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Abstract. We present high-resolution, three-dimensional
simulations of rotation-modified mode-2 internal solitary
waves at various rotation rates and Schmidt numbers. Ro-
tation is seen to change the internal solitary-like waves ob-
served in the absence of rotation into a leading Kelvin wave
followed by Poincaré waves. Mass and energy is found to
be advected towards the right-most side wall (for a Northern
Hemisphere rotation), leading to increased amplitude of the
leading Kelvin wave and the formation of Kelvin–Helmholtz
(K–H) instabilities on the upper and lower edges of the de-
formed pycnocline. These fundamentally three-dimensional
instabilities are localized within a region near the side wall
and intensify in vigour with increasing rotation rate. Sec-
ondary Kelvin waves form further behind the wave from ei-
ther resonance with radiating Poincaré waves or the remnants
of the K–H instability. The first of these mechanisms is in
accord with published work on mode-1 Kelvin waves; the
second is, to the best of our knowledge, novel to the present
study. Both types of secondary Kelvin waves form on the
same side of the channel as the leading Kelvin wave. Com-
parisons of equivalent cases with different Schmidt numbers
indicate that while adopting a numerically advantageous low
Schmidt number results in the correct general characteristics
of the Kelvin waves, excessive diffusion of the pycnocline
and various density features precludes accurate representa-
tion of both the trailing Poincaré wave field and the intensity
and duration of the Kelvin–Helmholtz instabilities.

1 Introduction

Over recent decades non-linear internal solitary waves
(ISWs) have been the subject of continuing research due, in
part, to their common presence in coastal waters (Shroyer
et al., 2010; Lamb, 2004; Zhang et al., 2015) and estuaries

(Bourgault and Kelley, 2003), and an expanding set of ap-
plications, such as plankton and krill transport (Scotti and
Pineda, 2004; Cuypers et al., 2010) or cross-shelf transport
(Hosegood and van Haren, 2004). Of particular interest are
the effects that rotation has on these waves, since they have
been observed to have lifetimes such that this effect is non-
negligible (Farmer et al., 2009). At observation sites such as
Knight Inlet (Klymak and Gregg, 2001) and within the St.
Lawrence River (Mertz and Gratton, 2013), side walls may
also impact the propagation of these waves. Indeed, classical
linear wave theory for rotation-modified waves demonstrates
that the presence of side walls allows a different type of wave
to be created, namely a Kelvin wave.

The dominant laboratory insights on Kelvin waves in
channel geometry come from the experimental work of Max-
worthy (1983) and Renouard et al. (1987). These authors
performed lab-scale experiments in which mode-2 (Maxwor-
thy, 1983) and mode-1 (Renouard et al., 1987) Kelvin waves
were generated in a rectangular domain. Both authors found
that though the wave amplitude increased at the channel wall
with increasing rotation rate, the phase speed and shape were
comparable to waves of similar amplitude in the presence of
no rotation. The authors also described how the wave am-
plitude decayed exponentially away from the wall, how the
wave front was curved backwards, and how the waves de-
cayed as they propagated away from the generation site due
to the generation of inertial waves. Melville et al. (1989) fol-
lowed this by showing that Poincaré waves of comparable
phase speed to a Kelvin wave will naturally resonant with
the Kelvin wave, thus causing the curvature of the wave front
and the amplitude decay away from the side wall.

In Sánchez-Garrido and Vlasenko (2009) the authors dis-
cussed numerical simulations constructed to approximately
model the evolution of mode-1 waves in the Strait of Gibral-
tar. When the latitude was increased to 60◦, the authors found
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clear evidence of a secondary tail of Poincaré waves which
trailed the leading Kelvin wave and extracted energy from
this wave. The authors also found clear evidence of Mach
stems. As this study provides a direct comparison work to
our own, its results will be discussed at various points in the
following. Observation of mode-1 ISW breaking in a non-
rotating environment has been presented by Moum et al.
(2003). The authors show that localized increases in strati-
fication (a compression of isopycnals) at the wave crest are
followed by interfacial overturning and a breakdown to tur-
bulence.

In the simpler case of a rotating fluid adjusting without the
presence of side walls, it has been observed that if disper-
sive effects are accounted for, a leading solitary wave is cre-
ated, which then breaks down into a non-linear wave packet
as it propagates (Coutino and Stastna, 2017). Additionally,
a geostrophic state is created at the site of the initial condi-
tion which oscillates at a near-inertial frequency and radiates
waves. Previous work based on hydrostatic equations (Kuo
and Polvani, 1997) has suggested that the non-linear waves
created would steepen and eventually break; however, when
dispersive effects are accounted for, breaking does not occur
and a non-linear wave packet is generated instead. This effect
has been observed in lab-scale experiments using the Corio-
lis rotating platform in Grenoble (Grimshaw et al., 2013).
To numerically model these effects, the authors used model
equations based on the rotation-modified Korteweg–de Vries
(rKdV) or Ostrovsky equation, which gave qualitatively sim-
ilar results to the observations. However, these equations do
not account for the full non-linearity and dispersion. This ac-
counts for some of the differences with the results in Coutino
and Stastna (2017), in which the full stratified Euler equa-
tions were used.

The work by Fedorov and Melville (1995) showed that if
dispersive effects are neglected (when non-linearity is large),
the Kelvin waves will break. Specifically, the authors found
that rotation delays the onset of breaking by 60 %. When the
breaking occurs, it simultaneously forms across the zone of
uniform phase that is normal to the boundary. The increase
in non-linearity is seen to create a dipole structure in the
cross-shelf velocities. On a similar note, Kuo and Polvani
(1997) note that the time of breaking depends on both the ro-
tation rate and the steepness of the initial conditions (see their
Fig. 18 for details). However, it is unclear how a more real-
istic model with short wave dispersion would modify these
results.

There have been a number of studies on Kelvin waves
from a model equation approach. Grimshaw (1985) de-
rived a rotation-modified Korteweg–de Vries (rKdV) equa-
tion whose transverse structure is that of a linear Kelvin
wave. The author also showed that when rotation is weak,
(the internal Rossby radius is much larger than the wave-
length of the wave) the evolution is described by the rotation-
modified Kadomstev–Petviashvili (rKP) equation. This was
followed up by Katsis and Akylas (1987) who performed a

numerical simulation of these equations and found that the
wave amplitude varied exponentially across the channel and
the wave front was curved backwards in agreement with the
results seen in Maxworthy (1983) and Renouard et al. (1987).

Rotation-modified mode-1 ISWs within a cylindrical ge-
ometry have been investigated by Ulloa et al. (2014, 2015)
using an immersed boundary numerical method. The authors
found that the rotation rate affected the non-linear steepen-
ing, which further caused a degeneration of the fundamen-
tal Kelvin wave into a solitary-type wave packet. When the
Kelvin wave amplitude was large enough, localized turbulent
patches were produced by Kelvin wave breaking.

Results on non-rotating mode-2 ISWs, especially with
regards to their mass transport capabilities (Deepwell and
Stastna, 2016; Salloum et al., 2012; Brandt and Shipley,
2014; Terez and Knio, 1998), are readily available and there
is considerable contact between the experimental and nu-
merical modelling literature. This is exemplified by recent
progress on quantifying the effects of displacing the pycno-
cline centre from the mid-depth (Carr et al., 2015; Olsthoorn
et al., 2013). In contrast, mode-2 ISWs in a rotating refer-
ence frame have been documented experimentally by Max-
worthy (1983), but no high-resolution numerical simulations
exist that provide concrete examples of phenomena that fu-
ture experimental efforts could document. We provide such
simulations below, with a focus on the overturning induced
by the rotation-modified ISW (or Kelvin wave, depending on
one’s choice of terminology) at the focusing boundary.

Our primary qualitative results that could be confirmed in
the laboratory concern the fundamentally three-dimensional
nature of the shear instability at the edges of the mode-2
wave’s core and the details of the spatial structure of the
span-wise kinetic energy flux. The former could be visual-
ized by a particle image velocimetry (PIV) system with a
light sheet oriented in the span-wise direction or along-tank
light sheets at varying distances from the focusing wall. The
latter could be characterized by the more usual along-tank
PIV set-up. Moreover, the quantitative results of the Kelvin
wave–Poincaré wave resonance and the formation of sec-
ondary Kelvin waves in our simulation should provide an
easier comparison than field-oriented simulations such as
those of Sánchez-Garrido and Vlasenko (2009). In terms of
the numerical modelling literature, we are interested in ex-
ploring how the Schmidt number (or Prandtl number in ther-
mally stratified systems) affects the localized shear instabil-
ities generated near the Kelvin wave crest. This is impor-
tant since Schmidt numbers representative of salt stratifica-
tion (Sc≈ 700) are presently intractable for numerical simu-
lations on all but the smallest scales, but realistic results may
be obtained by choosing a Schmidt number larger than that
for a heat stratified system (Sc≈ 7) but much smaller than
that of salt. It also implies that while field-scale simulations
like those of Sánchez-Garrido and Vlasenko (2009) may have
a similar Rossby number to an experimental study, they can-
not have the same viscosity and diffusivity, implying that ex-
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perimentalists need to carefully assess what aspects of such
simulations they may successfully observe in the laboratory.

The remainder of the paper is structured as follows: the
set-up of the numerical experiments and numerical methods
are outlined first, with the results that follow structured to
identify fundamental differences between rotating and non-
rotating evolution; the three-dimensional structure of near
wall overturning is characterized; and the importance of us-
ing a realistic Schmidt number other than Sc= 1, which has
been consistently used in past literature, is pointed out.

1.1 Configuration of numerical experiments

We have run a series of direct numerical simulations (DNSs)
in a set-up similar to that of Maxworthy (1983), who em-
ployed a gravity intrusion from a lock release in a rotat-
ing rectangular tank to generate mode-2 waves. Since the
flow develops from a state of rest, the precise definition
of the term “direct numerical simulation” from the turbu-
lence literature, namely that grid spacing must be smaller
than the Kolmogorov microscale, cannot be directly trans-
lated to the present situation. We define a DNS in the sense
commonly adopted in the stratified flow modelling literature,
with Arthur and Fringer (2016) providing a concrete exam-
ple. These authors state that a DNS is a three-dimensional
simulation which has a grid spacing which is “within ap-
proximately 1 order of magnitude of the Kolmogorov length
scale”. The Kolmogorov scale for transitional flows is de-
fined in an ad hoc manner, usually via the explicit calculation
of the viscous dissipation rate. The grid scale of our simula-
tions is comparable to this usage since it is within an order of
magnitude of the Kolmogorov scale defined from the maxi-
mum local dissipation rate. Moreover, our numerical method
is spectral in all directions and hence formally higher order
than that used in Arthur and Fringer (2016). The spectral fil-
ter used to control aliasing applies only to the largest 30%
of wave numbers and leaves the majority untouched, and no
subgrid-scale model as in a large eddy simulation (LES) is
used. Based on these considerations, and in the absence of a
better term, the term DNS will be used throughout.

We form the gravity intrusion by releasing a large density
perturbation into a quiescent, quasi-two-layer background
stratification (Fig. 1 shows this so-called lock-release con-
figuration). Algebraically, the density field has the form

ρ(x,z)= ρ0−
1ρ

4

[
tanh

(
z− z0− η(x)

h

)
+ tanh

(
z− z0+ η(x)

h

)]
, (1)

where z0 is the location of the background pycnocline, h is
the half-width of the pycnocline, and
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[
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(
x
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)p]
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Table 1. Stratification parameters.

Hm (m) Lm (m) p 1ρ/ρ0 z0 (m) h (m)

0.1 0.3 8 0.02 0.15 0.02
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Figure 1. Schematic of the numerical domain. The blue region, cen-
tred at the mid-depth, corresponds to ρ = ρ0, with heavier fluid be-
low and lighter fluid above. All lengths have the units of metres and
the rotation rate has the units of s−1.

describes the perturbation in which Hm, Lm, and p set the
height, width, and transition length, respectively. The above
specification of stratification leads to a single hyperbolic tan-
gent profile for x� Lm and a double hyperbolic tangent pro-
file with an intermediate density layer for x� Lm. As is typ-
ical of studies of mode-2 waves (Davis and Acrivos, 1967;
Stamp and Jacka, 1995; Salloum et al., 2012), the pycnocline
is centred at the mid-depth (z0 = Lz/2). The stratification pa-
rameters are listed in Table 1. For comparison, the domain
size is Lx ×Ly ×Lz = 6.4m× 0.4m× 0.3m.

We have completed a suite of numerical simulations at var-
ious rotation rates and Schmidt numbers. The rotation rate
has been specified using the Coriolis parameter, f , which is
defined in the usual way as twice the rotation rate. We define
our maximum Coriolis parameter as f0 = 0.105s−1, which is
comparable to the literature (Grimshaw et al., 2013) and, in
particular, to values achievable in the Coriolis rotating plat-
form in Grenoble.

Following the work of Maxworthy (1983), we character-
ize the leading wave in regard to its size at the y = 0 m wall.
In particular, the wave speed, cw, and amplitude, aw, are
parametrized at this boundary because it is where they reach
their maximal values due to the focusing of mass and energy
by rotation. The amplitude is defined as the average maxi-
mum upstream displacement of the ρ(z0±h) isopycnals (for
a schematic, see Fig. 2 in Deepwell and Stastna, 2016). A
representative value (Table 2) is chosen just prior (in time)
to the formation of instabilities. The wave speed, measured
as the speed of the location of the maximum displacement,
is independent of the rotation rate and has a value larger than
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the linear long wave speed due to the large amplitude nature
of these waves. The amplitude is only weakly dependent on
the rotation rate or Rossby number. In general, increasing the
initial perturbation, both Lm and Hm, leads to the formation
of more individual ISWs, larger wave amplitude, and thus
higher wave speed. For a comprehensive discussion, consult
Deepwell and Stastna (2016), Salloum et al. (2012), Terez
and Knio (1998), or Brandt and Shipley (2014) for more de-
tails on the relationship between initial tank parameters and
the resultant wave. Discussion about how the ISW is formed
from the initial conditions will also be deferred to these arti-
cles.

The internal Rossby radius of deformation is defined
as Lc = cw/f , the Rossby number as Ro= cw/fLm, the
Reynolds number as Re= cwLm/ν, and the Schmidt num-
ber as Sc= ν/κ . The kinematic viscosity was ν = 2×
10−6 m2 s−1 for all cases, whereas the mass diffusivity,
κ , varied. The parameters and characteristic values for
each simulation are presented in Table 2. The velocity is
scaled by the mode-2, linear, non-rotating, long wave speed,
c0 =

1
2 (gh1ρ/ρ0)

1/2 (Benjamin, 1967). The average rate of
change of the amplitude is given by a′ =−T

h
daw
dt , where

T = Lm/c0 is the characteristic timescale.
We briefly contrast our set-up to that of Sánchez-Garrido

and Vlasenko (2009). The primary difference is the scale to
be modelled. While we seek to model laboratory-scale mo-
tion, and hence resolve both tank-scale and small-scale mo-
tion, in Sánchez-Garrido and Vlasenko (2009) the authors
seek to model field-scale motion. Hence their ratio of depth
to span-wise extent is much smaller than ours. Moreover they
model dissipation through an eddy viscosity, while we carry
out a DNS. Nevertheless, the ratio of their Rossby radius to
span-wise extent is roughly 0.6, hence similar to some of our
experiments. Thus much of the large-scale motion in the two
sets of simulations can be expected to be similar. In partic-
ular, Fig. 2 of Sánchez-Garrido and Vlasenko (2009) makes
for a useful comparison to some of our findings.

1.2 Numerical methods

Our numerical model solves the so-called Boussinesq equa-
tions of motion on an f plane (Kundu et al., 2012):

Du

Dt
+ 2�×u=−

1
ρ0
∇p+

ρ

ρ0
g+ ν∇2u, (3a)

∇ ·u= 0, (3b)
dρ
dt
= κ∇2ρ, (3c)

where g is the gravitational acceleration vector pointing
in the negative z direction, �= f/2k̂ is the f -plane rota-
tion vector, and other variables have their usual meaning.
These equations are presented in dimensional form, while
the remainder of this article will use the following non-

dimensionalizations,

x̃ = x/Lm, ỹ = y/Ly, z̃= z/Lz, (4a)
t̃ = t/T , (4b)
ρ̃ = (ρ− ρ0)/ρ0, (4c)

where the last-mentioned is referred to as the density
anomaly. Scaling time by the rotation rate is inapplicable be-
cause the flow is predominantly a Kelvin wave with a prop-
agation speed independent of the rotation rate. Rather, time
has been scaled by T = Lm/c0 since the propagation speed
of a Kelvin wave is equivalent to the gravity wave speed in
the absence of rotation.

The equations used differ from the oceanic situation in that
we take the density as a variable to be evolved, whereas in the
ocean it is the salinity and temperature that evolve, with den-
sity recovered from an equation of state. The non-linearity of
the equation of state leads to a variety of complex phenomena
(e.g. salt fingering, cabbeling, the fact that pure water has a
density maximum at 4◦C). In the laboratory, density changes
are typically imposed by variations in salinity with the tem-
perature held fixed. Our formulation mirrors this situation,
though the experimentally observed diffusivity of salt proves
too low for inclusion in the numerical simulations.

Numerical simulations were completed using the Spec-
tral Parallel Incompressible Navier–Stokes Solver (SPINS;
Subich et al., 2013). SPINS is a pseudo-spectral code capa-
ble of solving the given problem to a high degree of accuracy
in the given geometry. The third-order Adams–Bashforth
method with an adaptive time step was used to evolve the
flow. Free slip boundary conditions were specified on all
walls. This is an unphysical condition compared to the lab-
oratory experiments of Maxworthy (1983), though it is stan-
dard numerical practice. However, as we will see later, the
length scale associated with shear instabilities is much larger
than the boundary layer thickness, and hence boundary layer
effects will not affect the dominant mechanism for shear pro-
duction. Besides a minor reduction in the energy within the
Kelvin wave, we believe that changing to a no-slip boundary
condition on the side wall will have minimal impact on the
Kelvin wave.

The size of the channel and the grid resolution are listed
in Table 3. The stated resolution was sufficient for all but
two simulations: case 10_1 and case 4_1. These both had the
resolutions in the x and z dimensions doubled to have the to-
tal number of points be Nx ×Ny ×Nz = 4096× 256× 512.
Grid convergence studies were conducted for these cases
because they were the most energetic with the largest and
most energetic density overturns. Good agreement was found
for the cases with the stated resolution and those with half
the resolution. In general, the higher resolutions have been
used in this article because of their higher accuracy, though
bulk characteristics of the flow computed at the lower reso-
lution remain accurate. For the resolution listed in Table 3,
the strongly stratified region of the background stratification
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Table 2. Case parameters and characterizations.

Case Sc f/f0 cw/c0 aw/h a′ Re Ro Lc (m)

10_0 10 0 1.48 1.47 1.83 6960 ∞ ∞

10_1/16 10 1/16 1.49 1.45 2.47 7010 23.74 7.12
10_1/4 10 1/4 1.48 1.49 6.02 6960 5.90 1.77
10_1/2 10 1/2 1.46 1.53 6.40 6870 2.91 0.87
10_1 10 1 1.47 1.61 6.76 6900 1.46 0.44
4_0 4 0 1.48 1.46 2.03 6930 ∞ ∞

4_1/2 4 1/2 1.45 1.53 5.96 6820 2.89 0.87
4_1 4 1 1.46 1.61 6.62 6870 1.45 0.44
1_0 1 0 1.44 1.41 2.88 6770 ∞ ∞

1_1/2 1 1/2 1.41 1.50 4.97 6640 2.81 0.84
1_1 1 1 1.44 1.61 6.32 6780 1.43 0.43

contains approximately 2 h/1z≈ 33 points, while the entire
stratification has approximately 140 points. Small-scale fea-
tures in the transitional flow typically are about 2 cm in di-
ameter and contain about 20 points. The applicability of the
stated resolution was also found by comparing the grid scale
to the Kolmogorov scale, which we define using the maxi-
mum local energy dissipation rate. In all cases the maximum
grid resolution is within an order of magnitude of the Kol-
mogorov scale. Thus, our simulations are well resolved.

2 Results: influence of rotation

We begin by looking at how the ISW is affected by rotation
through the Coriolis force. We have chosen the rotation to
match that of the Northern Hemisphere, which causes objects
to be deflected towards the right of their trajectory. In the
context of our experiment this leads to span-wise variation in
the developing ISW. Maxworthy (1983) found that the wave
front became curved as a result of variation of the celerity on
wave amplitude. At ỹ = 0 (which we will call the focusing
wall) the amplitude and celerity were both larger than at other
y values.

We investigate the location of the ISW crests using the
scaled, vertically integrated kinetic energy,

ξ(x,y, t)=

∫ Lz
0 KEdz

maxx,y,t
∫ Lz

0 KEdz
, (5)

where the kinetic energy is defined in the usual way, KE=
1
2ρ0

(
u2
+ v2
+w2), and the maximum is over space and

time.
The time evolution of ξ displays the bending of the leading

internal Kelvin wave and the developing Poincaré waves for
case 10_1 (Fig. 2). Early on (Fig. 2a), the energy is mostly
within the leading wave since insufficient time has passed
for radiation to occur. However, at this early time, the wave,
which began as a plane wave across the channel, has clearly
been affected by the rotation as evidenced by energy being
focused towards ỹ = 0. This focusing also resulted in the

Figure 2. The time evolution of the scaled, vertically integrated
kinetic energy, ξ , for case 10_1 at (a) t̃ = 2.6 (t = 25s), (b) t̃ =
5.2 (t = 50s), (c) t̃ = 7.8 (t = 75s), and (d) t̃ = 10.4 (t = 100s).
The colour axis is saturated at early times to show the wave at later
intervals.

curvature of the leading Kelvin wave front, a phenomenon
which remains evident for the remainder of the simulation.

As time progresses, Poincaré waves form behind the
Kelvin wave, as previously described by Sánchez-Garrido
and Vlasenko (2009). The Poincaré waves reflect multiple
times off both the ỹ = 1 and ỹ = 0 walls. At t̃ = 10.4 (t =
100s) the ratio of total KE on the ỹ = 1 wall to the ỹ = 0
is approximately 0.11, indicating that the location of primary
activity will be near the focusing wall. The shear also reaches
its maximum at ỹ = 0, enabling the onset of dynamic insta-
bilities.

The presence of the Kelvin and Poincaré waves in this con-
text is quite common and is dependent on the rotation rate
(Fig. 3). An increasing rotation rate leads to an increase in
the angle that the leading wave makes with the normal of
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Table 3. Tank dimensions and numerical resolution.

Lx (m) Ly (m) Lz (m) Nx Ny Nz 1x (mm) 1y (mm) 1z (mm)

6.4 0.4 0.3 2048 256 256 3.1 1.6 1.2

Figure 3. Scaled, vertically integrated kinetic energy, ξ , at t̃ =
10.4 (t = 100s) for the case with Sc= 10 and (a) f/f0 = 0 (Ro=
∞), (b) f/f0 = 1/4 (Ro= 5.9), (c) f/f0 = 1/2 (Ro= 2.91), and
(d) f/f0 = 1 (Ro= 1.46). The scaling is by the maximum over
the f = f0 case and the colour axis is saturated to emphasize the
Poincaré waves emanating from the focusing region and their re-
flection off the ỹ = 1 wall. The maximum of the unscaled ξ for
each case is (a) 0.08 J m, (b) 0.12 J m, (c) 0.16 J m, and (d) 0.27 J m.
Though in non-dimensional form, the axes have correct dimensional
scaling.

the boundary. The Poincaré waves behave similarly as the
rotation rate is varied; however they also have the added
complication of reflection and non-linear interaction between
waves. When rotation is absent (Fig. 3a), Poincaré waves
are unable to form; instead, a simple train of three planar
ISWs of decreasing amplitude and energy are formed. Over-
all, the spatial distribution of kinetic energy is dominated by
the Kelvin wave front and two secondary features near the
focusing wall.

It needs to be mentioned that the presence of side walls
removes the possibility of a span-wise invariant geostrophic
state forming in the collapse region since the presence of
walls enforces that flow is in the along-tank direction. This
means that the release of mass and energy into the ISWs is
greater than when no side wall is present. The detailed dy-
namics of the near field are interesting but beyond the scope
of the present paper.

Figure 4. Scaled, vertically integrated kinetic energy, ξ , for case
10_1 at t = (a) t̃ = 4.7 (t = 45s), (b) t̃ = 6.3 (t = 60s), and (c) t̃ =
7.8 (t = 75s). The scaling and colour axis is identical to Fig. 2. The
red plots are the span-wise average ξ profiles for the non-rotating
case (case 10_0), with corresponding maxima locations (vertical
lines).

A secondary boundary trapped wave also forms in the
rotation-modified cases (Fig. 3b–d). The generation mecha-
nism for this wave is fundamentally distinct from the forma-
tion of trailing ISWs in the non-rotating case. In discussing
this difference, the term ISW will be used to describe the
non-rotating waves only, while Kelvin and Poincaré waves
will naturally be understood to relate to the rotation-modified
waves. To see how this secondary Kelvin wave is formed,
Fig. 4 compares the span-wise average ξ of the non-rotating
case (case 10_0, in red) to that of the full ξ for case 10_1
(black pseudocolour). At the early time, t̃ = 4.7 (t = 45s),
there is a single leading Kelvin wave and a few radiating
Poincaré waves which are just beginning to reflect off the
ỹ = 1 wall. The trailing ISWs of the non-rotating case are
completely unrelated to the energy distribution of the rotating
case. This is clearly evident in Fig. 4b and c where the second
trailing ISW is located where very little energy exists in the
rotating case. The third ISW is near where the second Kelvin
wave is forming, but this happens to be a coincidence of the
choice of the presented time. Later, at t̃ = 10.4 (t = 100s)
(Fig. 3) the third ISW is well behind the second Kelvin wave.

More importantly, at high rotation rates the second Kelvin
wave is clearly formed by a resonance with the Poincaré
waves at the focused wall, which is directly contrary to how
the trailing ISWs form without rotation (they are the ex-
cess mass that is not trapped by the leading wave). This de-
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scription appears to be valid for rotation rates greater than
f/f0 = 1/4, while rates slower than this show the trailing
Kelvin wave to match the generation of a trailing ISW in the
non-rotating case with additional perturbations due to weak
Poincaré waves. Renouard et al. (1987) describe Poincaré
waves as being resonantly generated along the side wall,
while Melville et al. (1989) clearly show that the curvature
of the wave front is due to the combination of a Poincaré
and a Kelvin wave. Our results are in agreement with both of
these results but apply to mode-2 ISWs in the present study.

As described by Sánchez-Garrido and Vlasenko (2009)
the Poincaré waves will continue to remove energy from the
leading Kelvin wave, which is then deposited in this sec-
ondary Kelvin wave. This deposition primarily occurs on the
focusing wall, as opposed to equal deposition on both sides
of the channel, because of the broken symmetry caused by
the collapse of intermediate fluid on one end of the chan-
nel. This means that there is more residual kinetic energy at
ỹ = 0 (compared to ỹ = 1) and that the time for the Poincaré
wave to resonantly interact with the Kelvin wave is greater
at ỹ = 0 since both are travelling in the same direction. Once
the secondary Kelvin wave is fully developed, this resonance
can be considered analogous to a Mach stem in that the en-
ergy builds up on the boundary enough that the reflection no
longer occurs at the boundary and instead moves some dis-
tance away from the wall.

As energy is drained from the leading Kelvin wave and
deposited into the secondary wave, the secondary wave will
eventually become more energetic than the first, resulting in
an eventual overtaking. Our simulations do not show this fea-
ture since our channel is not long enough and we are focused
on the shorter timescales associated with the energetics of
the leading Kelvin wave. See Sánchez-Garrido and Vlasenko
(2009) for a description of overtaking. Unfortunately, we pre-
dict that the overtaking is likely to remain undetected in a
laboratory experiment with rectangular geometry because of
the considerable time, and thus length of channel, required
for the energy transfer to occur.

The differentiation of whether a wave is a Kelvin wave or
a Poincaré wave is made difficult because of the non-linearity
associated with the large amplitude of these waves. The clas-
sical linear theory, as presented in standard textbooks (Vallis,
2006; Kundu et al., 2012), describes a Kelvin wave as one
which has no span-wise velocity, and where the wave crest
does not curve in the span-wise direction. A simple check
shows that the leading and radiating waves have significant
span-wise velocities, which would indicate that they are not
Kelvin waves (in the classical sense). However, we choose to
label the radiating waves as Poincaré waves and the leading
wave as a Kelvin wave because both fit all other descriptions
of the particular wave type.

We observed that the radiating Poincaré waves resonate to
form a secondary Kelvin wave. Since this secondary wave is
separated from the chaotic leading wave, it could possibly fit
better in the description of a classical Kelvin wave. Figure

Figure 5. Vertically integrated v2 at t̃ = 10.4 (t = 100s) for case
10_1. Red contours are level curves of the vertically integrated KE.

5 presents a test for this by plotting the vertically integrated
span-wise squared velocity (in dark) and contours of the to-
tal vertically integrated KE (in red). The secondary wave (at
x̃ ≈ 12.5) does indeed show no span-wise velocity or wave
crest curvature, and thus our description of it as a Kelvin
wave is valid. We also notice that the region directly trail-
ing the wave also has little to no span-wise velocity. Looking
back at Fig. 3b and c it becomes clear that there are Kelvin
waves directly trailing the leading wave at weaker rotation
rates (the highest rotation rate requires more time to settle
according to this description). This Kelvin wave is distinct
from the previously described secondary wave. In this case
it is formed out of the remains of the excess focused mass
along ỹ = 0. To distinguish this Kelvin wave from the lead-
ing wave, we call it the Kelvin wave tail.

The dynamics seen thus far are fundamentally different
than in the case without the side walls. As described in
Coutino and Stastna (2017), without the walls the Poincaré
waves steepen and eventually break down into a non-linear
wave packet as dispersive effects take over. The addition of
side walls appears to slow the large-scale breakdown of the
leading wave. Rather, this energy is moved towards the side
wall and is then radiated leeward into trailing Poincaré waves
at a slower pace.

The advection of kinetic energy within the Kelvin and
Poincaré waves is key to understanding how the distribution
of this energy is influenced by the side wall. The span-wise
flux of KE (Fig. 6) reveals some interesting features. Of pri-
mary interest is that the leading Kelvin wave induces both a
positive and negative span-wise flux of KE. Close to the wall
(Fig. 6c), the front of the wave has advection away from the
wall, which then becomes a stronger, more localized return
of the kinetic energy flux towards the wall within the down-
stream portion of the leading wave. Further from the side
wall (Fig. 6a), the KE flux is weaker by nearly an order of
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Figure 6. Span-wise kinetic energy flux density for case 10_1 at
t̃ = 10.4 (t = 100s) and ỹ = (a) 1/2, (b) 1/4, and (c) 1/8.

Figure 7. Horizontal kinetic energy flux density for case 10_1 at
t̃ = 10.4 (t = 100s) and z̃= 0.5. Streamlines show the direction of
the KE flux in the reference frame moving with the leading wave
(i.e. flow is right to left). The colour axis shows the magnitude of
the KE flux.

magnitude and the structure has changed so that the leading
wave contains a more positive flux.

The secondary Kelvin wave (near x̃ = 12.75 m) has a
much weaker KE flux even though the waves are of com-
parable amplitude. The leading wave still contains resid-
ual energy from the Kelvin–Helmholtz (K–H) instabilities,
while the secondary wave receives energy from upstream. To
within 3 %, the same KE flux is advected towards and away
from the focusing wall in this secondary Kelvin wave.

For comparison purposes, we have completed the same
simulation in two dimensions while allowing transverse flow
to be coupled to horizontal motion through the Coriolis force
(i.e. a two-and-a-half-dimensional model). Since there is no
side wall, the radiated ISWs are smaller because much of the
energy remains within the geostrophic state. Regardless of
the waves being smaller and thus travelling slower, the KE
flux in the leading wave of the 2-D case (not shown) is dif-
ferent from that of the 3-D case with side walls, especially
near the wall. Further from the side walls, the two become
more similar yet remain distinct in the magnitudes and dis-
tributions of the KE flux.

Figure 8. Density anomaly, ρ̃, at t̃ = 5.2 (t = 50s) and (a) ỹ = 0,
(b) x̃ = 8.8, (c) x̃ = 8.9, and (d) x̃ = 9 for case 10_1.

The span-wise variation in the KE flux along the mid-
depth (̃z= 0.5 m) provides a different way to visualize the
KE flux away and towards the focusing wall. Figure 7 dis-
plays both the magnitude of the flux (colour) and direction
(streamlines with flow going from right to left) in a refer-
ence frame moving with the wave. The strongest KE flux is
directed towards the wall aft of the Kelvin wave. We hypoth-
esize that this KE flux is the cause of wave breaking in the
Kelvin wave (the details of which we present in the next sec-
tion). The kinetic energy near the wall then leaves the Kelvin
wave and travels along the wall until the Kelvin wave tail is
formed some time later.

3 Results: details of wave breaking

Now that the description of the global wave field has been
presented, we move on to the localized behaviour of the lead-
ing Kelvin wave at the focusing wall. As described by Max-
worthy (1983), the dominant instability takes the form of a
pair of K–H billows at the crests of the leading Kelvin wave
at the upper and lower extrema of the wave (Fig. 8a), or, al-
ternatively, at the edges of the pycnocline.
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Table 4. Length scales and timescales associated with localized
shear instabilities.

Case l∗ (m) t∗

10_0 0 0
10_1/16 0.02 1.35
10_1/4 0.05 1.88
10_1/2 0.07 7.93
10_1 0.10 > 12

In the highest rotation rate (case 10_1) the instability is
confined to within approximately 10 cm (one-quarter of the
channel width) of the focusing wall (Fig. 8b–d). As the ro-
tation rate decreases, the extent of the instability decreases.
Table 4 lists the length scale, l∗, of the initial billow and the
non-dimensional duration of the shear instability, t∗. Except
in case 10_1, the instabilities stop within the duration of the
simulation. For case_1 the size of the K–H billows decreases
significantly near the end of the simulation. It is worth re-
peating that higher rotation rates (smaller Rossby numbers)
lead to larger and longer lasting shear instabilities within the
crests of the Kelvin wave.

For all cases, the K–H billows simultaneously form as
pairs with a vortex above and below the pycnocline. Fur-
thermore, except during the early energetic K–H formation,
these billows remain synchronous, even during the process
of being broken down. Comparison to the observations of
Moum et al. (2003) is evident as upstream isopycnals are
compressed along the wave crest followed by the K–H bil-
lows. These K–H billows can also be considered analogous
to a von Kármán vortex street. In a reference frame mov-
ing with the wave, the background flow is directed around
the wave, much like it is around a cylinder in von Kármán’s
classical experiment. The analogy is limited since the Kelvin
wave core is not a solid and the core bends backward away
from the wall due to the rotation (and hence is not a cylinder).
Moreover, the instability is a shear instability, as opposed to
a boundary layer separation.

At the wave crest, the wave has the expected exponential
decay (Fig. 8d). Further behind, a description that is purely in
the x̃− z̃ plane is no longer valid since the wave front curves
backwards, as discussed in the previous section. However,
the instabilities remain trapped along the side wall (Fig. 8b
and c), while the wave itself, which created the instabilities,
remains stable further away. In the density field, the instabili-
ties are recognized as interleaving layers of lighter and denser
fluid associated with the roll-up of the K–H billows. The
span-wise extent remains largely unchanged as the vortices
leave the leading wave. This means that rotation causes mix-
ing and turbulence to occur at a preferred location, namely
on the focusing wall. Should the geometry, or environmental
forcing (e.g. flow over a sill in a fjord), cause Kelvin waves
to be generated at a specific location, this would indicate that

one side of the channel would experience more mixing. The
aforementioned fjords, as well as narrow lakes, would be par-
ticularly susceptible to this.

We find that changes in the rotation rate (i.e. the strength of
the Coriolis force) influence the intensity of the K–H billows
(Fig. 9). Though the initial available energy is the same in all
cases, the higher rotation rates lead to higher localized kinetic
energy density. At early times (first column of Fig. 9) the
amplitudes of the leading waves are all comparable but have
varying levels of stability. The cases with increasing rota-
tion are far more energetic. Fundamentally, these vortices are
formed from stratified shear instabilities, commonly associ-
ated with larger amplitude waves (Brandt and Shipley, 2014).
This leads us to suggest that a coastally trapped ISW has a
lower minimum amplitude threshold for instability genera-
tion compared to an ISW away from boundaries. The precise
reason for the lower minimum amplitude remains an open
question, but it likely has to do with the mass and energy
flux towards the focusing region discussed in the previous
section.

As time progresses, the wave sheds energy and mass in
the shear instabilities until a critical amplitude is reached,
after which the wave remains stable but continues to de-
cay because of the lossy behaviour of the core region of
large amplitude mode-2 ISWs (Deepwell and Stastna, 2016).
At t̃ = 10.4 (t = 100s), only the highest rotation rate still
produces shear instabilities. In comparison, the non-rotating
case is laminar and time-invariant, apart from small dissi-
pative effects for all times. The weaker rotation rate cases
do not exhibit instabilities at later times, but rather the mass
from the shed vortices has formed the Kelvin wave tail. This
wave is also immediately apparent from Fig. 3, which shows
the kinetic energy within this wave directly behind the lead-
ing Kelvin wave. Over time the lower rotation rates show that
this Kelvin wave tail obtains energy from the leading wave
and will eventually overtake it. At the highest rotation rate,
the shear instability remains active for the entire simulation,
which makes it difficult for the Kelvin wave tail to form.

The emergence of shear instabilities is correlated with the
rotation rate; that is, a higher rotation rate is associated with
an earlier shear instability. The higher rotation causes greater
fluid to be directed towards the focusing wall, which leads
to a greater initial amplitude, which creates favourable con-
ditions for shear instabilities. Though the initial amplitude is
correlated with the rotation rate (Fig. 10), the three fastest
rotations result in similar wave amplitudes as the experiment
continues. This leads to the interesting question of whether
Kelvin waves have a stability restriction based on their am-
plitudes, though the form of their creation here (as a col-
lapse of a span-wise invariant perturbation) greatly impacts
the dynamics, especially with the K–H billows. Though the
Richardson number is not applicable in the upper and lower
layers where there is no vertical density variation, within the
wave core the Richardson number drops below 1/4 around
the edge of the mode-2 bulge while the K–H billows form.
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Figure 9. Density anomaly, ρ̃, at ỹ = 0 for f/f0 = (a, b) 0, (c, d) 1/4, (e, f) 1/2, and (g, h) 1. Black contours are equispaced isopycnals
between ρ(z0−h) and ρ(z0+h). All cases have Sc= 10.

Figure 10. Wave amplitude as a function of time for different rota-
tion rates (f/f0 in legend). All cases have Sc= 10.

The wave amplitude decay rate, a′ =−T
h

daw
dt , increases

with rotation rate (Table 2, and Fig. 10). At larger rotation
rates this is a result of a greater initial amplitude, while
slower rates create far fewer K–H billows and the associated
loss of mass. At t̃ = 5.2 (t = 50s), the kinetic energy within
the leading wave increases with rotation rate (first column of
Fig. 11). The kinetic energy also becomes localized in space
at the K–H billows. At later times, the kinetic energy has

decreased most substantially in the higher rotation rates be-
cause of the shear instabilities.

Figure 12 shows the kinetic energy cross sections in the
ỹ− z̃ plane at the crest of the Kelvin wave (ISW in the non-
rotating case). The case of no rotation has an essentially
span-wise invariant wave front, whereas the rotation breaks
the symmetry by curving the wave front. Along the cross sec-
tion of maximum amplitude, this appears as an exponential
decay of the wave amplitude. Essentially all of the kinetic en-
ergy resides within the characteristic isopycnals, ρ(z0±h).
Furthermore, the density overturns resulting from the insta-
bilities are correlated with the locations of maximum KE.

Over time, due to the radiation of energy into trailing
waves, the leading Kelvin wave reduces in amplitude, span-
wise width, and KE. The time-dependent nature of the width,
and thus the exponential decay, results in an increased local-
ization of KE along the focusing wall (seen very clearly in
the second row of Fig. 12). This is true along the cross sec-
tion of maximum amplitude where the decaying Kelvin wave
applies. In the curved portion of the leading wave, this co-
incides with a simple reduction of the width of the curved
wavefront.

Maxworthy (1983) found that the measured Rossby radius
of deformation,LM (that is, the distance from the wall for the
amplitude to drop by a factor of e), was a factor of 2 smaller
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Figure 11. Kinetic energy density at ỹ = 0 for f/f0 = (a, b) 0, (c, d) 1/2, and (e, f) 1. Red contours are the same as in Fig. 9. All cases have
Sc= 10.

than the calculated Rossby radius, Lc. Only the highest ro-
tation rate has an LM smaller than the width of the channel
for us to make a comparison. Case 10_1 has a factor close
to 2.6, which is comparable. This does not appear to be the
case at lower rotation rates since in these cases, their ampli-
tudes decay over the entire channel width, even though the
Rossby radius increases by up to a factor of 4. This could
be due to the narrowness of the channel compared to the
Rossby radius or more likely a difference in measurement
technique. Maxworthy (1983) made his estimate based on the
projection of the wave field onto the ỹ− z̃ plane. This would
lead to a weaker decay rate since the wave curves backwards
away from the cross section with a fixed x̃ at which our es-
timate is made. In other words, the method of Maxworthy
(1983) views the entire wave front in the along-tank direc-
tion, while we choose a particular stream-wise location for
our estimate. The width of the channel will, however, adjust
the reflection of the Poincaré waves and thus the resonance
of the secondary Kelvin wave, but this will have no impact
on the leading wave.

4 Results: Schmidt number dependence

The shear instabilities and associated dynamics are funda-
mentally small-scale behaviour which are damped by vis-
cosity and smeared by diffusion, both of which are deter-

mined by the properties of the fluid, namely the molecular
diffusivity and the viscosity. Experimentally, the diffusivity
is fixed by the choice of stratifying solute. Physical values
of a salt stratified experiment, which are typical for experi-
ments of this type, give a Schmidt number of approximately
700. Since DNSs at these values are unattainable due to the
resolution required, here we provide a short description of
the impact that various Schmidt numbers have on the results
presented thus far. Of importance is measuring the change in
the shear instabilities by varying the Schmidt number.

For longer simulations, such as the ones conducted here,
the pycnocline will diffuse, causing the waves to propagate
in a slightly different stratification near the end of the simu-
lation compared to the beginning. Smaller Schmidt numbers
have greater diffusion, causing a greater impact (Fig. 13a).
In the Sc= 1 case, the pycnocline grew by 70 %, while in the
Sc= 10 case, it only grew by 10 %. The background strati-
fication at the end of the experiment is noticeably different
(Fig. 13b).

We find that the wave amplitude is unaffected when com-
pared at various Schmidt numbers. Thus, the general features
characterizing the wave are fairly similar at t̃ = 5.2 (t = 50s)
(Fig. 14). The details, however, are significant enough to war-
rant comment. All Schmidt numbers experience the shedding
of K–H billows, but for the lowest Schmidt number case, for-
mation ceases at around t̃ = 11.7 (t = 112s), while the other
two cases create billows for the duration of the simulation.
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Figure 12. Kinetic energy density at the location of maximum amplitude for f/f0 = (a, b) 0, (c, d) 1/4, (e, f) 1/2, and (g, h) 1. Red contours
are the same as in Fig. 9. All cases have Sc= 10.

Figure 13. (a) Pycnocline half-width as a function of time for
different Schmidt numbers. (b) The background stratification at
t̃ = 12.5 (t = 120s).

The higher diffusivity in the Sc= 1 case acts to hinder the
production of shear instabilities by quickly diffusing them as
they form.

The span-wise profile of the wave also shows differences
(right column of Fig. 14). The highest Schmidt number case
has overturning, which is not present in the lowest Schmidt
number case. These features are secondary to the overall be-
haviour. For example, the total kinetic energy is comparable
between all cases at a given rotation rate but remains con-
sistently weaker for lower Schmidt numbers. The greatest
separation between the Sc= 1 and Sc= 10 case is 13 %. As

this ratio is only expected to grow as Sc increases, the dif-
ference between typical simulations of Sc= 1 is bound to
misrepresent the smaller dynamical features of an equivalent
physical experiment, which is typically salt stratified with a
Schmidt number around 700. As a result of this, the dynam-
ics of a physical experiment will look like Fig. 14a and b with
substantially finer details. A thermally stratified experiment,
however, will be well represented by Fig. 14a and b. We are
unaware of any experimental work on mode-2 internal waves
with stratification achieved by varying temperature.

In the f/f0 = 1/2 rotation rate cases (comparison not
shown) the differences are more obvious. The density field
does not clearly show the Kelvin wave tail in the Sc= 1 case.
Rather, the wave is of such small amplitude that it is nearly
indistinguishable compared to the pycnocline width. Only by
looking at the vertically integrated KE does the wave ap-
pear, but it is of considerably smaller magnitude. The fanning
structure seen in Fig. 4 also goes from at least two branches
in case 10_1/2 to one in case 1_1/2. This results in a differ-
ent Poincaré wave field in the majority of the domain.

5 Conclusions

We have performed a series of numerical experiments of a
lock-release configuration, exploring the effects that rotation
and side walls have on the evolution of mode-2 ISWs. When
the stratification has a single pycnocline form, naturally oc-
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Figure 14. Density anomaly, ρ̃, at t̃ = 5.2 (t = 50s) with cross sections at ỹ = 0 (first column) and at the location of maximum amplitude
(second column) for Sc= (a, b) 10, (c, d) 4, and (e, f) 1. Black contours are the same as in Fig. 9. The vertical black line denotes the location
of the cross section shown in the right column. All cases have f/f0 = 1.

curring mode-2 waves are quite likely to exhibit regions of
overturning, and hence our configuration is ideal for explor-
ing the combined effects of rotation and instability. Matching
with the results of Maxworthy (1983), we observe that the
leading wavefront becomes curved by rotation and that the
dominant instability takes the form of two K–H billow trains
at the crest of the wave, above and below the pycnocline cen-
tre. By modifying the rotation rate we observe that as the rate
of rotation increases, the instabilities become more energetic.
This appears to be due to increased focusing of mass and the
kinetic energy density along the focusing wall, especially in
the early period of adjustment after the lock is released. Since
these types of shear instabilities are most commonly formed
by large amplitude waves, this suggests that Kelvin waves
in a channel have a lower minimum amplitude threshold for
instability generation and thus will have smaller amplitude
waves compared to internal solitary waves in the open ocean.

These instabilities cause the leading wave to lose energy
and thus higher rotation rates, resulting in a faster decay in
wave amplitude than cases with a lower rotation rate. The in-
creased instability generation along the side wall also serves
to create an asymmetry in the extent of mixing across the
width of the tank. This effect could be observed in fjords or
narrow lakes by making a careful comparison of mixing lev-
els and wave amplitudes across the channel.

The high level of mass and kinetic energy along the fo-
cusing wall also resulted in the radiation of Poincaré waves,
as previously described by Sánchez-Garrido and Vlasenko
(2009). The Poincaré waves reflect off the opposing wall be-

fore returning to resonantly generate the secondary Kelvin
wave along the focusing wall. When compared against an
equivalent non-rotating case, we found that this generation
mechanism (through resonance) at higher rotation rates was
completely different from the creation of secondary ISWs in
a non-rotating reference frame. We referred to this wave as
the secondary Kelvin wave. In addition to this, a Kelvin wave
tail formed from the remains of the focused mass and en-
ergy along the wall. During propagation, we observed that
the leading Kelvin wave appeared to lose energy to both of
these Kelvin waves, each of which became more energetic
and thus faster. Eventually, these trailing Kelvin waves will
overtake and surpass the leading wave, though we did not
witness this phenomena. The results observed are fundamen-
tally different than those seen without side walls. In the case
without the side walls the leading wave energy is deposited
into the trailing waves through dispersion, eventually form-
ing a wave packet. This packet has no span-wise variation.
With side walls, the trailing waves are a fan of Poincaré
waves that exhibit a complex interference pattern and hence
have a span-wise structure. Furthermore, the energy of the
leading wave is not continuously being lost to the primary
trailing wave, and hence this wave lives significantly longer,
compared to the non-rotating case.

The results presented above suggest two clear avenues
for future work. One avenue would focus on the rotation-
modified instability region. While in the above, clear evi-
dence of transitional behaviour was presented, it is unclear
to what extent a truly turbulent state was achieved. This is

www.nonlin-processes-geophys.net/25/217/2018/ Nonlin. Processes Geophys., 25, 217–231, 2018



230 D. Deepwell et al.: Multi-scale phenomena of rotation-modified mode-2 ISWs

because trapping by the leading Kelvin wave is incomplete
and turbulence may lose energy due to a spreading in space.
Moreover, while the resolution of the numerical simulations
was excellent for the full domain, a study that is focused on
turbulent transition could optimize the domain and stratifica-
tion parameters. For example, the domain could be shortened
and the initial perturbation increased in size to increase the
wave amplitude. While we have speculated that no-slip side
walls would not fundamentally alter the shear instability, this
remains to be confirmed by using a clustered Chebyshev grid
in the span-wise direction. A more likely mechanism that
would alter the shear instability would be to raise the pyc-
nocline such that the layers are of unequal depths to better
approximate an oceanographic stratification.

A second possible avenue for future work would explore
the effect of the span-wise extent. Figure 15 of Sánchez-
Garrido and Vlasenko (2009) suggests that for wider do-
mains, mode-1 Kelvin waves yield Poincaré wave trains
whose focusing yields Mach stems on the far wall. We did
not observe this phenomenon in our simulations, but it is pos-
sible that our span-wise extent was simply not large enough
to achieve this. Of course, an experimental realization of our
simulations would provide both a test of our results and sug-
gestions for future numerical studies that are most relevant to
the experimentalist.
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