Z1 ∈ [Za,Zb]. Accordingly,
there is an infinite number of points P4 defining a vector t2
inside the sticking region. At T = T̃ , the perturbation vector
1R moves every state P4 to a new state P ′4 with coordinates

X′4 =X4+1X, Y ′4 = Y4+1Y, Z′4 = Z4+1Z, (78)

which can be expressed as a function of Z1 ∈ [Za,Zb]. As a
result, a new vector t ′2 identifies the state of the Landers fault
after the Hector Mine earthquake.

In order to characterize the effect of the perturbation, let
us consider the difference 1FC defined in Eq. (51): from
Eq. (75), we get 1FC

'−0.069. Since 1FC < 0, we con-
clude that the stress perturbation is such that states P4 ∈H1
are moved to H′1, the state P4 ∈6 enters H′1, states P4 ∈H2
are shifted towards the 6 surface and some of them enter H′1.
Specifically, we find that P ′4 belongs to H′1, H′2 and 6′ in cor-
respondence to Z′c < Z1 ≤ Zb, Za ≤ Z1 < Z

′
c and Z1 = Z

′
c,

with Z′c ' 0.50. On the whole, we can draw the prelimi-
nary conclusion that the stress perturbation is such that future
events on the Landers fault starting with the slip of asperity 1
are favoured over events starting with the slip of asperity 2.
A deeper discussion is provided in the following.

5.2 Constraints due to the seismic history to date

In order to improve our knowledge on the state that gave rise
to the 1992 Landers earthquake and on the possible future
events generated by that fault, we exploit the seismic history
between 1999 and the present date. After the perturbation
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caused by the Hector Mine earthquake, the inter-seismic time
T ′is of the Landers fault can be calculated from Eq. (53) and
Eq. (56) for states P ′4 belonging to H′1 and H′2, respectively:

T ′is =


2W(γ ′1)+

β1−X
′

4
V

, Z′c < Z1 ≤ Zb

2W(γ ′2)+
β2−Y

′

4
V

, Za ≤ Z1 < Z
′
c

, (79)

where

γ ′1 =
αZ′4
V2

e−
β1−X

′
4

V2 , γ ′2 =−
αZ′4
V2

e−
β2−Y

′
4

V2 . (80)

Since no earthquakes have been produced by the Landers
fault after the occurrence of the Hector Mine event, up to
year 2016, we can exclude the states on the segment s2 yield-
ing an expected inter-seismic time (Eq. 79) shorter than or
equal to t ′is = 17 years. The requirement

T ′is >
t ′is
τ
2≈ 3.52 (81)

is satisfied by states on segment s2 in the subset Z̃a ≤ Z1 ≤

Z̃b, with Z̃a '−1.17 and Z̃b ' 2.19.
As a consequence, we can constrain the admissible states

on the segment t2. A comparison between the intervals
[Z̃a,Zc] and [Zc, Z̃b] points out that more than one-half of
the acceptable subset of t2 belongs to H2. Hence, before the
stress perturbation caused by the Hector Mine earthquake,
future events on the 1992 Landers fault were more likely to
start with the failure of asperity 2.
In turn, the refinement of t2 limits the acceptable states on
the segment t ′2. From the amplitude of the intervals [Z̃a,Z′c]
and [Z′c, Z̃b], we deduce that the acceptable subset of t ′2 is
almost equally divided between H′1 and H′2. Therefore, if
we consider the influence of the Hector Mine earthquake on
future events generated by the 1992 Landers fault, we con-
clude that the stress perturbation yielded homogenization in
the probability of events starting with the failure of asperity 1
or asperity 2. This result is in agreement with the observation
that the perturbation vector1R shifted the whole segment t2
towards the subset H′1 of the sticking region.

These conclusions would have to be reconsidered if new
stress perturbations from neighbouring faults were to affect
the post-seismic evolution of the Landers fault in the future.
In addition, if no earthquakes were to be observed for some
time on the Landers fault, the refining procedure discussed
above could be repeated and the admissible subsets of seg-
ments s2, t2 and t ′2 could be constrained with further preci-
sion.

5.3 Effects of the stress perturbation on future
earthquakes

Finally, we discuss the features of the next seismic event gen-
erated by the 1992 Landers fault, highlighting the changes
due to the Hector Mine earthquake.

Every state P1 ∈ s2 where the 1992 earthquake began cor-
responds to a particular state P4 ∈ t2 and P ′4 ∈ t ′2 before and
after the stress perturbation associated with the Hector Mine
earthquake, respectively. Since the segment t2 intersects the
surface 6, the state P4 can belong to H1, H2 or 6 (Fig. 3),
thus affecting the asperity that will fail the first at the begin-
ning of the next earthquake on the fault. In the first case, the
next event will start with the failure of asperity 1, in the sec-
ond case with the failure of asperity 2, in the third case with
the simultaneous failure of the asperities. Analogous consid-
erations hold for states P ′4 in H′1,H

′

2 and 6′, respectively.
The number and the sequence of dynamic modes in the

earthquake depend on the sub-interval of Z1 considered. The
details are summarized in Table 3 for both the unperturbed
and perturbed cases. Taking these specifics into account and
referring to Tables 1 and 2, we evaluate the seismic moments
M0 and M ′0 associated with the expected future earthquake
on the 1992 fault before and after the Hector Mine earth-
quake, respectively. In Fig. 7, we show the difference

1M0 =M
′

0−M0 (82)

as a function of Z1 ∈ [Z̃a, Z̃b]. Owing to the translation im-
posed to the segment t2 by the perturbation vector 1R, the
sign of 1M0 changes across the different sub-intervals of
Z1. The energy released by the earthquake is increased for
Z1 ∈ [0.43,0.71], while it is reduced elsewhere.

Another significant result of the stress perturbation con-
cerns the variation in the inter-seismic time before the next
seismic event. As in Sect. 5.2, we consider the post-seismic
evolution from 1999 onwards and set the origin of times at
the occurrence of the Hector Mine earthquake. The expected
inter-seismic time Tis prior to the stress perturbation can be
calculated from Eqs. (52) and (55) for states P4 belonging to
H1 and H2, respectively:

Tis =


2W(γ1)+

1−X4

V
, Zc < Z1 ≤ Z̃b

2W(γ2)+
β −Y4

V
, Z̃a ≤ Z1 < Zc

, (83)

where

γ1 =
αZ4

V2
e−

1−X4
V2 , γ2 =−

αZ4

V2
e−

β−Y4
V2 . (84)

The inter-seismic time T ′is after the stress perturbation has
been given in Eq. (79). The difference

1T = T ′is− Tis (85)

is shown in Fig. 8 as a function of Z1 ∈ [Z̃a, Z̃b]. For states
P4 ∈H1 corresponding to P ′4 ∈H′1 and states P4 ∈H2 corre-
sponding to P ′4 ∈H′2, this difference coincides with Eqs. (54)
and (57), respectively.

Some peculiar features stand out. First, we notice that,
for all states P4 ∈H2 corresponding to P ′4 ∈H′2, that is,
for Z1 ∈ [Z̃a,Z

′
c], the inter-seismic time is increased by the

www.nonlin-processes-geophys.net/25/251/2018/ Nonlin. Processes Geophys., 25, 251–265, 2018



262 E. Lorenzano and M. Dragoni: Stress perturbations on a fault with viscoelastic relaxation

Table 3. Future earthquakes generated by the 1992 Landers, Cal-
ifornia, fault, as functions of the variable Z1 describing the initial
state of the 1992 event, with Z1 ∈ [Z̃a, Z̃b] = [−1.16,2.19]. The
results predicted by the model before and after the stress perturba-
tion associated with the 1999 Hector Mine, California, earthquake
are shown. The values Z1 = Zc = 0.78 and Z1 = Z

′
c = 0.50 corre-

spond to the largest possible earthquakes before and after the stress
perturbation, respectively.

Future earthquake Unperturbed Perturbed
condition condition

One-mode event 01 Z̃a ≤ Z1 < 0.71 Z̃a ≤ Z1 < 0.43
Two-mode event 01-10 Z1 = 0.71 Z1 = 0.43
Three-mode event 01-11-01 0.71< Z1 < Zc 0.43< Z1 < Z

′
c

Two-mode event 11-01 Z1 = Zc Z1 = Z
′
c

Three-mode event 10-11-01 Zc < Z1 < 0.92 Z′c < Z1 < 0.64
Two-mode event 10-01 Z1 = 0.92 Z1 = 0.64
One-mode event 10 0.92< Z1 ≤ Z̃b 0.64< Z1 ≤ Z̃b
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Figure 7. Change in the seismic moment released during the next
event on the 1992 Landers, California, fault, as a result of the stress
perturbation due to the 1999 Hector Mine, California, earthquake.
On the horizontal axis, the variable Z1 describing the initial state of
the 1992 event. The kinds of seismic event predicted by the model,
corresponding to different intervals of Z1, are listed in Table 3.
The values Z1 = Zc and Z1 = Z

′
c correspond to the largest possible

earthquakes before and after the stress perturbation, respectively.

stress perturbation, in agreement with the inhibiting effect on
asperity 2 suggested by Eq. (75). However, Eq. (75) suggests
that the failure of asperity 1 is promoted, but this is not ver-
ified by all states P ′4 ∈H′1, that is, for Z1 ∈ [Z

′
c, Z̃b]. In fact,

the inter-seismic time is reduced only for Z1 ∈ (0.53, Z̃b],
while it is increased for Z1 ∈ [Z

′
c,0.53). In the particular

case Z1 = 0.53, there is no change in the inter-seismic time.
This is a remarkable result, showing that the presence of vis-
coelastic relaxation at the time of the stress perturbation en-
tails the unpredictability of the consequent influence in terms
of anticipation or delay of future earthquakes, on the basis of
the sole knowledge of the change in Coulomb stress.

At the occurrence of the next earthquake produced by the
Landers fault, the number and sequence of dynamic modes
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Figure 8. Change in the inter-seismic time before the next event
on the 1992 Landers, California, fault, as a result of the stress per-
turbation due to the 1999 Hector Mine, California, earthquake. On
the horizontal axis, the variable Z1 describing the initial state of the
1992 event. The kinds of seismic event predicted by the model, cor-
responding to different intervals ofZ1, are listed in Table 3. The val-
ues Z1 = Zc and Z1 = Z

′
c correspond to the largest possible earth-

quakes before and after the stress perturbation, respectively.

involved and the energy released will reveal more about the
state of the system, thus allowing a further refinement of the
specific conditions that gave rise to the 1992 event.

6 Conclusions

We considered a plane fault embedded in a shear zone, sub-
ject to a uniform strain rate owing to tectonic loading. The
fault is characterized by the presence of two asperities with
equal areas and different frictional resistance. The coseismic
static stress field due to earthquakes produced by the fault is
relaxed by viscoelastic deformation in the asthenosphere.

The fault was treated as a discrete dynamical system with
three degrees of freedom: the slip deficits of the asperities
and the variation of their difference due to viscoelastic defor-
mation. The dynamics of the system was described in terms
of one sticking mode and three slipping modes. In the stick-
ing mode, the orbit of the system lies in a convex hexahedron
in the space of the state variables, while the number and the
sequence of slipping modes during a seismic event are deter-
mined by the particular state of the system at the beginning of
the inter-seismic interval preceding the event. The amount of
slip of the asperities and the energy released during an earth-
quake generated by the fault can be predicted accordingly.

The effect of stress transfer due to earthquakes on neigh-
bouring faults was studied in terms of a perturbation vector
yielding changes to the state of the system, its sticking region
and the energy released during a subsequent seismic event.
The specific effect on the evolution of the fault is related with
the orientation of this vector in the state space.

We investigated the interplay between the ongoing vis-
coelastic relaxation on the fault and a stress perturbation im-
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posed during an inter-seismic interval. Following a stress per-
turbation due to earthquakes on neighbouring faults, an in-
crease in the Coulomb stress associated with a given asperity
directly yields the anticipation of the slip of that asperity, and
vice versa, if a purely elastic rheology is assumed for the re-
ceiving fault (Dragoni and Piombo, 2015). According to the
present model, this property no longer holds if the change in
Coulomb stress occurs while viscoelastic relaxation is tak-
ing place on the receiving fault. In fact, even if the change in
the inter-seismic intervals of the asperities can still be eval-
uated from a theoretical point of view, the specific effect of
the stress perturbation could be univocally inferred only if
the particular states of the fault at the time of the stress per-
turbation and right after it were known. The information on
the change in Coulomb stress on the fault do not suffice any
more.

We applied the model to the stress perturbation imposed
by the 1999 Hector Mine, California, earthquake to the fault
that caused the 1992 Landers, California, earthquake, which
was due to the failure of two asperities and was followed
by significant viscoelastic relaxation. We modelled the 1992
Landers earthquake as a two-mode event associated with the
separate slip of the asperities and showed how the event is
compatible with a number of possible initial states of the
fault, which can be screened on the basis of the seismic his-
tory to date. The details of the stress transfer associated with
the 1999 Hector Mine earthquake were calculated using the
relative positions and faulting styles of the two faults as a
starting point. We discussed the effect of the stress pertur-

bation, pointing out the complexity of its influence on the
possible future events generated by the 1992 Landers fault in
terms of the associated energy release, the sequence of dy-
namic modes involved and the duration of the inter-seismic
interval. Specifically, we showed that the consequences of
the 1999 Hector Mine earthquake on the post-seismic evo-
lution of the 1992 Landers fault depend on the specific state
of the Landers fault at the time of the 1999 earthquake and
immediately after it, even if the variations in the Coulomb
stress on the asperities at Landers are known. On the whole,
the application allowed the exemplification of the critical un-
predictability of the effect of a stress perturbation occurring
while viscoelastic relaxation is taking place.

Another source of complication may be represented by the
interaction between viscoelastic relaxation and stable creep
on the fault. This problem is beyond the scope of the present
work, but it may be object of future research by combining
elements of the present model with the one of Dragoni and
Lorenzano (2017).

Data availability. All data and results supporting this work were
gathered from the papers listed in the References and are freely
available to the public. Specifically, data on the 1999 Hector Mine,
California, earthquake were collected from the Finite-Source Rup-
ture Model Database (SRCMOD) available at http://equake-rc.info/
SRCMOD/. The website was last accessed on December 2016.
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Appendix A: Estimate of the stress perturbation

We consider two plane faults, namely fault 1 and fault 2,
embedded in an infinite, homogeneous and isotropic Poisson
medium of rigidity µ (Fig. A1). Following the slip of fault 1
(perturbing fault), stress is transferred to fault 2 (receiving
fault). We calculate the normal traction σn and the tangential
traction in the direction of slip σt transferred to the receiving
fault, estimated as the average value at its centre.

We define a coordinate system (x,y,z) with axes corre-
sponding with the directions of dip, strike and normal on
fault 1, respectively. Fault 1 lies on the plane z= 0 and its
centre is in the origin of the coordinate system. Accordingly,
the unit vector perpendicular to fault 1 is n1i = (0,0,1). We
call φ1, ψ1 and λ1 the strike, dip and rake angles of fault 1,
respectively. The slip direction of fault 1 is then given by

m1i = (−sinλ1,cosλ1,0) . (A1)

Fault 2 is characterized by strike and dip angles φ2 and ψ2,
respectively. Accordingly, the unit vector perpendicular to
fault 2 is given by

n2i = (sin1ψ cos1φ,−sin1ψ sin1φ,cos1ψ), (A2)

where

1φ = φ2−φ1, 1ψ = ψ2−ψ1. (A3)

Let λ2 be the preferred rake angle on fault 2, correlated with
the orientation of tectonic loading: λ2 = 0◦ for left-lateral
strike slip, λ2 = 180◦ for right-lateral strike slip, λ2 =−90◦

for normal dip slip and λ2 = 90◦ for reverse dip slip. The
corresponding slip direction is

m2x = cosλ2 sin1φ− sinλ2 cos1ψ cos1φ, (A4)
m2y = cosλ2 cos1φ+ sinλ2 cos1ψ sin1φ, (A5)
m2z = sinλ2 sin1ψ. (A6)

We name (Ei,Ni) and Di the UTM (Universal Transverse
Mercator) coordinates and depths of the centres of the faults,
respectively. In our reference system, the coordinates of the
centre of fault 2 are identified by the following three steps:

1. placing the origin at the centre of fault 1:

x′ = E2−E1, y′ =N2−N1, z′ =D2−D1 (A7)

2. clockwise rotation about the z axis by the angle φ1:

x′′ = x′ cosφ1− y
′ sinφ1 y′′ = x′ sinφ1+ y

′ cosφ1,

z′′ = z′ (A8)

3. counterclockwise rotation about the y axis by the angle
ψ1:

x = x′′ cosψ1− z
′′ sinψ1, y = y′′,

z= x′′ sinψ1+ z
′′ cosψ1. (A9)

1 2

φ1 φ2

ψ1 ψ2

E

N

D

x

y

z

Figure A1. Geometry of the model employed to study the stress
transfer between neighbouring faults. Fault 1 is the perturbing fault,
while fault 2 is the receiving fault. The coordinates (E,N,D) are
the UTM coordinates and depth of the centres of the faults, respec-
tively, whereas the axes (x,y,z) correspond with the directions of
dip, strike and normal on fault 1, respectively. The angles φ and ψ
are the strike and dip angles of the faults, respectively.

The perturbing fault is treated as a point-like dislocation
source (a double couple of forces) located at the origin.
This is a good approximation for non-overlapping regions
(Dragoni and Lorenzano, 2016). Letm0 be the scalar seismic
moment of the dislocation. The ith component of the static
displacement field generated by the slip of fault 1 is

ui =−MjkGij,k, (A10)

where Mij is the moment tensor associated with the disloca-
tion source

Mij =m0 (m1in1j +m1jn1i) (A11)

and Gij is the Somigliana tensor

Gij =
1

8πµ

(
2
r
δij −

2
3
r,ij

)
, (A12)

with

r =

√
x2+ y2+ z2. (A13)

The components of the stress field are given by

σij = µ(ekkδij + 2eij ), (A14)

where eij is the strain field associated with the displacement
field (A10). Finally, the normal traction σn and the tangential
traction in the direction of slip σt on fault 2 are

σn = σijn2in2j , σt = σijm2in2j . (A15)

The signs of σn and σt define the effect of the stress transfer
on fault 2. If σn > 0, the amount of compressional stress on
the receiving fault is reduced, and vice versa. If σt > 0, the
slip of the receiving fault is promoted, and vice versa.
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