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Abstract. Complex networks have emerged as an essential
approach of geoscience to generate novel insights into the
nature of geophysical systems. To investigate the dynamic
processes in the ionosphere, a directed complex network is
constructed, based on a probabilistic graph of the vertical to-
tal electron content (VTEC) from 2012. The results of the
power-law hypothesis test show that both the out-degree and
in-degree distribution of the ionospheric network are not
scale-free. Thus, the distribution of the interactions in the
ionosphere is homogenous. None of the geospatial positions
play an eminently important role in the propagation of the
dynamic ionospheric processes. The spatial analysis of the
ionospheric network shows that the interconnections prin-
cipally exist between adjacent geographical locations, indi-
cating that the propagation of the dynamic processes pri-
marily depends on the geospatial distance in the ionosphere.
Moreover, the joint distribution of the edge distances with re-
spect to longitude and latitude directions shows that the dy-
namic processes travel further along the longitude than along
the latitude in the ionosphere. The analysis of “small-world-
ness” indicates that the ionospheric network possesses the
small-world property, which can make the ionosphere stable
and efficient in the propagation of dynamic processes.

1 Introduction

Including large numbers of irregularities with different sizes
and affected by various factors (like solar irradiation, geo-
magnetic field, gravity wave and tidal wave; Kelly, 2009), the
ionosphere performs as a complex system in terms of the spa-
tial and temporal variation. A complex network is an efficient
tool to study the characteristics of complex systems that con-
tain a large number of interacting parts. Its application spans

various scientific fields (Zerenner et al., 2014), such as biol-
ogy (e.g., protein interaction networks), information technol-
ogy (e.g., World Wide Web) and social sciences (e.g., social
networks; Wang et al., 2016a, b). The application of complex
network theory to ionosphere science is still a young field,
since few research studies have been reported. The network
theory was discussed by Podolská et al. with two abstracts
in the 2010 and 2012 EGU General Assembly Conference
(Podolská et al., 2010, 2012). The aim of the first abstract
was to examine the influence of geomagnetic disturbances
and solar activity on thermal plasma parameters. The other
abstract was focused on an attempt to find out time shifts be-
tween fundamental ionospheric parameters. Therefore, none
of them tried to describe the global ionosphere based on a
complex network.

In modern statistical mechanics of geophysics, especially
seismological science, the idea of complex networks is re-
ceiving significant attention. Baiesi and Paczuski (2005) con-
structed directed networks of earthquakes by placing a link
between pairs of events that were strongly correlated. Their
results showed that the network was scale-free and highly
clustered. Abe and Suzuki (2006) constructed growing ran-
dom networks by adding an edge between two successive
earthquakes and found that these earthquake networks were
scale-free and small-world. The constructions of the above
two networks were based on the expert judgment of adding
an edge and ignored the uncertainty in the system. Jiménez
et al. (2008) divided the southern California region into cells
of 0.1◦ and calculated the correlation of activities among
them to create networks, which showed the small-world fea-
tures. Suteanu (2014) proposed a network-based method for
the assessment of earthquakes’ relationships in space–time–
magnitude patterns and further applied the results for the
study of temporal variations in volcanic seismicity patterns.
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Those two networks were built based on correlation, which
was a linear measurement of the interactions in the objective
system.

Another geophysical application of complex networks is
in climate science (Nocke et al., 2015). Peron et al. (2014)
also built a temperature network by correlation and regarded
the global grid points as nodes. They showed that the network
characteristics of the North American region marked the dif-
ferences between the eastern and western regions. Such dif-
ferences can be viewed as a reflection of the presence of
a large network community on the west side of the conti-
nent. To depict the nonlinearity and uncertainty in the cli-
mate, information theory is introduced to construct the com-
plex network of climate. Donges et al. (2009a, b) used com-
plex networks to uncover a backbone structure carrying mat-
ter and energy in the global surface air temperature field.
They used mutual information (MI) to construct the network,
which was undirected because the mutual information was
symmetric, in order to measure the dynamical similarity of
surface air temperature between regions. Hlinka et al. (2013)
investigated the reliability of directed climate networks be-
ing built by conditional mutual information (CMI), using
dimensionality-reduced surface air temperature data. Com-
pared with MI, CMI is asymmetric and able to build directed
networks for global surface air temperature. However, both
MI and CMI are standard bivariate methods, which only de-
scribe the interactions between two spatial points without
considering the influence of the others. The same is true of
the correlation. A probabilistic graph is an efficient method
to describe the nonlinear interactions within the system from
a holistic perspective (Koller and Friedman, 2009). Further-
more, similar to seismology and climate science, the iono-
sphere is also distributed geographically. The ionospheric
variation involves spatial interactions and flows. These re-
search studies propose a possibility that approaches from the
perspective of complex networks may also shed new light on
ionospheric features. In this article, a probabilistic graph is
employed to model the dynamic processes within the iono-
sphere and build the ionospheric complex network.

Within the global ionosphere, there are interactions among
the variations over different positions. Variations over one
position may cause variations over other positions. The mo-
tivation of the current study is to explore the causal inter-
actions between the vertical total electron content (VTEC)
over different positions or cells of a global ionosphere map
(GIM) within the global ionosphere based on the directed
complex network. Hence, we can have a deep understanding
of the dynamic processes within the ionosphere. We interpret
the dynamic ionospheric processes as the information flow in
the directed network and explore the ionospheric character-
istics on a global scale. The VTEC dataset supplied by the
Centre for Orbit Determination in Europe (CODE) in 2012
is selected.

The article is organized as follows. The data and method
description are provided in Sect. 2. Furthermore, the results

about the patterns of the ionospheric interactions are pre-
sented in Sect. 3. The scale-free topology of the ionospheric
network is checked by conducting a power-law hypothesis
test. The distribution of the edge distances is calculated to an-
alyze the propagation of the dynamic processes in the iono-
sphere. The small-world structure of the ionospheric network
is explored to examine the stability of the ionosphere. Sec-
tion 4 discusses the summaries and conclusions.

2 Description of data and methods

2.1 VTEC data source

As a critical physical quantity of the ionosphere, VTEC car-
ries abundant information about the variations of the iono-
sphere (Ercha et al., 2015). The International Global Navi-
gation Satellite System Service (IGS) supplies global VTEC
data with 2 h time resolution. The dataset is determined from
more than 200 IGS stations on a global scale (Wei et al.,
2009). CODE, as one of the analysis centers of IGS, has
estimated VTEC from the dual-frequency code and phase
data of GPS since April 1998 (Guo et al., 2015). In the
current research, VTEC data are derived from CODE (ftp:
//ftp.aiub.unibe.ch/CODE/) in the form of a GIM. The GIM
ranges from −180 to 180◦ along the longitude and from
−87.5 to 87.5◦ along the latitude. The negative values stand
for the south latitude and west longitude. The size of an el-
ementary GIM cell is 5◦ along the longitude and 2.5◦ along
the latitude. Each GIM cell is defined as a variable, which
is a node in the ionospheric network. The VTEC data over
the GIM cells are the observations. For the decrease of the
computation by reducing the variables’ quantity, the size of
the GIM cells has been doubled. Therefore, the latitude and
longitude of GIM cells become 5 and 10◦. The number of
variables (GIM cells) is 36×36, which is 1296, because 180
and−180◦ are the same for longitude. In this paper, we select
the data from 2012.

2.2 Mapping the data to a complex network

As a complex system, the ionosphere is usually character-
ized by the presence of multiple interrelated aspects, which
are spatially distributed. Affected by various factors, the
ionosphere also involves a significant amount of uncertainty.
Moreover, our observations are always noisy; even observed
aspects are often measured with some error. Thus, probabil-
ity needs to be used to represent such random properties.
Furthermore, a probabilistic graph can efficiently describe
the nonlinearity within the system from a holistic perspec-
tive (Koller and Friedman, 2009). As a result, a probabilistic
graph is selected to model the interrelation and uncertainty
in the ionosphere. We describe the GIM data as the realiza-
tion of a multivariate probabilistic graph on the global spatial
grid.
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Probabilistic graphs use a graph-based representation as
the basis for compactly encoding a complex probabilistic dis-
tribution over a high-dimensional space (Koller and Fried-
man, 2009). A probabilistic graph is a useful way of visual-
izing interactions between multiple variables. Therefore, in
addition to inference, probabilistic graphs can also be used
to discover the knowledge within the dataset. As a kind of
complex network, probabilistic graphs are constructed to rep-
resent a joint distribution by making conditional indepen-
dence (CI) assumptions. The nodes in the networks represent
variables, and the edges represent CI assumptions (Murphy,
2012). The absence of an edge between two nodes implies
that the corresponding variables are conditionally indepen-
dent given all other nodes. Based on the probability theory,
we say variables X and Y are CI if the conditional joint dis-
tribution can be written as a product of conditional marginal:

X ⊥ Y |Z⇐⇒ p(X,Y |Z)= p(X|Z)p(Y |Z). (1)

In our study, X and Y are the two given GIM cells and Z
represents the GIM cells except X and Y . Thus, the analy-
sis is performed from a holistic perspective. As suggested in
Zerenner et al. (2014), a directed complex network can offer
additional knowledge, like the distinction between child and
parent nodes. Thus, we construct the ionospheric networks
that only include directed edges between GIM cells. Suppose
two GIM cells are not directly connected (conditionally in-
dependent) within the ionospheric network, there should be
no interactions between these cells after eliminating all of the
existing edges. The directed edges here represent the causal
interactions. In other words, after the variations of VTEC
over a certain GIM cell, there are some related variations
appearing over other GIM cells. In the following, the con-
struction of the directed ionospheric network (also known
as a Bayesian probabilistic graph or Bayesian network) is
introduced to describe the dynamic processes in the global
ionosphere. Dynamic processes are constituted by a series of
causal interactions among the GIM cells. Conditional inde-
pendence tests involving sets of variables can be used to de-
termine the existence and direction of edges (Ebert-Uphoff
and Deng, 2012).

The cells in the GIMs are defined as the variables of VTEC
distributed throughout the globe. As the nodes on the net-
work, the variables are separated by their own geospatial lo-
cations. The VTEC of each variable is arranged in the form of
a time series with 2 h time resolution. Thus, for the year 2012,
the length of the observations is 4392 (12 day−1

×366 days).
We employ a structure learning algorithm for Bayesian net-
works as a basis for the construction of the ionospheric net-
works. In our study, the measurements of the 1296 variables
are all continuous. To build the directed network, we should
determine the existence and directions of edges between any
two variables from a holistic perspective instead of just con-
sidering the two. The Fast Greedy Equivalence Search (FGS)
algorithm proposed by Ramsey et al. (2017) works well for
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Figure 1. The directed complex network of the ionosphere (in part).
The network is developed from the GIM dataset by the FGS algo-
rithm. The nodes indicate the GIM cells, while the directed edges
represent causal interactions between cells.

large numbers of continuous variables to build Bayesian net-
works. This algorithm utilizes the strategy that edges are it-
eratively added starting with an empty network, according
to maximal increases in the Bayesian information criterion
(BIC) score (Schwarz, 1978). Here, the variables’ distribu-
tions are assumed to be Gaussian. We use the implementa-
tion of the FGS algorithm in the TETRAD package (Ver-
sion 5.3.0-2, available at http://www.phil.cmu.edu/projects/
tetrad/, last access: 22 March 2018) and make the penalty
discount 10. TETRAD possesses a convenient user interface
to enter preknowledge. As the ionospheric network includes
1296 nodes and 10 985 directed edges in the globe, it is hard
to fully present such a complex network. Here, we exhibit
part of the ionospheric network. The result is shown in Fig. 1.

3 Results and discussion

3.1 Degree distribution of the ionospheric network

To explore the influence of the VTEC’s variation over a cer-
tain GIM cell, the degree of the ionospheric complex network
is employed. As one of the most critical parameters to depict
the nodes in a complex network, the degree is the number of
edges the node possesses. Concerning ionospheric networks,
the degree of a cell can be selected to quantify how many
GIM cells display a causal interaction with that given cell in
the globe; that is to say, cells with a large degree can influ-
ence large numbers of GIM cells. In the complex network,
“hubs” refer to the nodes with large numbers of links that
significantly exceed the average. Hubs have a significant ef-
fect on the system, which is described by the network. The
emergence of hubs results from the scale-free property of net-
works (Barabási and Albert, 1999). Hence, to study the hub
positions where the dynamic ionospheric processes mainly
originate or converge, we have to check the scale-free topol-
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Figure 2. The degree distributions of the ionospheric network. Panel (a) shows the out-degree distribution; panel (b) shows the in-degree
distribution. The red curves delineate the distribution fitting.

ogy of the degree distribution of the ionospheric network.
The degree distribution is the probability distribution of these
degrees over the whole network. For the directed ionospheric
network, the degree distribution is divided into two different
kinds, the out-degree distribution (the distribution of outgo-
ing edges) and the in-degree distribution (the distribution of
incoming edges). The degree distributions of the ionospheric
network are shown in Fig. 2.

It has been reported that real complex networks often ex-
hibit scale-free properties (Barabási and Albert, 1999). This
means their degree distribution follows a power law, at least
asymptotically; that is, the number of links of a given node
exhibits a power-law distribution, P(k)∼ k−γ , where k is
the number of links. P(k) can be calculated by the statistical
frequency, and γ is a parameter whose value is typically in
the range 2< γ < 3. From the distributions shown in Fig. 2,
it is hard to determine whether the observed degree is drawn
from a power-law distribution or not. Clauset et al. (2009)
presented a principled statistical framework for discerning
power-law behavior in empirical data. As for the method
shown in Clauset et al. (2009), we have tested the power-law
hypothesis quantitatively. Both the results of the out-degree
and in-degree distribution reject the hypothesis, indicating
that the ionospheric network is not scale-free. Thus, most
GIM cells have approximately the same number of edges,
indicating that the causal interactions shown by the network
of the global ionosphere are homogeneous. For the dynamic
processes in the ionosphere, there is no unique spatial posi-
tion acting as the source or sink. This property is completely
different from that of the geomagnetic field. In other words,
there are no visible hub GIM cells for the ionospheric varia-
tions. Moreover, from the curves of distribution fitting shown

in Fig. 2, we can see that both the distributions are more
likely Poisson, just like the network of climate (Tsonis et al.,
2007).

3.2 Distribution of the edge distances

The propagation of the dynamic processes is related to the
transmission of energy or particles in the ionosphere. To an-
alyze such a transport property, the distribution of the edge
distances is calculated. The edge distance is defined by the
geographical distance between the origin and destination of
an edge. The height of the VTEC supplied by CODE is
H = 450 km. As the measurements are on the earth which
can be regarded as a sphere, the distances between any two
positions can be calculated by the arc lengths on the sphere
d = Rθ , where R = R0+H , R0 is the earth radius and θ
is the corresponding central angle. Compared with the undi-
rected probabilistic graphs, the directed ones can provide ad-
ditional knowledge about the directions of the causal interac-
tions within the ionosphere. To study the directional charac-
teristics of the propagation of the dynamic ionospheric pro-
cesses, the edge distances are mapped in the latitude and lon-
gitude directions.

The latitudinal distances are calculated by dlat = (lat2−
lat1)R, where lat1 and lat2 are the latitudes of the origin and
destination of the given edge. Meanwhile, the longitudinal
distances are calculated by dlong = (long2− long1)R

′, where
long1 and long2 are the longitudes of the origin and destina-
tion of the given edge. As the radii of different latitudinal cir-
cles are different, the radius of an equivalent latitudinal circle
is calculated by the average of the radii of the two latitude
circles on which the origin and destination of the given edge
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Figure 3. The distribution of the directed edge distances in the global ionospheric network. Panel (a) shows the distribution of edges against
the latitudinal and longitudinal distances; panel (b) shows the distribution of edges against their latitudinal distances; panel (c) shows the
distribution of edges against their longitudinal distances. The red curves delineate the distribution fitting.

are located; i.e., R′ = 1
2 [cos(lat1)+cos(lat2)]R. The positive

signs of the distances represent the directions of edges and
can either be eastward or northward. The result is shown in
Fig. 3.

As is shown in Fig. 3a, the edges are mainly distributed
around the origin of the coordinate system in the ionospheric
network. Thus, the GIM cells are mostly connected with their
spatial neighbors. The local connections indicate that, in the
ionosphere, the propagation of the dynamic processes is pri-
marily affected by the geospatial distance and almost satis-
fies the proximity principle in geospace. Furthermore, from
the approximate symmetry along the x axis in Fig. 3b and c,
we can discover that it is almost the same for the westward
and eastward propagation of the dynamic processes, and also
for the southward and northward. From Fig. 3b and c, we can
see that the number of edges decreases as the absolute value
of latitudinal and longitudinal distance increases. This phe-
nomenon also reveals that the local interactions account for
a considerable proportion in the ionospheric network. The
proximal propagation may be due to the diffusion effects of
charged particles in the ionosphere. In addition, comparing
the standard deviations (SDs) of the edges’ longitudinal and
latitudinal distances, which are 0.53 and 0.28, we find that
the distribution curve in the latitude direction is steeper than
that in the longitude direction. Therefore, the rate of decrease
along the latitude is larger than that along the longitude. Ac-
cordingly, the dynamic processes are propagated more effi-
ciently along the longitude than along the latitude. Such a
phenomenon may relate to the north–south currents or geo-
magnetic field in the ionosphere. Moreover, the ionospheric
network is not entirely connected locally. Long-range edges
emerge both along the latitude and longitude. The long-range
propagation may be caused by the geomagnetic field or other

global factors. Thus, the ionospheric network possesses a pri-
marily ordered structure with some exceptional long-range
connections.

3.3 Small-world structure of the ionospheric network

As for a complex network, the concept of being “stable” is
defined as the high capability of the dynamics in the net-
work to withstand disturbance attacks. In other words, the
topology structure of the stable network cannot be easily de-
stroyed and the dynamics can still be propagated through-
out the network, even when some edges are removed by the
disturbance attacks. “Efficient” is defined as the ability of
rapid and easy propagation of dynamics in the network. In
this subsection, we explore the small-world structure of the
ionospheric network to examine the stability and efficiency
of the ionosphere, which is regarded as a dynamical system.

Lying between the completely random and completely
regular network, the small-world network is a type of graph
in which any given node is likely to reach every other node
by a small number of steps compared with the total number
of network nodes (Gallos et al., 2007). The “six degrees of
separation” in social networks is one of the most famous ex-
amples. Watts and Strogatz (1998) initially found that some
networks can be highly clustered, like regular lattices, yet
have small characteristic path lengths, like random graphs.
Networks of such a nature are called small-world networks.
To investigate the small-world structure of the ionospheric
network, the original network has to be reduced to an undi-
rected graph (Abe and Suzuki, 2006, 2009). Furthermore, to
mathematically describe the small-world property, two criti-
cal parameters are often selected, which are the average clus-
tering coefficient C and the average shortest path length L.
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Their definitions are shown in Eqs. (2)–(4).

Ci =
21i

ki(ki − 1)
, (2)

C =
1
N

N∑
i=1

Ci, (3)

L=
2

N(N − 1)

∑
i≥j

dij . (4)

Here, Ci is the local clustering coefficient of node i; ki is
the degree of node i and 1i denotes the number of edges
between the neighbors of node i, with node i itself being ex-
cluded. The global clustering coefficient C is defined as the
average of all local clustering coefficients Ci . N is the num-
ber of nodes and dij denotes the length of the shortest path
between the nodes i and j ; dij is calculated by Dijkstra’s
algorithm (Newman, 2010). Thus, C describes the local con-
nections in the ionospheric networks, while L characterizes
a network’s connectivity structure globally (Zerenner et al.,
2014).

To quantitatively define a small-world network, values for
the network properties must be compared with those val-
ues acquired from the equivalent random networks, which
have the same degree as the given network on average.
A measurement of “small-world-ness” is proposed as follows
(Humphries and Gurney, 2008; Humphries et al., 2011):

σ =
C/Cr

L/Lr
. (5)

Here, C and L are the average clustering coefficient and the
average shortest path length of the given network, while Cr
and Lr are those of the equivalent random network. If the
given network fulfills the conditions σ > 1 and C/Cr > 1, it
meets the small-world criterion. To reduce the impact of ran-
domness during the analysis of the ionospheric network, the
results shown in Fig. 4 are calculated by 150 random net-
works.

From Fig. 4a and c, we can see that the results all satisfy
σ > 1 and C/Cr > 1. Shown in Fig. 4b and d, the frequen-
cies are approximately Gaussian, and the SDs are 0.028 and
0.035. Such small SDs indicate that the results are close to
the real values (the averages) 6.64 and 8.08. Therefore, the
ionospheric network behaves as a small-world graph. The
propagation of the dynamic processes in the ionosphere ex-
hibits a small-world property. As was defined by Watts and
Strogatz (1998), the small-world network possesses a small
average shortest path length (compared to the regular net-
work) and a large clustering coefficient (compared to the ran-
dom network). When the number of edges per node is high,
networks have a high clustering coefficient. In this case, acci-
dental removal of some edges does not break the network into
unconnected parts; the network is stable. On the other hand,
a small average shortest path length L means faraway nodes
can be connected as easily as nearby nodes. The smaller the
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Figure 4. The test of the small-world structure in the ionospheric
network. Panel (a) shows the 150 results of σ ; panel (b) shows the
frequency of the results of σ ; panel (c) shows the 150 results of
C/Cr; panel (d) shows the frequency of the results of C/Cr.

L, the easier the propagation in the network. Within the net-
works with small L, the propagation of dynamics is efficient.
Thus, small-world networks are stable and efficient in react-
ing to the abrupt variations (Tsonis et al., 2007).

As is shown by the results above, the ionospheric net-
work is small-world with a small average shortest path length
and a large clustering coefficient. Thus, the ionospheric net-
work exhibits properties of stable networks and of networks
where dynamic processes are transferred efficiently. For ex-
ample, a solar flare may create a disturbance in the iono-
sphere at high latitudes. However, the small-world property
of the ionospheric network allows the system to respond
quickly and coherently to the anomalies introduced into the
system. This dynamic propagation diffuses local anomalies,
thereby reducing the possibility of prolonged local extremes
and providing greater stability for the global ionosphere sys-
tem. Thus, chances of major ionospheric shifts are reduced.
The above theory and its application to the ionosphere data
suggest that the ionosphere system may be inherently stable
and efficient in transferring dynamics. Just as the small-world
property in the atmosphere does (Donges et al., 2009b), such
an ionospheric property also results from the teleconnections
beyond the geospatial distance in the ionospheric network.
Such teleconnections play an important role in stabilizing
the ionosphere system and cause the dynamic ionospheric
processes to be transferred efficiently (Donges et al., 2009b;
Tsonis et al., 2007).

4 Conclusions

The ionosphere can be regarded as a spatially extended com-
plex system. Therefore, the complex network is used to ana-
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lyze the dynamic processes in the global ionosphere based on
the VTEC from CODE. As a Bayesian probabilistic graph,
the ionospheric network is constructed based on the condi-
tional independence theory by the FGS algorithm. The edges
of the network represent the causal relationships between
any two GIM cells from a holistic perspective. We have ana-
lyzed the structure of the directed ionospheric network. The
results of the power-law hypothesis test show that both the
out-degree and in-degree distribution of the ionospheric net-
work are not scale-free. The ionospheric network is homoge-
nous. None of the geospatial positions play an eminently im-
portant role in the propagation of dynamic ionospheric pro-
cesses. The importance of the ionosphere over various spatial
locations in the propagation of the ionospheric dynamic pro-
cesses is similar. Based on the latitudinal and longitudinal
distances between the beginnings and ends of the edges, the
joint distribution is analyzed to explore the propagation of
the dynamic processes in the ionosphere. The results show
that the edges principally exist between adjacent geographi-
cal locations, indicating that the propagation of the dynamic
processes mainly satisfies the proximity principle in the iono-
sphere. Moreover, the joint distribution of the edge latitudinal
and longitudinal distances shows that the dynamic processes
travel more efficiently along the longitude than along the lat-
itude. Also, the small-world structure is studied to examine
the stability of the ionosphere. The small-world-ness of the
ionospheric network is found to be larger than 1. Meanwhile,
the clustering coefficient is larger than those of the equal
random networks. Thus, the ionospheric network possesses
a small-world property, which makes the ionosphere stable
and efficient in the propagation of the dynamic processes. In
general, the complex network provides a unique perspective
in ionosphere research. Depending on the choice of nodes,
edges and methods, ionospheric networks may take different
forms to study different properties of the ionosphere.
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